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Minimizing a Submodular Function on a Lattice 

DONALD M. TOPKIS 

Monona, Wisconsin 

(Received December 1975; accepted July 1977) 

This paper gives general conditions under which a collection of opti- 
mization problems, with the objective function and the constraint set 
depending on a parameter, has optimal solutions that are an isotone 
function of the parameter. Relating to this, we present a theory that 
explores and elaborates on the problem of minimizing a submodular 
function on a lattice. 

W E GIVE general conditions under which a collection of optimization 
problems, with the objective function and the constraint set depend- 

ing on a parameter, has optimal solutions that are an isotone function of 
the parameter. Relating to this, we present a theory that explores and 
elaborates on the problem of minimizing a submodular function on a lat- 
tice. 

Formally stated, the main question involves the collection of optimiza- 
tion problems 

minf(x, t), xE(St1) 

where the variable is x and both the constraint set St and the objective 
function f(x, t) depend upon the parameter t, with t being a member of the 
parameter set T. If St* is the set of optimal solutions for (1) given t in 
T, then the object is to find conditions under which one can select St in 
St* for each t in 71 such that st is an isotone function of t, i.e., t!b in T 
implies St-< Sb. 

One application considers the problem of finding minimum cost paths 
from one node to all other nodes in an acyclic network. The network has 
nodes 1, ... , N, an are may only go from node i to node j if i<j, and the 
cost associated with such an are is c(i, j). Let f(j) be the cost of a minimum 
cost path from node 1 to node j; hence f(j) may be found from the well- 
known recursion 

f(j)=mini?< ?-i (f(i)+c(i,j)), f(l) =O. (2) 

The recursion (2) also occurs in finding optimal solutions for several dy- 
namic economic lot-size models in inventory theory, as in the papers of 
Eppen, Gould and Pashigian [6], Wagner and Whitin [26], and Zangwill 
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[27]. If i(j) is an optimal i given j in (2), then one would want to know 
when i(j) is isotone in j. 

Section 1 introduces some standard concepts involving the notions of 
order and ]attices. Ordering is of course fundamental throughout and it is 
used for comparing elements of T, for comparing selections s,, for con- 
sidering the existence of an isotone selection, in selecting an element from 
St, and in defining certain properties of the objective function f(x, t). 
The constraint sets St will subsequently be assumed to be sublattices, and 
the sets of optimal solutions St* will turn out to be sublattices. 

Section 2 provides some properties of a natural partial ordering relation 
on the collection of nonempty sublattices of a given lattice. This relation 
orders the constraint sets St and the sets of optimal solutions St*. If the 
sets St* are isotone in t with respect to this order, then Theorem 2.3 indi- 
cates how to select st from St* so that st is isotone in t. 

To establish the existence of isotone optimal solutions for (1), we will 
assume that the objective function f(x, t) has properties of sumodularity 
and antitone differences. Section 3 explores these properties in detail. A 
submodular function on a product set is characterized in terms of anti- 
tone differences, with the latter often being an easier property to recognize 
and conceptualize. Antitone differences are closely related to the economic 
concept of complementary products. Several common operations generate 
or preserve submodularity. 

Section 4 gives conditions for each set of optimal solutions St* to be a 
sublattice and for each to have a greatest and a least element. The minimi- 
zation operation preserves submodularity and this gives conditions for the 
optimal value of the objective function in (1) to be a submodular function 
of t. 

Section 5 shows that a submodular function on a sublattice of a lattice 
can often be extended to a submodular function on the entire lattice. In 
terms of (1) this can mean that there may be no loss of generality in con- 
sidering the objective function f(x, t) to have its essential properties on 
(UtETSt) XT rather than the more limited domain UtE T(St, t). Thus if 
c(i, j) is submodular on the acyclic network, then it is possible to Consider 
a submodular cost function defined on all arcs of the full network that 
takes on the same values c(i, j) on those arcs of the original acyclic net- 
work. This result may be convenient in applying the main isotonicity re- 
sults of Theorems 6.1 and 6.2. 

Section 6 gives the general isotonicity results, which provide conditions 
for the optimal solution sets Sty to be isotone in t and for the existence of 
optimal solutions s, in St* such that st is isotone in t. One application of 
this result is that in the acyclic network example i(j) will be isotone in 
j if c(i, j) is submodular, and this yields several known results from in- 
ventory theory [6, 26, 27] as special cases. Section 7 notes some analogies 
between submodular functions and convex functions. 
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A series of papers applies this theory to graph theory and network flows 
[21], n-person games [20], dynamic stochastic decision theory, inventory 
theory, and other structured mathematical programming problems [231. 
These papers consider specific applied questions whose answers follow 
directly from this theory. For example, how are solutions to optimization 
problems in a network affected as the graph structure is modified? In an 
n-person, nonzero-sum game, how does the optimal strategy for one player 
depend on the other players' strategies and when does such dependence 
imply the existence of an equilibrium point and provide an algorithm for 
finding one? In certain structured dynamic stochastic decision problems, 
how will the optimal decision in each time period depend on the state of 
the system at that time? In various deterministic and stochastic inven- 
tory problems, how do the optimal policies depend on the costs, the de- 
mands, the bounds on the variables, and the initial inventory level? Veinott 
(personal communication) has also found applications of this theory. A 
variety of existing results established by more specialized methods also 
follow from our results. We will give several brief illustrative applications 
in the context of specific results. 

1. DEFINITIONS, NOTATION, AND RELATED BACKGROUND 

A partially ordered set (poset) is a set on which there is a binary relation 
< that is reflexive, antisymmetric and transitive. If x?y and xv'-y, then 
x <y is written. Two elements x and y of a poset are unordered if neither 
x ? y nor y < x. A poset is a chain if it does not contain an unordered pair 
of elements. An element x of a poset S is the greatest (least) element of S 
if y'x(x<y) for all y in S. The power set, P(S), is the set of all nonempty 
subsets of a poset S. 

If two elements, x and y, of a poset have a least upper bound (greatest 
lower bound), denoted xvy(xAy), it is their join (meet). A poset that 
contains the join and the meet of each pair of its elements is a lattice. If 
T is a subset of a lattice S and T contains the join and meet (with respect 
to S) of each pair of elements of T, then T is a sublattice of S. If a nonempty 
subset T of a poset S has a least upper bound (greatest lower bound) in 
S, denoted sup T (inf T), then this element is the supremum (infimum) 
of T. A lattice in which every nonempty subset has a supremum and in- 
fimum is complete. The set of all nonempty sublattices of a lattice S is 
denoted L(S). 

If Sa is a poset with relation <a for each aE A, then the direct product 
of these posets is the poset consisting of the set X aEASaS { X=(X = ) Xcr E Sa 
for all aCEA} with the relation < where x!y if xayah for each aE A. 
The direct product of lattices is a lattice. If S is a subset of XX T, then 
the section of S at tE T is S= {X: (x, t) S} and the projection of S on T 
is II TS = { t: St is nonempty}. If X and T are lattices and S is a sublattice 
of XX T, then each section St is a sublattice of X and the projection 1l TS 



308 D. M. Topkis 

is a sublattice of T. Bergman [2] and Topkis [24] have explored and char- 
acterized the structure of sublattices of the product of n lattices; see also 
Baker and Pixley [1]. In [24] the results on sublattice structure lead to 
analogous results characterizing the structure of those functions whose 
level sets are sublattices. 

A function f from a poset S to a poset T is isotone (antitone) if x < y 
in S implies f(x) <f(y) (f(y) <f(x)) in 1'. A function f from a poset S 
to a poset T is strictly isotone (strictly antitone) if x<y in S im- 
plies f(x) <f(y) (f(y) <f(x) ) in T. 

2. A PARTIAL ORDERING ON L(S) 

Suppose a lattice S with relation < is given. For X and Y in the power 
set P(S), X is lower than Y, written X? Y, if xEX and YE Y imply that 
X A y E X and x v y E Y. Veinott (personal communication) introduced this 
relation. 

LEMMA 2.1. For a lattice S, the relation <' is antisymmetric and transitive 
on P(S). 

Proof. Pick any X, YE P( S) for which X ? Y and Y<?X. Now pick 
any xEX and YEY. Because X$<'Y, XAyEX and xvyEY. But then 
because Y?<'X, y=yv(xAy)CX and x= (XVY) AXG Y. Thus X=Y 
and ?' is antisymmetric on P(S). 

Pick any X, Y, ZEP(S) such that X?!Y and Y<?Z. Now pick any 
xEX, yEY, and zEZ. Since X?<'Y and Y<'Z, xvyEY and yAzEY. 
Thus xv(yAz)EY and so xvz=xv((yAz)vz)=(xv(yAz)) vzEZ 
because Y<?Z. Similarly, (xvy) AzCY and so xAz=(xA (xvy)) 
AZ=XA ((xvy) Az)EX because X?_'Y. Therefore, X< 'Z and <? is 
transitive on P(S). 

For a lattice S it follows directly from the definition of a sublattice that 
X EL(S) if and only if X ?'X. This observation together with Lemma 2.1 
yields the following result. 

THEOREM 2.1. If S is a lattice with the relation <, then L(S) is a poset 
with the relation ? 'P. 

If S is a lattice, T is a poset and St is an isotone (antitone) function from 
T into the poset L(S) with relation <P (hence t!?b in T implies 
St<pSb(Sb<pSt) in L(S)), then St is ascending (descending) in t on T. 

If S is a lattice, then { x: x E S, x_ t} and I x: x E S, t_ <} are ascending in 
t on S. 

THEOREM 2.2. If S,, is ascending in t on T for each z in an arbitrary set 
Z andif n4flEzt is nonempty for each t in T, then nfEz8At is ascending in 
t on T. 
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Proof. Pick any b and t in T with t < b. Pick any x EnAEzSZt 
and yn flzezSb. Then xE S.t and y E Szb for each zE Z and so by hypothesis 
XAyESzt and. xvyESzb for each zCZ. Thus XAyE nZEzSIt and 
XvYEn; AE ZSzb. 

Let S be a lattice and X a nonempty sublattice of S. By applying Theo- 
rem 2.2 together with the preceding example and the earlier observa- 
tion that a nonempty sublattice is lower than itself, we see that 
SrtI xxE X, r<x, x t} is ascending in (r, t) on the sublattice {(r, t): 
Srt is nonempty} of SXS. 

THEOREM 2.3. If S is a complete lattice, X and Y are in P(S), and X<'Y, 
then inf X < inf Y and sup X < sup Y. 

Proof. For any x EX and y E Y, x Ay E X and x v y E Y because X?< Y. 
Therefore, inf X<XAy < y and x _ x v y < sup Y, and hence inf X _ inf Y 
and sup X <sup Y. 

3. SUBMODULAR FUNCTIONS ON A LATTICE 

Supposed is a real-valued function on. a lattice S. If 

f(x A Y) +f(x v y) ?f(X) +f(y) (3) 

for all x and y in S, then f is submodular on S. If f(x A y) +f(x v y) < 
f(x) +f(y) for all unordered x and y in S, thenf is strictly submodular on S. 
If -f is (strictly) submodular, then f is (strictly) supermodular. 

Suppose X and T are posets and f is a real-valued function on SCXX I. 
If f(x, z) -f(x, t) is isotone, antitone, strictly isotone, or strictly antitone 
in x on snst for each t<z in T, thenf has, respectively, isotone differ- 
ences, antitone differences, strictly isotone differences, or strictly antitone 
differences in (x, t) on S. The conditions of these definitions do not distin- 
guish between. the first and second variables because f(x, z) -f(x, t) 
<f (y, z)-f (y, t) if and only if f(y, t)-f (x, t) <f (y, z)-f (x, z) - and 
similarly for a strict inequality. 

Suppose Si, * , S,, are posets, SC X'=, SSi, an element x in S is ex- 
pressed as x = (xi, * *, Xn) where xi E Si for each i, and f is a real-valued 
function on S. If, on S, f has isotone differences, antitone differences, 
strictly isotone differences, or strictly antitone differences in (xi, Xk) for 
all jhk with each xi fixed for i3j and izk, then f has, respectively, iso- 
tone differences, antitone differences, strictly isotone differences, or strictly 
antitone differences on S. 

Multiplication by a positive scalar and the addition of functions pre- 
serve each of the properties defined above. 

THEOREM 3.1. If Si is a lattice for i= 1, . , n, S is a sublattice of X,=1 Si, 
and f is (strictly) submodular on S, then f has (strictly) antitone differences 
on S. 
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The proof of Theorem 3.1 is immediate from the definitions. Since the 
proof of Theorem 3.2 for the case of strictly antitone differences indicated 
in parentheses is only slightly different from the case of antitone differ- 
ences, the proof of the former is omitted. 

THEOREM 3.2. If Si is a chain for i= 1, * , n and f has (strictly) anti- 
tone differences on X ,!-l Si, then f is (strictly) submodular on X>1=, Si. 

Proof. Pick any x and y in XIt%, Si. If x :y or y < x, then (3) holds as 
an equality; so suppose x and y are unordered. For convenience arrange 
the components of x and y so that x A y= (X, . *. * X, XYk+l, * * * Y Yn) and 
Xvy=(y1, ( --, , Yky , Xn) for some k, O<k<n. Such an arrange- 
ment is possible because each Si is a chain. Because x and y are unordered, 
O<k<n. ForO<i<j<n define -=(lyi, . * X+l. , Xjy Yj+ly * * n)- 
If O<i<k<j<n, then xi+lYi+l in Si+1 and yj+?<x?+l in Sj+1; hence 
the property of antitone differences implies f(z"l j+lj)-f(zi'+l) <f(z +"j) 
-f(z"'). Thus for k!j<n 

of(zj+l ,_o zO, j+l A k- y(1is,i+1 y i ~ 
f fk-i (f i+lJ) ( f (zs,'3 j) ) f (ZO, 

Therefore, f(x v y) -f(x) =f (zk) _-f (zO',) <f (zk k) _f(zOk) =f(Y)- 
f(X A y), which is the desired inequality. 

The result of Theorem 3.2 is not valid for the product of a countable 
collection of chains. Let Si= {, 1} where 0<1 for i= 1, 2, ) . Define 
f(x) on X=1 Si so that f (x) =0 if xi= 1 for an infinite set of indices i and 
f(x) = 1 if xi= 1 for only a finite set of indices. With respect to any finite 
set of variables f(x) is constant and so has both antitone differences and 
isotone differences. However, f(x) is not submodular on Xi'=1 Si since if 
x and g are defined by Tj= 1 if i is odd and x-=O if i is even, = 1 if i 
is even and 0i=O if i is odd, then f (x A g) +f (x v y) = 1 > O-f (x) +f (g). 

Theorems 3.1 and 3.2 reduce the question of submodularity on a finite 
product of chains to that of exploring all pairs of cross-differences. Let ui 
be the ith unit vector in En. A function f is submodular on En if and only 
if f(x+Eu) -f(x) is antitone in xi for all ipj, e>0, and x. If f is differ- 
entiable on E', then f is submodular if and only if &f(x)/Oxi is antitone 
in xj for all iFj and x. If f is twice differentiable on Eh, then f is submod- 
ular if and only if a2f(x)/axiOxj, O for all ipj and x. Antitone differ- 
ences-and equivalently submodularity-are a well-known condition for a 
cost function to be that of a system of complementary products, as noted 
by Samuelson [15]. Suppose that f is the cost function (or minus the utility 
function) for a system of n products whose levels are x = (xi, * - , 4n) . 
Then f(x+Eut) -f(x) is the additional cost for an additional f>0 units. 
Antitone differences for f are equivalent to the property that the net addi- 
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tional cost for additional product i will not increase if there is more of 
product j, j/-i-that is, the desirability of more product i will never 
decrease if there is an increase in product j. This is certainly a reasonable 
condition for complementarity. Samuelson [15] criticized this because a 
strictly isotone transformation may not preserve the property of anti- 
tone differences. However, the isotonicity results of Section 6 show that 
this property implies another property, intimately related to the notion 
of complementarity, which a strictly isotone transformation preserves. 
The relationship between submodularity and complementary products 
provides economic interpretations of the statements of Theorems 4.3 and 
6.1. An application in Section 6 to price dependency further develops 
this relationship. 

It is usually more natural to approach and understand applications in 
terms of antitone differences and complementarity, while the attendant 
mathematical analyses tend to be easier to handle in terms of submod- 
ularity. One problem in which submodularity arises directly is that of find- 
ing a minimum cut in a capacitated network [8]. The late Professor 0. 
Ore pointed out (personal communication) that this problem is one of mini- 
mizing a submodular function on a lattice. 

A real-valued function f on X 8=l Si is separable if f(x)= ZT=1fi(xi) 
for all x= (xi, *, xn) with XiESi for i= 1, , n. A function that is 
both submodular and supermodular is a valuation. 

THEOREM 3.3. If Si is a chain for i= 1, , 7 n, then f is separable on 
X-=1 Ss if and only if f is a valuation on X i8= Si. 

Proof. Suppose f is separable and x and y are in Xi'., Si. Then since 
Si is a chain, Xi A Yi = xi and xi v yi= ys or the reverse is true. Thus f(x A Y) 

+f(X V mY) = 1~ (fi(Xi A Yi) +fi(Xi V Yi) ) = i1 (fi(Xi) +fi(yi)) )-f(X) + 
f(y); hence f is a valuation on X=1 Si. 

Now suppose f is a valuation on X7.1 Si. By Theorem 3.1 f has both 
isotone and antitone differences. Pick some fixed z in X'=i Si. Now choose 
any x in X-% Si. Then 

f(x) =f(z) + I== (f(xb, , xi, z , Zn) -f(xi, Xi-1, Zi, * * Zn)) 

=f(z) + I = (f(z1, , Zi- Xi Zi+l, Zn) -f(z)), 

which is separable. 

The following gives a procedure for generating members of a class of 
submodular functions from others of that class. 

LEMMA 3.1. If S is a lattice and gi(x) is nonpositive, isotone (antitone), 
and submodular on S for i =, , k, then f (x)-(-1) kq (X)2(X) 

gk(X) is also nonpositive, isotone (antitone), and submodular on S. 
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Proof. That f is nonpositive and isotone (antitone) is immediate. For 
k=2 and any x and y in S, 

f(x V y) -f(x) =-qs(x v y)92(x v y) +g1(x)92(x) 
- (glq(X) + g(y) -qg(x A y) )92(x V y) +91(x)92(x) 

_ -1(Y)92(X v Y) +qg(x Ay)2(x) 

- 
-q1(y) (92(X) +g2(y) -92(x A Y ) +gj(x A y)g2(X) 

- 
-1(y)92(y) +?g(x A y)92(x A Y) 

-f(y) -f(x A y). 

If we let fk indicate the dependence of f on k, the result follows by in- 
duction for k> 2 by observing that fk(x) = -fk-l(X)9k(X). 

TABLE I 

WAYS OF CONSTRUCTING A SUBMODULAR OR SUPERMODULAR FUNCTION 

f f con- g super- g sub- f f iso- g isotone fog super fog sub- 
convex cave modular modular antitone tone (antitone) modular modular 

Table I gives a variety of ways of constructing a submodular or super- 
modular function by taking the composition of two other functions with 
certain properties. In this table one should read across any given row, and 
the assumptions corresponding to the checked columns on the left of the 
double line imply the result corresponding to the checked column to the 
right of the double line. All properties of g and fog hold on a given lattice 
S, g is a real-valued function on S, and f is a real-valued function on the 
real line. Each result is a consequence of the following identity for all x 
and y in S: 

f(g(x) ) +f(g(y) ) -f(g(x v y) ) -f(g(x A y)) 

=(f(g(x))-f(g(x V y) +g(x A y)-g(y))) 

+ (f(g(x V y) +g(x A y) -g(y)) -f(g(x v y)) -f(g(x A y)) 

4. MINIMIZING A SUBMODULAR FUNCTION 

The following result shows that the set of points at which a subadditive 
function attains its minimum is a sublattice. Ore [12, p. 110] has given a 
completely general proof of this result in the particular context of finding 
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a maximal deficiency in a network. Ford and Fulkerson [8] and Shapley 
[16] have shown that the union and the intersection of two minimum cuts 
(defined in terms of nodes rather than arcs) in a capacitated network are 
also minimum cuts, and Ore pointed out (personal communication) that 
this result is a direct consequence of Theorem 4.1. 

THEOREM 4.1. If f is submodular on a lattice S, then the set S* of points at 
which f attains its minimum on S is a sublattice of S. 

Proof. Pick any x and y in S*. Because f is submodular on the lattice 
S and x, Y E S*CS; 0 <f(X v y) -f(x) ?f(y) -f(X A y) ? 0. 

In considering subsequent optimization problems, it will be useful to 
have a consistent method of selecting one element from the set of optimal 
solutions. One way is to pick that set's greatest or least element if these 
are known to exist. Corollary 4.1 provides conditions for the set of optimal 
solutions to have a greatest and a least element. Theorem 6.2 will apply 
that result to select a particular optimal solution corresponding to each 
possible parameter value in a parameterized collection of optimization 
problems. In this regard, the following topological conditions are intro- 
duced. The most useful case is that a sublattice of En must be complete 
if it is compact or complete in the usual topology. 

In a poset S define [x, oo ) = {y:y E S, x <y} and (-oo, x] = {y:y E S, y < x} 
for x E S. Frink [9] defined the interval topology on a poset S as the topology 
for which the sets [x, co) and (- o , x] for x E S together with itself form 
a sub-basis of the closed sets. He showed that a complete lattice is com- 
pact in the interval topology. Conversely, Birkhoff [4] showed that a 
lattice compact in the interval topology is complete. Modifying an ob- 
servation of Frink [9], Birkhoff [3] states that the interval topology on 
XcEA Sa, is equivalent to the product topology (the topology of point- 
wise convergence) if each Sa is a lattice with a greatest and a least ele- 
ment and with the interval topology. If two topologies defined on a given 
set are such that each closed set in one topology is also closed in the other, 
then the latter topology is finer. The product topology is finer than the 
interval topology, but they may not be identical if each Sa does not have 
a greatest and a least element. For example, in E2= E' XE' with the 
usual order relation, the set {y: y > 0} is closed in the product topology but 
not in the interval topology. In [25], I have also explored certain relation- 
ships between completeness and topological properties, and I have given 
a modified notion of completeness that is equivalent to compactness in 
the product topology. 

COROLLARY 4.1. If S is a nonempty lattice that is compact in a topology 
finer than the interval topology and f is submodular and lower semicontinuous 
on S, then the set S* of points at which f attains its minimum on S is a non- 
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empty compact and complete sublattice of S and hence has a greatest and a 
least element. 

Proof. By Theorem 4.1, S* is a sublattice of S. Since f is lower semi- 
continuous and S is nonempty and compact, S* is nonempty and compact 
[14]. Thus by a result of Birkhoff [4; p. 250], S* is complete. 

THEOREM 4.2. If f is strictly submodular on a lattice S, then the set S* of 
points at which f attains its minim um on S is a chain. 

Proof. Pick any x and y in S*. Suppose x and y are unordered. Then 
because f is strictly submodular on the lattice S and x, yE S* CS 0< 
f(x v y) -f(x) <f(Y) -f(x A y) < 0, which is a contradiction. Thus S* 
has no unordered elments and so it is a chain. 

THEOREM 4.3. If X and T are lattices, S is a sublattice of XX T, f is sub- 
modular on S, St is the section of S at tE T, and g(t) =infxEs f(x, t) isfinite 
on the projection IITS, then g(t) is submodular on fITS. 

Proof. Pick any t, b E H TS, x E St and y E Sb. Because S is a sublattice, 
(x v y, t v b) = (x, t) v (y, b) E S and (x A y, t A b) = (x, t) A (y, b) E S. 
Thus 

g(tvb)+g(tAb)?f(xvy,tvb)+f(xAy,tAb) f(x,t)+f(y,b). (4) 

Now taking the infimum of the right-hand side of (4) over xE St and y E Sb 
gives the desired result. 

Succinctly phrased, Theorem 4.3 states that the minimization operation 
preserves submodularity. When viewed in the context of the complementary 
product interpretation of Section 3, this is not at all surprising. Then this 
result simply says that after optimizing a system of complementary 
products with respect to certain of the products, the remaining products 
will still be complementary. 

Erlenkotter [7] and Shapley [17] have shown that the optimal value of 
the objective function in the transportation problem has isotone differ- 
ences with respect to the demands and minus the supplies. Their result 
also follows from applying Theorem 4.3 together with Theorems 3.1 and 
3.2 to the dual of the transportation problem. 

Theorem 4.3 is a so convenient [19, 23] in showing the preservation of 
submodularity from period to period in sequential decision problems. 
One special case of this is in Karlin's analysis of parametric variations of 
the stochastic demands in inventory problems [10]. 

5. EXTENSION OF SUBMODULAR FUNCTIONS 

If f is a function on T and TCS, then a function q on S is an extension 
of f to S if 9(x) =f(x) for all x in T. In this section we will give conditions 
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under which a submodular function on a sublattice T of a lattice S can be 
extended to a submodular function on S. 

If S is a poset, then a subset T of S is an upper subset of S if Tnf[y, Xo) 
is nonempty for each y in S. If T is a subset of a poset S and S has a greatest 
element z, then T is an upper subset of S if and only if z is in T. If f is a 
real-valued function on TAS, then f is lower bounded relative to S if f is 
bounded below on Tn[y, oo ) for each y in S. 

LEMMA 5.1. If S is a lattice, T is an upper sublattice of S, and f is an iso- 
tone submodular function on T that is lower bounded relative to S, then there 
exists an isotone submodular extension of f to S. 

Proof. For y in S, let g(y) =inf {f(x) IxETn[y, oo)}. Because T is an 
upper subset and f is lower bounded relative to S, g(y) exists and is finite. 
Because f is isotone on T, g(y) =f(y) for y in T and so g is indeed an ex- 
tension. By construction, g(y) is isotone on S. Define L -(x, y) xE T, 
yES, yzx}. Then L is a sublattice of TXS and g(y)=infxEL f(x) is 
submodular on S= llsL by Theorem 4.3. 

If f is isotone and T has a least element, then clearly f is lower bounded 
relative to S. However, if S= [0, 1], T= (0, 1], and f(x) = - 1/x for x 
in T, then f is not lower bounded relative to S and there is no isotone 
extension to S. 

If f is a real-valued function on a subset T of a lattice S, then f is po- 
tentially isotone on T relative to S if there exists a valuation h on S such 
that f+h is isotone on T. If S = T, thenf is potentially isotone. 

A bounded function on a square in E2 need not be potentially isotone. 
Define f on [0, 1] X [O, 1] so that f(x) = 1 if x1i =O and X2 is rational and 
f(x) = 0 otherwise. If f were potentially isotone, then by Theorem 3.3 
there would exist real-valued functions h1 and h2 on [0, 1] such that g(x) 
=f(x)+hl(xl)+h2(x2) is isotone on [0, 1]X[O, 1]. By fixing x1=1, h2(x2) 
must be isotone on [0, 1]. By fixing x1=O, h2(z)-h2(w)_1 for z>w in 
[0, 1] with z irrational and w rational. Since these two properties are in- 
compatible, f is not potentially isotone. 

A valuation on a lattice is potentially isotone. A continuously differ- 
entiable function on a compact subset T of E' is potentially isotone on 
T relative to En. This follows by constructing the valuation to be the linear 
function whose jth coefficient is minus the infirmum over T of the jth 
partial derivative of the function. 

If S is a finite sublattice of En, T is any subset of S, and f is any real- 
valued function on T, then f is potentially isotone on T relative to S. 
MVfore generally, a real-valued function on a subset T of a finite modular 
lattice S is potentially isotone, where a lattice S is modular if x V (y A z) 
= (xvy) AZ for all x<z in S and yES. This follows by letting the ap- 
propriate valuation be a large enough constant times the height function 
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on S, where the height of an element x in S is one less than the number of 
elements in the shortest chain joining x and the least element of S. The 
height function is a strictly isotone valuation on a finite modular lattice 
[4]. 

THEOREM 5.1. If S is a lattice, T is an upper sublattice of S, 7' has a least 
element, and f is submodular on T and potentially isotone on T relative to S, 
then there exists a submodular extension of f to S. 

Proof. Because f is submodular on T and potentially isotone on T 
relative to S, there exists a valuation h on. S such that f+h is submodular 
and isotone on T. Because T has a least element and f+h is isotone on T, 
f+h is lower bounded relative to S. Thus Lemma 5.1 applies and there 
exists an isotone submodular extension g of f+h to S. Then g-h is sub- 
modular on S and g - h =f on T; hence g - h is a submodular extension of 
f to S. 

THEOREM 5.2. If T is a compact sublattice of E' and f is submnodular on T 
and continuously differentiable on a compact convex set containing T, then 
there exists a submodular extension of f to E'. 

Proof. By Taylor's theorem and the above hypotheses, there exists 
M>O such that 

f(y)?f(!x)+M: x1 {xj-Ayjl (5) 
for each x and y in T. Define g(x, y)=f(x)+MIE 1xj-yij for 
(x, y) ETXE". Define h(y)=minxTrg(x, y) for y EE'. Note that h exists 
because g(x, y) is continuous in x on the compact set T' for each y. Further- 
more, h is submodular on En by Theorem 4.3 because g is submodular on 
TXE'. For YE T, it follows from (5) that h(y) =g(y, y) =f(y). Thus h 
is a submodular extension of f to E'. 

The extension results of Theorems 5.1 and 5.2 will have application to 
the isotonicity results of Section 6. The conditions of Theorem 6.1 may re- 
quire that f(x, t) has certain properties on a set larger than its natural 
domain UtE (St, t). However, Theorems 5.1 and 5.2 indicate that the 
required properties might already be implicit in the properties on 
UtE T (St, t). For instance, the acyclic network example could not formally 
satisfy the conditions of Theorem 6.1. This is because C(i, j) is only defined 
on 77={ (i, j): 1$< i, i ! j-1, j < N, i and j integer}. However, if c (i, j) 
is submodular on T then it follows from Theorem 5.1 that there exists an 
extension of c(ij) to a submodular function on S=={(i, j):1<i<N-1, 
2$j < N, i and j integer}; hence Theorem 6.1 is then applicable. 

6. ISOTONE OPTIMAL SOLUTIONS 

Consider the collection of optimization problems (1), where both the 
constraint set and the objective function depend upon the parameter t 



Minimizing a Submodular Function on a Lattice 317 

for t E T. Let St* be the set of optimal solutions for (1) given t E T, and let 
T*={t:St* is nonempty}. 

We now give conditions for St* to be ascending and for the selection of 
an element from each St* so that the element is isotone in t. 

LEMMA 6.1. If S is a lattice, T is a poset, StCS is ascending in t on T. 
and 

f (x A y, t) +f(x v y, b) <f (x, t) +f (y, b) (6) 

for all t and b in T with t<b, xESt, and yE Sb, then St* is ascending in t 
on T*. 

Proof. By (6) and Theorem 4.1, each St* is a sublattice of S. Pick t 
and b in T* with t<b. Then pick xESi, and YESb*. Because St St, 
X St and x v y E Sb. Then by (6) and the optimality of x andy, 

0<f (x vy, b) -f (y, b) -<f (x, t) -f (X AYy t) <O0. (7) 

Thus equality holds throughout in (7) and so x A yE St and xvyESb*. 

Condition (6) clearly holds if f(x, 1) is submodular in (x, t), but then 
this requires the unnecessary condition that f(x, t) be submodular in 
t for fixed x. 

THEOREM 6.1. If S is a lattice, T is a poset, St9S is ascending in t on T, 
f(x, t) is submodular in x on S for each tE T, and f(x, t) has antitone differ- 
ences in (x, t) on SXT, then St* is ascending in t on T*. 

Proof. By Lemma 6.1 it suffices to show that (6) holds. Pick t and b 
in T with t!b, xESt and yESb. Then by hypothesis f(xAy, t)-f(x, t) 

<f (y, t) --f ( v y, t) !<f (y, b) -f (x vy, b). 

Veinott (personal communication) earlier proved an isotonicity result 
that is a special case of Theorem 6.I. His result was for the case where each 
minimization problem of (1) satisfied the necessary and sufficient opti- 
mality conditions of Kuhn and Tucker [11], and thus his additional hy- 
potheses included those of convexity, differentiability, and other reg- 
ularity conditions in En. 

The next result is an immediate consequence of Corollary 4.1, Theorem 
2.3, and Theorem 6.1. 

THEOREM 6.2. If, in addition to the hypotheses of Theorem 6.1, each St is com- 
pact in a topology finer than the interval topology and f (x, t) is lower semicon- 
tinuous in x on St for each tE T, then each St* has a least element st, and a 
greatest element, se, and st and 9t are both isotone in t on T. 

The mapping St* is strongly ascending on T* if t and b in T* with t <b, 
xE St and yE S* imply that x y. Theorem 6.3 shows that if the hy- 
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pothesis of antitone differences in Theorem 6.1 is strengthened to strictly 
antitone differences, then St* is strongly ascending. 

THEOREM 6.3. If S is a lattice, 2' is a poset, SCS is ascending in t on T, 
f(x, t) is submodular in x on S for each t E T, and f(x, t) has strictly antitone 
diffferences in (x, t) on S X T, then St" is strongly ascending in t on T'*. 

Proof. Pick t and b in T with t<b, xESt*, and yESb*. Suppose it is 
n)t true that x < Ty. Then y<xvy and so by hypothesis O <f(x A Y, t) 

-f.,x, t) _f(y, t)-f(xvy, t)<f(y, b)-f(xvy, b)<O, which is a con- 
tradiction. 

After Theorem 6.3 appeared in an earlier version of this paper [22], 
the author heard from Veinott (personal communication) that he had 
developed a version of this result. 

The isotonicity results of this section make sense intuitively when viewed 
in the previously discussed context of a system of complementary products. 
Then in such a system the optimal levels of any subset of the products 
are isotone as a function of the other products. While a strictly isotone 
transformation of f(x, t) may not preserve properties like submodularity 
or antitone differences, such a transformation certainly preserves the 
isotonicity of the optimal solutions. 

We will now give several brief applications of Theorems 6.1 and 6.2. 
Consider a system with n products whose levels are denoted x = (xi, -,x). 

The product levels x must be contained in a set S. The utility of x is U(x). 
To acquire (or produce) each product j there is a un t price pj, and the 
price vector is p = (pi, * . , pa). The problem is to maximize the net value 
U(x) - p. x, the utility minus the acquisition cost, over x in S. Suppose that 
S is a compact sublattice of En and - U(x) is lower semicontinuous and 
submodular on S. The products thus are complementary, because by The- 
orem 3.1 the marginal utility from additional units of any given product is 
a nondecreasing function of the levels of each of the other products. Define 
t= - p, so the decision problem is to minimize - U(x) -t t x subj ect to x in 
S. Theorem 6.2 applies directly and shows that there exist optimal solutions 
which are an isotone function of t and hence an antitone function of p. Thus 
increasing the price of one product will not lead to an increase in the opti- 
mal levels of any product, and this is another reasonable definition of com- 
plementary products. Let f(p) denote the optimal value of the problem of 
maximizing U(x) - p. x over x in S. This function is convex because it is the 
maximum of a collection of affine functions. Also, -f(p) is submodular by 
Theorem 4.3 and the substitution t = - p. Thus a marginal increase in any 
pj is relatively less undesirable at higher initial levels of p. 

Now consider again the problem of finding minimum cost paths from 
one node to all other nodes in an acyclic network. Let i(j) be the largest 
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(or smallest) i optimal for j in (2). If c(i, j) is submodular in (i, j) on 
the sublattice {(i, j) :1<i, i<j-1, j<N, i and j integer}, then i(j) is 
isotone in j. Then the recursion 

f(j) =Minsk r4)?<?JA (f(i) +c(i, A)l)X f(1) = 0 

can replace (2). It also follows from this that if i(j) =j- 1 for some j, 
then for each k _ j a minimum cost path from node 1 to node k goes through 
node j- 1. Wagner and Whitin [26] established a special case in which the 
particular structure of their c(i, j), arising from an application to inven- 
tory theory, implied that it was submodular. Eppen, Gould, and Pashigian 
[6] established another special case (when viewed in the a priori form where 
the conditions do not depend on i(j)) by finding more general conditions 
than those in [26] under which the inventory problem structure implied 
that c(i, j) is submodular. Zangwill [27] also established closely related 
inventory applications. 

Erlenkotter [7] has shown that there exist optimal solutions to the dual 
of the transportation problem that are isotone in the demands and anti- 
tone in the supplies, and this result also follows from Theorem 6.2. 

It is possible to develop from the results of this paper Karlin's result 
[101 that optimal inventory policies increase as the demands increase sto- 
chastically. 

In [20] the author used these isotonicity results together with Tarski's 
fixed-point theorem [18] to establish conditions for the existence of an 
equilibrium point in an n-person, nonzero sum game. That paper also 
gives two algorithms that, based on these results, generate a sequence of 
joint strategies converging monotonically to an equilibrium point. 

7. SUBMODULARITY AND CONVEXITY 

There are some qualitative analogies between submodular functions 
on lattices and convex functions on convex sets. Both submodularity 
and convexity are second-order properties in the sense that for twice- 
differentiable functions on open sets in En each property is equivalent to 
certain conditions on the matrix of second partial derivatives. The exact 
statements of Theorems 4.1, 4.3, and 5.2 hold for convex functions on 
convex sets, and there are results corresponding to Theorem 3.3, Table 
I, and Theorem 4.2 [5, 13]. There are also some obvious minor corre- 
spondences. This analogy makes some properties of submodular func- 
tions seem a bit more familiar and it was useful in finding certain prop- 
erties of submodular functions and in developing some of the proofs. Of 
course, this can only be carried so far. Since every subset of E' is a sub- 
lattice and every real-valued function on E' is submodular, sublattices 
do not share the topological properties of convex sets and submodular 
functions do not have the continuity and differentiability properties of 
convex functions. 
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