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■ Abstract Adenosine is a modulator that has a pervasive and generally inhibitory
effect on neuronal activity. Tonic activation of adenosine receptors by adenosine that
is normally present in the extracellular space in brain tissue leads to inhibitory effects
that appear to be mediated by both adenosine A1 and A2A receptors. Relief from this
tonic inhibition by receptor antagonists such as caffeine accounts for the excitatory
actions of these agents. Characterization of the effects of adenosine receptor agonists
and antagonists has led to numerous hypotheses concerning the role of this nucleo-
side. Previous work has established a role for adenosine in a diverse array of neural
phenomena, which include regulation of sleep and the level of arousal, neuroprotec-
tion, regulation of seizure susceptibility, locomotor effects, analgesia, mediation of the
effects of ethanol, and chronic drug use.

INTRODUCTION

Purines and purine nucleotides are essential constituents of all living cells. ATP is
used as an energy source for nearly all cellular activity, whereas adenine is a com-
ponent of nucleic acids. Perhaps as a result of their ubiquitous nature, purines have
also evolved as important molecules for both intracellular and extracellular signal-
ing, roles that are distinct from their activity related to energy metabolism and the
genetic transmission of information. ATP itself interacts with two general classes
of extracellular receptors, the ionotropic P2X receptors and the metabotropic P2Y
receptors (for reviews, see Ralevic & Burnstock 1998, Harden et al 1995), and
cAMP is an intracellular messenger that plays a key role in regulating intracellular
activity. Adenosine is a third “purinergic messenger” that regulates many physio-
logical processes, particularly in excitable tissues such as heart and brain. Many
of the actions of adenosine either reduce the activity of excitable tissues (e.g. by
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slowing the heart rate) or increase the delivery of metabolic substrates (e.g. by
inducing vasodilation) and, thus, help to couple the rate of energy expenditure to
the energy supply. However, this type of unitary role for adenosine is not sufficient
to explain many of its actions, and it is clear that adenosine plays a variety of dif-
ferent roles as an intercellular messenger. This is particularly the case in the brain,
which expresses high concentrations of adenosine receptors, and where adenosine
has been shown to be involved in both normal and pathophysiological processes,
including regulation of sleep, arousal, neuroprotection, and epilepsy. The pharma-
cological actions of caffeine, which is the most widely used psychoactive drug in
the world, are largely attributable to its activity as an adenosine receptor antagonist
(Fredholm et al 1999). A challenging issue with respect to the functional role(s)
played by adenosine in the brain is to understand why antagonizing the effects of
endogenous adenosine produce what are generally considered to be improvements
in mental function and performance, whereas antagonism of most other neuro-
transmitter receptors produce either deficits or pathological effects. The primary
intent of this review is to explore the functional role of adenosine in the nervous
system and to discuss the mechanisms by which extracellular concentrations of
adenosine are regulated.

ADENOSINE RECEPTORS AND TRANSDUCTION
MECHANISMS

Adenosine Receptor Subtypes

Adenosine receptors have been intensively studied, and to date four different
adenosine receptors have been cloned in a variety of species, including man
(Table 1) (for a review, see Olah & Stiles 1995). Because exhaustive efforts to
identify other adenosine receptors have been unsuccessful, it appears unlikely that
additional receptors will be identified. All of the adenosine receptors are seven
transmembrane domain, G-protein–coupled receptors, and they are linked to a va-
riety of transduction mechanisms. The A1 receptor has the highest abundance in
the brain and is coupled to activation of K+ channels (Trussell & Jackson 1985) and
inhibition of Ca2+ channels (Macdonald et al 1986), both of which would inhibit
neuronal activity. The A2A receptor is expressed at high levels in only a few regions
of the brain and is primarily linked to activation of adenylyl cyclase. Antagonism
of both A1 and A2A receptors appears to be responsible for the stimulant effects of
adenosine receptor antagonists, at least in rodents (Marston et al 1998), although
stimulation of locomotor activity may be primarily an A2A effect (Ongini 1997,
El Yacoubi et al 2000). The A2B receptor, which also activates adenylyl cyclase,
is thought to be fairly ubiquitous in the brain, but it has been difficult to link this
receptor to specific physiological or behavioral responses because of the paucity
of A2B-specific agonists or antagonists (for a review, see Feoktistov & Biaggioni
1997). The A3 receptor is also somewhat poorly characterized, but it has been
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reported to uncouple A1 and metabotropic glutamate receptors via a protein kinase
C–dependent mechanism (Dunwiddie et al 1997a, Macek et al 1998), and thus, one
of its functions may be to modulate the activity of other receptors.

From a pharmacological standpoint, it has been extremely difficult to develop
tissue-specific drugs that interact with adenosine receptors, primarily because of
their ubiquitous nature. For example, although there are highly A1-selective ag-
onists and antagonists, the A1 receptor that slows the heart rate appears to be
identical to the A1 receptor that depresses neural activity. Although there may be
tissue differences in spare receptors (Shryock et al 1998), G-protein coupling, and
transduction mechanisms (Linden et al 1998), there are few differences that can
be exploited pharmacologically.

ACTIONS OF ADENOSINE AT THE CELLULAR LEVEL

Actions of Adenosine Mediated by Effects on K+

and Ca2+ Channels

In terms of cellular physiology, adenosine has a number of actions that would be
considered neuromodulatory but not neurotransmission per se. Adenosine does
not appear to be released in a classical Ca2+-dependent fashion, nor is it stored in
vesicles, and there is no evidence for synapses where the primary transmitter is
adenosine. However, A1 receptors are linked to inhibition of the release of virtually
every classical neurotransmitter (including glutamate, gamma-aminobutyric acid
(GABA), acetylcholine, norepinephrine, 5-hydroxytryptamine (5-HT), dopamine,
and other transmitters as well). The most prominent inhibitory actions are generally
on excitatory glutamatergic systems (e.g. Dunwiddie & Hoffer 1980, Kocsis et al
1984), where synaptic transmission can often be completely blocked by adeno-
sine. Inhibitory modulation of inhibitory (e.g. GABA) systems is less frequently
observed, so that the net effect of adenosine receptor activation in nearly all re-
gions of the brain is to reduce excitability. The mechanism of inhibitory modula-
tion of transmitter release has been extensively studied, and it appears to reflect a
G-protein–coupled inhibition of Ca2+ channels in nerve endings, although this
is still the subject of debate. Other mechanisms may contribute to this effect
as well, because adenosine also inhibits the spontaneous Ca2+-independent re-
lease of neurotransmitter (Scanziani et al 1992), but under normal physiological
conditions the inhibition of Ca2+ influx appears to be the primary inhibitory mech-
anism (Fredholm & Dunwiddie 1988, Wu & Saggau 1997). Adenosine receptors
may also enhance neurotransmitter release (Cunha et al 1994), but these actions
are less common than the inhibition of neurotransmitter release. Another major
action of A1 receptors is a hyperpolarization of the resting membrane potential me-
diated via a G-protein–dependent activation of inwardly rectifying K+ channels
(GIRKs). GIRKs are activated by many other receptors as well (e.g. in hippocam-
pal pyramidal neurons by A1, GABAB, 5HT1A, and somatostatin receptors), and
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the effects of these agents typically occlude, which suggests that they act on a
common population of G-proteins and/or K+ channels.

Interactions Between Adenosine Receptors
and Other Receptor Systems

One interesting aspect of adenosine receptors pertains to interactions between
adenosine receptors and other types of G-protein–coupled receptors. Synergistic
interactions have been reported between low concentrations of A1 and GABAB
agonists on GIRKs (Sodickson & Bean 1998), which suggests that the tonic, low
level of occupation of A1receptors might regulate the strength of GABAB synapses.
There is also extensive evidence from studies primarily in the striatum for direct
interactions between A2A receptors and D1 receptors, and between A1 and D2
receptors (for a review, see Fuxe et al 1998).

REGULATION OF EXTRACELLULAR ADENOSINE

In many systems, basal extracellular adenosine concentrations are sufficient to
tonically activate a substantial fraction of high-affinity (A1 and A2A) adenosine re-
ceptors. Estimates of this basal concentration span a wide range, but most estimates
using pharmacological approaches (Dunwiddie & Diao 1994) or microdialysis of
the brain (Ballarin et al 1991) are in the range of 25–250 nM. Given the affinity
of adenosine for its receptors (Table 1), this would suggest that interactions with
A1 and A2A receptors are primarily responsible for the basal purinergic “tone” that
is seen in most systems. The stimulatory effects of such drugs as caffeine stem
from their ability to antagonize the actions of endogenous adenosine and, hence,
reverse this tonic inhibition. Little is known about this basal tone, which in the
brain may differ markedly from region to region (Delaney & Geiger 1996). Basal
concentrations of adenosine probably reflect an equilibrium between the multiple
mechanisms that increase extracellular adenosine and its uptake and metabolism.
The recent observation that A1 receptors appear to play a role in the regulation of
adenosine concentrations in neuronal cultures (Andresen et al 1999) suggests that
there may be some interesting unknown aspects to the regulation of extracellular
adenosine concentrations.

Extracellular Conversion of Adenine Nucleotides
as a Source for Adenosine

There are two primary mechanisms by which adenosine can reach the extracellular
space of the brain, and these are via dephosphorylation of adenine nucleotides by
ecto-nucleotidases and release of adenosine from cells via transporters. The first
of these depends on ecto-nucleotidases, ecto-phosphodiesterases, and apyrases
that can dephosphorylate virtually any adenine nucleotide to 5′-AMP, which is
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subsequently dephosphorylated by 5′-nucleotidase to adenosine. There are a wide
variety of such ectonucleotidases, which have been the subject of a recent review
(Zimmermann & Braun 1999). These ecto-enzymes are highly expressed in the
brain, have rather broad specificity, and are generally rapid in their action. Recent
studies have suggested that most nucleotides (with the exception of cAMP) are
converted to adenosine in less than a second (Dunwiddie et al 1997b). Even
“stable” ATP analogs can be substrates for these nucleotidases (Cunha et al 1998),
and there is evidence that the nucleotidases may be present in close physical
proximity to presynaptic inhibitory A1 receptors.

There are multiple mechanisms by which adenine nucleotides are known to be
released into the extracellular space. ATP is colocalized with such neurotrans-
mitters as acetylcholine, dopamine, 5-HT, and norepinephrine, and is coreleased
on electrical stimulation (e.g. White 1977, Fredholm et al 1982), where it is sub-
sequently hydrolyzed to adenosine. In many systems, cAMP is released into the
extracellular space by a probenecid-sensitive transporter (Rosenberg & Li 1995).
The amounts of cAMP released in this fashion are sufficient to produce large in-
creases in extracellular adenosine. This can be observed with forskolin stimulation
of adenylyl cyclase (Dunwiddie et al 1992, Brundege et al 1997) and following
receptor-mediated activation of adenylyl cyclase (Gereau & Conn 1994).

There may be yet other mechanisms for nucleotide release in the brain as well.
Proteins that are members of the ATP-binding cassette family of proteins, such
as P-glycoprotein (Abraham et al 1993) and the cystic fibrosis transmembrane
conductance regulator (Prat et al 1996), appear to be able to function as ATP-
conducting ion channels, although this has not been demonstrated in the brain.
ATP can also be released by activation of stretch-activated receptors (Hazama
et al 1999).

Release of Adenosine Via Facilitated Diffusion Transporters

Another mechanism by which adenosine levels in the extracellular space are reg-
ulated is by facilitated diffusion nucleoside transporters. There are two known
forms of this transporter, which have been distinguished by their sensitivity to
the transport inhibitor nitrobenzylthioinosine (for a review, see Cass et al 1998).
These transporters are passive, in that they do not depend on ATP or ionic gradients
to transport adenosine, and they equilibrate the concentration of adenosine across
cellular membranes. Because of the relatively high activity of intracellular adeno-
sine kinase, adenosine concentrations inside cells are normally low, so the net flux
through these transporters is inwardly directed. However, under conditions where
intracellular adenosine concentrations rise, these transporters can release adeno-
sine. There are also active transport mechanisms for adenosine, which depend on
the Na+ gradient to provide the energy for transport. Some of these transporters
have been cloned (Cass et al 1998), but their relative importance in the regulation
of extracellular adenosine concentrations is unclear, largely because of a lack of
selective pharmacological tools for these transporters. It is also possible that these
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transporters could be driven in reverse when intracellular adenosine is high and
the Na+ gradient is reduced, such as during hypoxia, ischemia, and seizures, and
thus could become mechanisms for adenosine release as well.

Regulation of Intracellular Adenosine

Because of the presence of equilibrative transporters, regulation of intracellular
adenosine concentrations is critical to the regulation of extracellular adenosine,
and this control is exerted in two ways. First, if intracellular concentrations of
adenosine rise, the ability of these transporters to take up adenosine formed extra-
cellularly from nucleotides is lost, as the adenosine gradient is reduced. Second,
if intracellular adenosine concentrations rise even further, direct efflux of adeno-
sine will occur when the intracellular concentration of adenosine exceeds the
extracellular.

Although the basic metabolic pathways for intracellular nucleotides in the brain
are known, the precise regulation of adenosine kinase and cytosolic 5′-nucleotidase
is not well understood (Figure 1). In other tissues, such as heart (Kroll et al 1993),
and in hepatocytes (Bontemps et al 1983), there is a high rate of flux in a futile
cycle involving these two enzymes, and partly as a consequence, inhibition of
adenosine kinase in the heart (and in the brain) leads to very large increases in
adenosine.

Physiological Stimuli that Release Adenosine in the Brain

Many physiological manipulations can increase extracellular adenosine, often by
cellular mechanisms that are not well understood (Table 2). It would appear likely
that the regulation of the activity of key enzymes in intracellular adenine nu-
cleotide/adenosine metabolism (cytosolic 5′ nucleotidase-I and adenosine kinase,
but also possibly S-adenosylhomocysteine hydrolase and adenosine deaminase) is
central to the mechanisms by which diverse stimuli elevate extracellular adenosine
in the brain. The diversion of adenine nucleotides into the AMP-adenosine cycle
(e.g. by the breakdown of ATP to ADP and AMP during ischemia) would also be
expected to contribute to increases in adenosine by mass action, independently of
any regulation of enzyme activity.

Although there is wide diversity in the stimuli that will release adenosine,
there seem to be some common elements. Manipulations that cause the energy
requirements of brain to outstrip its ability to synthesize ATP profoundly increase
adenosine release. This can occur either through a large increase in energy re-
quirements (e.g. during seizures) or because of a loss of metabolic substrates
(e.g. ischemia). Under these conditions, ATP levels are reduced, and the levels of
other adenine nucleotides and adenosine are increased. Because intracellular ATP
concentrations are high (typically estimated to be in the range of 3 mM), even a
1% conversion of ATP to adenosine would result in an approximate 100-fold in-
crease in intracellular adenosine and a corresponding increase in the extracellular
concentration. However, there is also evidence that adenosine can be released



P1: FXS

December 7, 2000 12:24 Annual Reviews AR121-02

38 DUNWIDDIE ¥ MASINO

Figure 1 The primary intracellular pathways for the formation of adenosine. Adenosine is
formed from 5′-AMP by the cytosolic 5′-nucleotidase and is converted back to 5′-AMP by
adenosine kinase (which requires ATP as a phosphate donor). Under resting conditions, there
is often a substantial flux through this futile cycle. Adenosine may also be formed by the action
of S-adenosylhomocysteine (SAH) hydrolase.

under conditions that should preserve ATP levels (Doolette 1997). Similarly,
inhibition of adenosine kinase probably has little effect on ATP levels, but it pro-
foundly increases adenosine release (Pak et al 1994, Lloyd & Fredholm 1995,
Brundege & Dunwiddie 1998). In the heart, hypoxia produces a profound inhibi-
tion of adenosine kinase activity (to as low as 6% of normal activity) (Decking et al
1997), whereas 5′-nucleotidase activity does not appear to be greatly affected. This
generates large amounts of adenosine, and a similar mechanism might underlie
adenosine release in the brain as well.
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TABLE 2 Experimental manipulations that stimulate adenosine release in the braina

Stimulusb References

Physiological
Hypoxia, anoxia Fowler 1989,1993a,b; Gribkoff et al 1990;

Lloyd et al 1993; Zetterstr¨om et al 1982;
Zhu & Krnjevic 1994

Ischemia Fowler 1993a,b; Pedata et al 1993;
Phillis et al 1987

Hypoglycemia Fowler 1993a,b
Seizures During & Spencer 1993, Lewin & Bleck 1981,

Schrader et al 1980, Winn et al 1980
Increases in temperature Gabriel et al 1998, Masino & Dunwiddie 1999
Free radicals Delaney et al 1998, Masino et al 1999
Electrical stimulation Lloyd et al 1993, Pull & McIlwain 1972,

Schrader et al 1980, Yawo & Chuhma 1993
K+ depolarization Hoehn & White 1990
Synaptic stimulation Grover & Teyler 1993, Manzoni et al 1994,

Mitchell et al 1993

Pharmacological
Adenosine kinase inhibitors Brundege & Dunwiddie 1998, Doolette 1997,

Lloyd & Fredholm 1995, Pak et al 1994
Lipopolysaccharides, interleukin-1β Luk et al 1999, Wang & White 1999
Intracellular acidification SA Masino, unpublished data
Metabolic inhibitors

Cyanide Doolette 1997
Dinitrophenol Doolette 1997

Na+ replacement Fowler 1995
Opiate receptor activation Stone et al 1989, Sweeney et al 1991
AMPA receptor activation

Increase Craig & White 1993
No change Delaney et al 1998

Kainate receptor activation Craig & White 1993, Delaney et al 1998
NMDA receptor activation Chen et al 1992, Craig & White 1993,

Delaney et al 1998, Manzoni et al 1994
5-HT receptor activation Sweeney et al 1990
Forskolin (via cAMP) Brundege & Dunwiddie 1998,

Dunwiddie et al 1992

aThe preceding list includes not only agents that are thought to directly lead to the efflux of adenosine, but also
ones that may release an adenine nucleotide that is subsequently converted to adenosine [e.g. N-methyl-D-aspartate
(NMDA) receptor activation). In addition, some of these stimuli may act indirectly via other mechanisms (e.g. K+

stimulated release is at least partially the result of glutamate release) (Hoehn & White 1990).
bAMPA, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid; 5-HT, 5-hydroxytryptamine.
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There are yet other kinds of stimuli [e.g. N-methyl-D-aspartate (NMDA) re-
ceptor activation], where the cellular mechanism underlying the release is largely
unknown, and where increased ATP breakdown seems unlikely to account for re-
lease. Biochemical experiments have suggested that NMDA receptor activation
releases an unknown nucleotide, which is then converted to adenosine (Craig &
White 1993), whereas electrophysiological experiments have suggested that ac-
tivation of NMDA receptors releases adenosine per se (Manzoni et al 1994). It
seems unlikely that a common mechanism could account for release under all of
these conditions, although Doolette (1997) has suggested that intracellular acidi-
fication, which can be induced by nearly all the stimuli listed in Table 2, might be
a common factor. Further experiments will be required to evaluate the merit of
this hypothesis.

Removal of Adenosine from the Extracellular Space

The mechanisms that are responsible for clearing adenosine from the extracellular
space are not completely understood, but the transport of adenosine into cells,
either by facilitated diffusion or by active transport, appears to be the primary
mechanism. Inhibition of facilitated diffusion transport leads to a slowly develop-
ing but substantial increase in extracellular adenosine (Dunwiddie & Diao 1994,
Zhu & Krnjevic 1994). These increases would probably occur more rapidly except
for the fact that inhibitors of transport inhibit both efflux as well as uptake. Thus,
the adenosine that builds up extracellularly must come from other sources, such
as metabolism of nucleotides by ecto-nucleotidases.

An alternative pathway for the inactivation of extracellular adenosine is its
metabolic transformation to inosine by adenosine deaminase. Under either basal
conditions or during stimulated release of adenosine from slices of brain tis-
sue, adenosine usually comprises<10% of the total purine efflux, whereas the
remainder appears as the adenosine metabolites inosine, hypoxanthine, or xanthine
(Pedata et al 1990, Lloyd et al 1993). Although this might imply that adenosine
deaminase is relatively important in clearing the extracellular space of adenosine,
this is not the case. Adenosine deaminase inhibitors have little or no influence
on the concentration of extracellular adenosine (Pak et al 1994, Zhu & Krnjevic
1994; TV Dunwiddie, unpublished data), whereas uptake inhibitors substantially
increase adenosine concentrations (Dunwiddie & Diao 1994). The resolution of
these seemingly paradoxical observations is that the majority of adenosine in
the extracellular space is cleared via reuptake; however, any metabolites that are
formed are much more likely than adenosine to diffuse out of the slice without being
recaptured and, hence, make a disproportionate contribution to purine efflux. Nev-
ertheless, during hypoxia and ischemia, adenosine deaminase assumes a prominent
role in regulating extracellular adenosine concentrations (Lloyd & Fredholm 1995,
Barankiewicz et al 1997, Dupere et al 1999). Under these conditions, the adeno-
sine transporters probably are largely inactive, so adenosine deaminase becomes
important in the absence of any other mechanisms for adenosine removal.
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Abnormalities in Adenosine Regulation

Little is known about the possibility that levels of extracellular adenosine in the
brain may differ between individuals, and possibly in certain disease states. How-
ever, it has been known for some time that in Down syndrome, purine levels
are generally elevated by approximately 50% (Pant et al 1968). Most notable,
AMP and ADP levels are significantly elevated, whereas ATP is not (Stocchi et al
1985). A number of the known abnormalities in Down syndrome, such as daytime
sedation/sleepiness, reduced pain sensitivity (Martinez-Cue et al 1999), learning
disorders (Siarey et al 1999), and central sleep apneas (Ferri et al 1997), are con-
sistent with increased adenosine concentrations, because in experimental models
adenosine can produce all these effects. One prediction based on these observa-
tions would be that there might be an elevated sensitivity to adenosine receptor
antagonists in Down syndrome, but this has apparently never been tested.

PHYSIOLOGICAL ROLES OF ADENOSINE

Role of Adenosine in Normal Physiology

Adenosine appears to subserve a number of diverse roles in normal physiology,
which include promoting and/or maintaining sleep, regulating the general state of
arousal as well as local neuronal excitability, and coupling cerebral blood flow
to energy demand. Selective adenosine receptor antagonists have been used fre-
quently in the past to provide evidence concerning these proposed roles for adeno-
sine. The more recent development of knockout mice for the A2A receptor (Ledent
et al 1997, Chen et al 1999), A3 receptor (Zhao et al 2000), and A1 receptor
(BB Fredholm, personal communication) have provided additional tools with
which to characterize the functions of these receptors.

Sleep and Regulation of Arousal The idea that adenosine plays a role in sleep is
a natural outgrowth of the observation that adenosine receptor antagonists such as
caffeine promote wakefulness and disrupt normal sleep. Evidence to support this
hypothesis generally has fallen into two categories. First, direct measurement of
endogenous adenosine in the basal forebrain of cats using microdialysis has shown
that adenosine levels progressively increase during prolonged wakefulness and de-
crease during subsequent recovery sleep (Porkka-Heiskanen et al 1997, Porkka-
Heiskanen 1999). A similar relationship between behavioral state and endogenous
adenosine appears to exist in the hippocampus but not in the thalamus (Huston et al
1996). Second, pharmacological manipulations involving adenosine receptors have
shown that agonists generally promote sleep (Portas et al 1997), whereas antago-
nists reduce sleep (Lin et al 1997). Some of the most compelling evidence along
these lines comes from studies showing that adenosine inhibits neuronal activity in
cholinergic nuclei that are thought to regulate arousal (Rainnie et al 1994), and that
adenosine dialysis into these regions in vivo promotes sleep and reduces the level
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of arousal as measured by EEG activity (Portas et al 1997). Parallel noncholinergic
systems that contribute to sleep regulation may exist as well; for example, infusion
of adenosine or a selective A1 agonist into the preoptic area has been shown to re-
duce sleep latency, increase total sleep time, and increase slow-wave sleep (Ticho
& Radulovacki 1991, Mendelson 2000). Although many studies have implicated
A1 receptors in both sleep and decreased arousal (Dunwiddie & Worth 1982, Fulga
& Stone 1998), there is also evidence that A2A receptors may be involved, partic-
ularly in the rostral basal forebrain, where the A2A agonist CGS21680 promotes
both REM (rapid eye movement) and non-REM sleep (Satoh et al 1999).

Adenosine as a Retrograde Synaptic MessengerAlthough adenosine does not
appear to be a classical neurotransmitter, there is some evidence that adenosine
could serve as a retrograde synaptic messenger. If an individual neuron is loaded
with adenosine via patch pipette, adenosine efflux from that cell is sufficient to
significantly inhibit its synaptic inputs, whereas synaptic communication to other
nearby cells is unaffected (Brundege & Dunwiddie 1996). The precise subcellular
localization of these transporters would be important with respect to this kind of
speculative mechanism. However, previous localization studies regarding these
transporters are not definitive, or they have lacked the resolution necessary to
evaluate this possibility. However, now that these transporters have been cloned,
the distribution of transporters should be characterized with more precision and
resolution.

Adenosine as a Mechanism for Coupling Energy Demand to Cerebral Blood
Flow Adenosine has long been recognized to be involved in the autoregulation
of cerebral blood flow (Berne et al 1974, Winn et al 1981, Wahl & Schilling 1993),
where it modulates vascular resistance via A2A receptors (Phillis 1989, Coney &
Marshall 1998). Adenosine applied externally to cerebral blood vessels induces
vasodilation (Hylland et al 1994), and there is evidence that endogenous adenosine
is a tonic regulator of vascular smooth muscle tone. Thus, application of adenosine
antagonists causes vasoconstriction and reverses adenosine-mediated vasodilation
(Ko et al 1990, Dirnagl et al 1994, Hylland et al 1994). Accordingly, any stimulus
that promotes release of additional adenosine from neurons or glia will induce
vasodilation.

It has been suggested that this relationship between adenosine and cerebral
blood flow is a mechanism that couples increased cell energy expenditure (seen as
increased ATP utilization and demand) with increased oxygen and glucose delivery
via the cerebral vasculature. The increased adenosine released during such condi-
tions as ischemia would serve to increase cerebral blood flow and could ameliorate
the effects of ischemia. However, nonpathological changes in energy requirements
have a similar effect; for example, increased activity in somatosensory cortex due
to peripheral sensory stimulation is sufficient to induce vasodilation mediated via
adenosine, indicating that adenosine is a component of the autoregulatory mech-
anisms that act on the cerebral vasculature (Ko et al 1990, Dirnagl et al 1994).
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Role of Adenosine in Pathological Conditions

Extracellular brain concentrations of adenosine are markedly elevated by a diverse
array of pathological stimuli (Table 2). Many of the effects of adenosine that are
observed to a minor extent under normal conditions (e.g. presynaptic inhibition of
glutamate release) are greatly augmented during pathological events and are neu-
roprotective in that context. In addition to having acute protective effects, transient
activation of adenosine receptors offers protection against damage induced by a
subsequent hypoxic or ischemic event. This phenomenon, which is referred to as
preconditioning, occurs not only in brain but also in other excitable tissues, such
as heart (Miura & Tsuchida 1999).

Neuroprotective Effects of Adenosine in Hypoxia and IschemiaAcute pro-
tective effectsEndogenous adenosine released by hypoxia (Gribkoff & Bauman
1992, Fowler 1993a,b), ischemia (Lloyd et al 1993, Latini et al 1999), electrical
activity (Arvin et al 1989, Lloyd et al 1993), and hypo- or aglycemia (Fowler
1993b, Hsu et al 1994, Calabresi et al 1997) reduces the subsequent damage to
neuronal tissue. This neuroprotection offered by adenosine is also effective against
other kinds of damage that are not as directly related to energy metabolism, such
as mechanical cell injury (Mitchell et al 1995) and methamphetamine-induced
neurotoxicity (Delle Donne & Sonsalla 1994). Conversely, applying adenosine
receptor antagonists in conjunction with any of these conditions exacerbates the
consequent damage (Arvin et al 1989, Hsu et al 1994, Mitchell et al 1995).

The neuroprotective actions of adenosine are mediated primarily via A1receptor
activation, and at least three cellular mechanisms may be involved. Adenosine
strongly inhibits transmitter release (and glutamate in particular), hyperpolarizes
neurons, and directly inhibits certain kinds of Ca2+ channels. All these actions
could reduce excitotoxicity by limiting Ca2+ entry, which is thought to be a key
step in excitotoxic damage, and by reducing metabolic demand, which would
help to preserve ATP stores that are essential for pumping Ca2+ out of the cell.
Experiments with cardiac tissue suggest that the number of A1 receptors may be a
limiting factor in acute protection because overexpression of A1 receptors provides
additional protection against ischemia-reperfusion injury (Matherne et al 1997,
Headrick et al 1998). A similar protective effect may be possible in neuronal tissue
because an allosteric enhancer of A1 receptor binding has been shown to offer
neuroprotection in neonates (Halle et al 1997). The utility of an alternative strategy,
i.e. enhancing the local release of adenosine (e.g. by inhibiting adenosine kinase),
is not clear, although positive effects have been reported (Jiang et al 1997). The
concentrations of adenosine in the extracellular space during ischemia probably
saturate A1 receptors, so the primary effect of enhancing adenosine release would
be expected to be in marginally affected regions, where adenosine concentrations
are not as high.

Alternatively, some of the protective effects could be mediated by other recep-
tors (e.g. the A3 receptor), which has a substantially lower affinity for adenosine
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and thus, would require higher concentrations for maximal activation. The A2A
receptor, on the other hand, may actually contribute to ischemic tissue damage,
because mice lacking A2A receptors show reduced brain damage following focal
ischemia (Chen et al 1999). The neuroprotective role of adenosine has been re-
viewed recently (Deckert & Gleiter 1994, Schubert et al 1997, Fredholm 1997)
and continues to be an area of rapid development.

PreconditioningA brief episode of mild hypoxia or ischemia that produces little
or no damage has been shown to afford protection against a subsequent challenge of
greater severity presented hours or even days later. This effect, which is observed
in both cardiac and neuronal tissues, has been termed preconditioning and seems
to involve A3 as well as A1 receptors (Stambaugh et al 1997, Liang & Jacobson
1998). In the brain, adenosine release, A1 receptor activation, and the opening
of ATP-dependent K+ channels appear to play a central role in preconditioning
(Heurteaux et al 1995). Recently, it has been observed that cross-tolerance exists
between potentially damaging stimuli, and many of these interactions involve
adenosine receptors. For example, a sublethal kainate seizure will protect against
subsequent ischemia, and vice versa (Plamondon et al 1999). Chemical inhibition
of oxidative phosphorylation provides protection against hypoxia within an hour
and lasts for 24 h (Riepe et al 1997), and it may protect against other insults as
well. Much clinical interest is focused on determining how to maximize acute
neuroprotection, and how to take advantage of the preconditioning phenomenon
in both the brain and the heart to improve patient outcome (Liang & Jacobson
1999, Schwarz et al 1999).

Epilepsy Consistent with its role as an inhibitory neuromodulator, adenosine
exhibits anticonvulsant effects in experimental models of epilepsy (for a recent
review, see Dunwiddie 1999b). Exogenously administered adenosine receptor ag-
onists reduce seizure activity (Dunwiddie & Worth 1982, Barraco et al 1984,
Zhang et al 1990), whereas adenosine receptor antagonists have proconvulsant
effects (Dunwiddie 1980, Ault et al 1987), which in hippocampus are mediated by
A1 receptors (Alzheimer et al 1989). Because endogenous levels of adenosine rise
markedly during seizure activity (Table 2), it has been proposed that adenosine
functions as an “endogenous anticonvulsant” (Dragunow 1988). However, neither
the loss of A1 receptors in knockout mice (BB Fredholm, personal communication)
nor the antagonism of adenosine receptors by such antagonists as caffeine lead di-
rectly to seizures. Very high concentrations of caffeine can induce convulsions,
but this occurs in concentrations where actions other than adenosine receptor an-
tagonism are probably involved. The anticonvulsant effects of adenosine appear
to be mediated primarily by A1 receptors (Murray et al 1992, Zhang et al 1994),
although there may be A2A involvement in some regions of the brain. Audiogenic
seizures in DBA/2 mice are inhibited by both A1 and A2A receptor agonists, and
selective antagonists for each subtype promote seizures (De Sarro et al 1999).

Beyond the acute anticonvulsant effects of adenosine acting at A1 receptors, a
chronic reduction of A1 receptors has been found in epileptic tissue, in both humans
(Glass et al 1996) and rats (Ochiishi et al 1999). A loss of the tonic inhibitory effects
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of adenosine may contribute to the hyperexcitability and recurrent seizures that
characterize epilepsy.

Despite its profound anticonvulsant effects, adenosine agonists have not proved
clinically useful in the treatment of epilepsy because of the peripheral effects of
adenosine, which include decreased heart rate, blood pressure, and body temper-
ature (Dunwiddie 1999b). Effective strategies that enhance the protective effects
of adenosine near a seizure focus may require a novel approach, such as a method
for local release of adenosine. Using this type of technique, Boison et al (1999)
have produced a profound reduction in seizure activity in kindled animals by im-
planting an adenosine-releasing polymer into the cerebral ventricle. Alternatively,
a pharmacological strategy that potentiates the effect of endogenous adenosine,
such as inhibiting adenosine kinase (Kowaluk & Jarvis 2000) may have clinical
potential.

Adenosine and the Actions of Drugs of Abuse

As discussed above, adenosine is centrally involved in the actions of caffeine,
which is a relatively nonselective adenosine receptor antagonist, and this phar-
macological action is largely responsible for the effects of caffeine on the central
nervous system (Fredholm et al 1999). However, there is also evidence that the
effects of drugs of abuse may be linked in some manner to adenosine as well.

Ethanol Among the various drugs of abuse, ethanol is perhaps most closely
linked mechanistically to adenosine. Three general mechanisms have been pro-
posed to account for this interaction, involving changes in adenosine forma-
tion, adenosine uptake, and effects on adenosine receptor coupling. One potential
interaction relates to the fact that substantial concentrations (1–2 mM) of acetate
are formed as a result of the metabolism of ethanol (Carmichael et al 1991),
which is then incorporated into acetyl-coenzyme A with the concomitant forma-
tion of AMP. The increase in AMP could then lead directly to increased adeno-
sine formation (Figure 1). Ethanol has also been reported to inhibit facilitated
diffusion transporters (Diamond et al 1991, Krauss et al 1993), which would
increase extracellular brain concentrations of adenosine by inhibiting uptake.
Finally, ethanol can facilitate the receptor-mediated activation of adenylyl
cyclase by various hormones and neurotransmitters (Rabin & Molinoff 1981,
Hoffman & Tabakoff 1990). Because all the known adenosine receptors can in-
teract with adenylyl cyclase, this provides a third mechanism by which ethanol
could modulate effects mediated via adenosine receptors. The general subject of
ethanol-adenosine interactions has been discussed extensively in a recent review
(Dunwiddie 1999a).

Opiates A number of studies have suggested that opioids in particular, and pos-
sibly psychomotor stimulants such as cocaine as well, can interact with adenosine
systems. As far as the opioids are concerned, agonists such as morphine have
been shown to release adenosine in the brain, spinal cord, and peripheral nervous
system (Fredholm & Vernet 1978, Stone 1981, Cahill et al 1996), and this release
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occurs via a facilitated diffusion transporter (Sweeney et al 1993). The early ob-
servation that opioid analgesia can be at least partially antagonized by adenosine
receptor antagonists (Ho et al 1973) has been confirmed in more recent studies
as well (for a review, see Sawynok et al 1989) and has led to the hypothesis that
some opiate actions are mediated indirectly via release of adenosine. The well-
established analgesic properties of adenosine receptor agonists (Herrick-Davis et al
1989, Sosnowski et al 1989, Sawynok 1998) provide further support for this hy-
pothesis. In behavioral studies, adenosine receptor antagonists elicit a response
termed the quasi-morphine withdrawal syndrome (Francis et al 1975), which in
many respects is similar to the response to naloxone in opiate-tolerant animals.
Thus, there are strong parallels between the pharmacological effects of opiate and
adenosine agonists, and also between opiate and adenosine antagonists. Finally,
an interesting purinergic role has also emerged in terms of the effects of chronic
opioids as well as cocaine; in animals withdrawn from chronic treatment with
either morphine or cocaine, there are persistent increases in extracellular adeno-
sine in the ventral tegmental region, a brain region intimately involved in the
rewarding effects of these drugs (Bonci & Williams 1996, Shoji et al 1999,
Fiorillo & Williams 2000). The source of this adenosine appears to be from the
release of cAMP and subsequent extracellular catabolism to adenosine.

SUMMARY AND CONCLUSIONS

Adenosine is involved in a diverse array of functions in the central nervous system.
Although in a general sense many of its effects are inhibitory, consistent with
its proposed roles as an endogenous anticonvulsant, neuroprotectant, and sleep-
inducing factor, this differs depending on the brain system and the complement
of adenosine receptors that are present. There is little evidence that adenosine is
a neurotransmitter; rather, it appears to be a neuromodulator that is released in
some unconventional ways to regulate and modulate neuronal activity. A current
challenge in this field is to better define the mechanisms underlying the release
of adenosine evoked by pathological and nonpathological stimuli. These kinds of
studies should help to clarify the role of adenosine as a signaling agent in the brain
and to relate this function to its other actions such as neuroprotection.
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