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Abstract—A test coverage criterion defines a set Ec of entities of the program flowgraph and requires that every entity in this set is

covered under some test case. Coverage criteria are also used to measure the adequacy of the executed test cases. In this paper, we

introduce the notion of spanning sets of entities for coverage testing. A spanning set is a minimum subset of Ec, such that a test suite

covering the entities in this subset is guaranteed to cover every entity in Ec. When the coverage of an entity always guarantees the

coverage of another entity, the former is said to subsume the latter. Based on the subsumption relation between entities, we provide a

generic algorithm to find spanning sets for control flow and data flow-based test coverage criteria. We suggest several useful

applications of spanning sets: They help reduce and estimate the number of test cases needed to satisfy coverage criteria. We also

empirically investigate how the use of spanning sets affects the fault detection effectiveness.

Index Terms—Control flow, coverage criteria, data flow, ddgraph, spanning sets, subsumption.
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1 INTRODUCTION

VARIOUS approaches to testing exist. The “classical” way
to facilitate testing (as opposed to the more recent test-

driven design [4]) is to establish a collection of requirements
to be fulfilled, which defines a test criterion. In particular,
structural coverage criteria map these requirements onto a
set of entities in the program flowgraph that must be
covered when the test cases are executed. These entities
may be derived from the program’s control flow or from the
program’s data flow.

We introduce the new concept of spanning sets of entities
for a coverage criterion. A spanning set is a minimum subset
of entities with the property that any set of test cases
covering this subset covers every entity in the program. We
discuss how this concept can be exploited to make coverage
testing more efficient in many respects. We underscore,
however, that we are not proposing a new testing method
as an alternative to existing ones, but rather an approach to
improve the way existing test-coverage criteria are applied.

We have been studying the use of spanning sets of
entities in coverage testing for some time. In [6], [7], [9], we
identify spanning sets of entities for the all-branches criterion
and present some useful applications. In [19], we identify
spanning sets of entities for the all-uses criterion. In this
paper, we provide a general method for identifying a
spanning set of entities for an entire family of test coverage
criteria and discuss its applications.1 The focus is on unit
testing; the application of the approach at the inter-
procedural level is an important extension, but is out of
the scope of this paper.

To the best of our knowledge, there has been no previous
work on identifying a minimum set of entities that
guarantees full coverage for an entire family of criteria.
Some authors [11], [1] have independently recognized this
idea for the simple strategy of all-branches coverage, but
failed to generalize it to other criteria.

Some work has been done to reduce the size of a test
suite. In particular, Gupta and Soffa [13] have investigated
ways to guide test-case generation, so that a single test case
satisfies multiple coverage requirements. They gather
coverage requirements so that each group can be covered
by a single test case. Our result improves on their approach,
in that spanning sets of entities provide the optimal way to
group entities.2 A different approach is to minimize the
number of test cases in a test suite. Because this problem is
NP-complete [13], some authors have proposed heuristics
based on minimization techniques to deal with it (e.g., [14],
[24]). However, these techniques are applied to a redundant
set of test cases only after the test suite has been generated.
Thus, such approaches do not actually reduce the effort of
generating the test cases.

A word of caution is appropriate. By targeting test-case
selection and avoiding redundant test cases, spanning sets
can make coverage testing more efficient, but not necessa-
rily more effective [22]. On the contrary, the testers should
be aware that every single test case that they discard could
have been the one that found the bug. Indeed, it is not our
recommendation to use spanning sets to reduce the number
of test cases at any rate; more pragmatically, we say that in
those cases in which test resources are scarce and only few
more test cases can be executed, then spanning sets can help
in selecting those test cases that maximize coverage.

In some empirical studies [24], [22], the effect on fault
detection of reducing the size of a test set, while holding
coverage constant, was analyzed. The results in [24] showed
that minimizing the test set produces little or no reduction
in fault-detection effectiveness. This case study would
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indicate that trying to minimize the number of test cases
generated to achieve structural coverage, as we do with
spanning sets, can help to reduce the cost of testing without
impairing testing efficacy. The results in [22] for a different
experiment, however, showed instead that test-suite mini-
mization might produce significant reductions in the fault-
detection effectiveness. Motivated by these results, we also
investigated empirically the effect of using spanning sets on
fault detection. We observed that, even though fault-
detection effectiveness may decline slightly for high cover-
age values, the sizes of spanning set-based test suites were
much reduced. So, if we consider the trade off between the
fault-detection effectiveness and the test-suite size, then
spanning-set suites seem to perform better.

In the next section, we give some background informa-
tion. In Section 3, we present the coverage criteria
considered in this paper, by identifying for each criterion
the entities to be covered. In particular, we explicitly define
the meaning of coverage for the possible types of entities. In
Section 4, we define spanning sets of entities and briefly
discuss several interesting applications. In Section 5, we
outline a generalized method to derive a spanning set of
entities. This method uses the subsumption relation
between entities, which varies according to the type of
entity considered. In Section 6, we provide implementations
for the subsumption relation. In Section 7, we present the
results of our empirical investigation of the fault-detection
effectiveness of test suites constructed using spanning sets.
Finally, in Section 8, we draw our conclusions and hint at
future work.

2 DEFINITIONS

2.1 The Ddgraph Model

Typically, in code-based testing strategies a program’s

structure is analyzed on the program flowgraph (i.e., an

annotated directed graph, or digraph, that represents

graphically the information needed to select the test cases).

What changes from one author’s flowgraph to another’s is

the mapping between program entities (statements and

predicates) and flowgraph elements (arcs and nodes). We

use ddgraphs (decision-to-decision graphs).

Definition 1. A ddgraph is a digraph G ¼ ðN;AÞ with two

distinguished arcs e1 and ek (the unique entry arc and the

unique exit arc, respectively), such that any arc e 2 A is

reached by e1 and reaches ek, and such that for each node

n2N , except T ðe1Þ and HðekÞ, ðindegreeðnÞþoutdegreeðnÞÞ
> 2, while indegreeðT ðe1ÞÞ ¼ 0 and outdegreeðT ðe1ÞÞ ¼ 1,

indegreeðHðekÞÞ ¼ 1 and outdegreeðHðekÞÞ ¼ 0.

Fig. 1 gives an example program SORT (adapted from

[23]) and the corresponding ddgraph GSORT .
We adopted the ddgraph model because it is more

compact for coverage analysis than traditional flowgraphs

that associate a node with each program statement or block

[2]. In fact, ddgraphs do not contain any nodes that have

just one arc entering and one arc leaving them: Nodes

represent either decisions (i.e., forking of the control flow) or

junctions (merging of the control flow); program blocks are

mapped directly to arcs. In this way, the size of graphs is

reduced and the control flow is immediately captured.
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An arc e in a ddgraph G is an ordered pair of adjacent

nodes, called TAIL and HEAD of e, respectively (i.e.,

e ¼ ðTAILðeÞ; HEADðeÞÞ). A path p of length q in a ddgraph

G is a sequence p ¼ e1; e2; . . . ; eq, where TAILðeiþ1Þ ¼
HEADðeiÞ for i ¼ 1; . . . ; q � 1. A path p is simple if all its

nodes, except possibly the first and last, are distinct. A

complete path in a ddgraph G is a path from the entry node

to the exit node of G. Given a path p ¼ e1; e2; . . . ; eq, a path

p0 ¼ ei; . . . ; ej from ei to ej, with 1 � i � j � q, is called a

subpath of p.

2.2 Def-Use Ddgraphs

Data flow testing considers the possible interactions

between definitions and uses of variables. To analyze these

interactions, programs are represented as annotated flow-

graphs. In particular, we use annotated, or def-use,

ddgraphs.
Given a ddgraph corresponding to a program, for every

variable in the program, a def-use ddgraph is derived, in

which each arc is annotated with a sequence (which may be

empty) of the symbols d or u, to represent that the variable

of interest is defined or referred in the program block

represented by such arc. Note that, for a predicate use

(which in our ddgraph model occurs at a decision node), we

label with a use symbol u each arc leaving the node at

which the predicate occurs. Fig. 2 shows two def-use

ddgraphs corresponding to program SORT and variable

index and to program SORT and variable a.
Given a def-use ddgraph G for variable X, a def-clear path

with respect to X is a path p ¼ e; e1; e2; . . . ; eq; e
0 on G, with

q � 0, such that X may be defined in e, and is not redefined

or killed in any of the arcs e1; e2; . . . ; eq. For example, p1 ¼
e2; e3; e5; e6 is a def-clear path for index in GSORT because

index is defined in e2 and is not redefined or killed on e3 or

e5. As another example, p2 ¼ e2; e3; e4; e6; e7 is not a def-clear

path for index in GSORT since index is redefined in e6.
In data-flow testing, we consider global definitions and

uses (i.e., the interactions of variable assignments and

usages between arcs). Hence, we define a definition-use

association or dua as follows:

Definition 2. Let d and u be two arcs in G and X be a variable.
We say that the triple ½d; u;X� is a definition-use associa-
tion, or a dua, if X has a global definition in d, a global use in
u, and there is a def-clear path w.r.t. X from d to u.

For example, T1 ¼ ½e2; e7; index� and T2 ¼ ½e6; e4; index�
are duas in GSORT . As another example, T3 ¼ ½e7; e4; index�
is not a dua since index is defined in e7, index is used in e4,
but there is no def-clear path w.r.t. index from e7 to e4.

In the following, we denote the set of all the duas in a
given ddgraph G as DðGÞ. The duas involving a same
variable defined in a same arc of the ddgraph can be
grouped into classes. Thus, we group into the class SX

d all the
duas in G ¼ ðN;AÞ, such that variable X is defined in arc d
(i.e., SX

d ¼ fT 2 DðGÞ : 9u 2 A; T ¼ ½d; u;X�g).
For example, the classes of duas for SORT and variable a

are:

Sa
e1
¼ f½e1; e2; a�; ½e1; e7; a�; ½e1; e4; a�; ½e1; e5; a�g;

Sa
e7
¼ f½e7; e2; a�; ½e7; e7; a�; ½e7; e4; a�; ½e7; e5; a�g:

3 A FAMILY OF COVERAGE TESTING CRITERIA

Coverage criteria require that a set of entities of the program
flowgraph is covered when the test cases are executed. For
each test criterion c, we denote the corresponding set of
entities of G by EcðGÞ. In Table 1, we (re)define a family of
well-known control flow and data flow test coverage
criteria [5], [21], [12] by identifying, for each criterion, the
set EcðGÞ. In the table, let G ¼ ðN;AÞ be a ddgraph and }
the set of all complete paths in G.

Below, we present some examples.

. The set of entities for the ddgraph GSORT ¼
ðNSORT ;ASORT Þ and all-branches criterion is

Eall-branchesðGSORT Þ ¼ ASORT

¼ fe1; e2; e3; e4; e5; e6; e7; e8g:

. The set of entities for the ddgraph GSORT and all-
statements criterion is
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Eall-statementsðGSORT Þ ¼ fe1; e2; e4; e6; e7; e8g:

. The set of entities for GSORT and all-uses criterion is

Eall-usesðGSORT Þ ¼ DðGSORT Þ ¼
f½e1; e8; n�; ½e1; e2; n�; ½e1; e7; n�; ½e1; e3; n�;
½e1; e2; a�; ½e1; e7; a�; ½e7; e2; a�; ½e7; e7; a�;
½e7; e4; a�; ½e7; e5; a�; ½e1; e4; a�; ½e1; e5; a�;
½e1; e2; sortupto�; ½e1; e7; sortupto�; ½e7; e8; sortupto�;
½e1; e8; sortupto�; ½e7; e2; sortupto�; ½e7; e7; sortupto�;
½e1; e7;maxpos�; ½e4; e7;maxpos�;
½e2; e7;mymax�; ½e2; e4;mymax�; ½e4; e7;mymax�;
½e4; e4;mymax�; ½e2; e5;mymax�; ½e4; e5;mymax�;
½e2; e3; index�; ½e6; e7; index�; ½e2; e7; index�;
½e2; e4; index�; ½e6; e4; index�; ½e6; e3; index�;
½e2; e5; index�; ½e6; e5; index�; ½e2; e6; index�;
½e6; e6; index�g:

. The set of entities for GSORT and all-defs criterion is

Eall-defsðGSORT Þ ¼ fSn
e1
; Sa

e1
; Sa

e7
; Ssortupto

e1
; Ssortupto

e7
;

Smaxpos
e1

; Smaxpos
e4

; Smymax
e2

; Smymax
e4

; Sindex
e2

; Sindex
e6

g:

In general, for the family of coverage criteria in Table 1,

four different types of entities can be distinguished: arcs,

which are the entities for all-branches and all-statements

criteria; duas, which are the entities for all-uses; classes of

duas, which are the entities for all-defs; and paths, which are

the entities for all-paths, all-k-paths and all-du-paths criteria.
We observe that “covering an entity” differs depending

on the type of entity considered; hence, we now define

explicitly what coverage means for each of the four types of

entities listed above.

Definition 3. A complete path p covers

. an arc if p contains that arc;

. a dua T ¼ ½d; u;X� if p has a def-clear subpath w.r.t.
X from d to u;

. a class of duas S if 9T 2 S such that p covers T ;3

. a path p0 if p0 is subpath of p.

A set of complete paths } covers an arc (or a dua, a class of
duas, or a path) if some of the paths in } do.

For example, considering path p ¼ e1; e2; e7; e8, in
ddgraph GSORT :

. p covers arc e1, but does not cover arc e3;

. p covers dua ½e2; e7; index� and also dua ½e1; e2; a�, but
does not cover dua ½e2; e3; index� nor dua ½e7; e2; a�.

4 SPANNING SETS

Given a ddgraph G and a set EcðGÞ of entities to be covered,
it is generally possible to derive a subset of EcðGÞ with the
property that a set of complete paths covering all entities in
it will cover every c-entity in EcðGÞ. For instance, for the
ddgraph GSORT , any set of complete paths covering the set
of arcs:

fe3; e4; e5; e6g � Eall-branchesðGSORT Þ

will cover every arc in Eall-branchesðGSORT Þ. This happens
because any complete path that exercises these arcs must
exercise arcs e1, e2, e7, and e8 as well.

In other terms, for a selected criterion c, the coverage of
some c-entities automatically guarantees the coverage of
other c-entities. This property implies a natural ordering
between c-entities, according to how easily they can be
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from d to u.



covered. Let us call this ordering relationship between
entities a subsumption. The intuitive underlying idea is that
if c-entity E1 subsumes c-entity E2, then we can “forget”
about E2 provided that we “care” about E1.

Definition 4. Let G be a ddgraph, c a coverage criterion, and E1

and E2 two entities in EcðGÞ. Then, E1 subsumes E2 if every
complete path that covers E1 covers E2 as well.

To make coverage testing more efficient, we are inter-
ested in identifying the maximal objects in this ordering
(i.e., those entities that are not subsumed by other entities).
These entities are said to be “unconstrained” (i.e., “not
guaranteed”): The coverage of an unconstrained entity is
not guaranteed by the coverage of any other entity. More
precisely, an entity E is said to be an unconstrained entity if
there exists no other entity E0 that subsumes E without
being itself subsumed by E. A smallest subset of c-entities
with such a property is called a spanning set.

Definition 5. Let G be a ddgraph and c a coverage criterion. A
subset U of EcðGÞ is said to be a spanning set of entities for
G and c if

1. A set of paths } that covers every entity in U covers all
the entities in EcðGÞ.

2. For any set U 0 � EcðGÞ, such that any set of paths that
covers every entity in U 0 covers all the entities in
EcðGÞ, jU j � jU 0j.

Note that a spanning set of entities for a ddgraph and a
coverage criterion is not necessarily unique.

How can spanning sets be useful in coverage testing? We
discuss several potential applications.

Dynamic evaluation of test thoroughness. Coverage criteria
are best used as hints to how and where test data are
inadequate in exercising a program. In this sense, the ratio
between the entities covered over the total number of
entities in the program provides a measure of the thorough-
ness of the executed test cases. While testing is ongoing,
another significant measure is provided by the ratio between
the covered entities in a spanning set over all the entities in
it. In fact, by measuring coverage over the spanning set, the
tester can get a more precise estimate of howmuch testing is
still necessary. For example, if there is only one uncovered
entity in the spanning set, one test case that covers it will be
sufficient to obtain full coverage, irrespective of the measure
of coverage over the entire set of entities.

Bound on the number of test cases. Spanning sets of entities
are also useful for estimating the cost of coverage testing.
More precisely, the cardinality of a spanning set of entities
can be used to estimate the number of test cases needed to
satisfy a selected coverage criterion. In fact, the cardinality
of a spanning set of entities coincides with the number of
test cases needed, in the case that a different test path is
taken to cover each entity in the spanning set. In this sense,
this number can be regarded as a “safe” bound on the
number of test cases needed to satisfy a selected strategy.
This is not to say that a tester could not, or should not, find
larger test suites (and clearly the more test cases the better).

Estimation of the number of test cases. One execution path
may generally cover more than one unconstrained entity.
Thus, the actual number of test cases depends on how the

unconstrained entities are combined into complete paths.
For example, we could find the theoretical minimum
number of test cases by combining into complete paths as
many unconstrained entities as possible. But, this minimum
bound would not be useful in practice. Indeed, the more
complex (i.e., the longer) a path, the more likely it is that the
path is infeasible [5]. It is a commonly accepted fact that the
real problem of any path-oriented test strategy is to derive
executable test paths. Thus, in [9], we present a method for
combining unconstrained branches to form paths that are as
short as possible and introduce a meaningful bound to the
number of test cases needed for the all-branches criterion.
Following a similar approach, an entire family of meaningful
lower bounds for estimating the cost of testing according to
a family of coverage criteria could be settled.

Targeting test case selection. In practice, the coverage
requirement is not usually satisfied on the first attempt with
an initial test suite, and the tester needs to select more test
cases. The information on achieved coverage is used by the
testers for highlighting those programs parts that have been
neglected by the executed test cases. In such a situation,
unconstrained entities can be useful for guiding test-case
selection, while keeping the cost of testing low. In fact, the
generation of the additional test cases can be targeted to
covering a spanning set of entities. Since a spanning set may
be smaller than the whole set of entities in a program, the
effort of test-case generation for incrementing coverage can
be decreased considerably.

Avoiding redundant test cases. Focusing test-case genera-
tion on the coverage of a spanning set of entities helps to
avoid selection of redundant paths. In fact, in the common
situation where more test paths must be selected to increase
coverage, the most useful paths are those that cover at least
one as yet uncovered unconstrained entity. If a test path p is
chosen that only covers already selected unconstrained
entities, p will eventually be a redundant path.

Automating test path generation. Spanning sets of entities
can also be used to help automate the generation of test
paths. In [7], we present an algorithm that constructs a set of
paths that covers a spanning set of arcs of a given ddgraph
for the all-branches criterion. The algorithm has been
generalized in [8] to build a set of paths that covers a
spanning set of entities for a generic coverage criterion. As
with any static path-generation method, the set of paths
found by the algorithm might include infeasible paths.
However, the algorithm uses a heuristic technique that
should reduce the impact of this problem.

5 FINDING A SPANNING SET OF ENTITIES

We show how to find a spanning set of entities for a given
ddgraph G and a given coverage criterion c. We use the
subsumption relationship among entities, defined in
Section 4. Subsumption is a preorder.4 In fact, it is obviously
reflexive and transitive. Given a ddgraph G and a coverage
criterion c, we can then construct a digraph that represents
the subsumption relationship. The nodes in the digraph are
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the entities for G and c. There is an arc from node E2 to

node E1 in the digraph if and only if E1 subsumes E2. The

digraph thus obtained is called the c-subsumption digraph of

G and is denoted by ScðGÞ.
Clearly, if a c-subsumption digraph includes a strongly

connected component5 M, whenever an entity in M is

covered by a test path, then all the entities in M are covered

by this same test path (i.e., each entity in M subsumes every

other entity inM). Hence, any entity in a strongly connected

component M of ScðGÞ may be chosen to represent the

whole set of entities inM. We shall refer to the entity chosen

to represent a strongly connected component M as the

representative of that component, written as repðMÞ.
By reducing the strongly connected components of a

subsumption digraph, we can obtain a directed acyclic

graph. We merge all the nodes in each strongly connected

component M to a single node nM . The digraph obtained is

called a reduced c-subsumption digraph and is denoted by

RcðGÞ.
We now consider the leaves of the reduced c-subsumption

digraph (i.e., the nodes with no exit arc) and select one

representative of each. Let U be the set of c-entities formed in

this way. It can be proven that U is a spanning set of

(unconstrained) entities (i.e., the following theorem holds).

Theorem 1. Let G be a ddgraph, c be a coverage criterion, and

RcðGÞ be the reduced c-subsumption digraph of G. Let U be a

set of c-entities of EcðGÞ representing the leaves in RcðGÞ
(i.e., each entity in U represents a leaf in RcðGÞ and all the

leaves in RcðGÞ have a representative entity in U). Then, U is

a spanning set of entities for G and c.

The proof is given in [18].
For example, we present the unique spanning set of

entities for the ddgraph GSORT ¼ ðNSORT ;ASORT Þ and all-

branches criterion, Uall-branchesðGSORT Þ. It can be obtained by

selecting the representatives of the leaves of the reduced

all-branches-subsumption digraph for GSORT in Fig. 3a (i.e.,

Uall-branchesðGSORT Þ ¼ fe4; e5g).
The unique spanning set of entities for the ddgraph

GSORT and all-statements criterion can be obtained by

selecting the representatives of the leaves of the reduced

all-statements-subsumption digraph for GSORT in Fig. 3b

(i.e., Uall-statementsðGSORT Þ ¼ fe4g).
A spanning set of entities for GSORT and the all-uses

criterion can be obtained by selecting the representatives of

the leaves of the reduced all-uses-subsumption digraph for

GSORT in Fig. 4. In this case, two spanning sets of entities

exist since either dua can be chosen as the representative of

the leaf containing duas ½e2; e5; index� and ½e2; e5;mymax�:

Uall-usesðGSORT Þ ¼ f½e1; e8; sortupto�; ½e2; e5; index�;
½e2; e4; index�; ½e2; e7; index�; ½e1; e5; a�;
½e7; e5; a�; ½e1; e4; a�; ½e7; e4; a�;
½e4; e5;mymax�; ½e4; e4;mymax�g;

U 0
all-usesðGSORT Þ ¼ f½e1; e8; sortupto�; ½e2; e5;mymax�;

½e2; e4; index�; ½e2; e7; index�; ½e1; e5; a�;
½e7; e5; a�; ½e1; e4; a�; ½e7; e4; a�;
½e4; e5;mymax�; ½e4; e4;mymax�g:

Note that to simplify Figs. 3a, 3b, and 4, we have drawn
only the significant arcs.

The procedure FIND-A-SPANNING-SET-OF-ENTITIES
ðG;EcðGÞÞ below summarizes the steps for finding a
spanning set of entities UcðGÞ for a ddgraph G and a
coverage criterion c:

Procedure FIND-A-SPANNING-SET-OF-ENTITIES

(G: ddgraph; EcðGÞ: set of entities): set of

entities;

1. for each E1; E2 2 EcðGÞ, E1 6¼ E2,

do SUBSUMPTION(E1; E2; G);

2. construct ScðGÞ ¼ ðVScðGÞ; EScðGÞÞ;
3. construct RcðGÞ ¼ ðVRcðGÞ; ERcðGÞÞ;
4. U ¼ frepðMÞ: M is a leaf of RcðGÞg;
5. return(U).

The complexity analysis of FIND-A-SPANNING-SET-

OF-ENTITIES is presented in [18]. It is polynomial on the

number of entities (but note that it obviously becomes

exponential on the number of arcs for the all-paths

criterion).

6 THE SUBSUMPTION RELATION

In the procedure FIND-A-SPANNING-SET-OF-ENTITIES,

Steps 2, 3, and 4 do not depend on the type of entities

manipulated. On the other hand, evaluating whether entity

E1 subsumes entity E2 (Step 1) depends on the notion of

“coverage” associated with the particular type of entities

considered (see Definition 3). Thus, we need to implement a

specific SUBSUMPTIONðE1; E2; GÞ procedure for each

possible type of entity (arc, dua, class of duas, and path).

We underline that the implementation of this procedure

does not depend on the particular coverage criterion c, but

only on the type of entity considered. However, the input to

the procedure is the set EcðGÞ, which is determined by c.

For example, “Arc” is the type of entity associated with the

all-branches and all-statements criteria; hence, we can use

the same SUBSUMPTION procedure for both criteria.

MARR�EE AND BERTOLINO: USING SPANNING SETS FOR COVERAGE TESTING 979

Fig. 3. Reduced subsumption digraph for GSORT and all-branches and

all-statements criteria, respectively.

5. A strongly connected component in a digraph is a set of nodes such
that the two nodes in any pair reach each other.



However, depending on the criterion considered, we give

as an input to the procedure either Eall�branchesðGÞ or

Eall-statementsðGÞ.
In the following sections, we will discuss how the

SUBSUMPTION procedure can be implemented when the
entities considered are, respectively, arcs or duas. Sub-
sumption between classes of duas and between paths are
omitted for brevity, the interested reader is referred to [18].
We first need to provide some more definitions and
concepts.

6.1 More Definitions

We introduce the notion of a sub-ddgraph for a given
ddgraph G and two given arcs in G. We denote the sub-
ddgraph of a ddgraph G from arc ea to arc eb as the
sub-ddgraphðG; ea; ebÞ. Intuitively, a node (or arc) in G is in
sub-ddgraphðG; ea; ebÞ, if there exists a path from HEADðeaÞ
to TAILðebÞ in G including such a node (or arc), but not
including ea or eb. A sub-ddgraph is a ddgraph.

The sub-ddgraph G� of a ddgraph G from arc ea to arc eb
can be derived by visiting G. A procedure SUB-DDGRAPH
which, given a ddgraph G ¼ ðN;AÞ and two arcs ea and
eb 2 A, returns G� ¼ SUB-DDGRAPHðG; ea; ebÞ in OðjAjÞ
time is given in [7]. First, we find the arcs reachable from
the HEAD of arc ea not using arc ea. Then, from the set of
arcs found in the first step, we select those that reach the
TAIL of arc eb not using arc eb. In this process, we might
obtain an intermediate digraph that is not a ddgraph
because it might contain nodes with just one arc entering it
and just one arc leaving it, that by Definition 1 cannot exist
in a ddgraph. Therefore, the SUB-DDGRAPH procedure

uses the REDUCE procedure, which transforms a digraph

G0 into a ddgraph G�, by eliminating all such nodes.

REDUCE eliminates each node n in the intermediate

digraph G0 with indegreeðnÞ ¼ 1 and outdegreeðnÞ ¼ 1

(which cannot belong to G�) by substituting the arc ei
entering n and the arc ej leaving n with the arc ei�j in G�.

Since each arc can be reduced at most once, REDUCE can be

implemented in OðjAjÞ time.
A well-known relation from graph theory is dominance

[15]. Dominance imposes a partial ordering6 on the nodes or

arcs of a flowgraph. In particular, we are interested in

applying the dominance relation to the arcs of a ddgraph.
Given a ddgraphG and its entry arc e1, an arc e0 dominates

an arc e if every path p on G from e1 to e contains e0.
Several algorithms have been given in the literature to

find the dominator nodes in a digraph, see, for example,

[17]. Such algorithms can be easily adapted to find the

dominator arcs in a ddgraph.
The immediate dominator e0 of an arc e is a dominator of e

with the property that any other dominator of e also

dominates e0.
The dominance relation between the arcs of a ddgraph G

can be represented by a rooted tree whose nodes represent

the ddgraph arcs. This is called the dominance tree DT ðGÞ.
The root of this tree is the entry arc e1. There exists an arc

(e; e0) between two nodes e and e0 in the dominance tree, if e

is the immediate dominator of e0. Note that each arc (different

from e1) has only one immediate dominator.
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Fig. 4. Reduced subsumption digraph for GSORT and all-uses criterion.

6. A partial ordering is a reflexive, asymmetric, and transitive relation
between elements.



The characteristic path pc of a ddgraph G is defined as the

largest sequence of (possibly not adjacent) arcs such that,

for any complete path p ¼ e1; e2; . . . ; eq in G, pc ¼ ei1 ; . . . ; eir ,

such that fi1; . . . ; irg � f1; . . . ; qg and for j ¼ 1; . . . ; r� 1 :

ij < ijþ1. In other words, the arcs in the characteristic path

of G are included within any complete path of G.
The characteristic path pc of G can be obtained on the

dominance tree of a ddgraph G very easily. This path

coincides with the path on the tree that goes from the root,

representing the entry arc e1, to the leaf representing the

exit arc, ek. We use the characteristic path to implement the

subsumption relation between duas.
Next, we introduce the “symmetric” relation of dom-

inance, called postdominance. This relation appears in the

literature with different names (e.g., inverse-dominance [11]

or implication [7]).
Given a ddgraph G and its exit arc ek, an arc e0

postdominates an arc e if every path p on G from e to ek
contains e0.

The postdominance relation in a ddgraph G with entry

arc e1 and exit arc ek can be found as the dominance relation

in the ddgraph G0 having entry arc e01 and exit arc e0k, where:

each arc e0 in G0 is obtained by reverting a corresponding

arc e in G (i.e., HEADðe0Þ ¼ TAILðeÞ and TAILðe0Þ ¼
HEADðeÞ), e01 corresponds to the reverse arc of ek and e0k
corresponds to the reverse arc of e1.

6.2 Implementation of
SUBSUMPTION-BETWEEN-ARCS

The procedure to check whether an arc e subsumes an arc

e0 (i.e., whether every complete path that covers e covers

also e0) is simple and exploits the following result (the

proof is in [18]):

Theorem 2. Let e and e0 be two arcs in a ddgraph G, with entry

arc e1 and exit arc ek. Then, e subsumes e0 if and only if e0

dominates or postdominates e.

Therefore, in order to implement SUBSUMPTION-

BETWEEN-ARCS(e; e0; G), we can just check whether e0

dominates or postdominates e.

6.3 Implementation of
SUBSUMPTION-BETWEEN-DUAS

Let T1 ¼ ½d1; u1; X1� and T2 ¼ ½d2; u2; X2� be two duas in a

ddgraph G. For space limitations, in this section, we

summarize only the method used to check whether T1

subsumes T2 (i.e., whether every complete path that covers

T1 covers also T2). The complete procedure is in [18]. In

summary, the procedure consists of the following steps:

1. We first select all paths in G that cover T1. We do this
by constructing an intermediate ddgraph G � .

2. Then, we check whether every path that covers T1 in
G also traverses d2 and u2. This can be done by
checking whether d2 and u2 are in the characteristic
path (see Section 6.1) of G � .

3. Finally, to find out whether every path in G � covers
T2 (i.e., not only it traverses d2 and u2, but is also def-
clear in between), we check whether no arc e in the
paths from d2 and u2 contains a definition of X2.

7 EMPIRICAL EVALUATION

Spanning sets are not a new test coverage criterion. They
are proposed as a technique that can be incorporated within
the customary procedures for coverage testing to make
them more efficient, at low, if any, additional cost.

We empirically evaluated the efficiency of spanning sets
within a real-world testing process, for the branch coverage
criterion [10]. Beyond some difficulties with real-world
constraints, the results were encouraging. In brief, in that
experiment, we got two interesting conclusions. The first
conclusion was that, if test-case selection is guided by the set
of unconstrained branches, the performance of a beginner in
terms of time employed to reach a fixed coverage is
comparable to that of an expert tester. The second
conclusion was that spanning sets provide a good bound
for the number of test cases needed to complete coverage.
How this bound is defined is presented in [9], while the
experimental results are described in depth in [10].

However, the purpose of testing is to find bugs, not to
reach (more or less efficiently) some coverage goal. Cover-
age analysis is a means to systematically sample all
program portions and to discover potential weak points in
a test suite. But, no compelling relationship between test
coverage and test effectiveness in fault detection has been
established. One natural question then is whether using
spanning sets to make testing cheaper might produce, as a
negative effect, a significant loss in the fault-detection
effectiveness.

Some recent papers [24], [22] have investigated a related
question: whether minimizing a test suite while keeping its
coverage constant affects the test suite’s fault-detection
capability and if so to what extent. Such studies showed
that the effectiveness reduction caused by minimization
varies with the degree of coverage reached: It can be
irrelevant for low coverage degrees, but may increase
significantly when coverage is high. Our case is different, in
that we do not minimize an existing test suite, but use
spanning sets to generate a priori a test suite that is minimal
(i.e., no test path in it can be eliminated without reducing
the coverage below 100 percent).

In the cited papers, the authors compared the faults
detected by the original test suite and the fraction of them
that are still found by the minimized suite. Here, we should
compare the sets of faults found by pairs of different test
suites generated one using the spanning set approach and
another without (i.e., using a conventional approach).

To address this issue, we have conducted a laboratory
experiment in which we simulated the usage of spanning
sets as a means to make coverage testing more efficient. As
subjects of the experiment, we used the HR versions of the
seven Siemens programs [22]. The description of the
original programs and their use in empirical studies are
given in [16]; the HR variants of these programs, that we
use here, have been produced by the Aristotle Research
Group (they can be obtained on line from the Aristotle
Analysis System Download page [12]). In Table 2, we report
some summary information of these programs and, for a
more detailed description, we refer to the above cited
sources. The advantage of using such subjects is that they
come documented with not only many (thousands) test
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cases from which the test suites that satisfy a test criterion
can be drawn, but also with many realistic faults: Each
program has several versions, each containing one fault.
They can thus be used for evaluating the fault-detection
capability of test techniques.

In the experiment, we simulated a situation in which,
using an arbitrary criterion for test selection, an initial
coverage C0 has been obtained. This coverage is deemed not
sufficient, and more test cases must be run until a target
coverage CT > C0 is reached. To select the additional test
cases, the simulation experiment proceeded along two
independent observations: In one case, the baseline, the
additional test cases were selected without considering
spanning sets; in the second case, the additional test cases
were selected so that each new test case covers one as yet
uncovered unconstrained entity.

The method to use as a baseline for comparison was a
critical decision. In practice, there exists no standard
approach for coverage testing, and test derivation is done
mostly manually. In such a context, it is likely (and it has
also been empirically observed) that the tester’s expertise
and intuition can considerably influence the performance of
the testing. To obtain generally valid results, we decided to
draw the additional test cases at random. This decision can
be justified by the following reasoning: as we want to assess
in the experiment the loss in fault-detection effectiveness
caused by the reduction of the number of test cases, then a
random approach to test-case selection provides the worst-
case base of comparison because, for a fixed coverage, it
obviously provides on average larger test suites than those
that would be provided by a tester.

For each of the two cases, we measured:

. How many test cases were taken cumulatively to
obtain coverage CT (i.e., the initial test cases plus the
additional ones); we call such a measure the test size,
or TS.

. How many faults were found in total, or NF.

We ran the experiment considering for CT several
progressive increments of 5 percent from C0, with
C0 ¼ 50 percent, up to CT ¼ 100 percent. That is, we
measured TS and NF at CT ¼ 55 percent, CT ¼ 60 percent,
etc. For each value of CT , we repeated the observation
several times to obtain in the two cases (with and without
spanning sets) mean values for TS and NF that were
statistically valid within a 95 percent confidence interval.

The simulation experiment was conducted for the two
criteria of all-branches and all-uses coverage. The detection
of spanning sets was done partly with proof-of-concept
tools, and partly manually (for the duas). Therefore, the
results for spanning sets of duas were obtained only for five
of the subject programs. In Tables 3 and 4, we show the
measures obtained at 65, 75, 85, 90, and 95 percent of
coverage for the two experiments (all-branches and all-uses,
respectively). The tables include three pairs of columns: In
each pair, SS refers to the observations with spanning sets
and RA to the observations without spanning sets. The first
pair of columns gives the total number of faults detected
NF, the second pair the cumulative number of executed test
cases TS, and the third pair refers to the fault-detection
density, denoted by FD. FD is obtained as the ratio7

between the faults found and the number of test cases. FD
can be regarded as a rough measure of the effectiveness of
the test suites (with the caution that then we are comparing
the effectiveness of a random approach vs. spanning sets).
All the values in the tables are mean values significant at
95 percent of the confidence interval. We applied the F-test
(well-known in statistics [25]) to analyze the significance of
the showed differences; when the differences were statis-
tically significant (i.e., according to the F-test), the relative
pairs of cells are reported with light-gray background; the
white cells did not show significant differences.

The results are quite consistent with previous studies
[24], [22]: In fact, for coverage levels below 85 percent, no
(statistically) significant difference in the number of faults
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mean values of NF and TS shown in the tables.

TABLE 2
The Subject Programs



found with and without spanning sets is observed.
However, as also observed in [24], [22] relatively to
minimization, as coverage increases, the difference in the
number of faults found grows (in favor of random
selection), although only at a coverage CT of at least
95 percent these differences become statistically significant
for almost all subject programs (except Print token 2). On
the other hand, the random approach takes on average a
higher number of test cases to reach the same coverage as
the spanning set approach, with most differences already
statistically significant from CT ¼ 85 percent. Notably, if we
look at the fault-detection density, we see that it does not
change significantly until 90 percent in Table 3 and

85 percent in Table 4 and for higher values is significantly
better for spanning sets. So, for instance, in branch cover-
age, we observe that at CT ¼ 95 percent the spanning-set
suites for Replace find on average 5.6 faults, against the 18.8
found by the random suite, but the former consists on
average of 16.9 test cases, while the latter of 113.7 test cases.
In fact, FD for this example holds 33.0 percent for SS,
against the 18.2 percent for RA.

These results seem quite encouraging. We started the
experiment to investigate whether spanning sets produce a
significant loss in fault detection. The results we obtained
showed that there is no relevant loss when coverage is
below 85 percent, while, for higher values, the loss
increases, but, at the same time, the number of test cases
employed for the random approach grows so much that the
fault-detection density per test case either remains the same,
or is even higher for spanning sets.

What does this mean in practice? The message is NOT
that doing fewer test cases is better than doing more. All the
test cases that can be afforded should be done because any
single test case could be useful to discover new bugs.
However, the results observed for the fault-detection
density seem to imply that if only a limited number of test
cases can be executed, then, by using spanning sets, we can
obtain test suites that are more effective not only at
improving coverage, but also at finding faults. Clearly,
further experimentation is needed to generalize these
conclusions.
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8 CONCLUSIONS AND FUTURE WORK

We have introduced the concept of a spanning set of entities
for coverage testing (i.e., a minimum subset U of entities
such that coverage of U guarantees coverage of the entire
set). We have provided a method to derive a spanning set
that is parameterized in the subsumption relation between
entities. The method uses simple static analysis techniques
and is general for the entire family of coverage criteria. We
have suggested several applications of spanning sets. In
particular, they are useful for reducing and estimating the
number of test cases and for evaluating test-suite thorough-
ness more effectively. We have also investigated empirically
the fault-detection effectiveness of test suites derived using
spanning sets.

This paper is meant to introduce the novel notion of
spanning sets into the testing theory literature. Many
interesting extensions can be foreseen on the research side.8

Indeed, the development of spanning set theory at the unit
level of testing is merely the first step. The real payoff can
be perceived with the application of spanning sets to the
interprocedural level; in other words, how the notion of
spanning sets can be extended to reduce and estimate
system-level regression test suites.

Much work also remains to be done to validate the
practical value of our results. It is our hope that testing
practitioners, by incorporating our spanning set-based
techniques into their test processes, will want to continue
gathering more empirical evidence to confirm the useful-
ness of spanning sets.
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