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Abstract— In scenarios that require a close collaboration and
knowledge transfer between inexperienced users and robots,
the “learning by interacting” paradigm goes hand in hand
with appropriate representations and learning methods. In this
paper we discuss a mixed initiative strategy for robotic learning
by interacting with a user in a joint map acquisition process.
We propose the integration of an environment representation
approach into our interactive learning framework. The envi-
ronment representation and mapping system supports both
user driven and data driven strategies for the acquisition of
spatial information, so that a mixed initiative strategy for the
learning process is realised. We evaluate our system with test
runs according to the scenario of a guided tour, extending the
area of operation from structured laboratory environment to
less predictable domestic settings.

I. INTRODUCTION

Traditionally, the ability of learning has been investigated
in terms of information storage and representational formats.
However, based on recent trends in psychology and different
cognitive disciplines a new view on robotic learning is being
established [1] termed “Learning by Interacting”. According
to this view interaction is a necessary prerequisite not only
for infants in order to learn but also for robots. For robotics
this means that the interaction context has to be taken into
account much more seriously than it has been up to now. In
order to head towards life-long learning and adaptation abili-
ties of today’s and future’s cognitive robots that interact with

Fig. 1. The robot is taking the initiative and attempting to verify its
(incorrect) hypothesis which induces the human to correct it.

humans, learning must not be separate, but part of the regular
operation processes of a robot. In particular in scenarios that
require a close collaboration and knowledge transfer between
inexperienced users and robots, the “learning by interacting”
paradigm goes hand in hand with appropriate representations
and learning methods.

In the context of mobile domestic robots a central learning
challenge is the acquisition of appropriate spatial models
that bridge semantics of spaces and geometrical positions
and metrics. In previous work the framework for Human
Augmented Mapping (HAM) as a concept for the integration
of robotic mapping and human environment representation
was introduced [2]. Also the integration of a respective
initial mapping subsystem into an interactive framework was
discussed [3]. This paper presents the consequent exten-
sion of that work exploiting advanced interaction strategies
leading to a novel spatial learning framework. The idea of
“interactive mapping” or “semantic mapping” has in fact
been discussed in a couple of works over the last few years.
Earlier approaches to supervised learning of environment
representations were reported by Althaus and Christensen
[4] and Diosi et al. [5], in both cases however the user had
to have the initiative and be very specific, particularly in the
latter approach the complete environment had to be presented
in one “tour”. An approach similar to our integrated system
for interactive mapping is reported by Zender et al. [6]. Their
system however focuses more on the conceptual/semantic
level of the mapping process as far as the interaction and
higher level functionalities are concerned. Our proposed
mapping and learning subsystem is capable of handling
both the user initiated specification of spatial entities and
detecting significant changes in the spatial properties of
the environment to generate a robot initiated clarification
dialog as sketched in figure 1 . Such a strategy for robot
initiative was proposed also in other works [7], but requires
more explicitly modeled knowledge, e.g., in terms of defined
ontologies and a model of doors in order to detect transitions
in pre-acquired maps. In contrast, we face up to the systemic
challenge of closely interlinking a HAM-enabled learning
approach with dialog management in order to realize a
comprehensive social learning framework enabling mixed
initiative and continuous learning in an interactive manner
from scratch. The remainder of the paper is organised as
follows. In section II we discuss the idea of Learning by



Fig. 2. Hardware composition of
BIRON: It is equipped with sev-
eral sensors that allow perception
of the current situation as a basis
for interaction. Feedback is pro-
vided by speech synthesis and us-
ing a virtual character displayed on
the touchscreen. The robot’s on-
board computational equipment in
combination with a wireless LAN
notebook is sufficient to achieve a
system running responsive enough
for fluent HRI.

Interacting and explain the requirements and scenario we
assume for a respective system. We present the mapping and
dialog (sub)systems that are central for our work in section
III and IV. Our integration strategy for the complete system
is presented in section V and we discuss the results we could
achieve with our system in section VI. Conclusions and ideas
for future works are presented in section VII.

II. LEARNING BY INTERACTING

In contrast to general machine learning, learning by inter-
action is characterized by the close interrelation of learning
and application phases and a mixed initiative kind of inter-
action. In the context of Human Augmented Mapping the
central goal of learning is to successively acquire a spatial
representation that is complete and consistent in order to
enable the robot to provide services based on this knowledge.
Strategies that are exploited to achieve completeness and
correctness in interactive learning can be summarized as
explicit tutoring, clarification turns, and correction turns.
These strategies and the way they can be implemented are
subject to discussion after the general learing scenario is
presented.

A. Scenario and Platform

The scenario, the mapping challenge is embedded in is
the so-called Home Tour. The Home-Tour-Scenario for our
robot envisions a newly purchased robot being introduced to
its new working area – usually an apartment – by the human
user. Due to the variety of applications in home environments
only a smaller set of pre-programmed knowledge is useful.
The main knowledge such as spatial layout or presence of
objects in the new environment has to be obtained online
during interaction with a human user. Thus, the Home-Tour-
Scenario especially incorporates the requirement of a real-
world environment with the additional constraint that the
user has only minimal knowledge about the robot. With this
minimal knowledge, e.g., taken from a single sheet of paper
like a quick start guide for todays printers, the user must be
able to interact with the robot. In our scenario this interaction
consists of introducing the different rooms and objects of the
apartment to the robot. This introduction is crucial for any
further task like remembering the last position of the glasses

or fetching the user’s favorite cup. The platform to study
this scenario is the mobile robot BIRON (Bielefeld Robot
Companion) as illustrated in Fig. 2.

B. Faciliating Learning By Mixed Initiative Interaction

In the process of learning it is in particular important to
ensure that the representation of the acquired knowledge
is correct, consistent, and as complete as possible. As the
scenario targets at inexperienced users that have no or only
very limited knowledge about the learning system they will
likely not provide the exact appropriate amount and type
of information. Rather the model they intuitively teach by
their own initiative is usually sparse and possibly erroneous.
In a pilot study with a comparably small number of subjects
already various strategies for the presentation of the same en-
vironment to a mobile robot could be observed [8]. Hence, it
is a core principle of learning by interacting to continuously
consider learning as an active, structuring process that allows
to continuously monitor the already acquired knowledge to
revise and extend it. There are several issues crucial for
providing structure for interactive learning. In [9], we address
the question how to constrain the situation by structuring
the interaction in order to enable the robot to identify what
needs to be learned. By contrast, in the work at hand we
focus on the question of how to equip the robot with abilities
that enable active learning and thus the improvement of the
learned model within interaction. Having theses abilities, the
robot can take initiative and provoke situations that let it
acquire new information which is more effective than simply
waiting until the human eventually presents such situation to
him. Therefore, we consider mixed initiative interaction style
as key requirement for interactive learning.

As for the learning of a spatial representation, how can
we exploit mixed initiative dialog in order to help human
and robot to jointly build up a common understanding of
their environment? One aspect of this kind of interaction is
the human tutor taking the active role and showing the robot
new rooms explicitly. Beyond providing the knowledge, the
role of the tutor is also to check the learning success, for
instance by asking monitoring questions like “Where are we
right now?”. As least as important, the other aspect is the
robot taking the active role attempting to gain information,
for instance by verifying the existing representation or by
resolving uncertainty. Moreover, by actively communicating
its hypotheses, the robot provides an insight into its model
and thus provokes the user’s feedback and gives her the
opportunity to possibly correct the model.

In our scenario, providing such an interactive learning
framework is the main task of the dialog system. We will
describe it in section IV from the HRI point of view and in
section V from the system integration point of view.

III. THE MAPPING SUBSYSTEM

In the following we describe our mapping approach, that is
originally a central part of a prototypical system for “Human
Augmented Mapping” [2] and has been transferred to the
more complex interactive framework on BIRON.



Fig. 3. The two-level model with
“regions” (white in general (R),
gray for the “generic region” GR)
and “locations” (large black dots,
L). The solid curved double ar-
rows represent the links between
the entries of one level (between
“regions”), the dashed lines repre-
sent the relation of the “locations”
to their surrounding “region”.

Our mapping subsystem uses a topological graph structure to
implement a generic environment model. This model builds a
hierarchy of spatial concepts, as is described in the following.

A. The graph structure

The topological graph of the Human Augmented Mapping
framework as it is used for the work presented here imple-
ments two spatial concepts, termed regions and locations. A
region is defined to be a delimited area of the environment,
e.g., a room. A region can contain several distinct locations,
corresponding to views or “snapshots” of the environment.

For the work presented here we focus on the segmentation
of the environment into region nodes to build the topological
graph structure in the assumed interactive process. In previ-
ous work we proposed to use a statistics based descriptor to
segment regions, that can be used both for the representation
and classification of specific regions as for the detection
of transitions between them [10], [11]. This descriptor uses
the ellipse generated by the two first Principal Components
of a 360◦ laser range data set as one central feature. We
assume that the system gathers information iteratively and
not necessarily following the hierarchical model [8]. Thus,
we use the concept of the “generic region”, which is topo-
logically speaking a region without specification, i.e., a node
in the graph that has no explicit spatial properties, but that
subsumes (metric) positions in the environment, so that it
can contain locations [2].

With this concept it is possible to start the mapping
process “from scratch” without any a priori knowledge in
the mapping subsystem about how many entities are to be
presented or what their labels would be. Fig. 3 illustrates the
hierarchy for the two conceptual levels.

The mapping subsystem assumes access to raw laser range
finder data to generate region representations and to pose
estimations. The latter are usually assumed to be corrected
by a SLAM module to keep the region representations
metrically consistent.

For the work presented here we focus on the segmentation
and representation of regions that can be achieved in an in-
teractive “guided tour”. We also use the term room instead of
region, since all our examples refer to clearly distinguishable
rooms. In the following we describe how we assume the
environment to be segmented to construct the nodes of the
underlying topological graph.

B. Segmenting regions / rooms

We consider two types of events that can trigger the system
to segment a new room from the environment. One is to
receive external input that annotates a certain spatial entity
with a label (e.g, “... this is Elin’s office...”). The other type
of event is the data driven detection of a “new area”, which
can lead to a discourse with the user. The latter case can help
the system to resolve ambiguities, thus, to reduce uncertainty
about its whereabouts. Such a dialog with the user can be
either a confirmation of the hypothesis the system generates
or a correction of a wrong assumption. Both can then lead
to the specification of a new room (and respective node),
depending on the hypothesis generated by the system and
the information given by the user.

In case a room is explicitly specified by the user, the
mapping subsystem receives a respective request and triggers
an “exploration turn” to gather a 360◦ laser range data set
that is used for the computation of a concise representation
of the surroundings. This “exploration turn” is used since
the robot is only equipped with one laser range finder
and proved actually useful for the interaction, as the robot
is obviously “doing something” to obtain a representation
of the surroundings. The computed representation is then
used to generate a respective node in the graph structure
and is additionally stored for comparison and classification
purposes.

While traveling the mapping subsystem uses virtual scans
computed from a local map to continuously generate hypo-
thetical representations that are compared to the one assumed
to represent the “current room”. In case a significant change
is detected and / or the system’s pose estimation indicates
that the delimiter of a known room has been passed, this
is reflected in two internal flags, HYPOTHESIS UNCERTAIN
(default value “false”) and HYPOTHESIS CHANGED (default
value “false”).

Those flags together with the hypothesis for the “current
room” can be extracted and used by the controlling programs
to trigger a respective dialog with the user to resolve the
ambiguity, as is described in section V. In case that the
ambiguity is not resolved the mapping subsystem continues
to work based on its current hypotheses. In this case the
representation as such remains unchanged as do the flags,
which means that a second request for clarification can be
triggered.

An important decision was made regarding the initial
assumption and initiative. We assume initially that the user
has the initiative as long as the system is certain of being in
the “generic region” and until at least one room is specified.
Only after that, the mapping subsystem checks the internal
environment representation continuously to detect transitions
and maintain a consistent representation.

If the system receives at some point a confirmation of
being in the “generic region” (i.e., having left a specified
room without receiving more information) it would not notify
any transition detection again until it hypothesizes to have
come back into a known room. Thus, the actual initiative



arbitration can be handled by the higher level interaction
supervision and dialog according to the interactive learning
strategy.

IV. THE DIALOG SYSTEM

The multimodal dialog system presented in this section is
based on the principle of grounding and was first introduced
by Li et al. [12]. Here, we view it from the HRI point of
view as a proxy for the overall robot system managing the
interaction. Later on, we will discuss its communication with
other components.
Both human’s and robot’s contributions are modeled as
multimodal Interaction Units consisting of a Verbal Unit
and Non-verbal Unit creating verbal and non-verbal output.
For the robot’s dialog acts, we additionally model their
underlying communication intention whereas we do not
explicitly model the intention of the user. Her intention is
implicitly computed by analyzing the semantic and pragmatic
content of the utterance. However, this feature enables us to
include an explicit user model about the user’s intentions in
future work.

The Interaction Units are organized based on the principle
of grounding [13]. Grounding is a well-known interaction
concept assuming that both interaction partners aim to es-
tablish mutual understanding or common ground during their
interaction. This results in utterances being arranged as pairs
with the so-called Presentation initiating such a pair and the
so-called Acceptance giving evidence of understanding. In
case that the utterance has not been understood, a further
Presentation will be created first in order to clarify the
situation.
Altogether, figure 4 illustrates how mixed initiative inter-
action style is realized based on these concepts. In case
of robot initiative, the intention of the robot’s Interaction
Unit arises from an internal event. For instance, if the event
occurs that the mapping subsystem recognizes a known
room, the robot will have the intention to verify its hypothesis
which will trigger the appropriate verbal and non-verbal
behavior. Subsequently, it will wait for the human to create
an appropriate Interaction Unit as Acceptance.
In case of human initiative, the intention of the robot’s
Interaction Unit arises as reaction on the user utterance.
For instance, if the user asks a question like “Where are
we?”, the corresponding Interaction Unit will be created as
Presentation which gives the robot the intention to answer
the question and thus providing Acceptance.

Table I shows example subdialogs within the interactive
location learning scenario. The robot’s behavior may vary
depending on whether a representation already exists for a
correction or on degree of uncertainty.
Note that if the human disagrees with the hypothesis commu-
nicated by the robot without providing the correct one, the
robot will ask and keep waiting for a respective response
until mutual understanding has been established. This is
due to our strategy to have the robot ask for clarification;
the mapping subsystem could in fact deal with a “pending

answer” and assume the “generic region” as the current one,
as was mentioned already in section III-B.

In addition, it is of course an issue not to annoy the
interaction partner with the robot’s self-initiated clarifica-
tion behavior. Therefore, based on a person tracking and
attention module [14], the dialog system triggers clarification
questions only if the situation seems appropriate which
depends on presence and behavior of the interaction partner.
Accordingly, the robot does not ask in a situation where there
is no interaction partner present or the interaction partner is
engaged in conversation with another human.

TABLE I
EXAMPLE SUBDIALOGS

Initiative Subdialog purpose Example dialog
Human Room teaching H: This is the kitchen!

R: Kitchen. I will have a look at it.
R: (looking)
R: OK!

Human Monitoring questions H: Where are we?
R: We are in the kitchen.

Robot Verifying hypothesis R: We just entered the hallway, right?
a) Human agrees
H: Yes.
R: OK!
b) Human corrects
H: No, this is the living room.
R: Living room. OK!
c) Human disagrees
without providing correction
H: No!
R: What room is it?
H: The living room
R: Living room. OK.

Robot Resolving uncertainty R: Are we still in the living room?
a) Human agrees
H: Yes.
R. OK.
b) Human corrects
H: No, this is the kitchen.
R: Kitchen. OK!
c) Human disagrees
without providing correction
H: No!
R: What room is it?
H: The kitchen.
R: Kitchen. OK.

V. SYSTEM INTERACTION STRATEGIES

Mixed initiative and grounding for learning are considered
as guide lines for the composition and architecture of our
system. Leaving the view of the dialog as proxy for the
robot and considering it representing the user against the
overall system presents the dialog system as one information
source among others: Information concerning for instance the
robot’s current location can be provided by the user via the
dialog, by the presented localization component or any other
source.

To provide the necessary flexibility for information co-
ordination the architecture follows an information oriented
approach employing an event-driven integration style. The
system coordinates its actions triggered by the generation
and modification of information entities (memory elements,



internal event: room recognized

verify hypothesis

“We just entered 
the kitchen, 

right?”
[smile]

Intention

Robot Interaction Unit

<uninstantiated>

“Biron, where 
are we?” <uninstantiated>

Intention

answer user utterance

“We are in the 
kitchen!” [smile]

Intention

Robot Interaction Unit

User Interaction Unit

Robot Initiative User Initiative

Fig. 4. Creation of Interaction Units. In case of robot initiative, the robot’s
Interaction Unit is created based on an internal event. In case of human
initiative, the robot’s Interaction Unit is created as respond on the humans’s
Interaction Unit.

which are basically XML documents with binary attach-
ments) in the so-called Active Memory [15], [14]. These
information generation events are independent from system
components as they only refer to a certain information within
the Active Memory. This enables all system components to
provide their information to the system and therefore they no
longer depend on a certain system component but merely on
a certain kind of information, independent of its source. In
this paradigm, components are seen as information sources
submitting to the central repository – the Active Memory.

A. Mixed initiative on system level

Mixed initiative in learning means that both user and robot
may trigger the learning process. By means of the Active
Memory concept, one basic requirement to implement mixed
initiative is provided: A far-reaching equivalence of informa-
tion sources. Components such as the mapping subsystem
and the dialog system dynamically subscribe for particular
events, e.g. the insertion of an information entity describing
a room. In order to achieve mixed initiative, respective
components always subscribe for the type of information
they potentially generate themselves. Hence, they can react
adequately, independent whether they generate the piece of
information or any other component did. By these means a
mixed-initiative-enabled component always takes both roles,
as an information source and sink, simultaneously.

B. Grounding on system level

As described in the previous section, the equivalence of
information sources provides a technical basis for mixed
initiative. However, from the learning by interacting idea
with several information sources existing arises the question
how to make information consistent. Therefore, we elevate
the concept of grounding which has up to now been mostly
seen as the external communication protocol to a more sys-
temic concept. Based on states describing the task progress,
information is subject to a negotiation process related to
the general idea of grounding. This negotiation process
between components is triggered whenever an information

entity is inserted into the Active Memory. Its representation is
augmented by a state encoding the negotiation progress, and
by subscribing a component on information entities being in
particular states, a sequencing of operation is achieved. Table
II shows the different states with their respective semantics.

As the information is the result of such negotiation pro-
cess, the information present in the Active Memory can to
some extent be considered as common ground. From this
perspective, state completed means that common ground
has successfully been established. This view is supported by
the fact that also the negation process is reflected by the
Active Memory content: As shown in table III, the ROOM
is set to generic region as soon as the robot realizes
the incorrectness of its previous hypothesis. When the correct
label has emerged from the negotiation, the ROOM is updated
again.

The task completion states are more fine-grained than the
grounding states which opens the possibility to provide more
detailed feeback for the user. Since the robot’s feedback
utterances serve mainly the purpose of information, it does
not expect an answer from the user which results in “lonely”
Presentations like Pre3 or Pre4 in table III.

In a real system, negotiation is not subject to only two
components, but certain steps in this process might require
involvement of others. For instance, a component might
need to get access to a hardware component in order to
assess current information which then involves arbitration.
The Active Memory concept easily allows to account for this
requirement by having the arbitration component subscribe
for the particular state changes as will be illustrated in the
following example.

TABLE II
TASK PROGRESS STATES

State Description
initiated an information starting a task

has just been inserted into the memory
accepted it has been checked that no conflicts

will prevent the task execution
and all necessary preparation have been
taken

rejected the task is currently not executable
and will not be started

completed the task has successfully been executed
failed though all preconditions were satisfied,

an error occurred during task execution

TABLE III
EXAMPLE DIALOG

Role wrt.
Dialog act grounding State Room

R: We just entered the living room
living room, right? Pre1 initiated

H: No. Acc1 completed generic room
R: What room is it? Pre2 “ generic room
H: This is the kitchen. Acc2 initiated kitchen
R: Kitchen.I will have Pre3 kitchen

a look at it. accepted
R: OK. Pre4 completed kitchen



C. Two Examples: Verification and room teaching

arbitrate HAM commands

replace ROOM
state="accepted"

reset arbitration

detect known room

memorize 
room representation

replace ROOM
state="completed"

replace ROOM
 state="initiated"

ROBOT 
INITIATIVE

reject hypothesis

label room

HUMAN
INITIATIVE

 verbal feedback: processing

ask for correct label

verbal feedback: finished

process user utterance

process user utterance

initiate verification 
of hypothesis

process internal event

replace ROOM 
state="initiated"

replace ROOM
state="completed"

DialogMapping SubsystemArbitration Human

autonomous exploration

<ROOM>
   <NAME>generic region</NAME>
   <STATE>completed</STATE>
</ROOM>

<ROOM>
   <NAME>kitchen</NAME>
   <STATE>completed</STATE>
</ROOM>

<ROOM>
   <NAME>living room</NAME>
   <STATE>initiated</STATE>
</ROOM>

<ROOM>
   <NAME>kitchen</NAME>
   <STATE>accepted</STATE>
</ROOM>

<ROOM>
   <NAME>kitchen</NAME>
   <STATE>initiated</STATE>
</ROOM>

"We just entered the 
living room, right?"

"This is the 
kitchen"

"Kitchen. I will 
have a look at it."

"What room is 
it?"

"No!"

"OK!"

Fig. 5. Activities during robot-initiated clarification respectively human-
initiated room teaching

Figure 5 illustrates two examples assuming a situation
where the robot misclassifies a new room as the previously
learned living room.

If in such situation the robot detects a known room, the
task is initiated by the mapping subsystem by replacing the
memory element ROOM with name living room and state
initiated into the active memory. The dialog system is
notified about this event and prompts a verification question
(“We just entered the living room, right?”). Since the robot’s
hypothesis is incorrect, the human will negate. Having pro-
cessed the humans’s answer, the dialog system finishes the
learning task by setting name generic region and state
completed. Driven by the intention to establish mutual
understanding and thus enhance the environment model, the
dialog system asks for the correct label (“What room is it?”).

What happens in the following is the same as for human
initiated room teaching. Based on the human’s utterance, a
new room learning task is initiated by the dialog system. The
arbitration component now allows the mapping subsystem to
take control of the robot’s driving motors by setting the state
accepted which triggers the mapping subsystem to start
the exploration by turning the robot around. At the same

time, the dialog is triggered to give verbal feedback about
the processing state (“I will have a look at it.”). As soon as
the exploration is finished, the mapping subsystem sets the
state completed. In consequence, the hardware arbitration
is reset, the robot memorizes the new representation and the
dialog system gives another verbal confirmation.

Altogether, we realized a two-way negotiation protocol
where both directions rely on the same interaction strategies.
At the same time, this strategy is a very flexible way of co-
ordination since states may be skipped. In fact, an alternative
mapping and localization module has been integrated into the
robot system that does not make use of the accepted state
[16], [14]. For integration, the subscription of the Arbitration
on the accepted state was removed. The interface to the
dialog remained the same, though.

VI. EVALUATION

In the following we discuss the results that we could
achieve with our integrated system.

A. Method

For the evaluation of the work presented in this paper we
assume three important phases. The first conceptual design
and evaluation phase consisted of a feasibility analysis
and interface specification and resulted in a prototypical
integration of an initial version of the mapping subsystem
into BIRON’s interactive framework [3].
In the second empirical evaluation phase this initial system
was extended and improved as described in this article and
evaluated regarding its capabilities for interactive learning
of a space representation with the help of test runs in a
laboratory environment resembling a domestic setting. We
consider this phase as crucial to understand whether the
tested algorithms, in this case the mapping subsystem’s
transition detection and region representation approach, do
indeed solve the targeted problem of enabling the interactive
acquisition of a consistent environment representation.
Only in the third user evaluation phase it is then possible
to evaluate the system with naı̈ve users in a real domestic
setting as proposed in section II.
Here, we discuss our integrated system and the results we
could achieve with respect to one example “tour”, i.e., one
of the test runs of the second phase of evaluation.

B. Result

The test run or “example tour” was conducted in a part
of a laboratory at the University of Bielefeld that can be
compared to a part of an apartment including living room,
kitchen, and a part of a hallway, which were the labels
chosen for the tour. The “kitchen” can be reached both
from the “hallway” and the “living room” which integrates
a loop in the environment, allowing to investigate the ability
of the transition detection and room (region) representation
to recognize a particular, already known room and react
appropriately.
One interesting aspect of this experimental run was that
no correction of the internal pose estimations coming from



the respective sensors on the robot platform was used. This
deliberate decision was made to investigate the system’s
capabilities in terms of the interaction it can support and
be supported by when relying on the presumably erroneous
original pose estimations delivered from the robot’s sensory
system. Consequently, the results achieved in the presented
experimental run are discussed before this background.
As explained in section III, the mapping subsystem would
only report transition detections after at least one room is
specified. According to the strategy presented in section
IV however, the system was assumed to take the initiative
immediately after receiving a confirmation for “having left a
specified room” and ask for the actual whereabouts, instead
of accepting the “generic region” as “current room” and
wait for further specifications of the user. Consequently,
the discourse was after the first, user initiated specification,
controlled mostly by the system’s clarification questions.

a) b)

Fig. 6. The experiment with BIRON, visualized in a post-hoc run of
the mapping subsystem. Question marks indicate positions where the robot
asked the user for confirmation. (top) Reconstruction with the help of a pose
estimation module with the room labels marked at the positions where they
were given to the robot by the user. (bottom) Visualization of the original
percepts with the labeled rooms (regions) depicted with the ellipse axes of
the statistical descriptor at their computed centers. a) Starting in the “living
room”, b) concluding the tour in the hallway after going through living
room and kitchen twice. The respective hypotheses about the current region
are shown in the upper left corner of each frame.

Figure 6 illustrates the guided tour with BIRON through
the laboratory environment, conducted by a researcher acting
as user. For better comprehension, the originial odometry and
scan data acquired by the robot during the trial were post-hoc
processed with SLAM methods to be analyzed in consistent
maps illustrated in the top row. The lower row illustrates the
unprocessed laser scan segments used for the computation

Fig. 7. All transition detec-
tions marked with their number in
chronological order of occurrence.
The spurious detections are high-
lighted with gray rectangles around
them. One (no. 3) occurred during
the first round through the environ-
ment, the other two (no. 8 and 10)
occurred in the second round when
the system had accumulated a rather
high error in its pose estimation.

of the statistical descriptors of regions. From system logs
the positions where the robot took the initiative and asked
about a hypothesized transition to a new or known room are
computed and indicated in the illustration by question marks.

The tour started in front of the “living room”, where
initially nothing was specified. Overall 12 times the robot
asked for a confirmation of a hypothesized transition. Five of
these situations refer to actual transitions, i.e., door passages,
while four more are plausible due to the robot being close
to the respective door.

Fig. 7 illustrates the respective spots in the order of occur-
rence. The three somewhat questionable detections (number
3, 8 and 10) can be explained partially (8 and 10) with the
uncertainty the system had gathered due to the error in the
position estimation. For the spurious detection (3) a possible
explanation might be that the user was blocking the robot’s
“view” for a significant amount of time. Taking a look into
the run itself it becomes obvious that the user and the robot
spent a long time in the “kitchen”, being relatively static.
Table IV summarizes the tour with respect to the situations
in which the robot asked for clarification, as they are referred
to also in fig. 7. The table shows the hypothesis the robot had
at the respective time, the question it asked (“Are we still in
the X?”, “We just left the X, right?”, “We just entered the X,
right”, “What room is it”), the user’s answer (“Yes”, “No”,
“This is the X”) and the system reaction (specifying a new
room, confirming hypothesis, correcting hypothesis) with the
abbreviations: GR = generic region, LR = living room, KI =
kitchen, and HW = hallway.
Since the pose estimation error was obviously mostly de-
pending on rotations of the robot platform (see the uncor-
rected illustration in fig. 6), the overall error was kept on a
level that allowed to hypothesize the “hallway” correctly as
“current room” when it was re-entered, since no significant
turning movements “on the spot” had been made after its
specification.
In general this tour shows the system’s ability to generate

a basis for meaningful interaction with the user, by which
it can update and correct its internal representation of the
environment.

VII. CONCLUSION AND FUTURE IDEAS

In this paper we presented our integrated system for
mixed initiative Human Augmented Mapping. The challenge,
namely to achieve a consistent and most complete spatial rep-



TABLE IV
THE SITUATIONS IN WHICH BIRON ASKED FOR CLARIFICATION

No. Hyp. Robot User Action
0 GR “... LR.” new
1 LR “Are we still ... ?” “Yes” conf
2 GR “We just left ...” “Yes” conf

GR “What room is it?” “... KI” new
3 KI “Are we still ...?” “Yes” conf
4 KI “Are we still ...?” “Yes” conf
5 GR “We just left ...?” “Yes” conf

GR “What room is it?” “... HW” new
6 HW “Are we still ...?” “Yes” conf
7 GR “We just left ...?” “Yes” conf

GR “What room is it?” “... LR.” corr
8 GR “We just left ...?” “No” corr
9 GR “We just left ...?” “Yes” conf

GR “What room is it?” “... KI” corr
10 KI “Are we still ...?” “Yes” conf
11 KI “Are we still ...?” “Yes” conf
12 HW “We just entered ...?” “Yes” conf

resentation, has been illuminated from different perspective:
The design of the dialog as a proxy between user and system,
the required characteristics of the mapping and recognition
technique itself, and the interaction strategies between the
subsystems in the system architecture. The interplay of the
mapping subsystem and the dialog subsystem by means
of grounding and mixed-initiative concepts elevated to a
systemic level has turned out to be a powerful and generic
approach in order to allow flexible learning by interacting.
With “state sequencing” and the information-oriented archi-
tecture itself the foundation is laid for very flexible learning
strategies. The exploitation of the central concepts has been
proved by the spatial learning approach in this paper. In this
context, we discussed our particular integration strategies that
support both user and data (robot) driven initiative for the
acquisition of (spatial) information and evaluated our system
in the context of test runs and an example tour.

Of course, the cyclic evaluation of our robot must con-
tinue. Though our robot system basically has undergone
“full-cycle” evaluation including extensive user studies [17],
that evaluation release of the robot only featured a spatial
learning limited to user’s intiative. How naive users will now
perceive the novel mixed-initiative learning, is still an open
question. However, on the basis of system-level grounding
and state sequencing in the information-oriented architecture
different learning strategies can now be studied under one
conceptual umbrella and compared in real world scenarios
with naive users. An example for adaptive learning strategies
following the same conxept could be a robot that considers
a personality models of a human user. So, it can adapt its
own level of extrovertness, e.g., not being too very curious
and asking for room labels every now and then, if a user
obviously is irritated already. The system now also allows to
extend the concept of human augmented mapping gradually
towards more autonomy for the robot. It can for instance
explore open spaces and take inititiave whenever a person
is in interaction distance, or accept a human’s initiative
occuring during the autonomous phase.
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