
An Investigation of a Hyperheuristic Genetic Algorithm Applied to a Trainer
Scheduling Problem

Peter Cowling* Graham Kendall+ and Limin Han+

+ Automated Scheduling, Optimisation and Planning Research Group, School of Computer Science and IT, Jubilee Campus
University of Nottingham, Nottingham, NG8 1BB, UK, Email: gxk/lxh@cs.nott.ac.uk

*Department of Computing, University of Bradford, Bradford BD7 1DP, UK, Email: Peter.Cowling@scm.brad.ac.uk

Abstract-This paper investigates a genetic algorithm based
hyperheuristic (hyper-GA) for scheduling geographically
distributed training staff and courses. The aim of the hyper-GA is
to evolve a good-quality heuristic for each given instance of the
problem and use this to find a solution by applying a suitable
ordering from a set of low-level heuristics. Since the user only
supplies a number of low-level problem-specific heuristics and an
evaluation function, the hyperheuristic can easily be
reimplemented for a different type of problem, and we would
expect it to be robust across a wide range of problem instances.
We show that the problem can be solved successfully by a hyper-
GA, presenting results for four versions of the hyper-GA as well
as a range of simpler heuristics and applying them to five test data
set

1. INTRODUCTION

Personnel scheduling problems involve the allocation of
staff to timeslots and possibly locations (Wren, 1995a).
Personnel scheduling covers many areas, such as the nurse
rostering problem (Burke et al, 1998; Burke et al, 2001 and
Dowsland, 1998), transportation staff scheduling (Wren,
1995b), educational institute staff scheduling (Schaerf, 1999)
and airline crew scheduling (Emden-Weinert and Proksch,
1999).

Metaheuristic approaches have been applied successfully to
a range of personnel scheduling problems. For example,
Aickelin and Dowsland (2000) applied genetic algorithms to a
nurse rostering problem in a large UK hospital. Easton and
Mansour (1999) developed a distributed GA for deterministic
and stochastic labour scheduling problems, which is proved to
be effective for three labour scheduling problems. Burke et al
(1998) and Dowsland (1998) used tabu search to solve nurse
rostering problems. Emden-Weinert and Proksch (1999)
applied simulated annealing for an airline crew scheduling
problem, and Thompson (1995) applied simulated annealing
for shift scheduling using non-continuously available
employees. Burke et al (2001) tackled a nurse scheduling
problem in Belgian hospitals using a memetic algorithm.

These metaheuristic approaches can effectively solve
problems, but they often require plenty of implementation time,
domain knowledge and expertise in heuristics. Moreover, the
reusability of these approaches may be poor because they often
depend heavily on problem specific knowledge. In order to
have a reusable, robust and fast-to-implement approach
applicable to a wide range of problems and instances, we
designed a hyperheuristic approach which will be presented
later.

The work presented in this paper describes a hyper-heuristic
genetic algorithm and applies it to a trainer scheduling
problem. In this problem, there are a number of training events

to be scheduled using a limited number of staff, locations and
timeslots. The delivery of these events is highly constrained by
the working ability of staff and resource limits upon time and
locations. We investigate a GA-based hyper-heuristic for the
problem using an indirect genetic algorithm, a hyper-GA,
which may be regarded as a hyper-heuristic that uses a GA to
select low-level heuristics to solve the problem. We believe
that given an appropriate set of low-level heuristics and an
evaluation function the hyper-GA approach may be applied to
a wide range of problems of scheduling and optimisation.

The term “hyper-heuristic” was introduced by Cowling,
Kendall and Soubeiga (Cowling et al, 2000) as an approach
that operates at a higher level of abstraction than a meta-
heuristic. They described it thus: “The hyper-heuristics manage
the choice of which lower-level heuristic method should be
applied at any given time, depending upon the characteristics
of the region of the solution space currently under exploration.”
The approach successfully solved a sales summit scheduling
problem (Cowling et al, 2000), (Cowling et al, 2001) and a
project presentation scheduling problem (Cowling et al, 2002).
In their approach, they first design a general framework for a
hyper-heuristic to select which low-level heuristic to apply, and
further improve their approach using a choice function. Their
choice function is calculated based on information regarding
recent improvement of each low-level heuristic, recent
improvement of each consecutive pair of heuristics and the
amount of time elapsed since each heuristic was last called. By
using the choice function, they can select which low-level
heuristic to call next effectively. Hart, Ross and Nelson (Hart et
al, 1998) develop an evolving heuristically driven schedule
builder for a real-life chicken catching and transportation
problem. In the application they divide the problem into two
sub-problems and solve each using a separate genetic
algorithm. The result of the two genetic algorithms is to evolve
a strategy for producing schedules, rather than a schedule itself.
They express the information they collect from the company
into a set of rules, and combined these rules into a schedule
builder by exploiting the searching capabilities of the genetic
algorithm. A sequence of heuristics is evolved to dictate which
heuristic to use to place a task into the schedule. Gratch and
Chien (1996), develop an adaptive problem solving system,
which selects proper heuristic methods from a space of
heuristics after a period of adaptation, and applied it to a
network scheduling problem.

Indirect genetic algorithms have been studied by a number
of researchers, such as Terashima-Marin, Ross and Valenzuela-
Rendon (Terashima-Marin et al, 1999), who designed an
indirect GA to solve an examination timetabling problem. They
have three strategies for the timetabling problem. Their

representation is a 10-position array which encodes the three
strategies and parameters for guiding the search algorithm that
builds the timetable. Therefore the chromosome represents the
way a timetable is constructed rather than the timetable itself.
Corne and Ogden (Corne and Ogden, 1997) developed an
indirect GA for a Methodist preaching timetabling problem and
found it is more effective than a direct genetic algorithm when
applied to the same problem.

This paper is structured as follows. Section 2 will present the
problem and our model. Section 3 will first discuss the genetic
and memetic algorithms which we have developed, then we
will present low-level problem-specific heuristics and provide
a general framework for the hyper-GA. Section 4 gives
experimental result and section 5 presents conclusion and
possible directions for further work.

2. PROBLEM DESCRIPTION

The problem is to create a timetable of geographically-
distributed courses over a period of several weeks using
geographically distributed trainers. We wish to maximise the
total priority of courses which are delivered in the period,
while minimising the amount of travel for each trainer. To
schedule the events, we have 25 staff, 10 training centres (or
locations) and 60 timeslots. Each event is to be delivered by
one member of staff from the limited number who are
competent to deliver that event. Each staff member can only
work up to 60% of his/her working time (i.e. 36 timeslots).
Each event is to be scheduled at one location from a limited list
of possible locations. Each location, however, can only be used
by limited number of events in each timeslot due to the limited
number of rooms at each site. The start time of each event must
occur within a given time window. The duration of each event
varies from 1 to 5 time slots. Each event has a numerical
priority value. Each member of staff has a home location and a
penalty is associated with a staff member who must travel to an
event. The objective function is to maximise total priority for
scheduled courses minus total travel penalty for trainers. A
mathematical model for the problem is shown in figure 1,
where we have
E: the set of events; S: the set of staff members;
T: the set of timeslots; L: the set of locations;
duri : the duration of event ei;

dsl: the distance penalty for staff member s delivering a
aaacourse at location l;
wi: the priority of event ei; cl: the number of room at location l

Variable yistl equals to 1 when event ei is delivered by staff s
at location l commencing at timeslot t, or 0 otherwise. Variable
xistl equals to 1 when event ei is delivered by staff s at location
l, or 0 otherwise. Constraint (1) ensures that one event can
happen at most once. Constraint (2) ensures that each staff
member is only required to deliver at most one event in each
timeslot. Constraint (3) ensures that each location has sufficient
room capacity for the event scheduled. Constraints (4), (5), and
(6) link the xistl and yistl variables, which address that if one
event is delivered, its duration must be consecutive.

(1)

(2)

(3)

(4)

(5)

(6)

3. IMPLEMENTATION

3.1.Genetic and Memetic Algorithms

We first develop a direct GA for the problem. The
chromosome is a 25-position array with each gene representing
one member of staff. Each gene holds details of the training
delivered by that staff member.

Our crossover operator randomly selects two genes and after
crossover, the staff members will have swapped the events they
are scheduled to deliver. The crossover is combined with a
repair operator that can repair a chromosome by removing
conflicting events. The mutation operator randomly selects one
gene to do mutation. When one gene in the chromosome is
seleted to be mutated, the algorithm will try to find one event
in the unscheduled event list which can be added to the
schedule for a staff member.

Empirical testing has shown that a crossover rate of 0.6
(from a range of 0..1), a mutation rate of 0.03 (from a range of
0..0.2), population size 30 (from a range of 5..50), and 100
generations (from a range of 10..100) were the parameters that
yielded the best results. We use elitism, which maintains the
best 10 individuals from the previous generation, and the other
20 individuals are selected randomly from other members in
the previous generation. The initial population is derived by
randomly scheduling 30 timetables using a simple greedy hill-
climbing heuristic. Table 1 lists some result of the parameter
selection. From table 1 we find that the result of algorithm with
bigger or smaller crossover and mutation rate cannot beat the
algorithm with the rate we have used. Moreover, when the
population size is small, the result is not as promising as the

)(1 Eiy
Ss Tt Ll

istl ∈≤∑∑∑
∈ ∈ ∈

)(1 Ssx
Ei

istl
Ll Tt

∈≤∑∑∑
∈ ∈ ∈

)(Llcx l
Ei Ss

istl
Tt

∈≤∑∑∑
∈ ∈ ∈

∑
=

∈∈∈∈<=
t

j
istlistl LlTtSsEiyx

1

))()()((

)(* Eiydurx
Ss Tt Ll

istl
Ss Tt Ll

iistl ∈= ∑∑∑∑∑∑
∈ ∈ ∈∈ ∈ ∈

))()()((

0

LlTtSsEiyx

idurjt

Tj
istlistl ∈∈∈∈<= ∑

<−<=
∈

Figure 1. Mathematical model for the geographically
distributed trainer scheduling problem

∑∑∑∑∑∑∑∑
∈ ∈∈ ∈∈ ∈ ∈∈

−=
Ei Tt

istl
Ss Ll

sl
Ss Tt Ll

istl
Ei

i ydywMaxW)*(

Objective

Subject to:

algorithm using large population size. Although using
population size 100 produces slightly better result than using
population size 30, it consumes much more CPU time.

C/M/G P: 5 P: 30 P: 50
0.6/0/50 136/1721 905/1781 1372/1765

0.6/ 0.03/50 130/1735 873/1785 1353/1759
0.6/ 1/50 132/1728 869/1774 1359/1759
1/ 0/50 154/1715 1004/1770 1460/1752

1/0.03/ 50 163/1723 1045/1778 1487/1760
0/1/ 50 125/1724 763/1745 1286/1750
0.6/ 0/100 257/1721 1736/1789 2547/1792
0.6/0.03/100 243/1735 1628/1796 2471/1797
0.6/ 1/ 100 246/1732 1721/1782 2501/1790
1/0/100 261/1715 1905/1779 2864/1788
1/0.03/ 100 285/1723 2053/1784 2896/1791
0/1/ 100 194/1729 1448/1750 2071/1779

We also designed a memetic algorithm (Moscato, 1989)
based on the direct genetic algorithm introduced above. Each
member of the population is improved using one of a set of
low-level heuristics that we will describe in section 3.2.1. The
local search operator is applied after mutation and crossover in
each generation. The mechanism of the local search is as
follows. Randomly select one event from the unscheduled
event list, try to add the event by using a randomly chosen add
heuristic (see section 3.2.1). If the event cannot be added, apply
a randomly chosen add-swap move. If none of add and add-
swap works, apply a randomly chosen add-delete move for the
event. Repeat until all the unscheduled events have been tried.
The results of the memetic algorithm are listed in table 3 as
comparison to the result of hyper-GA.

3.2. Hyper-GA
3.2.1 Low-level Heuristics

We have designed twelve problem-specific low-level
heuristics, which accept a current solution, and modify it
locally in an attempt to return an improved solution. At each
generation the hyper-GA can call upon the set of low-level
heuristics and apply them in any sequence. All these low-level
heuristics may be considered in three groups: add, add-swap,
and add-delete. The add heuristics comprise five methods
which can be sub-divided into two groups. Add-first, add-
random and add-best try to add unscheduled events by
descending priority, and add-first improvement and add-best
improvement consider the unscheduled list in a random order.
The add heuristics can be described as follows:
� Add-first tries the available staff members and locations in

order until a staff member who can deliver the course at a
location is found.

� Add-random considers the staff members and locations in
a random order until a staff member who can deliver the
event at a location is found.

� Add-best considers all possible staff and locations and
selects those yielding the lowest travel penalty.

� Add-first improvement tries staff and locations in order as
above until the first one which yields an overall
improvement in the objective function is found.

� Add-best improvement tries all staff members and
locations until the best improving combination is found.

There are four add-swap heuristics, and they are also sub-
divided into two groups according the order of the unscheduled
event list.
� Swap-first and swap-randomly are analogous to add-first

and add-random, except that if there is a conflicting event
when considering a particular timeslot, staff member and
location, we will consider all swaps between that
conflicting event and other scheduled events to see if the
conflict can be resolved.

� Swap-first improvement and swap-best improvement are
similarly analogous to add-first improvement and add-best
improvement with the addition of this swapping step to
resolve conflicts.

The mechanism of the third group (add-delete heuristics) is:
select one event from the unscheduled event list by descending
priority, if the event is in conflict with event(s) in the timetable
(none of the event’s possible staff members is able to work for
it during its possible timeslots), and the event’s fitness is higher
than the fitness(es) of the conflicting event(s), delete the
conflicting event(s) and add the unscheduled event. This group
of heuristics consists of:
� Add-delete-first, which tries the available staff members

and locations in order for the unscheduled event until a
staff member who can deliver the course at a location is
found.

� Add-delete-random, considers the staff members and
locations in a random order for the unscheduled event until
a staff member who can deliver the event at a location is
found.

� Add-delete-worst, considers all possible staff and locations
for the unscheduled event and selects those yielding the
lowest travel penalty.

3.2.2 Representation

The representation is a sequence of integers each of which
represents one low-level heuristic. Each individual in a hyper-
GA population give us a sequence of heuristic choices which
tell us which low-level heuristics to use and in what order to
apply them

We use one-point crossover and a mutation operator which
randomly selects some positions in one chromosome and
mutates integers at these positions to other values ranging from
0 to 11, (Davis, 1991). After empirical testing over a range of
parameter rates, we use 0.6 for crossover rate, 0.1 for mutation
rate, a population size of 30, 200 generations (100 generations
gives equally good results, but we use 200 to see the further
change of low-level heuristics’ distribution) and retain the 30
fittest chromosomes in each generation. Table 2 lists some
results of the selection of parameters, and shows that the
hyper-GA approach is robust across a wide range of
parameters.

TABLE 1. COMPARISON OF PARAMETERS FOR GA
C: CROSSOVER, M: MUTATION
P: POPULATION, G: GENERATION
TIME/OBJECTIVE

C/M/G P: 5 P: 30 P: 50
0.6/0/50 67/1943 390/1950 652/1952

0.6/ 0.1/50 59/1945 384/1951 620/1951
0.6/ 1/50 63/1943 392/1949 663/1949
1/ 0/50 74/1940 420/1948 752/1946

1/0.1/ 50 75/1942 434/1950 796/1948
0/1/ 50 58/1941 321/1947 530/1942
0.6/ 0/100 125/1943 790/1953 1350/1952
0.6/0.1/100 118/1945 804/1958 1318/1957
0.6/ 1/ 100 127/1947 872/1957 1485/1952
1/0/100 152/1940 1064/1953 1527/1950
1/0.1/ 100 152/1942 1045/1954 1513/1951
0/1/ 100 110/1948 643/1951 970/1949
0.6/0/50 193/1945 1448/1958 2136/1957

3.2.3 Implementation
We have 4 versions of hyper-GA, two with adaptive

parameters and two with non-adaptive parameters. In the
adaptive versions, the mutation rate and crossover rate adapt
according to the change in fitness in each generation. When
there is no improvement in average fitness over 3 generations,
the mutation rate will be increased using the formula of new
mutation rate = (old mutation rate + 1)/2 and the crossover rate
will be decreased using the formula of new crossover rate =old
crossover rate/2. If the average fitness has improved over 3
generations, the mutation rate will be decreased and the
crossover rate will be increased in a converse fashion. There
are two types of fitness function in the 4 versions. One uses
total priority minus total travelling penalty for the solution
resulting from applying the heuristics given by the
chromosome to the best solution found so far, and the other
uses total priority minus total travelling penalty divided by the
CPU time of the application of that chromosome, so that
improvement per unit time is the fitness. The consideration of
CPU time is to easily compare the efficiency of each individual
sequence of low-level heuristic. The comparison of these four
versions can test the robustness of hyper-GA under a range of
conditions.

Thirty individuals are generated for the initial population by
randomly selecting numbers ranged from 0 to 11 for each gene
of the chromosome.

4. RESULTS

All algorithms were implemented in C++ and the
experiments were conducted on a AMD 800MHZ with 128MB
RAM running under Windows 2000. We use five sets of data
in this work to test the suitability of the algorithm, which
describe realistic problem instances having differing degrees of
difficulty. The difficulty is generally given by the average
number of competent staff members and possible locations for
each event. In the least difficult data set, each event can be
delivered by all staff members at all locations, while in the
most difficult data set, each event can be delivered by at most 5
staff members at a specified location. The events in each data
set are generated randomly, based on the characteristics of a
real staff trainer scheduling problem at a large financial
institution.

We compare each of our heuristics over the five problem
instances. The number of trials on each problem instance is 1.
The four versions of hyper-GA, according to the fitness
function and the context of parameters for mutation and
crossover rate, are as follows:
� PPPN uses total event priority minus total travel penalty

as the fitness.
� PPPA uses same fitness function as PPPN, and the

crossover and mutation rate are adapted as discussed in
section 3.3 during the evolution of the algorithm.

� FTPN, whose fitness function is the fitness above divided
by the CPU time of the application of each chromosome
so that we consider the improvement per unit time.

� FTPA, whose fitness function is the same as FTPN, and
where the mutation and crossover rate are adapted during
the evolution of algorithm.

Since the result of evolution is a heuristic, we also present,
in table 3, the results of applying heuristics H1, H2, …. , H5
given by five different runs of the PPPN hyper-GA on a
relatively difficult problem instance (the Basic data set), to
each other data set. An upper bound (in table 3) is calculated
by solving a relaxed knapsack problem (Martello and Toth,
1990) where we ignore travel penalties.

Finally, in order to see the efficiency and the robustness of
the hyper-GA, we compare our genetic and memetic
algorithms, each low-level heuristic considered alone and our
hyper-GA implementation. The stopping criterion for each
low-level heuristic is when all unscheduled events have been
tried for the schedule. We note that the fast, greedy heuristics
H1, H2,…, H5 are all better than the best of the low-level
heuristics, so that hyper-GA has found ways of combining the
low-level heuristics which are effective across all instances.

From table 3 we find that our direct GA and MA
implementations achieve poorer solutions than hyper-GA, in
more CPU time. The time for each low-level heuristic is much
shorter, but the result is much worse than hyper-GA, as well as
our GA and MA implementation. Comparing Hyper-GA with
its component heuristics, and with direct GA and MA
heuristics, supports the idea that Hyper-GA is greater than the
sum of its parts. When low-level heuristics should direct the
search in a promising region, the high-level GA will call those
heuristics very often, but when a low-level heuristic cannot
give the algorithm further help, the algorithm will use them
less frequently and change the range of heuristics used.
Heuristics which include randomness, will tend to be called
when diversification is needed. For example, we see that
hyper-GA identifies low level heuristic delete-first, delete-
random for PPPN in figure 3 and swap-random, delete-first for
FTPA in figure 5 are unpromising, and their frequency remain
low. Also we see that add-best-improvement for FTPA in
figure 5, add-best for PPPN in figure 2, add-first for PPPA in
figure 3 and add-best-improvement for FTPN in figure 4 are
identified as promising, and their frequency remains high.

The overall performance of heuristics in each version of
hyper-GA is different. In PPPN (figure 2), the frequency of
each low-level heuristics keeps on changing even if there is no
further improvement to the fitness. In PPPA (figure 3), each
heuristic’s performance becomes flat after generation 63 as the

TABLE 2. COMPARISON OF PARAMETERS FOR HYPER-GA
C: CROSSOVER, M: MUTATION, P: POPULATION
G: GENERATION, TIME /OBJECTIVE

Heuristics Basic data set Very few staff Few staff (1) Few staff (2) Non-restricted staff

Upper bound (number/priority) 345.75 /2261.57 332.25/2179.40 323.80 /2124.12 337.33/ 2244.17 332.25 /2179.53

Add first 0.16/1502.89 0.11/1351.74 0.16/1454.75 0.16/1487.94 0.17/1471.31
Add random 0.17/1471.33 0.17/1360.04 0.16/1458.24 0.16/1488.00 0.17/1472.30

Add best 0.17/1544.18 0.17/1374.67 0.17/1460.83 0.16/1490.11 0.17/1472.85
Add first improvement 0.16/1506.84 0.16/1352.63 0.16/1451.83 0.15/1490.25 0.17/1472.04
Add best improvement 0.16/1556.75 0.16/1361.34 0.16/1453.90 0.16/1492.37 0.17/1475.93

Swap first 0.33/1551.42 0.34/1378.62 0.35/1461.21 0.31/1493.86 0.32/14776.42
Swap random 0.33/1548.90 0.34/1378.62 0.35/1460.97 0.31/1494.01 0.32/1475.98

Swap first improvement 0.32/1553.06 0.33/1380.38 0.35/1462.06 0.32/1494.59 0.33/1476.77
Swap best improvement 0.34/1553.06 0.34/1380.90 0.36/1465.49 0.31/1494.59 0.33/1476.77

Delete first 0.33/1549.28 0.32/1375.37 0.33/1461.47 0.34/1493.45 0.33/1474.83
Delete random 0.33/1545.70 0.33/1375.25 0.33/1461.89 0.34/1494.55 0.33/1475.01
Delete worst 0.35/1549.76 0.34/1377.17 0.33/1461.89 0.34/1495.79 0.33/1476.74
GA (30, 100) 1628/1796.19 1629/1633.96 1641/1589.34 1721/1706.28 1699/1644.7
MA (30, 100) 2064/1832.14 2054/1678.85 2129/1617.03 2254/1769.69 2133/1698.43

Hyper-GA (30, 200) PPPN 1456/1959.09 1387/1780.15 1404/1749.33 1496/1858.92 1422/1742.13
Hyper-GA (30, 200) PPPA 1448/1939.38 1461/1754.41 1306/1712.3 1475/1854.47 1571/1814.38
Hyper-GA (30, 200) FTPN 1411/1943.81 1437/1770.55 1436/1673.79 1422/1803.93 1434/1774.96
Hyper-GA (30, 200) FTPA 1420/1951.52 1424/1731.85 1436/1738.84 1427/1769.69 1419/1770.52

H1 20.19/1958.96 20.78/1629.44 21.06/1619.79 20.93/1724.08 19.98/1651.77
H2 21.53/1937.56 20.97/1597.59 21.38/1602.73 21.02/1692.25 20.31/1644.7
H3 20.74/1949.26 20.42/1617.07 22.07/1622.94 21.94/1706.28 20.59/1652.02
H4 21.37/1944.25 21.00/1629.48 21.64/1578.85 21.80/1660.97 21.06/1637.36
H5 20.76/1959.09 21.35/1582.06 20.44/1597.39 20.58/1647.42 20.27/1595.3

TABLE 3. COMPARISON OF LOW-LEVEL HEURISTICS, GA, MA AND HYPER-GA
(TIME/OBJECTIVE)

heuristics distribution
PPPA

0
20
40
60
80

100

1 21 41 61 81 10
1

12
1

14
1

16
1

18
1

20
1

generation

h
eu

ri
st

ic
s

add f irst

add random

add best

swap f irst

swap random

delet e f irst

delet e random

delet e worst

add f irst improvement

add best improvement

swap f irst improvement

swap best improvement

heuristic distribution
PPPN

0

50

100

150

1 21 41 61 81 10
1

12
1

14
1

16
1

18
1

20
1

generation

h
eu

ri
st

ic
s

add f irst

add random

add best

swap f irst

swap random

delet e f irst

delet e random

delet e worst

add f irst improvement

add best improvement

swap f irst improvement

swap best improvement

heuristics distribution
FTPN

0

50

100

150

1 21 41 61 81 10
1

12
1

14
1

16
1

18
1

20
1

generation

h
eu

ri
st

ic
s

add f irst

add random

add best

swap f irst

swap random

delet e f irst

delet e random

delet e worst

add f irst improvement

add best improvement

swap f irst improvement

swap best improvement

heuristics distribution
FTPA

0

50

100

150

1 21 41 61 81 10
1

12
1

14
1

16
1

18
1

20
1

generation

h
eu

ri
st

ic
s

add f irst

add random

add best

swap f irst

swap random

delete f irst

delete random

delete worst

add f irst improvement

add best improvement

swap f irst improvement

swap best improvement

Figure 4 heuristic distribution of FTPN Figure 5 heuristic distribution of FTPA

Figure 2 heuristic distribution of PPPN Figure 3 heuristic distribution of PPPA

population converges. There are some variances from
generation 113 to generation 129 because the adaptive
parameter change leads to some improvement. FTPN
converges early at generation 46 (figure 5) and there are no
further changes to the population. In figure 6, we see that the
FTPA hyper-GA varies between being mostly crossover and
mostly mutation in three large cycles, and the parameters adapt
to the region of the solution space under exploration.

When we consider the approach where crossover and
mutation rate are adapted, we see wide variation in the
frequency of each low-level heuristic during early generations.
The variation disappears later on for some generations, and
appears again when diversification is needed, with the
frequency of each heuristic finally converging. We can clearly
see the phase change caused by diversification in the PPPA and
FTPA graphs in figure 3 and 5. Note however that the adaptive
approaches perform less well than the PPPN approach where
parameters were carefully tuned, for all but the least
constrained problem instance.

In figure 5 and 6 when the mutation rate is nearly 1 in
later generations, there is no variation in the number of calls of
each heuristic. This is because the selection function keeps the
best chromosomes from previous generations in the current
generation. In these generations, the hyper-GA converged and
all chromosomes in each population are identical. New
chromosomes produced by the evolution cannot enter the
population, once these high quality solutions have been found.

5. CONCLUSIONS AND FUTURE WORK

Hyper-GA is a promising and generic approach to
personnel scheduling and other optimisation problems. It uses a
genetic algorithm as the high-level selector, with low-level
heuristics as the genes in the chromosome. The evolution
results in sequences of these low-level heuristics, and these
low-level heuristics are applied to the problem according to the
sequence specified. The nature of the low-level heuristics
applied varies from one generation to the next and the hyper-
GA appears to have some ability to determine when to call
each heuristic, across a number of different problem instances.
For the problem which we consider, hyper-GA significantly
outperformed both a GA and MA, and very greatly
outperformed its component heuristics.

In future, we will consider variable-length chromosomes, as
well as considering different methods of parameter adaptation
and other techniques to maintain population diversity. We will
apply our technique to a range of real-world problems.

REFERENCES:

Aickelin, U., Dowsland, K., Exploiting Problem structure In A Genetic
Algorithm Approach To A Nurse Rostering Problem, 2000, Journal Of
Scheduling, vol. 3, pp. 139-153.

Burke, E.K., De Causmaecker, P., Vanden Berghe, G., A Hybrid Tabu Search
Algorithm For The Nurse Rostering Problem, 1998, Proceedings of the Second
Asia-Pacific Conference on Simulated Evolution and Learning, vol. 1,
Applications IV. pp. 187-194

Burke, E.K., Cowling, P.I., De Causmaecker, P. and Vanden Berghe, G., A
Memetic Approach to the Nurse Rostering Problem, 2001, Applied
Intelligence, vol 15, pp. 199-214.

Cowling, P.I., Kendall, G., Soubeiga, E., Hyperheuristic Approach to
Scheduling a Sales Summit, Selected papers of Proceedings of the Third
International Conference of Practice And Theory of Automated Timetabling
(PATAT 2000), Springer LNCS vol 2079, pp. 176-190.

Cowling, P.I., Kendall, G., Soubeiga, E., A Parameter-free Hyperheuristic for
Scheduling a Sales Summit, Proceedings of the Third Metaheuristic
International Conference (MIC 2001), pp. 127-131

Cowling, P.I., Kendall, G., Soubeiga, E., Hyperheuristics: A Tool for Rapid
Prototyping in Scheduling and Optimisation, European Conference on
Evolutionary Computation (EvoCop 2002), Springer LNCS, to appear.

Corne, D., Ogden, J., Evolutionary Optimisation of Methodist Preaching
Timetables, Lecture Notes in Computer Science: Selected papers of the Second
International Conference of Practice And Theory of Automated Timetabling
(PATAT 1997), LNCS: 1408, pp. 142-155.

Davis, L., Handbook of Genetic Algorithms, 1991, Van Nostrand Reinhold,
New York.

Dowsland, K., Nurse scheduling with tabu search and strategic oscillation,
1998, European Journal of Operational Research 106, pp. 393-407.

Easton, F., Mansour, N., A Distributed Genetic Algorithm For Deterministic
And Stochastic Labor Scheduling Problems, 1999, European Journal of
Operational Research, pp. 505-523.

Emden-Weinert, T., Proksch, M., Best Practice Simulated Annealing For The
Airline Crew Scheduling Problem, 1999, Journal of Heuristics, 5, pp. 419-436.

Gratch, J., Chien, S., Adaptive Problem-Solving for Large-Scale Scheduling
Problems: A Case Study, 1996, Journal of Artificial Intelligence Research, vol.
4, pp. 365-396.

Hart, E., Ross, P., Nelson, J., Solving a Real-World Problem Using an
Evolving Heuristically Driven Schedule Builder, 1998, Evolutionary
Computation vol 6, Number 1, P61-80.

Martello, S., Toth, P., Knapsack Problems Algorithms and Computer
Implementations, 1990, John Wiley & Son Ltd, Chichester, England.

Moscato, P., 1989, On Evolution, Search, Optimisation, Genetic Algorithms
and Martial Arts: Towards Memetic Algorithms, report 826, Caltech
Concurrent Computation Program, California Institute of Technology,
Pasadena, California, USA.

Schaerf, A., Local Search Techniques for Large High School Timetabling
Problems, 1999, IEEE Transactions on Systems, Man and Cybernetics Part A:
systems and human, vol. 29, number 1, pp. 368-377.

Terashima-Marin,H., Ross, P., Valenzuela-Rendon, M., Evolution of
Constraint Satisfaction Strategies in Examination Timetabling, 1999,
Proceedings of the Genetic and Evolutionary Computation Conference
(GECCO99). pp. 635-642

Thompson, G., A Simulated Annealing Heuristic For Shift Scheduling using
Non-Continuously Available Employees, 1996, Computers and Operations
Research, vol. 23, pp. 275-288.

Wren, A. Scheduling, Timetabling and Rostering - a Special Relationship?
1995a, in: ICPTAT'95- Proceedings of the International Conference on the
Practice and Theory of Automate Timetabling, pp. 475-495 Napier University.

Wren, A., Wren, D.O., A Genetic Algorithm for Public Transport Driver
Scheduling, 1995b, Computers and Operations Research, vol. 22, pp. 101-110.

