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Abstract. Almost all existing work on the design of survivable networks is based on a specific demand forecast to which one opti-
mizes routing and transport capacity assignment for a single target planning view. In practice these single-forecast models may be
used repetitively by a planner to consider a range of different scenarios individually, hoping to develop intuition about how to
proceed. But this is not the same as having a planning method that can inherently and quantitatively consider a range of possi-
ble futures all at once. Our approach considers both the cost of initial design construction and the expected cost of possible aug-
mentations or “recourse” actions required in the future, adapting the network to accommodate different actual future demands.
In practice, these recourse actions might include lighting up a new DWDM channel on an existing fiber or pulling-in additional
cables, or leasing additional capacity from third party network operators, and so on. A stochastic linear programming approach is
used to achieve designs for which the total cost of current outlays plus the expected future recourse costs is minimized. Realistic
aspects of optical networking such as network survivability based on shared spare capacity and the modularity and economy-of-
scale effects are considered. These are not only important practical details to reflect in planning, but they give the “future-proof”
design problem for such networks some unique aspects. For instance, what is the working capacity under one future scenario that
may not waste capacity if that demand scenario does not materialize, because the same channels may be used as shared spare
capacity under other future scenarios. Similarly economy-of-scale effects bear uniquely on the future-proof planning problem, as
the least-cost strategy on a life-cycle basis may actually be to place more capacity today than current requirements would suggest.
This is of obvious relevance to planners given the recent hard times in the telecommunications industry, causing a tendency to min-
imize costs now regardless of the consequences.

Keywords: survivable mesh network design, demand uncertainty, stochastic integer linear programming, capacity planning, optical
transport network planning

1 Introduction

In the last decade we have experienced rapid
advances in telecommunications technology in a
deregulated competitive market. Network opera-
tors have traditionally depended on demand fore-
casts to justify the substantial investment needed
to ensure that needed capacity is available at the
right time. When telephony was dominant, fore-
casts were generally accurate enough for plan-
ning with existing methods. But with the more
recent diversification of services, changing usage
patterns, and a lack of historical data on the new
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emerging data applications, accurate forecasting
of future demand volumes and patterns for trans-
port network planning has become extremely diffi-
cult [1–3].

In such a dynamic and uncertain environment,
a difficult but important question in network
planning is how best to cope with uncertainty
of the forecast demand, since almost certainly
the actual demand volume and pattern will turn
out to be different from the nominal forecast
to which a network design or capacity invest-
ment was planned. This is not an altogether
new reality in capacity planning for businesses in
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general, but in the specific case of optical trans-
port networking, the degree of volatility of pos-
sible future demand scenarios and the need to
deal with survivability considerations inherently
in the basic design problem are both unprec-
edented, and therefore impose new challenging
design issues.

While methods for the capacity design of sur-
vivable networks have developed significantly in
the last decade, essentially all methods in use
today, for both ring- and mesh-based transport
designs, are based on a specific target of an
assumed future demand matrix which represents
the anticipated demand pattern at the end of
the current planning and deployment cycle. The
most common approach to dealing with uncer-
tainty has been the straightforward use of “safety
margins” of added capacity [4]. The trouble with
simple application of safety factor multipliers to
either the input demand matrix or the otherwise
ordinarily solved for capacities is that it helps
ensure feasibility of the resulting design, but not
the optimality of the design in the sense of being
truly “future-proofed”, the most ready and likely
to cope with the future demand as can be for
the given total investment level. In the compet-
itive carrier market where transport investment
represents a significant portion of the overall cor-
porate expenditure, a more systematic and scien-
tific approach to coping with demand uncertainty
therefore seems preferable.

1.1 Background
1.1.1 Capacity Planning as a Two-Part
Investment Problem
In the problems of survivable capacity network
design, a typical objective is to determine the
minimum amount of total capacity required to
both serve and protect a specific forecast demand
matrix. The protection that is built into the
design is usually to ensure against any possi-
ble single-span failure scenario (e.g., fiber cut)
with efficient sharing of spare capacity over non-
simultaneous failure scenarios. This single-period
approach has been predominantly used in finding
the optimal working and spare capacity place-
ment and to ensure restorability upon span or
node failures.

There is no question that single-period, single-
forecast design methods have been, and will con-
tinue to be, enormously useful in production plan-
ning tools and for technology selection studies and
comparative research on different basic network
architectures. Over the last decade they have been
used extensively to develop understandings about
capacity efficiency [5], the ability to deal with mul-
tiple failures [6], operational simplicity [7], network
evolution strategies [8], effects of capacity-modu-
larity [9], and so on. But these methods only pro-
duce “snapshot” designs that are optimal to a sin-
gle forecast. If the actual demand matrix differs
from the one predicted, the initial design, which
may now be already deployed, may no longer be
the most cost-effective one. An ability to design
networks that in some sense are most likely to
be able to cope economically with future uncer-
tainty is therefore certainly of interest and poten-
tially useful.

To incorporate demand uncertainty in surviv-
able network design, we adopt the basic idea of
stochastic programming (SP) with linear recourse
[10] as a mathematical framework. The concept
of SP with linear recourse can be explained as
a two-part1 investment decision process. The first
part considers the budget X to be invested at
present and the second part represents the cor-
rective or “recourse” action Y to take place in
future when uncertainty unfolds. Compared to the
traditional approach, the two-part model better
reflects the complete life-cycle investment costs
associated with capacity planning by facilities-
based service providers2 today. The recourse costs
which we will consider include mainly the cost of
“lighting up” (i.e., fully equipping and commis-
sioning) new fiber system and/or additional single
channels on those systems needed for either pro-
tection or working capacity. The recourse costs
might also represent the penalty cost of leas-
ing capacity from third-party network operators.
In this regard, economy of scale effects can be
early-on appreciated to be important in future-
proof planning: to minimize present costs, small
capacity modules may be preferred, e.g., OC-
48s and/or single wavelengths. But if over a cer-
tain span demand increases unexpectedly, the cost
of adding more capacity in small modules in
future may exceed the cost of having simply
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invested once at the start in large-capacity mod-
ules, say OC-192s and/or whole multi-wavelength
waveband equipment. One form of future recourse
that we do not consider here is changes to the
physical network topology itself. This is generally
a very major separate decision in network planning
with quite high one-time costs associated with new
physical rights-of-way acquisition, installation of
ducting, power and so on. Thus our approach
is presently limited to future-proofed capacity
investment planning where under all future sce-
narios the physical layer graph topology remains
constant as given in the initial network.

1.1.2 Types of Demand Uncertainty
An important aspect of planning under uncer-
tainty is to first define the scope of uncertainty
considered, since it helps to determine what math-
ematical technique to be used for solving
the complex decision problems. To narrow down
the possible ranges of demand uncertainty in
the capacity planning problem, we are guided
by a general classification model by Courtney,
Kirkland and Viguerie [13] which divides the
notion of uncertainty into four different levels:

Level I: A Clear-Enough Future—In this
case, network planners can develop
a single forecast of the demand that
is precise enough for the capacity
design problem. In the past where
telephony was dominant in transport
networks, and exhibited (as it still
does) a virtually uncertain 3 or 4%
per annum growth, this assumption
might be acceptable and traditional
methods can be used to obtain
optimal solutions.

Level II: Alternative Futures—Here the future
can be described as one character-
ized by relatively few different
outcomes or discrete alternate future
scenarios. These scenarios represent
a range of possibilities and each is
associated with a probability mea-
sure, even though the probability
might be difficult to quantify.

Level III: A Range of Futures—A range of
plausible futures can be identified

and the range of possibilities should
define the boundaries of the demand
space in which the network is
expected to serve. What distin-
guishes this form of uncertainty
from Level II is that there may be
a near continuum of finely different
discrete future scenarios, many times
larger than in Level II.

Level IV: True Ambiguity—This is the most
uncertain and probably the most
undesirable level of uncertainty
to try to plan for since multiple
dimensions of uncertainty interact
to create an environment that is
virtually impossible to predict. There
is simply no basis to forecast the
future.

While general strategies and analytic tools are
proposed to deal with different levels of uncer-
tainty in [13], and the real uncertainty of the
transport network planning problem might be clas-
sified as being in Level III, to concisely explain
the general idea of the proposed formulation, we
will develop a Level II type of approximation.
In effect we recognize that there is a continuum
of strictly different future demand scenarios, but
think most planners would agree that a smaller
number of “characteristically different” scenarios
can still meaningfully represent the future. The
use of SP to deal with such uncertainty is well-
known [10,14] and it has been used to solve capac-
ity planning problems in the electric utility and
semiconductor industries [15–17] but not yet to
our knowledge in optical network transport plan-
ning in general and with only one exception has
not yet been applied to network design with built-
in survivability assurances.

1.1.3 Background on Span-Restorable
Mesh-Based Networks
In this work we consider mesh-oriented surviv-
able networking for the basis of the next gen-
eration optical transport networks. Mesh-based
transport is considerably more efficient in spare
capacity sharing and flexible in routing demands
than ring-based survivable networks. Among the
approaches available for mesh-based transport
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Fig. 1. Illustrating the general concept of span restoration [18].

networks, we presently work with span-restorable
(SR) networks. In span restoration, multiple
replacement paths that re-route affected signal
flows are formed between the immediate end nodes
of the failure span itself (See Fig. 1). The replace-
ment paths can be pre-computed prior to the span
failure either centrally, or via distributed pre-plan-
ning (DPP) using the same embedded restoration
protocol that can operate adaptively in real-time
if needed [18]. The operational principles and the
capacity design models of a span restorable net-
work have been well studied in sources such as [5–
9, 18–23].

While we acknowledge there are many other
different kinds of mesh-based survivability schemes
in general (e.g. path-based, segmented-path, shared
or dedicated, etc. . .), the intention of this study is
to propose and develop a basic framework using
span-restorable network as a vehicle for research,
so that such framework and principles can later be
adapted to apply for other survivability architec-
tures as well.

1.2 Related Work
Methods of designing more traditional types
of telecommunication networks under demand
uncertainty have been studied by Sen et al. [24]
in the context of private line services network and
Gaivoronski in ATM networks [25]. But aside
from one other investigator that recently con-
sidered the problem (Kennington et al. [26]) in
DWDM survivable networks, the literature that
considers both network survivability and demand
uncertainty is extremely limited. In [24] and
[25], two-stage stochastic linear programs were
proposed to find robust solutions under short-
term demand fluctuations, where the private line

requests are updated on a monthly basis. Due
to the assumptions that each demand pair can
take on 5–10 possible demand values and approx-
imately 100 origin-destination (OD) pairs were
considered, the number of discrete demand sce-
narios is enormous (i.e., 5100). With this uncer-
tainty (clearly Level III category), specific
heuristics and sampling techniques, such Stochas-
tic Decomposition [24] and the Stochastic Quasi-
gradient method [25], were developed for solving
these large-scale stochastic programs. While the
computational aspects of solving large-scale sto-
chastic optimization problems are significant and
on-going topics in mathematical research area
[27, 28], the main goal of this work is to develop
new capacity planning concepts and to provide
general guidelines of how one can adopt the SP
framework for his or her own planning problem
under demand uncertainty.

A well known alternative to stochastic lin-
ear programming to plan against uncertainty is
called Robust Optimization (RO). This has been
used to solve problems relating to financial asset
allocation and electric power capacity planning.
Mulvey et al. present an excellent overview of
RO with some motivational examples [29–31]. In
[26], Kennington et al. adopts the idea of Mulvey
and uses the RO method for solving routing and
provisioning problems over DWDM networks. In
contrast to the SP approach where there is a
notion of “correcting” or “augmenting” the ini-
tial design through future decision, in RO, the
idea is to find solely a “present decision” that
minimizes the expected penalty (or called “regret”
in [26]) due to the undesirable outcomes. Hence,
if one of the what-if scenarios occurs, in SP, we
explicitly know that we need Y units of capac-
ity to augment the initial decision, whereas in
RO, corrective actions are not part of the mod-
eling consideration. In certain kinds of problems
though, where it is not possible to alter the cur-
rent outcome once it is decided, RO offers more
flexible ways to describe the penalty than SP
because no recourse action (nor the associated
recourse cost to coping with the future) can be
defined. Hence depending on whether the pres-
ent decisions can be corrected and how we mea-
sure the impact of consequences, both SP and
RO are both valid mathematical models for deci-
sion makers in dealing with uncertainty.
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Recent work by Birkan and Kennington et al.
[32] is probably the first publication that com-
bines demand uncertainty and network survivabil-
ity in a single optimization model. Building upon
the RO model in [26], Birkan and Kennington
extend it to include network survivability schemes,
such as 1+1 dedicated protection, shared backup
path protection, and p-cycles protection. While
both SP and RO approaches provide the mathe-
matical framework for incorporating uncertainty
into the decision modeling, we believe that the
SP approach more realistically reflects the capacity
planning problem for a competitive facilities-based
network operators standpoint, in a sense that oper-
ators could (and would) generally add capacity as
needed to serve their growing customers.

There is another area of survivable network
planning strategy called Multi-period Planning
that considers incremental capacity and/or topol-
ogy expansions in a multi-period time horizon
[33–35]. In these studies, the demand forecast for
each period is assumed to be known with cer-
tainty. By incorporating the entire time evolu-
tion of traffic demand and the cost data into
account, the multi-period planning approach is
proven to be a more cost-effective than a sequen-
tial single-period approach, where the expansion
strategy is done separately in a chronological
order. Although multi-period planning can deal
with demand traffic evolution to some degree,
we should note that this technique is as depen-
dent on assumed perfect future forecasts as sin-
gle period traditional methods. In fact, the effect
of demand uncertainty can only increase as the
length of the planning horizon increases.

1.3 Outline
The rest of the paper is organized as follows.
In Section 2, we introduce two stochastic pro-
gramming models for designing span-restorable
networks under demand uncertainty. The first
model corresponds to the SP model for mini-
mum total cost including expected recourse costs
where capacity is not modular. This serves as
the basic framework onto which we add the
details of modularity and the economies-of-scale
in the second model. Section 3 gives details of the
pan European test network and demand patterns.
The experimental results are presented and their

significance is discussed in Section 4. The overall
conclusion is offered in Section 5.

2 Optimization Models for Span-Restorable
Network Design under Uncertainty

We will now develop the optimization model
including definition of the mathematical means
through which we can capture the notion of
future recourse to repair any shortcoming in the
initial design in the face of future demand that
is different from the nominal forecast. As men-
tioned, we work with span-restorable mesh net-
works. In this regard, our starting point is the
model first introduced by Herzberg and Bye [21]
to minimizing the total spare capacity cost of
a fully span-restorable network, plus the exten-
sions by Doucette and Grover [9] to create a
joint formulation. In the joint model, the rout-
ing of demands is simultaneously optimized with
the placement of spare capacity so as to minimize
total working plus spare capacity in a survivable
network.

2.1 Two-Part Span-Restorable Design (TP-SR)
without Modularity
The key concept for the two-part span-restorable
design can be explained as follows. In the first
part, a budget X is invested initially and the sec-
ond part considers the cost of a corrective action
Y(k) to take place if a future scenario k (mod-
eled by a set of scenarios k ∈ U ) occurs. In our
problem, the present outlay X is the cost of an
initial network design that is assured to serve
and protect all demands of the defined nominal
forecast, k0. The expected recourse cost Y is the
mathematical expectation of recourse costs over
all future scenarios k which are possible and dif-
fer from k0. Note that the nominal forecast can
itself be arbitrarily certain—in many applications
of this model it can represent the current actual
demand pattern. Because the number of signifi-
cantly different demand scenarios for long-term
planning is typically in the order of tens (i.e.,
Level II model) [5–9, 13–26], the more general
stochastic integer program can in practice be rep-
resented as an integer program of the determin-
istic equivalent form, for which standard solvers
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can be used. The two-part span-restorable capac-
ity design (TP-SR) is as follows:

Sets:

S Set of all spans in the network, indexed by j
or i .

U Set of all possible future demand scenarios to
be considered, index k

D Set of all origin-destination (OD) pairs in a
demand matrix, index r

Qr Set of pre-determined eligible working
routes for OD pair r , index q

Pi Set of pre-determined eligible restoration
routes available upon the failure of span i,
index p

Parameters:

C j Present cost of a unit capacity placed on
span j

R j Recourse cost of placing an extra unit capac-
ity on span j to cope with the unfolding of
demand uncertainty. R j can simply be a mul-
tiplicative value of C j , or any other absolute
value specific for each span j

Pk Probability estimate for demand scenario k
dr

k Magnitude of the bi-directional (integer)
demand on node pair r in scenario k

ζ
r,q
j Equal to one if the qth eligible route for

demands between node pair r uses span j ,
zero otherwise

δ
p
i, j Equal to one if the pth eligible route for

span i uses span j , zero otherwise

Variables:

w j Number of working capacity units on span j
for the design

s j Number of spare capacity units on span j
for the design

y j,k Number of additional working capacity units
that would have to be placed on span j in
future to cope with scenario k

z j,k Number of additional spare capacity units
required on span j under future demand sce-
nario k

gr,q
k Working flow assigned on the qth working

route to serve OD pair r in scenario k
f p
i,k Restoration flow assigned on the pth restora-

tion route upon the failure of span i in sce-
nario k

TP-SR: Minimize
∑

j∈S

C j · (w j + s j )+
∑

j∈S

∑

k=U

Pk · R j · (y j,k + z j,k)

(Obj. 1)
Subject to:
∑

q∈Qr

gr,q
k =dr

k ∀r ∈ D; ∀k ∈U (1)

∑

r∈D

∑

q∈Qr

ζ
r,q
j · gr,q

k =w j + y j,k ∀ j ∈ S; ∀k ∈U (2)

∑

p∈Pi

f p
i,k =wi + yi,k ∀i ∈ S; ∀k ∈U (3)

s j + z j,k ≥
∑

p∈Pi

δ
p
i, j · f p

i,k

∀(i, j)∈ S2; i �= j; ∀k ∈U (4)

y j,k , z j,k =0 k =0; ∀ j ∈ S (5)

The objective is to minimize the total cost of
the network design (i.e. the first term in Obj. 1)
plus the expected value of the future costs to aug-
ment the design to serve each possible demand
scenario k ∈ U . The parameter C j is the pres-
ent cost of a unit capacity on span j and R j is
the recourse cost if extra working capacity y j,k

and/or spare capacity z j,k has to be added to
span j in the future under scenario k. In the gen-
eral cost model where recourse costs are specific
to each span to reflect practical realities such as
dark fiber existing on some spans, but not on
others, or the cost of leasing capacity on particu-
lar spans or routes from a third party carrier, and
so on. For comparative study, we will use a com-
mon recourse cost factor for all spans, i.e., R j =
α∗C j and hereafter we refer α as the recourse
cost factor.

In each scenario k, constraint (1) allocates the
demand flows gr,q of OD pair r onto working
routes q in Qr , representing a set of pre-
determined eligible routes for the demands. Con-
straint (2) determines the working capacity w j

required on each span to simultaneously serve the
demand flows. ζ

r,q
j is an input parameter which is

1 if the qth working route for OD pair r uses span
j , zero otherwise. For any scenario k where there is
a mismatch between the level of demands and the
initially installed working capacities, extra working
capacities y j,k are added to serve the unexpected
demands in the future design.3
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Constraints (3) and (4) correspond to the
network survivability constraints based on span
restoration. Note that other span-based restoration
schemes such as p-cycles can also be adapted to
this formulation by employing a corresponding set
of constraints here that are specific to the particu-
lar other restoration mechanism used. Constraint
(3) ensures that the total of all restoration flow
f p
i,k , assigned to the eligible routes in Pi when

span i fails, satisfies the restoration requirement for
that failure scenario (i.e. the total working capacity
affected). Although this constraint enforces 100%
restorability of each individual span, multiple lev-
els of service-survivability (i.e. multiple quality-of-
protection service classes) could also be considered
in the formulation by adding the detailed con-
straints of the type developed in [23] at this point
in the model. Constraint (4) generates the required
spare capacities s j to support the largest of all
simultaneously imposed restoration flows crossing
each span under each failure scenario and in every
demand scenario. If there is a shortage in spare
capacity s j on span j under possible scenario k,
extra spare capacities z j,k would be added. A very
important detail is how we assert that the nominal
forecast must be satisfied while for all other sce-
narios, we only consider their cost of repair should
they arise. This is done simply by imposing y j,k =0
and z j,k = 0 for k0 in constraint (5), which says
that there can be no “extra” capacity of either type
associated with ensuring the routability and restor-
ability constraints above. This forces the design to
contain adequate “present capacities,” w j and s j ,
for the nominal scenario k0. The corresponding
constraints can, for all other scenarios, be satis-
fied by the admission of non-zero “possible future
additional capacities” y j,k and z j,k . As a result of
this effect, it is easy to note that two other quite
relevant types of design can also be obtained:

(i) If constraint (5) is simply deleted, the design
that results is the network which represents
the least expected (total) cost strategy over
all possible futures. In this case what is built
“today” in effect is the component of all pos-
sible future networks required, that is common
enough to the range of future outcomes to be
worth investing in at present, given the cost
of capacity at present is less than in future
(with recourse cost factors >1). Conversely, if

the recourse cost factor is less than 1, the opti-
mal present network cost can in fact be zero
since it is more economical to wait and build
the network when uncertainty unfolds.

(ii) If constraint (5) is asserted for all recourse
capacity variables, i.e., y j,k = z j,k = 0 for all
span j and all scenarios k, then the design that
results is the special case of a network that is
guaranteed at initial construction to serve all
defined future scenarios. In the language of [10]
this brute-force kind of future-proofing is what
is called a “fat solution”. It serves all possible
future scenarios by its basic design but is also
the most expensive strategy in general.

In the results, we will make various comparisons
between the main TP-SR design model and the
two related extremes that are so easily derived from
it simply by variants on Constraint (5). Unlike
the traditional span-restorable design whose objec-
tive is to minimize solely the initial total capacity,
this two-part model allows us to minimize present
investment as well as the expected consequences
and risk (characterized by R j ) of the present deci-
sion. It is also interesting to note that an associ-
ated output from this model is not only full details
of the present network to build, but also each of
the specific future recourse actions (through y j,k

and z j,k) that are required to cope for whatever
demand scenario actually arises. Implicitly in this
model, the coping or adaptation information not
only says where to add capacities, how to route the
unexpected (relative to nominal) working demand
and updates to the restoration routing plans, but it
may also include changes in the routing of one or
more existing paths as part of the overall future
adaptation plan. The frequency of such implied
re-routing is thought to be quite low in the basic
non-modular model, however. Because even under
joint optimization it is generally known that short-
est routes tend to remain near-optimal for working
paths.

2.2 Two-Part Span-Restorable Design
with Modularity and Economy of Scale
Effects (TP-MSR)
In practice the available capacity increments of
actual transmission systems are usually modu-
lar in nature. The costs of increasing modular
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sizes follow some stair-step function versus capac-
ity. For instance, typical module sizes in SON-
ET may be OC-12, OC-48, OC-192, etc. and an
OC-192 will generally cost significantly less than
four times the cost of an OC-48. In other words
there is economy of scale in transmission capac-
ity. This is an effect that can be of benefit to net-
work operators when included in network plan-
ning.

The significance and advantages of directly incor-
porating modular-capacity effects into the net-
work design formulation have already been dis-
cussed in [9]. But there is even greater motiva-
tion and relevance to considering modularity in
the context of “future proof” planning. A large
capacity module obviously costs more than a
smaller one, and in a current design only context,
it may not prove in. But if the design problem is
also somehow forward-looking, the greater pres-
ent expenditure on a large module may reduce
future recourse costs. Especially when significant
economy-of-scale effects are present, it is reason-
able to expect that modularity may be a very
important effect in reducing total of both present
and future recourse costs. Thus, what is appeal-
ing about the following formulation is that we
combine modularity and economy-of-scale effects,
and bring them into the two-part optimization
framework. This model (TP-MSR) and some new
notations required are as follows. All previously
defined sets, parameters and variables continue to
apply. To these we add:

Additional Set:
M : Set of module capacities (e.g., M =4).

Additional Parameters:
Zm : Number of capacity units for the mth

module size (e.g. 3, 12, 48, 192).
Cm

j : Cost of a module of size m placed on
span j and is used to reflect different
degrees of economy-of-scale.

Rm
j : Recourse cost factor of a module of

size m placed on span j relative to Cm
j .

Additional Variables:
nm

j : Number of modules of type m placed
on span j for the initial design.

em
j.k,: Number of extra modules of type m

required on span j to cope with the
uncertain demand scenario k

TP-MSR: Minimize
∑

m∈M

∑

j∈S

Cm
j ·nm

j +
∑

m∈M

∑

j∈S

∑

k=U

Pk · Rm
j

· em
j,k

(Obj. 2)
Subject to (1), (2), (3), (4) and

w j + s j ≤
∑

m∈M

Zm ·nm
j ∀ j ∈ S (6)

y j,k + z j,k ≤
∑

m∈M

Zm · em
j,k ∀ j ∈ S; ∀k ∈U (7)

em
j,k =0 k =0; ∀ j ∈ S; ∀k ∈U (8)

The new objective function (Obj. 2) minimizes
the total of the cost of all modules initially placed
plus the expected cost of extra capacity module
placements in future. Cm

j is the cost of placing a
single module m on span j at present, and Rm

j
is the cost of placing new modules m on span
j in the future as needed. Constraint (6) asserts
that the capacity of the set of initially placed
modules is adequate for the current demands and
their protection. Constraint (7) relates the pres-
ently placed modular capacities to the unfulfilled
requirements that are implied under each future
outcome scenario, which collectively determine
the expected recourse cost in the second part of
the objective function. Constraint (8) plays the
same role as (5), ensuring that the design is a
fully feasible for the nominal demand forecast (or
presently existing demand).

3 Experimental Design

3.1 Economy of Scale Model for Capacity
Let us now define a general model for module
costs (i.e., Cm

j parameter) under various econo-
mies-of-scale assumptions. Given the cost of a
minimum common-factor module, the cost of a
larger module size (size2) is:

For cost scheme m ×n×:Cost(size2)

=Cost(size1) ·n
log (size2/size1)

log (m) (9)

where m and n characterize the economy of scale
effect in that we obtain “m times capacity for n
times the cost.” This is denoted “m × n×” eco-
nomny of scale. For example, the cost of 48-
channel module under 4x 2x economy of scale
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Table 1. Cost of modules under different economy-of-scale scenarios.

Economy of Scale Module Size 3 Module Size 12 Module Size 48 Module Size 192

2×2× 30 120 480 1920
3×2× 30 72 173 414
4×2× 30 60 120 240
6×2× 30 51 88 150
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Fig. 2. Illustrating the difference in module cost among various economies-of-scale.

is 120, provided that the cost of a 3-channel
module is 30 (i.e., si ze1 = 3; Cost(si ze1) = 30;
si ze2 = 48;m = 4,n = 2). Of course if we set any
m =n we return to linear cost with capacity. Table
1 lists the actual economy of scale cost-capacity
progressions generated by this model and used in
our following test cases.

3.2 Test Networks and Nominal Demand
Forecast
A well-documented pan European network,
COST239 network [36], is used to implement both
non-modular and modular design formulations.
This network has 11 nodes and 26 spans with an
average nodal degree of 4.7. The topology is shown
in Fig. 3. The next step is to generate a nominal
demand forecast and a set of plausible demand sce-
narios. For the nominal forecast, we chose to cre-
ate it based on a gravity-based demand model [9],
rather than the proposed forecast published in [36].
The gravity-based model assumes that the number
of bi-directional demands exchanged between two
nodes is proportional to the product of the degrees
of the two nodes and inversely proportional to the

Fig. 3. The COST239 network topology.

distance between them. Although this model may
not reflect the present real-world demand traffic, it
does allow us or other researchers to reproduce the
exact starting demand forecast or other repeatable
demand scenarios for future comparative studies.
The distances in Equation (10) refer to Euclidean
distances between any two nodes (a,b) and the con-
stant is simply a uniform scaling factor for adjust-
ing the traffic to the desired volume level. Table
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Table 2. Topology and nominal forecast characteristics.

Nodes Spans Span Distance [min, avg, max] No. of OD Pairs Demand/Pair Total Demand Constant in (10)

11 26 [210, 579, 1310] 55 9.76 547 60

Table 3. Characteristics of the random demand scenarios.

Demand Total Relative Pattern Assigned
Scenario, k Demand Volume, Demand Volume, Forecast Probability, Pk∑

r∈D dr
k

∑
r∈D dr

k /
∑

r∈D dr
0 Accuracy4

0 (nominal) 547 1.00 1.00 0.079
1 146 0.27 0.85 0.063
2 299 0.55 0.85 0.066
3 457 0.84 0.85 0.072
4 597 1.09 0.87 0.072
5 744 1.36 0.85 0.071
6 955 1.75 0.91 0.067
7 911 1.67 0.81 0.065
8 1107 2.02 0.86 0.061
9 1287 2.35 0.85 0.057
10 1358 2.48 0.81 0.051
11 1546 2.83 0.85 0.045
12 1571 2.87 0.85 0.043
13 1874 3.43 0.86 0.042
14 1878 3.43 0.84 0.039
15 2187 4.00 0.88 0.030
16 2088 3.82 0.83 0.029
17 2217 4.05 0.86 0.021
18 2367 4.33 0.86 0.019
19 2718 4.97 0.86 0.0072
Min 146 0.27 0.81 0.0072
Mean 1343 2.53 0.85 0.05
Max 2718 4.97 0.91 0.079

2 summarizes the properties of the network and
nominal demand forecast.

demand(a,b)

= int
[

nodal degreea ×nodal degreeb

distancea−b
· constant

]

(10)

3.3 Alternate Futures for the Test Case
To reflect the alternative futures, a set of 20 future
demand scenarios was also generated, where one
represents the “k0” nominal forecast, and the other
19 demands patterns are generated by random var-
iation around the values of the k0 demand matrix
and assigned a decreasing probability P(k) based
on their total absolute value difference from the
k0 demand scenario, as shown in Fig. 4. Note that
although 20 scenarios were used for this particular
study, one can always increase or reduce the num-
ber of scenarios for different level of uncertainty

characterization. However, in order to solve a large-
scale stochastic formulation (e.g., scenarios are in the
order of thousands), stochastic sampling or decom-
position techniques as discussed in Section 1.2 might
be required to break down the problem into man-
ageable blocks. Table 3 summaries the characteris-
tics of the demand scenarios. For research purposes,
we generate these future scenarios in a systemic way.
But in practice, network planners can substitute the
actual “what-if” scenarios that they are most inter-
ested in or concerned about, as the suite of scenar-
ios given to the model. Notably these can be the
same set of detailed what-if scenarios the planners
may already typically develop for separate study with
conventional single-forecast design tools.

3.4 Eligible Routes for the Design Formulations
The last experimental aspect is the generation of
eligible route sets (i.e., Qr and Pi ). While we
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Fig. 4. Probability assignment for input demand scenarios.

can numerate all distinct routes to form our eli-
gible route sets, in practice, short-distance routes
are often preferred to meet physical specifications
such as optical signal path quality and restora-
tion speed. A study by Herzberg also shows that
screening out the unnecessarily long routes often
helps to speed up the computation process with-
out losing true optimality [21]. Hence for the fol-
lowing experiment, 5 shortest working routes (by
distance) for each OD pair and 10 shortest resto-
ration routes (also by distance) for each span are
selected as the eligible route sets. These result in
a total of 275 eligible working routes and 260 eli-
gible restoration routes.

4 Results and Discussion

The two formulations were implemented in AMPL
[38] and solved with CPLEX 9.0 MIP Solver [39]
on a four-processor Ultrasparc at 450 MHz and
4 GB of RAM running Sun Solaris 8 OS. For the
TP-SR formulation, all designs were obtained to a
MIPGAP of 1% (guarantee to be within 1% of the
optimum) and within twenty minutes of run time.
For the TP-MSR designs run times were consid-
erably longer due to the additional dimension of
modularity M , the MIPGAP was therefore relaxed
to 10%.

4.1 General Observations of Two-Part Capacity
Planning Strategy
Table 4 shows the results of the TP-SR (non-
modular) formulation and compares them to the
conventional span-restorable design with four
different recourse costs.

In the “conventional” approach, we consider a
minimum-cost span-restorable mesh design based
solely on the nominal forecast. The cost of this
conventional design refers to the “initial cost”.
The initial cost for TP-SR designs is the cost
of the first part to build, which might include
certain initially built-in added capacities to hedge
against possible future costs of recourse. The
“expected future cost” for both cases refers to
the probability-weighted cost of adding needed
capacity to adjusting the initial design to cope
with future requirements, i.e.

∑
j∈S

∑
k=U P(k) ·

R j · (y j,k + z j,k).
At low recourse cost (i.e., when R j = C j ), the

advantage of the two-part design is insignificant
because it costs the same in the future to take
recourse as it does to build it in now. However,
as the recourse cost increases, the long-term ben-
efit of building a more “future proof” network
now, and paying less in the future for recourse
becomes obvious. At a recourse cost factor of 3,
the two-part design has expected whole life cost
that is approximately 19% lower than the strat-
egy of building a currently optimal network to
an assumed known forecast, and augmenting it as
needed in future. The cost benefit of the two-part
design increases as the recourse cost assumption
increases.

In Fig. 5, we compare the future-aware designs
to conventional designs that attempt to have some
future-proofing by considering demand matrices
other than the nominal forecast. The “expected
forecast” is the probability-weighted demand pat-
tern calculated based on the 20 scenarios and the
“maximum forecast” is where each OD pair takes
the maximum demand of all the scenarios. We
see that TP-SR approach always outperforms these
pre-tuning forecast attempts with the conventional
model. At low recourse cost, the “maximum fore-
cast” design tends to over-build the capacity ini-
tially and fail to exploit the advantage of building
in future. The “expected forecast” design also suf-
fers from paying expensive penalty in the high
recourse region.

Hence with no consideration of the recourse in
advance and unconsciously making an investment
plan targeted on single demand forecast, the con-
ventional approach can easily lead to a capacity
plan that will suffer from either severe capacity
surplus or deficiency.
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Table 4. Comparison between conventional and two-part designs (cost in thousands).

Design Conv. TP-SR Conv. TP-SR Conv. TP-SR Conv. TP-SR

Recourse Cost Factor, α 1 2 3 5
Initial Cost 532 533 532 942 532 1,308 532 1,527
Expected Future Cost 557 557 1,115 620 1,672 488 2,787 503
Total 1,089 1,090 1,647 1,562 2,204 1,796 3,319 2,030
Difference 0.09% 5.16% 18.51% 38.84%
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Fig. 5. Cost-benefit of the (non-modular) future-aware designs over different conventional designs.

While it is important to portray in general how
the recourse factor affects the overall long-term
cost, it is also meaningful to show the trade-
off between the long-term cost and the initial
design cost under different recourse assumptions,
as illustrated in Fig. 6. As should be expected,
at a recourse factor of one (or less), the opti-
mal initial design is simply the one designed for
the k0 nominal forecast alone with conventional
methods. And if we increase the cost of the
initial designs (i.e., the successive points to the
right), we will end up over-building the capac-
ity unnecessarily. This makes sense because under
low recourse assumption, we are encouraged to
build only what is needed now, and wait for the
future as there is so little penalty to add more
later. As the recourse cost factor increases, how-
ever, we can optimize the present investment and

come up with a capacity configuration that has
the least expected repair cost to cope with future
scenarios. For the highest recourse, the top curve
indicates that the optimal initial design cost to
invest is about 2.66 million, where the expected
future cost is zero. In fact, this corresponds to
an initial design that completely satisfies all of
the possible scenarios without any future addi-
tions (i.e. the “fat solution” we mentioned in Sec-
tion 2.1).

4.2 Effects of Modularity and Economy-
of-Scale: Results with TP-MSR
For tests with the modular capacity design for-
mulation, we used the same input demand sets as
described in Section 3. Four module sizes, namely
Size-3, Size-12, Size-48 and Size-192 as well as
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Table 5. Comparison between conventional and TP-MSR designs under 2×2× model.

Design Conv. TP-MSR Conv. TP-MSR

Recourse Cost Factor 3 10
Initial Cost 5407 13,740 5407 18,953
Expected Future Cost 17,299 4746 57,290 4556
Total 22,706 18,486 62,697 23,509
Difference 18.59% 62.50%

Table 6. Comparison between conventional and TP-MSR designs under 3×2× model.

Design Conv. TP-MSR Conv. TP-MSR

Recourse Cost Factor 3 10
Initial Cost 2397 3850 2397 5183
Expected Future Cost 4640 1008 15,526 603
Total 7037 4858 17,923 5786
Difference 30.96% 67.72%

Table 7. Comparison between conventional and TP-MSR designs under 4×2× model.

Design Conv. TP-MSR Conv. TP-MSR

Recourse Cost Factor 3 10
Initial Cost 1559 2459 1559 3068
Expected Future Cost 2023 493 6741 294
Total 3582 2952 8300 3,362
Difference 17.59% 59.49%
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three economies-of-scale (i.e. 2 × 2×,3 × 2×,4 ×
2×) were assumed. The associated module costs
are listed in Table 1. Although in practical sys-
tems the absolute capacity values may differ from
those used here, the total range of capacities rep-
resented and the number of such module types
are quite characteristic of actual SONET OC-n
line systems commercially available.

Tables 5 to 7 compare the results of the con-
ventional and TP-MSR designs under different
economy of scale assumptions. Similar to the pre-
vious finding of the non-modular designs in Sec-
tion 4.1, the two-part modular model shows sig-
nificantly lower expected total life cost than tradi-
tional designs. For recourse cost factor less than
one (i.e., α ≤ 1), the optimal designs are equiv-
alent to the conventional designs that is strictly
built for the nominal forecast. In the cases where
α = 3 or α = 10, the TP-MSR designs result in
a total expected cost reduction of ∼ 22% and
∼ 63% (on average) compared to the conven-
tional designs that is faced with the same range
of possible futures. In particular under the 3 ×
2× model, the cost reductions are the great-
est.

Figure 7 identifies a complete set of optimal
designs and each figure in the matrix corresponds
to the optimal initial design for a unique recourse
and economy-of-scale combination. The optimal
designs are arranged with increasing recourse cost
factors for each column and classified by different
economies of scale in each row. As we move from
the left to right column, we see that higher recourse
costs generally encourage building more expensive
initial designs to reduce the expected penalty in the
future. Moving the top to bottom row we also see
how economy of scale generally favors the instal-
lation of large-size capacity modules. In the case
where α ≤1, the largest size modules change from
179 size-3 modules, to 23 size-48 modules to 12
size-192 modules. For higher recourse cost factors,
the benefit of deploying large size systems is even
more obvious (i.e. the optimal size jumps from
size-3 to size-192). Probably the most interesting
scenarios are when we have the strongest economy-
of-scale and high recourse cost assumption, i.e. the
4×2× (α=3) and 4×2× (α=10) designs. In these
cases the optimal initial designs consist of only the
largest modules.

5 Concluding Discussion

We have developed two integer program formula-
tions for the design of non-modular and modular
span-restorable networks under demand uncer-
tainty. Stochastic programming is used as the
mathematical framework to model these formula-
tions that minimizes the initial cost of network
build and the expected value of future recourse
actions to augment the design to serve the pos-
sible “what-if” demand scenarios. One significant
finding from this study is that if the cost of build-
ing future capacity is greater than that of build-
ing it now, the notion of taking the recourse
cost and future demand scenarios into a two-
part capacity design becomes very vital since such
design could lead to huge long-term cost sav-
ing, comparing to traditional designs that con-
sider only a single nominal forecast. For the non-
modular design under a recourse cost factor of 3,
an approximately 19% cost reduction is observed.
Under the 3 × 2× economy of scale model, the
two-part modular design leads to 31% saving of
the expected total life cost. Another interesting
observation is when modularity and moderate
economy of scale (i.e., 3 × 2× or stronger) are
considered, the most future-proof designs tend to
deploy large modular systems rather than many
small-size modules.

While in this particular study we work with
span-restorable networks and assume uniform
recourse cost factor for all spans, the two-part
formulations can be adapted to other survivable
network architectures, and the recourse costs can
also be set specifically for each span to reflect
the cost of lighting up new fiber system or leas-
ing capacity from a third-party carrier or any
other practical realities. In fact, some issues about
recourse costs warrant some specific closing com-
ments. One general view of the future is that
“capacity is always on an ever-decreasing cost
curve”—so would recourse cost factors always be
less than one? If this were so, then optimum strat-
egy is always just to build the minimum that
is needed right now, and add anything else that
is needed in future. Given the hard times the
telecom industry has recently endured, a com-
mon attitude is, perhaps understandably, similarly
to minimize costs now regardless of the future
consequences.
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But in practice channels cannot be cost-
effectively added one at a time just when needed,
at ever decreasing cost. Clearly where actual instal-
lation of cables is involved, there is a very high
recourse cost associated with pulling in more cable
or digging up streets a second time. Similarly,
incremental growth to blindly exceed the space,
power or cooling capacities in equipment housings
or, say, the maximum port counts on a cross-con-
nect, all trigger a large recourse cost to upgrade
such basic infrastructure in future from an ini-
tially inadequate first installation. A modular cost
addition of an OC-48 in future to an initial OC-
48 may still cost more than if an OC-192 was
placed initially. In addition, each “truck roll”, each
maintenance action scheduled and each network
change all trigger added operational expenses and
risks associated with in-service upgrades. There
are also opportunity costs associated with hav-
ing to take recourse in future, as opposed to hav-
ing the capacity already present in a future-proof
design. For instance, even if the actual equipment
cost were free, the very act of taking recourse in
future means that more staff were involved, staff
that were not then working on other opportunities
or problems, and there may even have been cus-
tomer impact and lost revenues associated with not
having capacity present in advance when needed.
Thus, when assigning recourse costs in this type
of future-planning model, it is important to take
all factors into account, including even the pos-
sible costs of potential new revenues or custom-
ers that may not be accessible if time for recourse
is first required. Thus, when fully considered, it
seems unlikely that any actual planning problems
would collapse into the trivial case of all recourse
costs being less than unity. Even if the transmission
equipment itself was given away by vendors, there
are always significant real operational and business
costs associated with having to corrective actions.
This planning model allows one to find just the
right balance between putting off some eventuali-
ties into the future, while building to accommodate
others right now.
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Notes

1. While the term “two-stage” is generally used in Stochastic
Programming literature, we say “two-part” to avoid con-
fusion with the predominance of other work in network
design where “two-stage” implies that two successive com-
putational “stages” are used. Equivalently, the form of
model we develop is also known as a bicriteria optimiza-
tion problem. But as we pose the problem, it is solved in a
single computational stage or step. The application of the
two-stage concept is based in part on previous work pre-
sented in [11].

2. By facilities-based providers, we refer to the ones that own or
lease a substantial portion of the plant, property and equip-
ment necessary to provide a broad range of integrated com-
munications services. Level 3 Communications [12], Global
Crossing and Qwest Communications are some examples.

3. Note that the “extra” working capacities y j,k (and later
z j,k for spare capacities) take only zero or positive values.
This means that no removal of initially installed capacity
is ever anticipated. This does not imply, however, that the
future demand scenarios only represent growth in demands.
Under each future scenario here, some demands decrease
while others increase. If, under a given future scenario,
some initially placed capacity is unused, this is accepted
simply as an implication of what was nonetheless an opti-
mum overall strategy. On the other hand, any actually pres-
ent capacity is as fully and efficiently re-used by the solver
under every future scenario before new recourse costs are
added, so there is a great built-in propensity not to have
very much unused capacity in future scenarios.

4. Pattern forecast accuracy (PFA) was proposed in [37] as a
measure to quantify the extent by which an actual future
demand pattern differs from that which was forecast. Its
value ranges from one (when the actual demand pattern is
identical to the forecast) to zero (for a complete mismatch).
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