
RZ 3528 (# 99542) 01/19/04
Computer Science 15 pages

Research Report

A Federated Peer-to-Peer Network Game Architecture

Sean Rooney, Daniel Bauer, Rudy Deydier

IBM Research GmbH
Zurich Research Laboratory
8803 R̈uschlikon
Switzerland
{sro,dnb}@zurich.ibm.com

LIMITED DISTRIBUTION NOTICE

This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been
issued as a Research Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its
distribution outside of IBM prior to publication should be limited to peer communications and specific requests. After outside publication,
requests should be filled only by reprints or legally obtained copies of the article (e.g., payment of royalties). Some reports are available
at http://domino.watson.ibm.com/library/Cyberdig.nsf/home.

IBM
Research
Almaden · Austin · Beijing · Delhi · Haifa · T.J. Watson · Tokyo · Zurich

A Federated Peer-to-Peer Network Game Architecture

Sean Rooney, Daniel Bauer, Rudy Deydier ?

Zurich, Switzerland. E-mail: {sro,dnb}@zurich.ibm.com

IBM Research, Zurich Research Laboratory
Säumerstrasse 4

8803 Rüschlikon, Switzerland

Abstract. A federated peer-to-peer game is one in which many small areas of interest within a game
each supported using a peer-to-peer model are ’knitted’ together to form a game capable of supporting
a very large number of players. Our work has involved determining whether such an architecture is a
feasible alternative to the more common central server one for supporting large multiplayer network
games.

1 Introduction

Gaming is a relatively neglected topic for communication’s research — in part this may be
ascribed to the closed and proprietary nature of commercial gaming systems — while at the
same time gaming presents distinct challenges to network designers, particularly in respect
to its sensitivity to latency and loss.

A Massive Multiplayer On-line Game is a networked game in which many thousands of
players participate simultaneously in the same game. In the rest of this paper we shall call
such games large games or simply games. Currently commercial large games use a central
server approach in which the majority of the game logic is executed on a server under the
control of the game provider. A server farm has to be provisioned such that it is capable
of supporting a given number of players. The game provider cannot know a priori how
popular a game will be, leading to a possibility that the server farm is too large — involving
unnecessary expense — or too small — meaning lost revenue and/or unhappy players.

One solution to this problem is to pass from a model in which each game providers own
their own infrastructure to one in which they rent cycles, storage and bandwidth from some
third party which gains economies of scale by hosting multiple games simultaneously. The
third party may then dynamically reallocate resources to a game in response to demand.
The problem of sharing infrastructure between games is much harder than that for web
applications due to both the lack of standards and the demanding nature of gaming appli-
cations in regard to latency. While a slow responsiveness from a web site is irritating, slow
responsiveness from a games server renders the game unplayable. Consequently crosstalk
between gaming applications running on the same shared infrastructure can have serious
consequences.

Our work has considered a novel architecture for large games that we term a federated

peer-to-peer architecture in which a large game or simulation is broken up into smaller islands
corresponding to different areas of interest, for example virtual location, and within which
players may move. Each of these areas of interest is supported by a peer-to-peer game.

? Rudy Deydier contributed to this work while visiting the IBM Zurich Research Laboratory.

While some previous work in the literature has proposed broadly similar architectures, for
example [10], details are scant about how the systems actually work in practice making it
difficult to evaluate their feasibility. To the best of our knowledge no actual commercial large
game uses the federated peer-to-peer model.

In previous work, we extended a model for gaming proposed in [5] to formulate a cost
model that allows us to assess game architectures through a set of cost functions [3]. An eval-
uation of the server components of the client-server and federated peer-to-peer architectures
showed that while from the game provider’s point of view both grow quadratically in the
number of players, the predominant cost in the client-server architecture is the processing of
game state while in the federated peer-to-peer architecture it is communication. This means
that the projected faster-than-Moore’s-law increase in bandwidth will make the federated
peer-to-peer model increasingly attractive.

Here, we consider whether such an architecture is really feasible in practice by describing
our implementation of various important components. Our intention is to give enough detail
about our implementation in order to allow an evaluation of the strengths and weaknesses
of such an approach. This work synthesizes and extends previously published work [3,4,12].

2 Overview

We use an interest management system that aims to deliver packets only to the subset of
clients for which the packets are relevant. The main challenge is to make that system simple
enough such that the highly latency-sensitive game traffic is not adversely effected by the
mechanisms which support the interest management system.

The game is divided into areas of interest. Clients subscribe to one or more areas of
interest and receive information sent by all other clients within that area. The game logic is
executed only at the client in the standard peer-to-peer fashion.

The areas of interest are supported by multicast reflectors capable of maintaining lists
of current subscriber and disseminating packets among the players. The multicast reflectors
are unaware of game logic which, as we show, allows them to be simple and efficient. The
association of multicast reflectors to areas of interest is performed by control servers. The
client, after receiving this information, from the control servers determines to which multicast
reflectors it should be subscribed using game logic instrumented at the client. The multicast
reflectors themselves are only required to ensure the efficient forwarding of packets to the
subscribed clients. Control servers may change the association of areas of interest to multicast
reflectors due to changing circumstances, e.g. failure, load-balancing, and clients are alerted
as to this change.

The action of the control servers is to a large extent independent of the nature of the
game, they partition the game into areas of interest, as well as performing bookkeeping tasks
such as authentication, character storage, etc. Most of the logic specific to a given game is
executed at the client. This permits most of the complex processing to be offloaded by the
game provider to the users reducing the cost of the game to the provider. Figure 1 shows
the structure of our generic federated peer-to-peer architecture.

Game traffic is typically highly dependent on latency, i.e. a packet which arrives at an
application late may be useless. As such, at-least-once transport protocols such as TCP are

Multicast
Reflector
(MCR)

Sender

Receiver

Client
Control
Server

get MCR Peer-Group mapping

Group MCR address

1

2

3

a

a

b

a

b

c

d

e

f

g

h

i

register with a

send/recv to a

unregister at a

Start
in Game
Group 1

Move to
Group 3

Client Game Logic

register with b

send/recv to b

Receiver

...

Receiver

Fig. 1. General Schema of a Generic Federated Peer-to-Peer Game

not appropriate. TCP also suffers from a head of the line blocking problem by which out of
order packets are not delivered to an application until the missing packets arrive resulting
in increased latency. In consequence nearly all large games of which we are aware use UDP.

Games typically allow for late or lost packets within their logic using techniques, for
example dead reckoning [6], to mask the effect to the user. However not all information
transmitted to players is susceptible to such techniques; some information must be delivered
reliably in order to assure the coherence of the game. A selective retransmission mechanism
in which certain packets are retransmitted if there is a good chance that the retransmit-
ted packet will arrive in time is desirable. Selective retransmission mechanisms have been
proposed for multimedia streams [11]; the Selective Retransmission Protocol (SRP) is a
client/server protocol that allows a client to trade packet loss ratio against average packet
latency in a continuous media stream.

Within a federated peer-to-peer system, requiring clients to retransmit packets places the
burden on them to maintain packets in memory and to respond to retransmit requests. While
a sender may indicate that a packet should be delivered reliably a receiver need not agree,
for example it might decide that the minimum of one Round Trip Time (RTT) needed to
retransmit a packet is such that the packet would no longer be relevant, or it might consider
that its desired level of participation in the peer group from which the packet is emitted is so
low, that it would not be worthwhile. A packet that a sender decides should be sent reliably is
sent using our Shaker transport protocol — detailed in Section — unreliable packets are just
sent using UDP. The Shaker is a transport protocol that allows packets to be retransmitted

between sender and receiver if both agree that it is worthwhile, but unlike TCP does not
offer totally reliable transport.

3 Implementation

In this section we explain in more detail the implementation and performance of some of the
key components in our federated peer-to-peer architecture.

3.1 Game Architecture Control Layer

The multicast reflector is an IP addressable entity capable of maintaining a peer group of
end host addresses between which received packets should be broadcast. Each peer group in
effect constitutes a virtual broadcast domain. A given multicast reflector may handle many
such peer groups. In the current implementation different peer groups at the same multicast
reflector are distinguished using the destination port number.

Clients obtain the ’multicast reflector’/ ’area of interest’ mapping from the control server
at login and thereafter are informed when it changes. An area of interest may be supported
by a single peer group or, in order to achieve scalability, it may also be supported by multiple
peer groups on different multicast reflectors. How the bridging between the peer group is
achieved is explained later.

The clients send unicast IP packets to the multicast reflector, which in turn generates
many unicast IP packets to send to registered members of the peer group. The multicast
reflector does not use IP multicast. IP multicast is inappropriate for our purpose as we require
many, small multicast groups to which members join and leave quickly. For a description of
the limitations of IP multicast in this context see [9]. The multicast reflector is a means
by which a client can register an interest and receive the packets from a given peer-group,
in this regard it is similar to — but much simpler than — a publish/subscribe mechanism,
whereby some party publishes information within some area of interest and parties who have
subscribed to that area of information receive it.

As well as the efficient distribution of packets the multicast reflectors assists in support-
ing the Shaker protocol. It serializes packets using a sequence number and buffers packets
up to some window size to allow packet retransmission. This contrasts with existing pub-
lish/subscribe systems in which sophisticated QoS parameters, delivery polices and filter
languages are performed by the notification server. The basic data forwarding functions of
the multicast reflector is simple, permitting it to be efficiently implemented in software or
programmable hardware. Its implementation is explained in Section 3.3. There is one Shaker

session for every peer-group that a client participates in.
The control servers have some sets of variables each of which corresponds to some pa-

rameter upon which the game can be divided. For example, the virtual locations within the
game. Each of these values is represented by a single positive integer and the mapping of this
value from the actual game value, for example a three dimensional coordinate, is performed
by the client For the purposes of explanation we assume just a single variable, that we call
the location variable.

If belonging were binary then a player would either belong to a group or not, and con-
sequently get all information about that group or nothing. This would not be desirable as

it would mean that if a player needed some information in a group they would get all of it
and then have to do the filtering themselves. Instead we introduce the notion of an affinity
value 1. The affinity value is a measure of the level of participation that the client wishes to
have in a given peer group. For example, a player may subscribe with a high affinity value
to the location at which they are currently resident and also subscribe to all neighboring
locations with a much lower degree of affinity. The affinity values acts like a filter in a pub-
lish/subscribe mechanism, only delivering information to a player if they have subscribed at
the appropriate affinity value. However, it is much more restrictive than a general purpose
filter language; the matching is done by the clients themselves within the control layer not
in the data path.

At the control server the location variable is associated with a set of records each corre-
sponding to the destination multicast reflector IP address and port that should be used for
a given affinity value. Each IP address, port number pair is distinct for each affinity value.
Although there may be multiple different pairs for a given value. The higher the degree of
affinity the greater the level of belonging and consequently the more information the client
will receive.

A client send a packet to a peer group with a degree of affinity that is equal or less
than that with which it subscribed. The packet is delivered to all clients subscribed with a
degree of affinity equal or greater. This ensures that a client always receives its own packet;
intuitively this makes sense: a client cannot send information that it itself is not interested
in. The higher the degree of affinity that a client sends with, the more restricted the interest
group. Note that the ingress multicast reflector to which the player sends the packet need
not be one at which it is subscribed, i.e. it is one corresponding to an affinity value less than
the client’s own, but players always receive the packets from multicast reflector to which
they are subscribed.

When different multicast reflectors handle different affinity values of the same peer group
then the rule is that multicast reflectors with higher degrees of affinity always subscribe to
that of the next lowest. The multicast reflector subscribes to a peer much as a normal client
does except that packets received from another multicast reflector are never transmitted
back. The multicast reflector modifies the sequence number and buffers the packet just
as if it came from a host. Retransmission of packets is achieved by communication with
the egress multicast reflector. Note that we assume that there is little or no loss between
multicast reflectors: multicast reflectors never ask for retransmissions from each other. If
loss occurs between two multicast reflectors, then the clients on the receiving side have no
way of detecting that a packet has been lost as the receiving multicast reflector never saw it
and therefore never assigned it a sequence number. We consider that requiring the multicast
reflector themselves to implement the transport protocol would make them more complex and
therefore less efficient. Consequently, the game provider must provision sufficient capacity
between multicast reflectors such that loss is unlikely.

For reasons of scalability and fault tolerance multiple multicast reflectors may manage
the same affinity level within a peer group. All multicast reflectors within the same peer
group affinity level subscribe to each other to form a full mesh. A multicast reflector at a
higher affinity subscribes to exactly one at the next lowest level. The multicast reflector only

1 The work described in this section is covered by Pending IBM Patent CH8-2001-0088

forwards packets to other multicast reflectors if they came directly from a host, otherwise a
packet could be received multiple times by a multicast reflector. A multicast reflector can
determine if a packet came from a host or another multicast reflector by examining whether
the sequence number is set or not, i.e. if its value is zero. When a packet is received by a
multicast reflector the algorithm is then:

Algorithm 3.1: Multicast Reflector Packet Forwarding Algorithm()

comment: Action to perform at a MCF on receiving a packet

for each e in the peer group



































if pktReceived is from host

then
{

send pktReceived to e

else

{

if not e.affinity == my affinity

then
{

send pktReceived to e

1 2 3

Direction of subscription

1 2 3

Clients
at level 1

Clients
at level 2

Clients
at level 3

(a) Subscription

1 2 3

Direction of packet flow

1 2 3

Client sends with
affinity value 1

Received by all clients at levels 1,2,3

(b) Packet Flow

Fig. 2. Example of interaction between multicast reflectors

Figure 2(a) shows the direction of subscription between multicast reflectors with different
affinity values 1, 2 and 3 while Figure 2(b) shows the direction of packet flow. In effect the
algorithm allows the passage of a packet through the multicast reflector to follow a tree
extracted from the graph of subscriptions.

A softstate model is used for maintaining subscription in a peer group, subscribers must
periodical renew their subscription. If one multicast fails in its attempt to register or renew its
subscription with another it informs the control server. When the control servers changes the
division of the game it distributes the mapping to the multicast reflectors which reorganize
themselves in accordance with the rules described above. The update alert flag is set in the
Shaker transport protocol header — see Figure 3 — on the packet returned to the sender

for some duration. Clients are expected then to obtain the new mapping from the multicast
reflector.

3.2 Shaker Transport Protocol

UDP
Header

Shaker
Header

Packet Identifier

Sequence Number Oldest Sequence Number

Time Stamp

12 Bytes

Filled by the
multicast
reflector

Filled by the
Client

Retransmit
Flag

Unused

Update Alert
Flag

May be changed by multicast reflector

IP
Header

Game Payload

0 15 31

Fig. 3. Shaker Header

The Shaker protocol uses the multicast reflector to decouple the senders belief that a
packet ought to be reliably delivered from a receiver’s decision as to whether it has to be.
The Shaker uses UDP as the basic transport mechanism between clients and the multicast
reflector.

The Shaker adds its own header — shown in Figure 3 — after the UDP header. When
a Shaker packet arrives at the multicast reflector the forwarding mechanism adds a packet
sequence number and the packet is stored in a buffer at the multicast reflector before it is
sent to all participants of the corresponding peer group. Note that all participants in the peer
group including the sender itself receive the packet; the transmission of the Shaker packet
back to the sender acts as an ACK allowing the sender to know that the multicast reflector
has received the packet and enabling the RTT between itself and the multicast reflector to
be continually recalculated.

Figure 4 shows the communication patterns under four conditions: no packet loss, loss
from sender, loss to sender and loss to receiver. As the sequence numbers increase monoton-
ically, a receiver can determine whether it has not received a reliable packet by examining
whether any sequence numbers are missing in the stream of packets it receives. Noncontigu-
ous arrival may be caused by out-of-order delivery as well as loss, so the receiver waits some
time before requesting the retransmission of the packet. If a receiver considers it worthwhile
having a missing packet retransmitted it sends a retransmit request to the multicast reflec-
tor. A retransmitted packet is identified by the receiver as such by the corresponding flag in

C1 MCR C2 C3S1 S1 S1

op[-,a]

op[1,a]

op[1,a]
S2

S2
op[1,a]
S2

No Loss

Loss From Sender

C1 MCR C2 C3S2 S2 S2

op[-,b]

op[-,b]
op[2,b]

op[2,b]
S3

S3op[2,b]
S3

Timeout

(a)

Loss To Sender
C1 MCR C2 C3S3 S3 S3

op[-,c]

op[-,c]

op[3,c]

op[3,c]
S4

S4op[3,c]

op[4,c]

op[4,c]
S4

S4
op[4,c]
S4

Timeout

C1 MCR C2 C3S4 S4 S4

op[-,d]

op[5,d]

op[5,d]
S5

op[5,d]
S5

Loss To Receiver

win[1,5]

win[1,5]

win[1,5]

op[5,d]
S5

resend[5]

(b)

Fig. 4. Interactions within the Shaker protocol

the header; a retransmitted packet is already late and should be sent to the application with
minimum delay and in preference to non retransmitted packets in front of it in the queue.

The multicast reflector can only keep a finite number of already transmitted packets in
memory; packet retransmission is not possible for packets older than a certain threshold.
The multicast reflector writes the oldest retransmittable sequence number in the header of
each packet sent to the client.

Senders set a thirty two bit identifier in the Shaker header. The top sixteen bits identify
the sender while the bottom sixteen bits are a monotonically increasing series. Two packets
with the same identifier may arrive with different sequence numbers at the receiver. This
can occur in two cases: a sender times out too soon and resends a packet to the multicast
reflector that was already correctly received by it; the ACK was lost going back to the sender.
Receivers keep a window of recently received packet identifiers allowing them to detect and
discard duplicates.

Sender Retransmission Time Out As the sender also receives its own packet, the RTT
between the multicast reflector and the sender can be calculated by placing the senders
transmit time in the time stamp field of the packet header and simply subtracting that from
the time at reception.

A sender will retransmit a packet if some timeout has expired. Our first attempt used the
TCP Retransmission Time Out (RTO) [8] as shown in Algorithm 3.2; with the recommended

values of gain g for the EstimatedRTT is 0.125 and the gain h for the the mean variance D

is 0.25.

Algorithm 3.2: Jacobson’s RTO Algorithm()

Error ←MeasuredRTT − EstimatedRTT
EstimatedRTT ← EstimatedRTT + g ∗ Error
D ← D + h ∗ (‖Error‖ −D)
RTO ← EstimatedRTT + 4 ∗D

RtxT imeouttriggered : EstimatedRTT ← 2 ∗ EstimatedRTT

We found that in practice over a real WAN that the RTO was often twice the actually
RTT, and the Root Mean Square Error (RMS) of this estimator as high as 90% of the actual
mean RTT.

There are two reasons for this: the first is the TCP backoff algorithm, which doubles the
value of the EstimatedRTT after each retransmission timeout, the second is that even when
the error between the EstimatedRTT and the actual RTT reaches zero, the mean variance D

converges slowly to zero — during this time the RTO is higher than the RTT. This is quite in
keeping with TCP’s conservative use of network resources, however, it adds a large penalty
for game traffic when the RTT is varying and some loss is experienced. In order to reduce
this lagging affect of the mean variance, we reduce the weight given to the mean variance
in the calculation of the RTO from 4 to 2 — this incidentally was the original weight that
Jacobson proposed [8].

Games because of their logic are implicitly rate-based, i.e. the packet sending rate will not
grow in an unbound way, but in general is limited by the speed of human interaction, as such
we do not see the need for any flow control in the basic data sending rate — although just
as for UDP an application could instrument such an mechanism on top of the infrastructure
if thought necessary.

To reduce the large penalty paid for the backoff algorithm, we do not double the Estimat-

edRTT when a timeout occurs. We increase the EstimatedRTT by a factor k — in our tests
set to 0.1 — when three consecutive retransmission timeouts occur, if the RTO has not been
updated meanwhile. If a packet arrives after it is timed out we still use the RTT to update
the RTO. Note that Karn’s algorithm — which avoids updating the RTT when a packet
is retransmitted — does not apply in our case as the sender can distinguish retransmitted
packet from the original ones by their timestamps.

Our algorithm reacts to losses only if they are sustained as the objective is not that of
slowing down the sending rate but to allow the RTO to track the RTT more closely by
assuming the timeout is due to a slight increase in RTT.

Algorithm 3.3: Shaker Algorithm In Case of Timeout()

comment: Modify the EstimatedRTT in case of consecutive RTX

counter ← 0
while true

do



















































if pktReceived=ownPacket
then counter ← 0

if RTX Timeout

then



















counter ← counter + 1
if counter=3

then

{

EstimatedRTT ← (k + 1)× EstimatedRTT
counter ← 0

Algorithm 3.3 shows the means the Shaker uses for calculating the RTO. By trying to
keep the RTO as close to the RTT as possible the Shaker will often timeout too soon and
sends unnecessary additional packets if the RTT is varying.

Receiver Retransmission Time Out A receiver can identify that a packet may have
been lost by a missing sequence number. It cannot know if the packet has actually been lost
or simply will arrive out of order. Waiting will incur a latency penality while an immediate
request for retransmission may cause a large number of unnecessarily retransmitted packets.
In addition, a receiver should not request the retransmission of a lost packet if it will arrive
too late to be useful. The application initialises a given Shaker session with a game specific
RelevancyT ime, which is the maximum time that a packet is useful after it was emitted.
For instance, for a stratgey game this value might be 500ms, while much lower for a FPS
(First Person Shooter). The receiver does not know when a packet actually was transmitted,
but it knows that it will take at least one RTT between itself and the multicast reflector to
retransmit it. Since it takes at least 0.5 RTT to recognize that a packet is lost after being
forwarded by the multicast reflector, a request for the packet is not considered worthwhile
if RTO > RelevancyT ime − RTO/2, that is if the RelevancyTime is less than 1.5 ∗ RTT .
In this case, the protocol layer notifies the application layer that a packet is presumed lost.

Out-of-order delivery maybe a transient phenomena due to a change in route, or long
lived, for example due to load balancing between routes. At the detection of a missing packet,
the receiver waits a certain time before requesting its retransmision. This time is a function
of both RelevancyTime and the mean variance D of the EstimatedRTT. In times of low
variance in RTT, D≈0, the receiver assumes that the packet is lost and immediatly asks for
its retransmision. Otherwise it waits either twice the variance if it less than the the maximum
amount of time we can wait before the packet becomes irrelevant, or the maximum amount of
time if it is greater. The reasoning behind using a function of the mean variance of the RTT
is that out-of-order-delivery indicates that the packets are coming over multiple different
paths having different RTTs. In practise we found two times D was adequate.

Our algorithm for the Receiver Retransmission Time Out (RRTO) is as follows:

Algorithm 3.4: RRTO()

comment: Compute the RRTO based on RelevancyT ime and D

if RelevancyT ime < 1.5 ∗RTO

then











DiscardRequest

NotifyApplication : LostPacket
else RRTO = Min(RelevancyT ime− 1.5 ∗ EstimatedRTT, 2 ∗D)

Efficiency of the Shaker Protocol We developed an simple game which allowed us to
observe the performance of our protocol in terms of synchronization, delay and loss. We
used bucket synchronization between clients, similar to that used in [7], in which time is
divided into fixed length periods called rounds. Each event is transmitted marked with the
sender’s current round. Clients consider packets received from other clients relevant if they
were emitted in either the 3 previous or 3 following rounds as well as the current round. The
relevancy time of the game is the three previous rounds plus the current one. A round is
considered successful if a client receives all the packets sent by other clients in that round
while they are considered still relevant. Packets are considered as having arrived TooLate

if they are not received within the relevancy time. TooLate packets occur in the following
cases:

– the transmission of the packet took more than the RelevancyTime.
– the packet was lost, and the client received the retransmitted packet after the Relevan-

cyTime.
– the client received out of order packets, and was missing the packet. Then the request

did not arrive on time.

We chose a RelevancyTime of 240 ms for our game, this corresponds to an approximate
upper bound for FPS games [2]. The peer group size used was ten players, and players
remained in the game from start to finish. We tested the performance of the game with
losses from 0 to 50% and with RTT variance (jitter) from 0 to 100 % of the mean RTT value
set to 75ms. We carried out the measurements across a LAN using the nistnet Linux tool
at the multicast reflector to induce controllable loss and delay in the system. We used our
Linux implementation of the Shaker and multicast reflector. When the RTT variance is at
100% the RTT of a given packet can be anything between 0 and 150 ms.

Figure 5(a) illustrates the percentage of TooLate packets plotted against the loss proba-
bility, for various levels of RTT variance. For a given loss probability, the higher the variance
in the RTT, the greater the probability of a a packet being TooLate, i.e. for a given value of
the x-axis, higher values on the y-axis correspond to higher jitter.

Our protocol, even faced with high levels of loss (50 %) and jitter (50 %) still manages to
transmit on average 90% of the packets on time. For an FPS losing some round information
can be dealt with by using dead-reckoning algorithms, ensuring that the game would be

playable even at very high levels of loss. By way of comparision the behavior of UDP would
be a line such that x=y, i.e. all lost packets are TooLate.

(a) (b)

 0

 5

 10

 15

 20

 0 5 10 15 20 25 30 35 40 45 50

T
oo

 L
at

e
P

ac
ke

ts
 /

T
ot

al
 R

ec
ei

ve
d

P
ac

ke
ts

 (
%

)

Loss Ratio

Too Late Packets

 0

 5

 10

 15

 20

 0 5 10 15 20 25 30 35 40 45 50

T
oo

 L
at

e
P

ac
ke

ts
 /

T
ot

al
 R

ec
ei

ve
d

P
ac

ke
ts

 (
%

)

Loss Ratio

Too Late Packets

Ratio of Late Pkts, Loss and Jitter Ratio of Late Pkts, Loss but no Jitter

Fig. 5. Ratio of Late Packets, specific network conditions

In Figure 5(b), we isolated the loss parameter to verify the effects of loss without jitter
on the Shaker. We notice that only the combined effects of jitter and loss creates conditions
that makes the Shaker wait too long on the receiver side before requesting a packet.

It is not possible to give a meaningful comparison between the Shaker and TCP in terms
of reactivity to loss as under such high levels of loss TCP quickly reaches the upper bound
of its timeout algorithms — 64 seconds; all that can be said is that TCP is not appropriate
for games over lossy networks.

For relatively low loss conditions (less than 20%) we conclude that our protocol’s two
timeout algorithms are adequate to fulfill the requirements of both loss and latency, even
when the variance of the RTT is very high.

We also noticed that the amount of TooLate packets is very low in the case of jitter
without loss, since the retransmission of packets only provides redundant packets that are
filtered by the protocol on the receivers’ side. The useless retransmitted packets are not
considered as TooLate as they are not transmitted to the application.

Our protocol trades reactivity against unnecessary retransmissions. The RTO tracks the
RTT much closer than for TCP, leading to timeout and retransmission of packets in the case
that the RTT rises.

Figure 6(a) shows the additionnal overhead that the two timeout algorithms place on the
network and the receiver, i.e. the cost we pay for the systems better reactivity. It plots the
fraction of uselessly received packets to the total number of received packets. Packets can be
uselessly received for four reasons:

– the sender retransmits a packet due to loss of the ACK, the receiver may then get this
packet twice;

(a) (b)

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30 35 40 45 50

R
at

io
 U

se
le

ss
 P

kt
s

/ P
kt

s
R

ec
ei

ve
d

(%
)

Loss Ratio (%)

Useless Packets Ratio

 0

 1

 2

 3

 4

 5

 0 5 10 15 20 25 30 35 40 45 50

R
at

io
 U

se
le

ss
 R

eq
ue

st
s

/ P
kt

s
R

ec
ei

ve
d

(%
)

Loss Ratio (%)

Useless Packets Ratio

Total Useless Packets/Received Packets Ratio Useless Requests/Received Packets Ratio

Fig. 6. Ratio of Late Packets in the Shaker

– the sender retransmits a packet due to too early timeout, this differs from the previous
case as both sender and receiver get the useless packet;

– a receiver asks for a packet to be retransmitted due to out of order delivery;

– a receiver asks for retransmission of a packet it has already received. This can occur if
the sender has sent the packet twice.

Figure 6(b) shows the percentage of the useless packets that are due to the RRTO algo-
rithm mistaking out-of-order packets for loss. This is always less than 2%. Waiting twice the
variance seems to keep unneccesary requests for retranmission minimal. The effect due to
unnecessary receiver retransmission can be further decreased by the application by increas-
ing the relevancy time parameter. However, as Figure 6(a) shows, the additional network
load as measured on the receiver side varies between 10 % and 30% increasing with loss
probability. The main reason for the increase is due to losses of ACK packets to senders,
leading them to send the same packet two or more times. Note that the percentage increases
in network load is independent of the number of clients since the decision to retransmit or
request retranmission depends only on the conditions between the client and the multicast
reflector. The additional load is less than 15% for loss probabilties inferior to 10%.

3.3 Software Multicast-Reflector Performance

A key feature of the multicast reflector is the ability to send UDP datagrams to a set of
receivers very efficiently. Efficiency is measured by both a high throughput and a low CPU
load.

A user-space implementation of the multicast reflector has the advantage of being simple
and portable. However, efficiency is not optimal. For each registered entity, the payload data
is copied from the user space to the kernel space even though the payload itself does not
change. The other problem, which is more severe, is the fact that UDP datagrams may be

dropped when the kernel’s device queue overflows. The multicast reflector then has no other
possibility than to resend the dropped packet.

A more efficient implementation can be achieved by extending the UDP layer in the
kernel. The principle is to maintain a list of address/port tuples per socket in the kernel.
A datagram sent on the socket is then sent to each entry in the list. In order to achieve
a performance benefit, the payload is copied and checksummed only once per multicast
operation instead of once per destination. The problem of device queue overflows can be
handled more elegantly in the kernel than in user space. If a packet was dropped owing to
queue overflow, then the process is suspended (put to sleep) until the queue is almost empty.
If the queue is drained below a low-water mark, then all processes that have been put to
sleep are woken up and continue queuing packets. This is implemented using the kernel’s
wait queues.

Measurements of kernel and user-space implementations have shown that the throughput
achieved by all implementation is in the same range, whereas the CPU load is much higher in
the user-space implementation [4]. The kernel-space implementations consume considerable
less CPU resources in packet forwarding thus leaving more resources available for control
tasks. Figure 7 shows an example of the different CPU utilization for a user-space imple-
mentation and two versions of kernel-space implementations over a 100 Mb/s Intel E100
Ethernet adapter. One of the kernel-space implementation uses the scatter-gather feature of
the network device, the other uses a linear buffer to store packet header and payload. In the
experiment, packets of 100 bytes and 1000 bytes have been sent to 3, 30, 60, 90 clients. The
ordinate gives the CPU load in millions of clock ticks.

3
30

60
90

0

1000

2000

3000
3500
4000
4500
5000
5500
6000
6500
7000

Linear
Scatter−Gather

User−Space

(a) 100-byte packets

3
30

60
90

0
25

50

75

100

125

150

175

200

225

250

275

300

325

Linear

Scatter−Gather

User−Space

(b) 1000-byte packets

Fig. 7. CPU load using Intel E100

Throughput figures, of course, are heavily dependent on the used network device and
the packet size. For example, when using a 100 Mb/s Intel E100 network device, for 100-,
500- and 1000-byte packets, the net throughput (payload only) are 60, 88 and 94 Mb/s,
respectively for all implementations. For Gigabit Ethernet, the net throughput ranges from
90 to 140 Mb/s for small packets of 50 bytes up to 700 Mb/s for 1000 byte packets.

Assuming a client of a typical game produces a stream of 8 Kb/s using an average packet
size of 100 bytes [1], then our software multicast reflectors are able to support 7’500 clients
with fast Ethernet and between 20’000 and 30’000 for Gigabit Ethernet. This means that even

for very large games with up to one million participants, less than 100 multicast reflectors
are required.

4 Conclusion

The federated peer-to-peer game architecture’s key advantage is that the amount of resources
available to a game rises with the number of players. By suitable design of the multicast
reflector and transport protocols the game provider need only perform relatively infrequent
control operations thereby reducing their investment in the infrastructure. The multicast
reflector themselves can be geographically distributed spreading the network load across
multiple sites and enabling better resilience. The disadvantage of the architecture is that
as the clients maintain their own state that desynchronization, whether intentionally or
unintentionally, between the actual and perceived state of a player becomes a major problem.
As all clients within a group receive all events it maybe possible for clients to checkpoint
each others states allowing a rollback in the case of inadvertent desynchronization or alarms
in the case of cheating.

References

1. A. Abdelkhalek, A. Bilas, and A. Moshovos. Behavior and performance of interactive multi-player game servers.
In Proceedings of the International IEEE Symposium on the Performance Analysis of Systems and Software
(ISPASS-2001), Nov. 2001.

2. G. Armitage. An Experimental Estimation of Latency Sensitivity In Multiplayer Quake 3. Technical report,
Centre for Advanced Internet Architectures, 030405A, 2003.

3. D. Bauer, I. Iliadis, S. Rooney, and P. Scotton. Communication Architectures for Massive Multi-Player
Games. Technical Report RZ3500, IBM Research, June 2003. http://www.research.ibm.com/resources/paper\
_search.shtml.

4. D. Bauer and S. Rooney. The Performance of Software Multicast-Reflector Implementations for Multi-Player
Online Games. In Proc. of the Fifth International Workshop on Networked Group Communications (NGC’03),
Munich, Germany, Sept. 2003.

5. N. E. Baughman and B. N. Levine. Cheat-proof Playout for Centralized and Distributed Online Games. In Proc.
IEEE Infocom, pages 104–113, 2001.

6. Y. Bernier. Latency Compensation Methods in Client/Server Game Protocol Design and Optimization. In
Proceedings of GDC 2001.

7. C. Diot and L. Gautier. A Distributed Architecture for Multiplayer Interactive Applications on the Internet.
IEEE Networks magazine, 13(4):6–15, July/August 1999.

8. V. Jacobson. Congestion Avoidance and Control. ACM Computer Communications Review, 18(4):314–329, Aug.
1988.

9. B. N. Levine, J. Crowcroft, C. Diot, J. Garcia-Luna-Aceves, and J. F. Kurose. Consideration of Receiver Interest
for IP Multicast Delivery. In Proc. IEEE Infocom, volume 2, pages 470–479, 2000.

10. M. R. Macedonia, M. J. Zyda, D. R. Pratt, D. P. Brutzman, and P. T. Barham. Exploiting Reality With
Multicast Groups: A Network Architecture for Larce-scale Virtual Environments. IEEE Computer Graphics and
Applications, 15(5):38–45, Sept. 1995.

11. M. Piecuch, K. French, G. Oprica, and M. Claypool. A Selective Retransmission Protocol for Multimedia on the
Interner. In Proceedings of the SPIE International Symposium on Multimedia Systems and Applications, Boston
MA, USA, 2000.

12. S. Rooney, D. Bauer, and P. Scotton. Efficient Programmable Middleboxes for Scaling Large Distributed Ap-
plications. In 6th International Conference on Open Architectures and Network Programming (OPENARCH).
IEEE, Apr. 2003.

