
Cloud Federations in Contrail

Emanuele Carlini1,2, Massimo Coppola1, Patrizio Dazzi1, Laura Ricci3,
Giacomo Righetti1,3

1 ISTI-CNR, Pisa, Italy
2 IMT Lucca, Lucca, Italy

3 Dept. Computer Science, Univ. of Pisa, Italy

Abstract. Cloud computing infrastructures support dynamical and flex-
ible access to computational, network and storage resources. To date, sev-
eral disjoint industrial and academic technologies provide infrastructure
level access to Clouds. Especially for industrial platforms, the evolution
of de-facto standards goes together with worries about user lock-in to a
platform. The Contrail project [6] proposes a federated and integrated
approach to Clouds. In this work we present and motivate the architec-
ture of Contrail federations. Contrail’s goal is to minimize the burden on
the user and increase the efficiency in using Cloud platforms by perform-
ing both a vertical and a horizontal integration. To this end, Contrail
federations play a key role, allowing users to exploit resources belonging
to different cloud providers, regardless of the kind of technology of the
providers and with a homogeneous, secure interface. Vertical integration
is achieved by developing both the Infrastructure- and the Platform-as-
a-Service levels within the project. A third key point is the adoption of
a fully open-source approach toward technology and standards. Beside
supporting user authentication and applications deployment, Contrail
federations aim at providing extended SLA management functionalities,
by integrating the SLA management approach of SLA@SOI project in
the federation architecture.

1 Introduction

Cloud computing is a computing model aimed at providing resources as services
according to a pay-per-use paradigm. The provided resources differ in type and
level of abstraction. While the basic candidates are computational power and
storage, resources can be provided to users from the infrastructure level (IaaS,
e.g. virtual machines, virtual storage), the platform level (PaaS, e.g. program-
ming libraries, application templates and components) and the software level
(SaaS, e.g. complete applications like Google Documents). Almost all current
IT behemoths offer their own cloud computing solution: Amazon [1], Google [7],
Microsoft [2] and many others. Unfortunately, this leads to some issues. Each
cloud provider forces its users to operate according to specific models, e.g. com-
munication protocols and virtualization formats. This is known as vendor-lock
in and from users perspective it leads to a major disadvantage. Namely, even



if users running their applications in a certain cloud find better providers to
exploit, the burden of cloud switching may lead to cut this solution off.

As the resources offered by each provider belong to different levels of abstrac-
tion, standardization decreases. Typically providers offer somewhat interchange-
able services only at a low level of abstraction, while higher level services provide
a low or no degree of personalization. Any user willing to exploit resources be-
longing to different levels while keeping the option open to move across provider
boundaries, needs to cope with the burden of adapting the applications. In or-
der to address these issues, in recent times several standards like Open Cloud
Computing Interface [8] and Open Virtualization Format [9] have been proposed
to provide cooperation among different cloud solutions. Each of these standard
covers, however, only specific aspects and portions of the Cloud management
stack, and no standard is universally adopted by cloud providers.

The Contrail approach to cloud federation tackles the issue of integration
among heterogeneous clouds. Important factors are the open-source choice and
the collaborations with other projects involved in Cloud research. On top of
this, as a main line of research, Contrail aims at a two-way integration: (i) a
vertical integration, which provides a unified platform for the different kind of
resources and (ii) a horizontal integration that abstracts the interaction models
of different cloud providers. In this work we describe the general architecture
of Contrail cloud federations, thereby focusing on horizontal integration and on
the federation services which are essential in allowing vertical integration.

Section 2 explores the motivations and commitments in a cloud federations,
with a particular stress on users ID managements, Service Level Agreement
(SLA) integration and application execution. Section 3 gives an overview of
the Contrail federation architecture and how appliances are deployed. Section 4
presents a selection of current research work on cloud federations. Finally Section
5 concludes the paper.

2 Contrail Federations: Motivations and Commitments

From a practical point of view, a federation can be considered as a bridge linking
cloud users and cloud providers. As the role of the federation goes beyond mere
interface adaptation, federation services act as mediators between users and
providers. From a user’s perspective, the components and the services supporting
the federation (we will refer to them as federation-support in the rest of the
paper) act as a broker for the resources owned by providers participating to the
federation. As each provider has its own, potentially different, mechanisms and
policies for managing resources, the goal of the federation-support is to provide
translation and mapping mechanisms for matching user needs and exploiting
federated cloud providers.

The pay-per-use concept relies on the existence of a formally agreed SLA
between the user and the provider(s), and the ability to monitor, enforce and
account service use and QoS. Besides the resource selection functionalities across
multiple providers and the consistent management of resources, a Contrail feder-



ation coordinates the SLA support of cloud providers. Indeed, as cloud providers
have their own SLA management mechanisms which is useful to exploit, the role
of the federation is to setup, coordinate and enforce a global SLA, eventually
negotiating SLAs with providers on behalf of the users. This leads to the possi-
bility of a vertical SLA management, allowing to define PaaS services which are
provider-invariant and also supporting interactions between public and private
cloud providers. The federation-support has to monitor the SLA achieved by
providers, and to react to SLA violations.

Federation-level User ID Management A federation has to provide users with
mechanisms to specify their preferences about cloud providers and resources.
Federation-support manages the user identities for accessing to cloud providers,
and users have also to be informed about their actual and historical usage of
resources (accounting, billing).

The task of protecting personal user-related information, like user identities,
is only the first stone when building security into a federated cloud approach.
One of the problems related with federations is to save the users the burden of
authenticating with resources belonging to different cloud providers, especially as
many of the actions on the resources have to be automated and performed 24/7.
The federation should exploit proper mechanisms and credentials, in accordance
with both user preferences and the authentication support of the providers.

Appliance Deployment An application is composed by: (i) a set of appliances and
(ii) a SLA description that provides the user requirements on a per appliance
basis. With the term appliance we identify a set of VM images strictly cooperat-
ing to realize an application fundamental block (e.g. a pool of web servers, or a
firewall and back-end database combination). The federation has to map those
appliances in the federation resources according to both user requirements and
preferences, as specified in the application SLA and possibly as constrained by
user identity and related resource policies.

In order to effectively set up and enact the application-resources mapping
the federation needs static (geographic location, cost-models, installed software)
and dynamic information regarding cloud providers and their resources. It is also
relevant to record past history of providers with respect to SLA violations, in
order to evaluate their reliability.

SLA coordination The SLAs submitted to the federation-support by users define
a set of functional and non-functional requirements that have to be addressed and
enforced in order to properly execute user’s appliances. In the Contrail project
we assume that every cloud provider belonging to the federation has proper
mechanisms able to deal with the SLA descriptions regarding the appliances it
has to execute.

Most of those mechanisms and the underlying formalism are inherited from
the SLA@SOI [12] [13] project. In particular, the SLA management yielded by
Contrail cloud providers is based on three main entities: (i) SLA, (ii) SLA Tem-
plate and (iii) SLA Manager. The SLA is a structured description of user and



appliance requirements, which is derived by a SLA Template. A SLA template
provides a customizable base that can be exploited in order to derive specific
SLAs. A SLA@SOI SLA Manager monitors a running appliance and reacts in
case the appliance misbehaves with respect to its associated SLA. The actions
enacted by a SLA Manager include intra-cloud appliance migration, appliance
reconfiguration and network set-up. The federation-support should intervene to
coordinate the involved SLA Managers, in case one or more SLA Managers were
unable to enforce the SLA of one or more appliances.

Non-functional requirements In addition to the functional commitments, the
federation-support has also to address specific non-functional requirements. They
are mainly related with platform scalability, flexibility and security. Scalability
and flexibility are key performance aspects for a federation, dealing with a rel-
evant amount of resources and users, and can be regarded as a non-functional
requirement of the federation design. These considerations influence the design
of the federation-support, presented in Section 3.

Other classical non-functional goals of application execution, once the appli-
cation gets deployed on a Cloud in accordance with an agreed SLA, become func-
tional requirements for the federation-support. Besides performance, one of the
major concerns of the federation-support is security. Security plays an important
role in the federation as well as in the whole Contrail project, since it directly af-
fects the acceptance with respect to possible customers. The federation-support
must offer a secure environment in which users execute applications, and store
their data and personal information. In this context protection is two-fold: first,
both the users data and their applications should be protected from unautho-
rized accesses and modifications. For instance, the federation should protect
users from affecting each other, from snooping on each other one’s jobs, or data.
Second, the federation shall protect itself from malicious or erratic applications.

3 Federation Architecture

The federation acts as a bridge between users and cloud providers. The federation-
support offers to users, in an uniform fashion, resources belonging to different
cloud providers. A Contrail federation can exploit two kind providers, those
based on the Contrail cloud infrastructure and the ones based on other public
and commercial infrastructures. As shown in Figure 1 the federation architecture
is composed of three layers. Every layer is in turn composed by modules, where
each module addresses a well defined commitment.

The top-most layer, called interface, gives a view on the federation and pro-
vides proper ways to interact with the federation. The interface gathers requests
from users as well as from other Contrail components that rely on the federation
functionality and facilities. The interface layer includes a CLI and HTTP inter-
face, from which is possible to access to REST services. The mid layer, called
core, contains modules that fulfill the functional (e.g. application life-cycle man-
agement) and non-functional (e.g. security) requirements of the federation. The



Contrail Provider

Interface layer HTTP

REST

Federation support

User Identity

GAFS driver VIN driver

CLI

External Cloud 
adapters

Core layer

Adapters layer
VEP driver

StateSLA Coordination

SLA Negotiation

SLA Organizer

Provider Watcher

SLA 
Management

SLA Template 
Repository

Federation Runtime 
Manager
Mapping Attribute Authority

Policy 
Administration Point

Policy Decision Point

Authentication

Security

SLA 
Management

External Provider

Image Registry
Image Manager

Fig. 1. Federation-support architecture. The grey components realize the business logic
of the core layer.

bottom layer, called adapters, contains the modules that retrieve information
and operate on different cloud providers. This layer provides also a unified inter-
face that possibly copes with heterogeneity of providers. A detailed description
of mechanisms provided by the interface layer are beyond the scope of this pa-
per, therefore they are not presented. In the next sections we present a detailed
description of the modules belonging to the core and adapters layer.

3.1 Core Layer

The core layer contains the modules that implement the business logic of the
federation. These modules solve the three main commitments demanded to the
federation-support, namely identity management, application deployment and
SLA coordination. These modules are in turn supported in their activities by
additional auxiliary modules. In the following of this chapter we present in detail
the modules that implement the business logic of the federation as well as the
state module, which is in charge of the federation state management. We refer
to the auxiliary modules whenever it is necessary.

User identity The federation-support provides to each user a federation-level
account. By using this account the user can have access to all the resources owned
by the federated cloud providers. In order to interact with different providers, the



federation-level user account is bound with different local providers identities.
The user identity module is in charge of realizing the aforementioned bind. The
actual connection between the module and the providers is done through the
Adapter layer (discussed later).

The access to resources is managed in a seamless way, i.e., once authenticated
to a Contrail federation, users should not be prompted again to access federated
Cloud providers (e.g. single sign-on). The local cloud identities are stored in the
state module. In order to guarantee isolation and data integrity, of the user-
related data, the federation-support takes advantages of the mechanisms and
policies provided by the authentication and authorization modules.

Federation Runtime Manager One of the core task of the federation is
application deployment. This is not a trivial task, since the user will expect the
federation-support to find proper mappings between submitted appliances and
clouds belonging to the federation.

In order to devise a good mapping onto the compute, storage and network
services of the federation, the federation runtime manager (FRM) uses a set of
heuristics that consider different aspects, such as to minimize economical cost
and to maximize performance levels. This actual task and the heuristics are
implemented by the mapping component, while the FRM is in charge of the
orchestration between the mapping component, the SLA management system
and the drivers layer. In particular, the FRM is responsible of the application life
cycle management. The FRM gathers information to cover these aspects from the
State module. The information is both static and dynamic. Static information
is mainly related with general properties about cloud providers; it includes, for
instance, their geographic location, their resource- and cost-models as well as
the installed software. Dynamic information is related to the status of cloud
provider resources, as well as to cloud providers as autonomous entities forming
the federation. It is the kind of information obtained by monitoring resource
availability either on a per cloud-provider basis or by recording and analysing
the past history of each provider with respect to violated SLA. This information
can be exploited to evaluate their reliability.

Image Manager From the user’s perspective the images can be managed in two
ways: they can be packed inside an OVF archive or referenced within the OVF
files by using URI. The task of deciding what is the best storage solution is carried
out by the Image Manager. It associates metadata to the images and decides
when is necessary to copy an image or when indirection can be exploited. The
actual metadata are kept inside the State module; however an Image Registry
is introduced to decouple federation code from being modified whenever State
module is modified moving from the centralized scenario to the distributed one.

Provider Watcher This component is responsible for the State update, upon
receiving monitoring information from the Adapter layer. It decouples the State
from doing this task leading to a more cohesive architectural design.



SLA Organizer The SLA Organizer is a collection of modules related to SLA
management at the Federation level, which is achieved by leveraging and coordi-
nating SLA agreements stipulated with the federated resource providers. These
modules are:

– SLA Coordination The SLA Coordination module checks that running ap-
pliances comply with the user provided and agreed SLA, and plans corrective
actions as needed. Upon being notified a violation, the SLA Coordination
module logs the event, evaluates the current status of all related appliances
and providers, and tries to define a reconfiguration plan for the application
which compensates the violation. The SLA coordination module undertakes
actions that may involve either a single cloud provider, or, in more complex
scenarios, multiple providers and the federation-support.

– SLA Negotiation The SLA Negotiation is responsible of the negotiation
protocols with providers. Its main purpose is to decouple the protocols for
SLA (re)negotiation from the core Business logic of the Federation Runtime
manager.

– SLA Template Repository This module gathers and stores SLA tem-
plates published by the providers. The Federation SLA Template Reposi-
tory acts primarily as a cache of the Provider’s SLA Template Registries,
supporting scalable SLA-based queries and user interface template selection
within the federation. The repository can as well holds federation-specific
SLA templates not bound to any provider.

The state module The state module collects, aggregates and provides infor-
mation exploited by the federation-support. Information is subject to diverse
constraints in terms of frequency, atomicity and consistency of updates, thus
different architectural solutions may be needed to fulfil scalability and reliabil-
ity.

The involved issues become relevant when deploying the federation in a highly
distributed scenario, with many federation access points. The specific purpose of
the State module is to keep the core business logic of the federation unaware of
the distribution aspects, only exposing the choice among different classes of data
services. Each kind of information and the related constraints can be addressed
by specific design patterns, whose use we will investigate further during the
project. The federation modules require the state to manage different kinds of
information.

– The User Identity module, security modules and the Federation Runtime
Manager need read or write capability to access/manage user identity infor-
mation and system-wide preferences;

– The Provider Watcher needs write capability to keep an up-to-date view of
available resources belonging to federated and external cloud providers;

– The Provider Watcher module and the SLA Organizer gather a characteri-
zation of cloud providers, such as their geographic location, SLA templates,
cost models and peculiar features;;



– The Federation Runtime Manager accesses meta-data about providers (rep-
utation, availability) and running appliances (including associated SLA).

Clearly, such an approach requires a proper distributed communication mech-
anism to support the flow of information among the state modules. To this end,
we plan to integrate different distributed communication patterns. The decou-
pling of distributed communication within the State module is also allowed by
the fact that most tasks requiring atomicity and strict synchronization (e.g re-
source pre-reservation and commitment) are performed at the provider level,
thus simplifying the implementation of the federation state.

3.2 Adapters Layer

This layer contains the modules that enable the access to infrastructural ser-
vices for both Contrail cloud and External cloud. They are referred respectively
as internal and external adapters. These components enrich the typical cloud
infrastructural services with additional features targeting federations.

Internal Adapters The components of the internal adapters module are: (i) the
Virtual Infrastructure Network (VIN) which provides network, (ii) the Global
Autonomous File System (GAFS) which provides storage and (iii) the Virtual
Execution Platform (VEP) which provides computing power.

The VIN provides APIs to define a virtual network among multiple virtual
machines, both intra- and inter-provider. Also the VIN provides API to know
the QoS level of an inter-provider link, and if it is possible, the proper mech-
anisms to enforce a given QoS. The GAFS provides shared data space, with
the possibility for an application spanning in multiple providers to access a vir-
tual volume. Finally, the VEP provides the proper OCCI interfaces to enable
access to provider resources. Its APIs include mechanisms for reservation and
configuration of resources, and starting and monitoring of machines.

External Adapters In order to extend Contrail’s functionality onto external
clouds and at the same time to maintain modularity, the federation has been
designed in a provider-agnostic fashion. This means that each module of the
federation-support do not have any knowledge if it is issuing command to a
Contrail provider or to an external cloud. Commands toward external cloud are
issued via a type-specific adapter, which translates requests from the federation
support into requests that are understood by the provider. This task is assigned
to the External Provider module of the federation Model. This module does not
contain any driver supporting the VIN, GAFS, or VEP. Instead, an External-
Provider exploits the interface exposed by the public cloud.

4 Related Work

In this section we briefly describe state-of-the-art solutions dealing with federa-
tions of clouds. InterCloud [3] is a federated cloud computing environment that



addresses the issue of provisioning application services in a scalable comput-
ing environment, achieving QoS under variable workload, resource and network
conditions. InterCloud performs application scheduling, resource allocation and
migration of workloads. The authors implemented it on top of CloudSim [4],
a framework for modelling and simulate cloud computing infrastructures and
services. Their solution is built on three concepts: Cloud coordinators, Cloud
Brokers and Cloud Exchange. A Cloud Coordinator (CC) exports the services
provided by a cloud to the federation by implementing basic functionalities for
resource management such as scheduling, allocation, workload and performance
models. This actor also supports virtualization, dynamic sensing/monitoring,
discovery, and application composition. CCs periodically update the Cloud Ex-
change (CEx) with their availability, pricing, and SLAs policies. This information
repository aggregates information supplied by CCs in order to support the Cloud
Brokers activity. The Cloud Broker identifies suitable cloud service providers
published on the CEx, negotiating with CCs for an allocation of resources that
meets QoS needs of users. Since Contrail’s brokers interact with each others,
instead of having single-user context brokering, our federation-support can ex-
ploit information of what other users are requesting. This means a more reactive
scenario in which better reservation strategies can be adopted. In addition, to
the best of our knowledge, Contrail adopts a more cloud independent approach.
Indeed in our solution the federation plays a more central role, incorporating
most of the functionalities described into InterCloud’s CC.

The authors of [11] describe the architecture of an open federated cloud
computing platform in the context of the Reservoir [10] project. In the Reser-
voir model, each resource provider is an autonomous entity with its own business
goals. A provider can choose the providers with which to federate. There is a
clear separation between the functional roles of service providers and resource
providers. Service providers are the entities that matches the user needs by find-
ing resources that their application need. However, service providers do not own
the resources. They lease such resources from resource providers. Reservoir suc-
ceeds in defining a reference architecture capable of dealing with common IaaS
requirements and even new ones, such as service-orientation and separation be-
tween infrastructure and services. Nevertheless, Contrail tries to built upon its
results, adding vertical integration of IaaS and PaaS service models. In [5] the au-
thors propose Dynamic Cloud Collaboration (DCC), an approach for setting up
highly dynamic cloud federations. The cloud provider (CP) that wants to setup
a federation assumes the role of the primary cloud provider (pCP), whereas the
federated cloud providers are called collaborating CPs. To federate new collab-
orating CPs, adding their resource/services to a DCC platform, an approval of
other providers based on their own policies is needed. Users request services
published on the service catalogue of the pCP. Then the pCP finds suitable
partners based on the business objectives, and stipulate a contract with specific
SLAs requirements for each partner involved. If after a distributed negotiation
an agreement among all partners is reached a new dynamic cloud became oper-
ational.



5 Conclusions

This position paper presents the cloud federations of the Contrail project. A
Contrail cloud federation supports the horizontal integration of different cloud
providers by easing the task of distributing applications among different cloud
providers as well as managing them in order to fulfill negotiated SLAs. In order
to achieve this goal, a Contrail federation manages users identities, coordinates
application deployment and the SLA management conducted by single cloud
providers. In this paper we presented these commitments in detail. Then, we
described the architecture of the cloud federation-support by showing the main
software modules it is composed of, and describing the relationships among those
modules. This description is an outline for the future work that has to be con-
ducted in order to realize Contrail cloud federations.

Acknowledgment

The authors acknowledge the support of Project FP7-257438, Contrail: Open Comput-
ing Infrastructures for Elastic Services (2010-2013).

References

1. Amazon Elastic Compute Cloud. http://aws.amazon.com/ec2/
2. Windows Azure. http://www.microsoft.com/windowsazure/
3. Buyya, R., Ranjan, R., Calheiros, R.N.: Intercloud: Utility-oriented federation of

cloud computing environments for scaling of application services. Algorithms and
Architectures for Parallel Processing 6081/2010(LNCS 6081), 20 (2010)

4. Calheiros, R., Ranjan, R., Beloglazov, A., De Rose, C., Buyya, R.: Cloudsim: a
toolkit for modeling and simulation of cloud computing environments and evalua-
tion of resource provisioning algorithms. Software: Practice and Experience 41(1),
23–50 (2011)

5. Celesti, A., Tusa, F., Villari, M., Puliafito, A.: How to enhance cloud architectures
to enable cross-federation. In: 3rd International Conference on Cloud Computing.
pp. 337–345. IEEE (2010)

6. Contrail project. http://www.contrail-project.eu
7. Google App Engine. http://code.google.com/appengine/
8. Open Cloud Computing Interface. http://occi-wg.org/
9. The Open OVF project. http://www.dmtf.org/standards/ovf

10. Reservoir project. http://www.reservoir-fp7.eu
11. Rochwerger, B., Breitgand, D., Levy, E., Galis, A., Nagin, K., Llorente, I.M.,

Montero, R., Wolfsthal, Y., Elmroth, E., Caceres, J.: The reservoir model and
architecture for open federated cloud computing. IBM Journal of Research and
Development 53(4), 4 (2010)

12. The SLA@SOI project. http://sla-at-soi.eu/
13. Theilmann, W., Yahyapour, R., Butler, J.: Multi-level sla management for service-

oriented infrastructures. Towards a Service-Based Internet pp. 324–335 (2008)


