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Abstract Since some few years, classification in music research is a very broad and

quickly growing field. Most important for adequate classification is the knowledge of

adequate observable or deduced features on the basis of which meaningful groups or

classes can be distinguished. Unsupervised classification additionally needs an adequate

similarity or distance measure grouping is to be based upon. Evaluation of supervised

learning is typically based on the error rates of the classification rules. In this paper we

first discuss typical problems and possible influential features derived from signal anal-

ysis, mental mechanisms or concepts, and compositional structure. Then, we present

typical solutions of such tasks related to music research, namely for organization of

music collections, transcription of music signals, cognitive psychology of music, and

compositional structure analysis.

Keywords Classification in Musicology · Automatic Transcription · Music Psychol-

ogy · Organization of Music Collections · Compositional Structure Analysis

1 Introduction

Statistics in music research is since recently a very broad and quickly growing field

applying statistical methods to various problems in music information retrieval. In this

paper we mainly concentrate on the application of classification methods. Classification

can be based on unsupervised learning (clustering) or supervised learning. Unsuper-

vised learning, on the one hand, does not utilize any information about classes. It finds

groups that emerge from the properties and the notion of similarity used to describe
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music. Supervised learning, on the other hand, utilizes a correct grouping on a certain

learning set and is aiming at a classification rule for objects with data to be observed

in the future.

Most important for adequate classification is the knowledge of observable or de-

duced features on the basis of which meaningful groups or classes can be distinguished.

Additionally, unsupervised classification needs an adequate similarity or distance mea-

sure the grouping is to be based upon. Supervised learning needs relevant classes ob-

servable in a learning data set. Evaluation of supervised learning is typically based on

the error rates of the classification rules.

In this paper we first discuss typical problem types and corresponding influential

features derived from signal analysis, mental mechanisms or concepts, and composi-

tional structure (see section 3). Then, we present typical solutions for classification

tasks related to music research, as

– organization of music collections,

– transcription of music signals,

– cognitive psychology of music, and

– compositional structure analysis.

Let us start with some motivation for the usefulness of these four tasks and an

overview on the sections of this survey.

Organization of music collections: Collections of recorded musical pieces are

often organized by categories such as genre, artist, and album. This information is

often manually assigned to pieces, e.g. in the detailed analysis of music by the Music

Genome Project (http://www.pandora.com). Supervised classification can be used to

determine rules for automatical categorization of unlabelled pieces of music. A new

artist or album can be assigned to a genre in order to list it in the appropriate section

of an online music shop. Unsupervised classification can be used to group (or cluster)

pieces of music together, for example by similarity of their timbre. The distribution of

features like timbre over a collection of music can be used to categorize (Tzanetakis

and Cook 2002), visualize (Pampalk et al 2002; Mörchen et al 2005a), and recommend

(Stenzel and Kamps 2005) music. Audio features suggested to characterize the content

of music pieces are discussed in section 3, proposed similarity measures are discussed

together with solutions to the task in section 4.

Transcription of music signals: Transcription from some recorded or online

performed music into notes is a widely desirable application. Example applications

are: Transcription of folk songs, laymen who try to transcribe music for themselves,

and correcting errors when teaching or practicing to sing or play instruments. The

currently most popular application in the field of transcription is the game SingStar

(http://www.singstargame.com) for the Sony Playstation that allows for Karaoke

singing and shows whether the singer intonated correctly or not.

More formally, the transcription task is the transformation of music audio input

into sheet music. We discuss transcription as a supervised classification problem, where

the correct notes are known in a learning data set (see section 5). In such a problem,

classes correspond to the note pitches and durations as well as the kinds of rests possibly

occurring in the analyzed piece of music. The task is to reproduce the classes in sheet

music by means of audio features of a music time series. The derived classification

rule can be used for future production of sheet music when only the audio signals are

available.
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Cognitive psychology of music: The task of cognitive psychology of music, as

discussed in section 6, is the classification of music-related behavior by means of vari-

ables related either to musical features or to mental mechanisms, skills or experience,

such as memory, emotions, mental skills, or mental representations as introduced in

section 3.3. Such tasks can be unsupervised, as with finding groupings in a psychologi-

cal perception space, or supervised, as with finding the classification rules for observed

abilities or properties.

Compositional structure analysis: Grouping music by their compositional struc-

ture has become increasingly popular in recent times, largely due to the increasing

amount of music that is digitally available in a symbolic encoding form (e.g. MIDI,

EsAC, kern or other codes that encode notes as the basic musical events).

One task within the field of compositional structure analysis is to group music

pieces together according to stylistic criteria. This might be done with the aim to

identify the composer for pieces where the author is unknown (author attribution) or

to explore variability of compositional techniques in a large number of pieces from a

particular composer (stylistic analysis). Classification can be employed in a supervised

way or unsupervised from a more exploratory perspective, depending whether reliable

author or stylistic information is available. Another task in this area is to identify

higher level structures which are not directly observable (e.g. key, meter, form structure

or expectation of musical events) from lower level musical events like pitch class or

duration distributions or distribution of sequences of such events which can be directly

taken from a musical score or other forms of symbolic music encoding (see section 3.2).

Here, classification is mainly supervised, since most higher level features are generally

provided from human annotations. The aim always is to classify music, this time by

their compositional structure. Therefore, the task is similar to the task of organization

of music collections, however, not signal analysis is used for classification but analysis

of compositional structure based on known notes. Section 7 gives a brief overview.

Even though we concentrate on these four fields for lack of space we will not be

able to cover the literature thoroughly because of the huge set of papers published

in the meantime. In section 2 we will sketch some history of the field. In section 3

feature pre-processing is discussed. In the following sections on the four main topics

of the paper, mainly very recent research is discussed in order to characterize current

developments. Also, emphasis is laid more on the underlying problems, corresponding

reference, and software, and on the description of basic ideas and concepts, not so much

on the technical details of the derived methods.

2 History

Let us now give some historic review on pioneering work for classification in music

research. Some milestones are the publications of the German Fucks from the 1950s

and 1960s, which inspired very much the research of the first author of this article

in this field. Indeed, Fucks was one of the first authors proposing characteristics of

music compositions which enable to distinguish between different composers or differ-

ent musical epoches, respectively. Fucks (1963, 1964, 1968) analyzed the structure of

compositions in different music periods by means of statistical methods. For example

the frequencies of transition intervals between neighboring or more distant tones for

typical composers were analyzed. This way, the highly linear structure of composi-

tions (reduced to the 1st violin) of Beethoven and Bach can be revealed in contrast
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to greater independence of consecutive tones with Berg or Webern. Additional to the

frequency of tone heights and of transition intervals, the frequency distribution of tone

lengths, intervals of parallel tones, interval pairs as well as accords were analyzed (see

also Fucks and Lauter 1965). Moreover, in order to generate a more general result,

standard deviations of tone heights of many pieces in a music period were computed

and compared over the periods. The result was, in a way, to be expected: the variation

mainly increased from the past to the present. All these results opened a statistical

view on the development of the structure of music compositions over the centuries.

A brief summary of some of his results Fucks published also in English (Fucks 1962).

For other older approaches to describing the compositional structure of music see also

Meyer (1957); Moles (1958, 1971); Steinbeck (1982). Moreover, first visualizations of

genre comparisons were presented, e.g., in Fucks and Lauter (1965), where differences

between different musical epoches were typically visualized by means of scatterplots

with time at the x-axis and various characteristics for musical style at the y-axis, e.g.

standard deviation of the pitches or entropy of pitch classes used in a piece. This

lead to a first simple classification of compositions into musical epoches by means of

characteristics of the compositions.

A very recent book about Statistics in Musicology (Beran 2004) also includes chap-

ters about discriminant analysis, cluster analysis and multidimensional scaling related

to the topic of this paper.

So much about history. Let us now switch to the very presence, and discuss current

classification problems in music research and their solutions.

3 Feature Preprocessing

Several classification problems in music have been introduced and motivated in sec-

tion 1. All these classification tasks can be tackled by utilizing features suggested to

characterize the content of music pieces either from a recorded song or the sheet. Tran-

scription heavily relies on pitch derived from short segments of the audio. Organization

of music collections requires features that describe a complete song. Classification of

musical behavior additionally relies, e.g., on mental characterizations. Compositional

structure analysis mainly relies on musical properties derived from sheet music.

Indeed, preprocessing of the original time series appears to be the most important

step in problem solving. In general, direct modelling in time space is not successful for

solving the classification problems in this paper. Therefore, preprocessing is dedicated

a whole section, and will also re-appear in later sections.

The following sections describe preprocessing methods for deriving numeric mu-

sic features suitable for the solution of our classification tasks: short-term, long-term

and semantic audio-features as well as compositional features and features related to

musical skills and mental mechanisms.

3.1 Audio features

Let us first develop characteristics of audio data adequate for building groups of music

pieces which are similar in some sense (like for the organization of music classifications

in section 4) or for classification rules for the prediction of certain properties of music

(like pitch in section 5). The recorded audio data of polyphonic music is not suited
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for direct analysis with data mining algorithms. High quality audio data needs a large

amount of memory and contains various sound impressions, such as various instru-

ments, percussion, and singing, that are overlayed in a single (or a few correlated) time

series.

In Figure 1(a) we show the amplitude of the raw audio data from five seconds of a

recording of the song I Shot The Sheriff by the artist Bob Marley. Raw data is given

in Wave format (Microsoft Corporation 1991) in CD quality, i.e. with sampling rate

44100 Hertz in 16 bit format (i.e. 216 possible values between -32767 and 32766). The

amplitude varies with high frequency around the value zero. At about 2.2 seconds we

marked a window of length 23ms that will be used below.

Such time series cannot be compared directly in a meaningful way. A common

technique is to describe the sound by extracting audio features at different temporal

resolutions. We group the features proposed for recorded audio data in the literature

into three categories: Short-term features that are extracted from very short time win-

dows during which the sound is assumed to be stationary. These features describe

elementary sounds such as a drum beat or a part of a tone played by an instrument

for example by measuring the dominant pitch within a few ms of recorded music. Re-

peating the feature extraction for many consecutive time windows generates a time

series of feature values that can be used to detect structure within a musical piece or

derive features that describe a longer segment of sound or even a complete song. This

builds another type of feature, the so-called long-term features. Sometimes it is desir-

able to understand why a classifier placed a song in a category or what makes songs

in a cluster similar to each other. For example when retrieving musical pieces from a

large collection, the user might want to emphasize his preference for certain tempo,

instruments, or gender of the singing voice. We therefore further distinguish semantic

features, i.e., features that have an easily understandable interpretation and can thus

be utilized directly in end-user applications.

3.1.1 Short-term features.

In this section we survey the plethora of methods that have been proposed to generate

numerical features from a short segment of audio data, typically 23-46ms corresponding

to a window size of 512 observations at sampling rates of 11025kHz or 22050kHz. An

enlarged version of the 23ms window from Figure 1(a) is shown in Figure 1(b). At

this scale the time series can be analyzed visually. There seems to be a pattern that is

repeating twice. Almost all authors use windows that overlap by 50% as a compromise

between temporal resolution and redundancy. If the overlap is large, neighboring frames

have very similar sound characteristics leading to redundancy. If the overlap is too small

short audio events might not be properly represented if they fall into the border region

of neighboring frames.

The most simple short term features are applied in the time domain. The volume

can be determined by summing up the absolute or squared values of the amplitudes

(Li et al 2001). The low energy feature is calculated as the percentage of amplitudes

whose absolute value is below the root mean square (RMS) of all amplitudes in the

window (Tzanetakis and Cook 2002; Mörchen et al 2005b). The zero-crossing feature

counts the number of times the sign of the amplitudes changes (Li et al 2001). This

is correlated with the proportion of high frequencies in the spectrum (Mörchen et al

2005b).
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(a) Five seconds of raw audio data. The two
neighboring vertical lines mark one window of
23ms used on the right hand side.
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(b) 23ms of raw audio data taken from the
window marked on the left hand side.

Fig. 1 Raw audio data.
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(a) 23ms of raw audio data from Figure 1(b)
weighted with a Hann window.
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(b) Frequency spectrum calculated with the
FFT from the signal in Figure 2(a).

Fig. 2 Hann window and its FFT.

Other frequency related features are based on a preliminary Fast Fourier Transfor-

mation (FFT) to obtain a representation of the audio signal in the frequency domain.

Such approaches assume that the signal is periodical. To avoid border effects each

window is typically weighted with a Hann filter (Oppenheim et al 1999) as shown in

Figure 2(a) in order to attain that the values of both borders are zero. The frequency

spectrum calculated with the FFT in Figure 2(b) shows the magnitudes of the frequen-

cies that are sampled by the FFT. This can be interpreted as an empirical probability

distribution in the frequency space from which other data features are derived.

The frequency spectrum as obtained by the FFT has a rather high resolution of

frequency bins and puts equal emphasis on all frequency ranges. Motivated by the

success in speech recognition music researchers have used psycho-acoustic transforma-

tions of the spectral content (Logan 2000) to summarize frequencies into larger bins

(so-called bands) and emphasize frequency ranges that the human ear is most sensitive

to. The most popular transformation is the Mel filter bank (Stevens and Volkmann

1940; Rabiner and Juang 1993) consisting of a set of filters with different weights and
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(a) Mel filter bands in the frequency space.
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(b) Magnitudes of Mel filters applied to spec-
trum in Figure 2(b).

Fig. 3 Mel filter.

bandwidths each summarizing a different region of the Mel-spectrum

Mel (f) = 2595 · log10

(
1 +

f

700

)
(1)

where f is the frequency in Hz. Figure 3(a) shows the Mel filters with 50% overlap.

Filters in the lower frequency range are much wider and have larger amplitudes. In

Figure 3(b) the magnitude of the first 12 Mel bands when applied to the FFT spectrum

from Figure 2(b) are displayed. They describe the spectral content of the signal in a

more compact way that also takes the human auditory system into account.

Alternative transformation of the frequency spectrum include Bark (Zwicker and

Stevens 1957), Equivalent Rectangular Bandwidth (ERB) (Moore and Glasberg 1996),

and the well known octave scale, all of which have been used in Mörchen et al (2005b)

for audio feature generation.

Performing the described steps for many short time windows taken from an audio

recording leads to a multivariate time series of Mel magnitudes. Each value of the

feature time series describes a short segment of the original audio time series. When

windows of length 23ms and 50% overlap of consecutive windows are used the sampling

rate of the feature time series is about 85Hz. In Figure 4(a) we show the time series of

Mel magnitudes extracted from the five seconds of audio data from Figure 1(a). As can

be seen in this example, the amplitudes of neighboring frequency bands are typically

highly correlated. Note that Figure 3(b) shows one column of Figure 4(a), i.e. the 12

Mel filters at one time period.

The so-called Mel Frequency Cepstral Coefficients (MFCC) are obtained from the

Mel spectrum by applying the Discrete Cosine Transform (DCT)

yk = wk

N∑
n=1

xn cos
π(2n− 1)(k − 1)

2N
, k = 1, ..., N, (2)

w1 =
1√
N
, wk =

√
2

N
, k = 2, ..., N,

where k is the index of the DCT coefficient and x = (x1, ..., xN )′ is the N-vector of the

logarithms of the amplitudes measured by the Mel band filters.
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(b) Magnitudes of MFCC coefficients (cf. (2)).

Fig. 4 Magnitudes of N = 12 Mel filters and MFCC coefficients of 23ms windows of data in
Figure 1(a).

The resulting series of coefficients is called the cepstrum (an anagram of spectrum).

Sometimes the Inverse Fourier Transform is used instead of the DCT. The time series

of the first 12 MFCC calculated from each spectrum in Figure 4(a) are shown in Fig-

ure 4(b), where formula 2 is applied to each column of Figure 4(a). This transformation

decorrelates the time series similar to applying principal component analysis but has

the advantage to be independent of the data.

The above spectral features are solely based on frequencies and ignore the knowl-

edge about the western musical scale used in many recorded pieces. The chroma vector

of a spectrum is calculated by summing up the energy of each semitone over all octaves

(Wakefield 1999; Goto 2003) indicating the dominance of this pitch. By normalizing

the length of this vector to one the volume information can be removed.

3.1.2 Long-term features.

Long-term features describe a long segment of a recorded song or even the complete

song. They can directly be used with off-the-shelve supervised and unsupervised algo-

rithms to, e.g., classify music collections. Long-term features can be generated directly

from the original audio data or more commonly from a time series of short term fea-

tures.

This latter approach has been followed by Mörchen et al (2006b, 2005b) who present

a systematic study of statistical and time series analysis methods for summarizing

short-term feature time series in order to obtain long-term features. First, for each

song a multivariate time series with a lot of short-term features was generated. Then,

a large set of statistics was combined with each short-term feature to generate a huge

number of potentially useful long-term audio features. The features that were best able

to separate several manually selected different sounding groups of music were identified

in a supervised process and then used for unsupervised classification of other songs. In

Mörchen et al (2006a) logistic regression with the lasso method was used to select a

small number of features that can collectively describe certain aspects of music well.

Many of the statistics used by Mörchen et al had been used before in one way or the

other and will be described below.
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Most authors only use the moments or other descriptive statistics of the empirical

probability distribution as a summary of short-term feature time series (e.g. Tzanetakis

and Cook 2002; McKinney and Breebaart 2003; Lidy and Rauber 2005). In Mörchen

et al (2006b) trimmed versions of the first four moments were used as well to de-

emphasize the influence of outlying values that represent only small portions of the

song.

A simple way to consider the temporal evolution of the short-term feature values is

to use the moments of the 1st and 2nd order differences (e.g. Aucouturier and Pachet

2004). The first use of temporal statistics as long-term features for classification seems

to be in Lambrou et al (1998) where entropy and correlation are mentioned but no

further details are given. The modulation energy of short-term features was measured

in McKinney and Breebaart (2003) by applying the FFT to the feature time series and

calculating the energy in three frequency bands motivated by psycho-acoustics: “1-2Hz

(on the order of musical beat rates), 3-15Hz (on the order of speech syllabic rates) and

20-43Hz (in the lower range of modulations contributing to perceptual roughness)”. In

Lidy and Rauber (2005) a histogram with 60 bins for the modulation energy is used. In

Mörchen et al (2006b) the autocorrelation function, the cepstrum, and methods from

non-linear time series analysis (Kantz and Schreiber 1997) were applied in addition to

the modulation spectrum to obtain even more information about the temporal structure

of short-term features.

The coefficients of autoregressive (AR) models of univariate short-term feature

time series are used in Meng et al (2005) to summarize their temporal structure. This

is extended to the case of multivariate autoregressive (MAR) models in Meng (2006)

and Meng et al (2006).

The above methods lead to features that individually describe some aspect of the

music utilizing the empirical probability distribution of the short-term features or the

temporal structure of the time series. In contrast, some authors use 2-dimensional

histograms to obtain a vector of features that collectively summarize the short term

features. In Pampalk et al (2003a) a histogram indicates how many times one of 50

loudness levels was reached or exceeded in each of 20 frequency bands. The Fluctuation

Patterns (FP) (Pampalk et al 2002) measure the magnitude of the modulation energy

in 60 frequency bins in time series of 23 frequency bands (see Figure 5(a)). In Li

et al (2003) the coefficients of a wavelet transformation of the raw audio signal were

summarized with histograms and the moments were used as features.

The composition of short-term and long-term audio features from signal processing

and statistical operators was formalized in Mierswa and Morik (2005). Each long-

term feature is expressed by an operator tree that is applied to the recorded audio

data. Genetic programming (Koza 1992) is used to generate a set of such features that

perform well for a specified task. In each iteration only the best performing features are

kept. The operator trees are then combined and mutated to generate new, possible even

better features. This process is repeated until the improvement from one generation to

the next is small. Genre categories and personal taste were used to determine the true

class values in this supervised classification study. Some new features based on non-

linear time series analysis were found. Genetic programming had previously been used

in Pachet and Zils (2003) and Zils and Pachet (2004) to find more general descriptions

of acoustic signals. Another supervised approach to generating long-term features is

taken in Arenas-Garca et al (2006). Periodograms of short-term MFCC features are

summarized with Orthonormalized Partial Least Squares (POPLS) tailored to a specific

task, e.g., genre classification.
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(b) Clustering of MFCC coefficient vectors in
Fig. 4(b) by the k-means algorithm with k =
10.

Fig. 5 Long-term features.

Often several short-term features are considered collectively leading to a multi-

variate time series representing a recorded song. Each dimension can be summarized

individually with the methods described above, but many authors instead apply meth-

ods in the high-dimensional vector space spanned by the individual feature dimensions.

In Logan and Salomon (2001), Berenzweig et al (2004), Pampalk et al (2003b), and

Herre et al (2003) vector quantization (VQ) with the k-means clustering algorithm is

used to generate a compact summary of the short-term vectors within a single song by

few cluster centers. In Figure 5(b) ten clusters obtained by the k-means algorithm are

displayed in the 2-dimensional space spanned by the first two principal components of

the MFCC data. The audio segment from Figure 1(a) would be represented by the ten

cluster centers in the 12-dimensional space of MFCC coefficients.

Self-organizing maps Kohonen (1995) are used for VQ in Vignoli and Pauws (2005).

In contrast, Pye (2000), Aucouturier and Pachet (2002), Kulesh et al (2003), Beren-

zweig et al (2004), and Mandel and Ellis (2005) use a Gaussian Mixture Model (GMM)

adapted to short-term data with the Expectation-Maximization algorithm to identify

cluster centers.

3.1.3 Semantic features.

We call audio features semantic if they describe some more or less commonly and easily

understandable properties of music. A Gaussian Mixture Model (GMM) of short term

spectra might represent the timbre of a song by a relatively compact model but it

is not understandable. The tempo of a song, commonly specified as beats-per-minute

(BPM) may be the most widely known semantic music descriptor. It can be estimated

from the audio data with signal processing techniques (Scheirer 1998; Tzanetakis et al

2002c; Alonso et al 2003; Gouyon et al 2006). Most semantic features are long-term

features as they describe longer segments of recorded sound.

In addition to tempo, rhythm is another important dimension of music that is easily

understood by listeners. Many methods for extracting rhythm features are described

in Gouyon and Dixon (2005), Gouyon (2005) and the references therein.
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The pitch distribution can be summarized with histograms (Tzanetakis et al 2002b)

from which the most dominant frequencies can be extracted. The key of the music

involves a combination of dominant frequencies, see Gomez (2004, 2006) and references

therein. More references on estimating the key, e.g. by analyzing the pitch distribution

using histograms, are given in the context of classification of musical structures in

section 7 and in the context of transcription algorithms in section 5.4.

Other semantic concepts that have been explored include estimation of dance-

ability (Streich and Herrera 2005), intensity (Sandvold and Herrera 2005), percussive-

ness (Herrera et al 2004), and complexity (Streich and Herrera 2004). One problem with

these approaches is the generation of data for which the true values of such concepts

are known.

In Pohle et al (2005) several common audio features are evaluated w.r.t. their ability

to express mood, perceived tempo, complexity, emotion, focus, and genre. For each of

these concepts supervised classification was performed with different sets of long-term

features. This worked well for genre and to some extent also for emotion but the results

for the other musical concepts were not satisfying. This suggests that more or different

features are needed to classify music according to these semantic aspects.

Characteristics of the register of instruments or voices (such as basso, tenor, alto

and soprano) have been analyzed by Weihs et al (2006b) using local probabilistic models

for various groups of instruments based on masses and widths of the peaks of so-called

pitch-independent periodograms (Weihs and Ligges 2005).

In Berenzweig et al (2003) a supervised approach is taken to model certain aspects

of musical sound, e.g., genre or the singer’s gender. For each aspect a 2-class feed-

forward neural net is trained with a set of short term feature vectors from positive and

negative example songs. The output of the model as applied to new songs is interpreted

as the strength of this aspect, e.g. a genre, in the music. The resulting feature space is

called Anchor space. Each song is represented by the high-dimensional distribution of

short term feature vectors projected onto this space. The performance for reproducing

human judgement of artist similarity is found to be similar to MFCC (Berenzweig et al

2004). Similarly, West et al (2006) map each short sound segment to a vector indicating

the likelihood of several genres with regression tree models. A single vector obtained

by likelihood smoothing represents a song.

In Mörchen et al (2006a) Bayesian logistic regression (Hastie et al 2001) is directly

applied to long term features to obtain a set of semantic descriptors for a complete song

in a supervised manner. A very large number of features is generated systematically.

A well suited subset of these features is selected automatically via Laplacian priors.

Each regression model predicts the likelihood of a genre or some other musical aspect

for which true semantic values are available. In Figure 6 the predicted likelihood of

belonging to the genre Metal is shown for a set of 700 songs (100 from the genre Metal

and 600 from other genres) that were not used to learn the semantic feature.

Vectors with several such likelihoods can be used to describe a song. Songs from

the same genre as used for training of the features will have one dominant entry. Other

songs might have a more diverse mixture of likelihoods indicating a musical content

that mixes concepts from several different genres. The vectors can be used with off-

the-shelve classification and clustering algorithms to build understandable models for

music information retrieval.
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Fig. 6 Values of a semantic feature describing the likelihood of the genre Metal in songs not
used to train this feature.

3.2 Compositional features

A very different set of features, useful, e.g., for music modelling (see section 7) can be

derived from the symbolic representation of music as represented in scores or MIDI files.

Such features are expected to characterize compositional structure, i.e. the structures

that composers and musicians make conceptual use of when producing music. From

the basic information of pitch value and time value (either in absolute time or in

metrical time relative to a given meter) a large amount of features can be calculated.

These features include the distributions of pitch, pitch interval and duration values over

a time window (Müllensiefen and Frieler 2004a). From these distributions relatively

simple features can be derived, such as pitch range, extreme pitch values, event density

(i.e. number of note events per time unit), leap movement (i.e. the number of all pitch

intervals greater than a third divided by the number of all intervals occurring in a

monody), or rhythmic variability (defined as the standard deviations of the notated

durations), see e.g. Steinbeck (1982); Jürgensen and Knopke (2004); Kranenburg and

Backer (2004).

A second class of features are constructed by comparisons between an empirical

distribution and a distribution from a representative source like experimentally col-

lected expectation values. E.g., Eerola et al (2002) define tonal stability of a melody as

the Pearson correlation between a pitch class profile of that melody and the pitch class

profile for its major or minor key as derived experimentally by Krumhansl (1990).

Another prominent recent trend in music modelling is to use as the basic musical

units not single events like the above mentioned note pitches, intervals, chords or

durations, but time related models of longer sequences of such events known as n-grams

where n is the length of the sequence (see e.g. Downie 2003). This approach builds on

the basic assumption that music is principally produced and perceived in time-ordered

sets of events whether these events be notes of a melody or harmonies in a polyphonic

piece. The notion that music can be explained, taught, and analyzed as formulae, which

specify common or frequent sequences, has been around for several hundred years in

music theory, but only the recent availability of large electronic corpora enables to test

these hypotheses empirically. n-grams are most helpful for predicting the continuation

of a given sequence, be it a melodic sequence of pitches or a sequence of chords. A

prerequisite is a model trained on the frequency counts of sequences of a suitable

corpus of music. The model is then often used to find the pitch or chord value at

position n of a given sequence that has a maximum likelihood given the n-grams of

length n−m of the sequence, where m is a model parameter.
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3.3 Musical skills and mental mechanisms

Features characterizing musical skills, perceptions, and experience as well as general

mental mechanisms and concepts play a major role as predictors in many studies in the

field of music cognition and music psychology. They fall broadly into four categories:

– Variables characterizing different aspects of musical activity and experience. Among

the common variables in this category are practice hours, years of paid music

lessons, time spent listening to music, number of public performances and the

like. These variables are often used as predictors in music tasks where performance

accuracy or speed is measured.

– Variables characterizing mental skills. These variables are often measured via stan-

dardized psychological tests and relate to general cognitive concepts like general

intelligence, (working) memory capacity, reaction time in sensorial tasks, handed-

ness (lateralisation), attention span, reading comprehension (see e.g. Kopiez et al

2006).

– Variables characterizing musical skills. In this category fall musicality tests or iso-

lated subtests of these, performance achievements, hearing, singing, and tapping

accuracy, perfect pitch, etc. (see e.g. Kopiez et al 2006).

– Variables characterizing perceived musical structure. This category contains e.g. al-

gorithms for estimating the perceived similarity between melodies (see Müllensiefen

and Frieler 2004a), or the perceived accent strength of individual notes of a melody

(e.g. Thomassen 1982).

4 Classification in Organization of Music Collections

Let us now switch from features to tasks, and start with organization of music collec-

tions as motivated and defined in the Introduction.

4.1 Musical similarity

In order to organize music collections with unsupervised classification (clustering)

methods (and also for some supervised classification algorithms like k-nearest neigh-

bor) it is necessary not only to have available adequate characteristics (see section 3),

but also adequate similarity measures characterizing neighborhood of different pieces

of music. Musical similarity is not an objective concept. As noted in Ellis et al (2002)

it depends on individual taste, can be described in multiple dimensions, can be asym-

metric and context dependent. They propose to use co-occurrence in playlist as one

way of obtaining ground truth on similarity. An evaluation of this similarity vs. simi-

larity calculated from the audio content is described in Berenzweig et al (2004). Other

authors use artists (Berenzweig et al 2002), genre (Pampalk et al 2003b), and timbre

(Aucouturier and Pachet 2004; Mörchen et al 2006b) to group songs into several cat-

egories that are considered similar. In (Mörchen et al 2006a) the genre information is

obtained from Internet radio stations. The co-occurrence of certain words on the result

page of an Internet search is used in Schedl et al (2006) to assign genres to artists.

The recorded version of a song can be represented by a vector of long-term audio

features (see section 3.1.2). In this case the so-called timbre similarity of different
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Fig. 7 Similarity matrix of MFCC coefficient vectors in Figure 4(b).

songs can be calculated by vector space distance functions like the Lp distances, the

Correlation distance (one minus Pearson correlation), or the Cosine distance

dcos(x, y) = 1− x′y√
x′x
√
y′y

(3)

where x′y is the scalar product of the vectors x and y of long-term audio features.

Care has to be taken to normalize the location and scale of the features, e.g., by

subtracting the empirical mean and dividing by the empirical standard deviation. This

is in particular important if audio features with different characteristics are combined

(Mörchen et al 2006b). If vectors of related features are used like the mean values

of all short-term MFCC time series or the histogram as described in section 3.1.1,

normalization of individual features is not necessary and may even be harmful, because

noise could be amplified. In Pampalk et al (2003b) and Mörchen et al (2006b) distance

measures based on vectors of audio features were evaluated on large sets of songs.

Given a multivariate feature time series and a distance function one can calculate

the matrix of pairwise distances (or similarities) of all vectors of short-term features

in a song (see section 3.1.2). The matrix of pairwise cosine similarities of the MFCC

coefficient vectors, i.e. the columns, of Figure 4(b) is shown in Figure 7. One can

clearly recognize several segments in this matrix. Bright rectangles around the diagonal

indicate homogeneous segments of sound. Bright rectangles off the diagonal connect

similar segments that are separated by less similar sounds. In Foote and Uchihashi

(2001) and Foote (2002) periodicities are searched by calculating the sum of diagonals in

a similarity matrix up to a given time lag, i.e., the autocorrelation of the self-similarity.

The Periodicity Histogram (Pampalk et al 2003a) also summarizes the strength of

certain beat levels without calculating the self-similarity matrix. In Kurth et al (2006)

time scale invariant beat features are derived similar to the chroma for frequencies.

If each song is represented by a collection of clusters (see section 3.1.2), e.g., from

a GMM of the short term MFCC time series, vector distances are not applicable. In

(Logan and Salomon 2001; Berenzweig et al 2004; Baumann 2003) the Earth Movers

Distance (Rubner et al 1998) has been used to compare two recorded songs. This kind

of timbre distance is obtained by solving the transportation problem that quantifies

the amount of work needed to transform one song representation into the other one

based on a distance function between two individual clusters. Each cluster within the

song models is described by the mean vector, the covariance matrix and a weight. The

symmetric Kullback-Leibler (KL) divergence (Kullback and Leibler 1951; Whittaker

1990) is used for comparing two clusters. Aucouturier and Pachet (2002) use sampling
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to directly measure the KL divergence between GMM models obtained from different

songs. The pairwise likelihood is estimated by sampling from one model and calculating

the likelihood under the other model. A similar technique is used in (Shao et al 2004)

for Hidden-Markov Models (HMM).

The k-means and GMM approaches are compared for genre classification under

many different parameter settings by Aucouturier and Pachet (2004). Levy and San-

dler (2006) compare GMM and VQ models (see section 3.1.2) with various distance

functions by quality and efficiency. The KL divergence between GMM models of the

MFCC features with a single mixture component and diagonal covariance matrix as

used in (Mandel and Ellis 2005) can be efficiently calculated due to the existence of

a closed form. The quality when used for genre classification was found to be almost

identical to more complicated models and distances. VQ methods are also computa-

tionally efficient but were not as effective in the classification. Hidden-Markov Models

(HMM) (Rabiner 1989) that incorporate the temporal information of the sequence of

feature vectors, are not found to be better than GMM (Aucouturier and Pachet 2004;

Flexer et al 2005).

A large-scale evaluation of musical similarity measures on datasets with genre

knowledge has been performed by Pampalk (2006b). The best performance was achieved

by a somewhat complicated combined measure using the KL divergence between GMM

models of the MFCC features with a single mixture component and the full covariance

matrix and additional features derived from Fluctuation Patterns (e.g. the center of

mass in a Fluctuation Pattern). In addition to accuracy, the author recommends to

prefer measures that fulfill the triangle equality more often. Musical similarity measures

have further been evaluated with human fixed classes in the Music Information Re-

trieval eXchange (MIREX) competition (http://www.music-ir.org/mirex2006). The

two best methods were the above mentioned combination (Pampalk 2006a) and the

method of Pohle (2006) that post-processed the KL divergences of GMM to obtain a

rank-based distance measure.

4.2 Organization of music collections

Important applications of musical similarity assessment include automated categoriza-

tion of music by genre, see Tzanetakis and Cook (2002); McKinney and Breebaart

(2003); Ahrendt (2006) and references therein. Genre is commonly used to organize a

music collection at the highest level but not necessarily available along with the musical

pieces. More recently the musical similarity itself is used to explore novel ways of pre-

senting a music collection to the user. Unsupervised classification can group recorded

musical pieces into coherent groups according to the similarity measure used. Visual-

ization of songs based on categories and/or similarity of songs and groups can help the

user to explore a music collection and help in retrieving pieces of interest.

If information on genre, artist, and album of the songs is available, many scientific

visualization techniques can be used to present a music collection to the user. In Torrens

et al (2004) disc plots, rectangle plots, and tree maps display the structures of a music

collection.

Vignoli et al (2004) display artists on a 2-dimensional map where the axes can be

any pair of mood, genre, year, and tempo. The artists are placed such that similar

artists are close to each other with a graph drawing algorithm. Self-organizing maps

(SOM) (Kohonen 1995) are used to group artists into cells of a 2-dimensional grid
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in Knees et al (2004); Vembu and Baumann (2005); Lehwark et al (2007) with text

based similarity measures. The text that potentially describes each artist is retrieved

from music reviews, Internet search queries, or from the community website Last.FM.

A limited set of music related words is used to generate feature vectors from the texts

using the term divergence inverse document frequency measure (Salton and Buckley

1988)

tfidf = tf · log
1

df
(4)

where the term frequency (tf) is the frequency of a word within in a single docu-

ment and the document frequency (df) is the frequency of a word over all documents.

Sometimes additional normalization terms to account for varying document lengths

are used.

This feature weighting is widely used in text mining and based on the intuition

that a word is more relevant if it appears frequently in the same document as the

artist’s name and that a word is generally less discriminative if it appears frequently

with many different artists.

In Pampalk et al (2005) this is extended to hierarchical SOM. The MusicRainbow

(Pampalk and Goto 2006) is a circular representation of artists. The similarity of artists

is calculated from the similarity of the corresponding songs. The representation is color

coded by musical style and labelled with information retrieved from the Internet.

At the album level some authors consider manual collaging (Bainbridge et al 2004)

of albums, i.e., the user manually orders album covers on a computer screen. Similar to

the MusicRainbow similarity of albums could also be determined from the similarity

of the individual songs. In general a song-based visualization seems to be preferred.

In Cano et al (2002) FastMap and multidimensional scaling are used to create a 2D

projection of complex descriptions of songs including audio features. Multidimensional

scaling iteratively minimizes the stress function

stress =

∑
i,j(d̂i,j − di,j)2∑

i,j d
2
i,j

(5)

where di,j is the given original dissimilarity between two objects i and j and d̂i,j is the

Euclidean distance of the corresponding representative points in 2D. An initial random

configuration can be optimized by gradient descent. In order to avoid the quadratic

complexity of MDS the linear FastMap (Faloutsos and Lin 1995) was proposed as an

alternative. Each high dimensional point is projected onto 2 orthogonal lines connecting

the most dissimilar points in the original data space.

PCA is used in Tzanetakis et al (2002a) to compress audio feature vectors to 3D

displays. Pampalk et al (2002) use small SOM trained with song-level features and a

density visualization in order to search for possible clusters of songs. In Mörchen et al

(2005a); Lehwark et al (2007); Risi et al (2007) the larger Emergent SOM (ESOM)

(Ultsch 1993; Ultsch and Mörchen 2005) with distance-based visualization is used.

Small SOM provide results very similar to k-means clustering (Ultsch 1996) as each

neuron is typically interpreted as a cluster. The topology preservation of the SOM

projection is of little use when using small maps. With larger maps a single neuron

does not represent a cluster anymore. It is rather a pixel in a high resolution display of

the projection from the high dimensional data space to the low dimensional map space.

Clusters are now formed by connected regions of neurons with similar properties. The

structure emerges from the large scale cooperation of thousands of neurons during the
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Fig. 8 Visualization of music collection with Emergent Self-Organizing map.

ESOM training. Not only global cluster structure is visualized, but also local inner

cluster relations are preserved.

In Figure 8 an ESOM of 100 songs from each of seven genres is shown. Each song is

described with semantic features (see section 3.1.3, Mörchen et al 2006a) learned from

a training set with the same genre structure. The edges and darker regions indicate

cluster boundaries whereas the lighter regions indicate clusters. Each small square

represents one song. The genre labels were assigned based on the known genres of the

songs that were not used to train the map. Songs in the center of a cluster are very

typical for a genre. Songs in the area between the labels Dance, Rap, and Jazz seem to

mix several genres. In particular the absence of dark regions as found between other

genres indicates a soft transition between them.

4.3 Software

The following freely available programs and libraries can be used to generate various

audio features for studies in musical similarity:

– Marsyas (Tzanetakis and Cook 2000) can generate a small set of audio features

used in one of the most cited publications on genre classification (Tzanetakis and

Cook 2002) (http://marsyas.sf.net).

– The Matlab Audio Toolbox (Pampalk 2004) can generate MFCC and mixture

models thereof as well as most features proposed by (Pampalk 2006b) (http:

//www.oefai.at/~elias/ma).

– MusicMiner (Mörchen et al 2005b) can generate a huge amount of short- and

long-term and semantical features that were used in Mörchen et al (2006a) (http:

//musicminer.sf.net). It is based on the free machine learning framework Rapid-

Miner (formerly known as Yale) (Mierswa et al 2006) (http://www.rapid-i.com).

– JAudio (McEnnis et al 2005) offers an easy to use interface to select and param-

eterize many short-term and a few long-term features (http://coltrane.music.

mcgill.ca/ACE/features.html).

– CLAM (Amatriain et al 2002) is a library that can be used for audio feature

generation and many other music information retrieval tasks (http://www.clam.

iua.upf.edu).
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5 Classification in Automatic Transcription

In this section we describe methods for automatic transcription based on audio features.

Transcription is transforming audio signals into sheet music, it is in some sense the

opposite of playing music from sheet music. The statistical kernel of transcription is

classification of notes into classes of pitch (e.g. c, d, ...) and lengths (e.g. dotted eight

note, quarter note, ...). A typical transcription algorithm includes at least some of the

following steps:

1. Separation of the relevant part of music to be transcribed (e.g. human voice) from

other sounds (e.g. piano accompaniment)

2. Estimation of fundamental frequencies

3. Classification of notes, silence and noise

4. Estimation of relative length of notes and meter

5. Estimation of the key

6. Final transcription into sheet music

Note that steps 1 and 2 are again related to pre-processing of the original time series

of music. In step 2, time series modelling is used to estimate fundamental frequencies

(see sections 5.3 and 5.4.2) which are to be classified into notes afterwards.

Section 5.4 below will be organized along this list of steps and will present more

details. For additional information see Klapuri (2004), required signal processing meth-

ods are also described in a recent book by Klapuri and Davy (2006). In the following

three subsections we will comment on the underlying data and describe the musical

and statistical challenges in the transcription task.

5.1 Data

Most existing transcription systems have been invented for the transcription of MIDI

data (MIDI Manufacturers Association, 2001; both onset times and pitch are already

exactly encoded in the data) or for instruments such as piano and other plucked string

or percussion instruments.

The transcription of MIDI data is not that difficult, because information related

to pitch as well as the begin and end of tones is already explicitly available within

the data in digital form. Therefore, this information has not to be estimated from the

sound signal. Transcription of plucked and stroked instruments (piano, guitar, etc.) is

harder than transcription of MIDI data, but still simpler than, e.g., the human voice.

Sudden increases of the signal’s amplitude point to new tones for these instruments,

which may not be the case for other types of instruments like flute, violin or the human

voice to which the algorithm should be applicable to as well.

Typically, the sound that has to be described is given in form of a Wave file (Mi-

crosoft Corporation 1991), typically in CD quality with sampling rate 44100 Hertz and

in 16–bit format (i.e. 216 possible values).

5.2 Musical Challenges: Partials, Vibrato and Noise

If a tone is played or sung, it commonly does not only produce a single (co)sine wave

oscillating with the fundamental frequency but also waves oscillating with integer mul-

tiples of the fundamental frequency. These waves are called partials (of the whole
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tone). One problem for transcription algorithms is the possible (almost) absence of the

fundamental while some of the other partials are well observable.

It is particularly interesting to automatically transcribe one of the most complex

musical instruments: the human voice. The human voice can adjust loudness and many

properties of the sound very easily within one single tone. Indeed, the sound charac-

terization of the human voice has many more facets than for instruments because the

sound is varying in dependence of technical and emotional expression (Wapnick and

Ekholm 1997; Kleber 2002). Hence robustness against such variations is very important

for the design of transcription systems.

Another problem for transcription algorithms is the presence of vibrato, some kind

of intended or unintended adornment. The loudness of a singer’s vibrato varies about

2-3 Dezibel while the pitch varies around one semitone (Seidner and Wendler 1997)

up to two semitones (Meyer 1995) around the desired pitch of the tone. The vibrato

frequency is roughly 5-7 Hertz. Models and detection methods for vibrato have been

described, for example, by Rossignol et al (1999a) and Pang and Yoon (2005). The

strong vibrato of a professional soprano singer performing the German Christmas song

‘Tochter Zion’ (G.F. Händel) is shown by the nervously changing line of fundamental

frequencies (the lower dark curve) in the spectrum given in Figure 9(a).

A third problem is the presence of noise in the signal. Polotti and Evangelista

(2000) model phenomena like pink noise which is the most common kind of noise in

audio recordings.

5.3 Statistical Challenge: Piecewise Local Stationarity

For most methods in time series analysis, both in time and in frequency domain, at

least some weak stationarity assumptions of the underlying process have to be valid.

Unfortunately, even if processes of musical time series might be stationary in the mean,

they are not stationary w.r.t. covariance, because the tones (and hence the covariances)

are changing quite frequently.

Dahlhaus (1997) defines locally stationary processes, which implies stationarity in

some ε-region around a point in time. This definition is fine for minor changes in pitch,

such as for vibrato or other decorations of the tone. It is not sufficient for abrupt

changes between one note and another one, because amplitude and pitch might change

suddenly. Adak (1998) developed an algorithm for the segmentation of time series and

defines piecewise local stationary processes as finite series of locally stationary processes

by generalizing the definition of Dahlhaus (1997). The new definition is very useful

for music time series: for n tones (corresponding to a series of n locally stationary

processes), we expect to find at least n − 1 change points (changes from vowels to

consonants within the same tone might lead to change points as well). Most algorithms

used in transcription apply Short Time Fourier Transformation (STFT), i.e. calculate

periodograms of very small pieces (e.g. 23-46ms, see section 3.1.1) corresponding to

windows (mostly overlapping by 50%) of the time series in order to detect those change

points and estimate fundamental frequencies.

The SLEX (Smooth Localized Complex Exponential) transformation by Ombao

et al (2001) can segment bivariate non-stationary time series into almost stationary

segments and it can be flexibly adapted to different time and frequency resolutions.

For other related time series methods in frequency domain see also Bloomfield (2000),

Brillinger (1975), and particularly for signal analysis, see Van Trees (2001).
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5.4 Transcription Algorithm

A sequence of steps for a transcription process was listed at the beginning of section

5 and can be understood as steps from local to global analysis of a music time series.

This aspect is further discussed in Weihs and Ligges (2005).

Some complete transcription program has been described by Pressing and Lawrence

(1993). Unfortunately, their method seems to be unavailable.

In other projects, researchers try to trace online what performers are playing or

singing compared to given notes. For this purpose, Cano et al (1999) use Hidden Markov

Models. Raphael (2001) developed an expert system based on Bayes Belief Networks

that tries to accompany a singing or instrument playing person based on known sheet

music by tracing the notes. These methods have to be extremely fast, because online

calculation is mandatory, but they can rely on valuable a-priori knowledge: already

known notes.

Let us now go through the steps of automatic transcription as indicated in the

beginning of section 5.

5.4.1 Separation of the relevant part of music.

As a first step of the transcription algorithm, the relevant part of music to be tran-

scribed (e.g. human voice) has to be separated from other sounds (e.g. piano accompa-

niment). The outcome of a separation is a time series of one relevant part of the music.

To achieve this Sound Source Separation task, the commonly used standard method is

Independent Component Analysis (ICA) as proposed by Hyvärinen et al (2001). Some

disadvantages of ICA have been shown by von Ameln (2001). Klapuri (2001) uses

the Spectral Smoothness method for both separation and polyphonic fundamental fre-

quency estimation. Another method for Sound Source Separation has been proposed

by Viste and Evangelista (2001, 2002). They aim at audio coding and compression for

formats like MPEG 3 (Brandenburg and Popp 2000), or integration into hearing aids.

5.4.2 Estimation of Fundamental Frequency.

After having separated the relevant part of music, we have to determine the fundamen-

tal frequency f0 (see section 5.2). Many approaches for the estimation of fundamental

frequency, also known as f0 estimation, for both monophonic and polyphonic sound

have been published. Goto (2004) proposes a method called PreFEst for the ‘predomi-

nant f0 estimation’ of melody and bass lines without requiring assumptions about the

number of sound sources. Dixon (1996) describes a heuristic method for the identifica-

tion of notes and Klapuri (2001) describes some method for polyphonic estimation of

fundamental frequencies. Smaragdis and Brown (2003) are extending the Fast Fourier

Transformation (FFT) by ‘Non-Negative Matrix Factorization’ for polyphonic tran-

scription. Bayes methods for the f0 estimation of monophonic and polyphonic sound

have been proposed by Walmsley et al (1999), Davy and Godsill (2002), and again

Godsill and Davy (2003). A rather theoretical work by Wolfe et al (2004) introduces

Bayesian variable selection for spectrum estimation. In the MAMI project (Musical

Audio-Mining, see Lesaffre et al (2003)), software for the fundamental frequency esti-

mation has been developed.

Plumbley (2003) proposes ‘Algorithms for Nonnegative Independent Component

Analysis’ (N-ICA) in order to extract features of polyphonic sound, but applies it
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only to sound generated by MIDI instruments. Moreover, Plumbley (2004) suggests

optimization using Fourier expansion for N-ICA and expresses his hope to be able

to extend the method to perform well for regular ICA. In another work, Plumbley

et al (2006) propose to use dictionaries of sounds, i.e. databases that contain many

tones of different instruments played in different pitches. Using such dictionaries might

overcome the problem that different tones containing a lot of partials may not be

identifiable for polyphonic problems.

Under some circumstances the frequency of partials is slightly shifted from the

expected value. This is a problem for the polyphonic case, if a partial’s frequency

cannot be assigned to a corresponding fundamental frequency. Hence this phenomenon

has to be modelled as done in some recent work by Godsill and Davy (2005).

Polotti and Evangelista (2000) modelled phenomena like pink noise (noise decreas-

ing with frequency; also known as 1/f noise) using Wavelet techniques. Later on,

Polotti and Evangelista (2001) also modelled other special kinds of unwanted noise or

the sound of consonants that do not sound with a well defined fundamental frequency.

A more general article about Wavelet analyses of music time series has been written

by Evangelista (2001).

Ligges (2006) and Weihs et al (2006a) propose to use a model for fundamental fre-

quency estimation that combines the models of Davy and Godsill (2002) and Rossignol

et al (1999a). The first model (Davy and Godsill 2002) includes parameters for phase

displacement, frequency displacement of partials, and trigonometric basis functions

that model changes in amplitude. The second model (Rossignol et al 1999a) covers

vibrato using a sine wave around the ‘average audible’ frequencies and their partials.

The aim is to model well known physical characteristics of the sound in order to

estimate f0 independently of other relevant factors that might influence estimation.

Proposed methods to estimate the model are non-linear optimization of an error crite-

rion such as the MSE distance between the real signal and the signal generated from

the model after a transformation of the signals to the frequency domain, and Markov

Chain Monte Carlo methods (MCMC, being computationally very intensive).

The fundamental frequencies can be estimated much faster by using a heuristi-

cal approach as proposed in, e.g., Weihs and Ligges (2006). In this approach several

thresholds are applied to values of the periodograms derived by STFT from the original

time series of the music so that the peak representing the fundamental frequency is

estimated. The fundamental frequency λ can be estimated by weighting the frequen-

cies λ∗ and λ∗∗ of the two strongest Fourier frequencies’ values P (λ∗) (strongest) and

P (λ∗∗) (second strongest) of that peak:

λ̂ := λ∗ +
λ∗∗ − λ∗

2
·

√
P (λ∗∗)
P (λ∗)

.

5.4.3 Classification of notes, silence and noise.

While it seems to be plausible to segment tones at first and to assign them to notes af-

terwards, this was found to be less useful in real applications with singing performances

and a joint procedure has been proposed by (Ligges 2006), where the classification into

notes takes place at first by classifying a tone to the note with minimal (Euclidean)

distance in cents of halftones. Afterwards a running median step is applied to the time

series of notes in order to smooth it. Finally, the segments are the constant parts of
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the time series of smoothed notes, i.e. each change in the pitch of the smoothed notes

implies a new segment.

In section 5.3, we already mentioned the SLEX (Ombao et al 2001) procedure and

a segmentation algorithm for speech by Adak (1998). The segmentation of sound has

also been examined by Rossignol et al (1999b).

5.4.4 Estimation of relative length of notes and meter.

After the segmentation of notes we have to quantize the notes, i.e. to estimate relative

lengths of notes. Müllensiefen and Frieler (2004b) define quantized melodies as ‘[...]

melodies where the durations are integer multiples of a smallest time unit T ’. For now,

we assume that the tempo is fixed throughout a song. An obvious idea is to look for

the least common multiple of the divisors of all note lengths to get the smallest T . For

example, if there are quavers (length 1
8 ), punctuated quavers

(
1
8 + 1

16

)
, quarters and

half notes, the searched divisor is 1
16 .

Unfortunately, quite large inaccuracies have to be expected in real data, because

humans tend to (it is unessential if intentionally or not) start with notes too late and

finish the notes too early (e.g. in order to breathe when singing). Hence quantization

has to be very robust against such inaccuracies. Beran (2004) has analyzed (intentional)

variations of the tempo by famous pianists. He explains that besides inexact length of

notes changes of tempo have to be expected as well.

Most published methods are using sudden changes of the amplitude in order to track

the tempo, segment the music and perform the quantization. One of these methods has

been described by Cemgil et al (2000) and was extended later by (Cemgil et al 2001)

in order to take care of dynamic changes of the tempo during time. Alternatively,

Cemgil and Kappen (2003) propose some Monte Carlo methods for tempo tracking

and Whiteley et al (2006) are using Bayesian models of temporal structures. Davies

and Plumbley (2004) try to adapt the quantization to dynamic tempo changes. The

perceptual smoothness of tempo in expressively performed music is analyzed by Dixon

et al (2006). For more general findings on extracting tempo and other semantic features

from the audio data with signal processing techniques, see section 3.1.3.

After pitch estimation, note classification and quantization, the information that

has been derived can be presented in some picture like the one given in Figure 9(b),

which shows the outcome of analyzing the last 8 bars of the German Christmas song

‘Tochter Zion’ (G.F. Händel) performed by a professional soprano singer. The ‘real’

sheet music has been translated to the grey shading (each segment corresponds to an

eighth note), black squares indicate the estimated note, and at the bottom an energy

bar indicates the loudness.

After a successful quantization, the meter has to be estimated. This is one of the

most difficult tasks, and we do not know any method that is capable of it in a general

manner. This is not a big surprise, because even humans cannot always distinguish

between, for example, 2
4 , 4

4 and 4
8 meters. Most of the time, it is, thus, assumed that

the meter is given by the algorithms supervisor. A rough distinction between 4
4 , and

3
4 meters was proposed, e.g., in Weihs and Ligges (2005) by means of the number of

quarters between so-called accentuation events.
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Fig. 9 Representation of a song.

5.4.5 Estimation of the key.

The basic idea for key estimation (Brown et al 1994) is as follows. All notes from some

piece of music can be tabulated within some table. Depending on the frequencies of the

twelve different notes (including halftones), the most probable key can be estimated.

Bayesian modelling can also be used for key estimation. David Temperley (e.g. Tem-

perley 2004, 2006) proposes such a model for a given piece or segment of music (cp.

section 7). Here, the probability computation is based not only on the relative fre-

quency with which the twelve scale degrees appear in a key, but also on the probability

of a segment being in the same key as the previous segment in the same piece (prob-

ability of modulation). Other more sophisticated approaches would also analyze the

sequence of tones and chords. More references on estimating the key, e.g. by analysis

of the pitch distribution using histograms, are given in section 3.1.3 and in the context

of classification of musical structures in section 7.

5.4.6 Final transcription into sheet music.

In the preceding sections we have described how to estimate properties of the sound

that are required for the transcription of sound to sheet music. The final part of pro-

ducing the sheet music is a matter of music notation and score printing. A free and

powerful software for music notation is LilyPond (Nienhuys et al 2005) which uses LATEX

(Lamport 1994), the well known enhancement of TEX (Knuth 1984). Beside sheet mu-

sic, LilyPond is also capable of generating MIDI files. Therefore it is possible to audit

results of transcription both visually and audibly. The R package tuneR (see the follow-

ing paragraph) contains a function which implements an interface from the statistical

programming language to LilyPond.
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(a) Original sheet music of ‘Tochter Zion’

(b) Transcription by tuneR

(c) Screenshot of a transcription by Melodyne

Fig. 10 Comparison of transcriptions: original sheet music vs. results by tuneR and Melodyne.

5.4.7 Software for Transcription.

The freely available R (R Development Core Team 2007) package tuneR (Ligges 2006)

is a framework for statistical analysis and transcription of music time series which

provides many tools (e.g. for reading Wave files, estimating fundamental frequencies,

etc.) in form of R functions. Therefore, it is highly flexible, extendable and allows ex-

perimenting and playing around with various methods and algorithms for the different

steps of the transcription procedure. A drawback is that knowledge of the statistical

programming language R is required, because it does not provide transcription on a

single key press nor any graphical user interface – as opposed to commercial products.

The outcome of a transcription of 8 bars of ‘Tocher Zion’ is given in Figure 10(b). For

comparison, the original notes of that part of ‘Tocher Zion’ are shown in Figure 10(a).

Finally, we present the well known commercial software product Melodyne (version

3.2, http://www.celemony.com), which currently is the best commercial transcription

software we tried out. It performs all the steps required by a full featured transcription

software, including key and tempo estimation. Its recognition performance is quite

good even with default settings on sound that has been produced even by human

voices. Some parameters can be tuned in order to improve recognition performance.

Figure 10(c) shows a screenshot of Melodyne. This is of the same quality of performance

as the outcome of tuneR in Figure 10(b).

For both Melodyne and tuneR we have optimized the quantization by specifying the

number of bars and the speed. The quality of the final transcriptions is quite compa-

rable. The software tuneR produces more ‘nervous’ results. At some places additional

notes have been inserted where the singer slides smoothly from one note to another.

The first note is estimated one octave too high due to an immensely strong second

partial in almost absence of any other partials. Melodyne omits some notes. Here we

guess that Melodyne smooths the results too much and even detects smooth transitions

of the singer even if the singer intended to sing a separate note.

6 Classification of Musical Behavior

In the next two sections we will discuss recent trendsetting papers that serve as appli-

cation examples for supervised and unsupervised classification in cognitive psychology

of music and compositional structure analysis.
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Cognitive psychology of music traditionally aims at explaining music perception or

music-related behavior in terms of mental mechanisms or concepts, such as memory,

emotions, mental skills, or mental representations, as discussed in section 3.3. We

concentrate here on the description of models from the music psychology literature

which use classification models to relate measurements of music related human behavior

to musical features or to other psychological factors.

Within the recent literature, we find studies that adopt a data mining approach in

order to arrive at the best prediction or classification result. For example, Kopiez et al

(2006) predict achievements in a sight-reading task by various methods (linear discrim-

inant analysis, linear regression, regression and classification trees). Sight-reading is the

ability to play music unrehearsed from score notation. Depending on the difficulty of

the music and the ability of the sight-reader renditions of the music are almost always

imperfect and, hence, the relative number of notes matching between the score and

the rendition served as the dependent variable indicating the performance accuracy.

The predictors used by Kopiez et al (2006) included general and elementary cognitive

skills, mostly measured by standard psychological tests, as well as practice-related skills

and time invested in various musical activities. Motivated by the high amount of 35%

unexplained variance in a linear regression model (Kopiez et al 2006) tried classifica-

tion methods to distinguish low and high performers among their 52 participants. In

this application linear discriminant analysis achieved better classification results than

classification trees constructed by the CART algorithm (Classification and Regression

Trees, Breiman et al 1984) and yielded an acceptable cross-validated classification error

of 15% . Among the important predictors that characterize good sight-reading perform-

ers are their manual speed at playing trills, mental speed as indicated by a number

connection test, and the practice time for sight-reading before the age of 15.

Similar to (Kopiez et al 2006), (Müllensiefen and Hennig 2006) attempt to explain

participants’ noisy responses in a music memory task by taking a data mining approach

and applying a number of different techniques, including classification and regression

trees, random forests, linear and ordinal regression, and k-nearest neighbor. In this

study the participants’ task consisted in spotting differences between a target melody

in a musical context and an isolated comparison melody. The study aims at identifying

the factors that determine recognition memory for new melodies and tunes. The overall

similarity of the melodies and the similarity of their accent structures as well as the

musical activity of the participants are identified as the most important predictors in

relation to the participants’ judgements.

Another important task in music perception is to model the recognition of different

instruments playing simultaneously in order to identify (classify) them. To this end,

Röver et al (2005) extracted certain instrument-specific long term sound features from

the time series representing a given recorded sound. A specific Hough Transform (de-

rived from Shapiro 1978) to detect so-called signal edges, i.e. ascending sections of the

music time series, is applied to sounds played by different musical instruments. Other

investigated instrument-specific features include characteristics of the amplitude and

frequency distributions. Several classification methods are tried out to distinguish be-

tween the instruments and it turns out that Regularized Discriminant Analysis (RDA,

a hybrid method combining Linear Discriminant Analysis (LDA) and Quadratic Dis-

criminant Analysis (QDA), Friedman 1989) performs best. The resulting error rate is

better than those achieved by humans (Bruderer 2003).

Questions concerning the variability of intonation perception and intonation judge-

ments are generally a topic of research in the field of psycho-acoustics, but as Weihs
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et al (2001) showed they also relate to the psychology of music. Weihs et al (2001)

investigate how judgements of a human expert correspond to an objective criterion

derived from audio in the case of singing. Taking the expert’s judgements as the true

class values the following classification rule was found: the maximal permissible error

which is accepted in order to classify a tone as ’correct’ is about 0.4 semitones below

and above the target tone. Note that this is much higher than the 0.03 semitones be-

ing the minimal distinguishable distance for the trained ear for isolated tones (Pierce

1992). This, at least at first sight, irritating result is probably caused by the fact that

the expert judged the correctness of the intonation of the notes being part of a sung

melody, i.e. in the context of other tones and under time constraints.

In contrast to the supervised classification approach, unsupervised classification

(clustering) has been widely used in cognitive music psychology for some time. In

many cases, data reduction and scaling techniques have been used for exploratory pur-

poses and graphical display. Multidimensional Scaling (see Section 4.2) in particular

has been often employed in music psychology for making distances in cognitive judge-

ment space visible in low-dimensional Euclidean space and allow for post-hoc grouping

and classification of musical objects or experimental participants. For example, Gromko

(1993) scales the rated differences between short audio examples from different classi-

cal composers onto a three dimensional space to investigate the criteria of the stylistic

judgements of classical music novices and experts. She interprets the three dimensions

as representing the secondary musical dimensions of activity, character, and pleasing-

ness to the listener. The individual reliance upon these three dimensions is then used

to characterize the two classes of music listeners.

MDS procedures have also been widely used to group musical objects in an un-

supervised way. Eerola et al (2002) collected global pair-wise similarity judgements

between folk melodies of different origin (e.g. church hymns, Finish Yoik songs, Ger-

man folk songs). Displaying the resulting MDS solution graphically in two-dimensional

space yielded a grouping of the melodies which to a certain extent reflected their origin,

but also with several melodies being placed close to tunes from a different origin. The

subsequent multiple regression analysis that Eerola et al perform aimed at explaining

the global similarity judgements with the aid of music structural features such as the

distribution of note intervals and durations, tonal stability, and rhythmic variability

(cp. section 3.2).

Conceptually similar, but dealing with psychoacoustic questions of timbre percep-

tion, Markuse and Schneider (1996) start off with an MDS solution and a grouping of

renditions of short excerpts from R. Wagner’s opera Tristan und Isolde with the in-

strumental timbres differing in form and complexity. Again, global subjective similarity

judgements were collected experimentally. The authors find a fair agreement between

the grouping of the excerpts in MDS space and the two manipulated timbral parame-

ters and conclude that the number of partials corresponds to perceived complexity and

the waveform is reflected by some kind of perceived roughness.

7 Classification of Musical Structures

Analyzing and modelling music data in the form of predicting and classifying compo-

sitional structures has become increasingly popular in recent times, due largely to the

increasing amount of music that is digitally available in a symbolic encoding form.
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One challenging task in this area is often termed as author attribution and con-

sists in associating pieces by anonymous composers with the name of the most likely

composer according to stylistic criteria. This task is highly relevant for medieval, re-

naissance, and even baroque music where large collections of pieces exist in manuscripts

and printed compilations, but frequently without any indication of the individual com-

posers. A recent example is the work by (Jürgensen and Knopke 2004) where the

Buxheim Organ Book serves as a training collection for selecting useful features for the

author attribution task for fifteenth century music. In this paper a vast number of fea-

tures is defined to characterize each piece. To first reduce the feature space, a principal

component analysis is performed and the pieces are projected onto a two dimensional

plane. Unfortunately, the grouping of the pieces appeared to be little informative but

the analysis motivated the elimination of many features with high inter-feature corre-

lations from the initial feature set. As a second step, scatterplots for smaller feature

sets were inspected by eye leading to some preliminary results.

As one recent approach for the identification and classification of higher level struc-

tures Bayesian modelling has grown in popularity (e.g. Temperley 2004, 2006, 2007).

Temperley’s Bayesian model for key estimation in a given piece or segment of music

(Temperley 2004) (cp. section 5.4), finds for a sequence of musical segments a cor-

responding sequence of keys with a maximum probability given an empirical music

surface (here: a pattern of pitches). Temperley’s model takes advantage of the rela-

tion between pitch class distributions and keys learned from an empirical corpus and

from experimental data. He also introduces a probability for the modulation from one

segment to the next. Tested against correlation based procedures, like the widely used

Krumhansl-Schmuckler key finding algorithm (Krumhansl 1990) and Temperley’s own

modification of this algorithm (see Temperley 2001), the Bayesian model achieves about

equal success rates. Therefore, it remains to be seen what the original Bayesian contri-

bution to these kinds of musical models will be, considering that frequency counts on

musical elements have been successfully used as predictors in non-Bayesian models pre-

viously (e.g. Eerola et al 2002; Costa et al 2004). Apart from Temperley’s work on key

finding and the Krumhansl-Schmuckler algorithm, (Chuan and Chew 2005) propose

an algorithm that is based on the so-called spiral array, a helix representation of pitch

and harmonic relationships proposed by (Chew 2000). Performing a nearest neighbor

search, this algorithm finds the key that is geometrically closest to a set of pitch class

strength values represented on the spiral array. Tested on renditions of Mozart’s Sym-

phonies Chuan’s and Chew’s algorithm outperforms the correlations based methods,

but future evaluations are needed here.

Another prominent, recent trend in music modelling is the use of n-gram models for

the prediction and classification of musical events in a sequence. Here, the aim is often

to predict the next element, i.e. a pitch class or duration value, based on knowledge

of similar sequences. A sophisticated example of the n-gram approach is the work

of Pearce and Wiggins (e.g. Pearce and Wiggins 2004, 2006), that is concerned with

the occurrence of melodic n-grams. Their research hypothesis is that many aspects

of musical expectation are acquired through the spontaneous induction of sequential

regularities in the music we are exposed to. Although the basic idea of their modelling

approach is straightforward and consists in counting the occurrences of melodic n-

grams in a corpus and returning the most probable continuation of chain of n−1 notes

as a prediction for a given context, examining several model parameters Pearce and

Wiggins (2004) outperform a competing model by Narmour (1990) and Schellenberg

(1997) based on principles from Gestalt psychology. Moreover, the reasoning of Pearce
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and Wiggins (2006) regarding model selection can serve as a guideline for other studies

concerned with the comparison of models for music cognition. They not only consider

data fit as a model selection criterion, but also scope (the model’s failure to predict

random data), and simplicity (the number of prior assumptions and principles the

model builds upon).

8 Conclusions

In this paper typical solutions for classification tasks related to music research were

presented mainly in the fields (1) organization of music collections, (2) transcription

of music signals, (3) cognitive psychology of music, and (4) compositional structure

analysis. After some historic reminiscences, we have surveyed the features that underly

the classification tasks. Some explanatory features are shared between the discussed

application areas. Short term audio features are utilized in both (1) and (2), long term

audio features in (1) and (3), semantic features in (1), (2) and (4). Other types of

features are special to one application or one field like compositional features for (4),

and musical skills and mental mechanisms for (3).

As presented in section 4 the automatic comparison of music based on representa-

tions and similarities derived purely or mainly from the content of digital audio files

has received a lot of attention in the research community. Important applications in-

clude the automated categorization and recommendation of music for online sales. The

individual user will also benefit from the achievements if the techniques are incorpo-

rated into software that organizes a personal music collection and helps in generating

playlists.

As presented in section 5 automatic transcription is transforming audio signals

into sheet music, i.e. it is in a way the opposite of playing music from sheet music.

It is demonstrated that for monophonic sound data transcription results are quite

acceptable. Note that automatic transcription is a field where ideas of both audio

features and compositional structure is needed in that, e.g., the key has to be classified.

In section 6 prediction/classification of musical behavior is analyzed. Human behav-

ior related to music is such a very broad field, though, that it could only be exemplarily

covered in such an overview. In section 7 statistical classification of musical structure

helps to learn rules that describe similarities in music compositions. Here, research is

only in the beginnings because only since recently the amount of digitally available

symbolically encoded music is large enough.

Overall, we demonstrated that the number of papers in the fields has been exploded

in the last years. Nevertheless, the results are far from being perfect so that even now

there is urgent need for new ideas.
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Moore BCJ, Glasberg BR (1996) A revision of Zwickers loudness model. ACTA Acustica

82:335–345
Mörchen F, Ultsch A, Nöcker M, Stamm C (2005a) Databionic visualization of music collections

according to perceptual distance. In: Proceedings of the 6th International Conference on
Music Information Retrieval, pp 396–403
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