
OPTIMAL KRONECKER PRODUCT APPROXIMATION OF BLOCKTOEPLITZ MATRICESJULIE KAMM� AND JAMES G. NAGYyAbstract. This paper considers the problem of �nding n�n matrices Ak and Bk that minimizejjT �PAk 
 BkjjF , where 
 denotes Kronecker product, and T is a banded n� n block Toeplitzmatrix with banded n � n Toeplitz blocks. It is shown that the optimal Ak and Bk are bandedToeplitz matrices, and an e�cient algorithm for computing the approximation is provided. Animage restoration problem from the Hubble Space Telescope is used to illustrate the e�ectiveness ofan approximate svd preconditioner constructed from the Kronecker product decomposition.Key words. block Toeplitz matrix, conjugate gradient method, Kronecker product, imagerestoration, preconditioning, singular value decompositionAMS subject classi�cations: 65F20, 65F30.1. Introduction. A Toeplitz matrix is characterized by the property that itsentries are constant on each diagonal. Toeplitz and block Toeplitz matrices arisenaturally in many signal and image processing applications; see, for example, Bunch[4] and Jain [17] and the references therein. In image restoration [21], for instance,one needs to solve large, possibly ill-conditioned linear systems in which the coe�cientmatrix is a banded block Toeplitz matrix with banded Toeplitz blocks (bttb).Iterative algorithms, such as conjugate gradients (cg), are typically recommendedfor large bttb systems. Matrix-vector multiplications can be done e�ciently usingfast Fourier transforms [14]. In addition, convergence can be accelerated by precondi-tioning with block circulant matrices with circulant blocks (bccb). A circulant matrixis a Toeplitz matrix in which each column (row) can be obtained by a circular shift ofthe previous column (row), and a bccb matrix is a natural extension of this structureto two dimensions; c.f. Davis [10].Circulant and bccb approximations are used extensively in signal and imageprocessing applications, both in direct methods which solve problems in the \Fourierdomain" [1, 17, 21], and as preconditioners [7]. The optimal circulant preconditionerintroduced by Chan [8] �nds the closest circulant matrix in the Frobenius norm. Chanand Olkin [9] extend this to the block case; that is, a bccb matrix C is computed tominimize jjT � CjjF :bccb approximations work well for certain kinds of bttb matrices [7], especiallyif the unknown solution is almost periodic. If this is not the case, however, theperformance of bccb preconditioners can degrade [20]. Moreover, Serra-Capizzanoand Tyrtyshnikov [6] have shown recently that it may not be possible to construct abccb preconditioner that results in superlinear convergence of cg.Here we consider an alternative approach: optimal Kronecker product approxi-mations. A Kronecker product A
B is de�ned asA
B = 264 a11B � � � a1nB... ...an1B � � � annB 375� Raytheon Systems Company, Dallas, TX 75266 (email: j-kamm@ti.com)y Department of Mathematics and Computer Science, Emory University, Atlanta, GA 30322(nagy@mathcs.emory.edu). 1



2 J. KAMM AND J. NAGYIn particular, we consider the problem of �nding matrices Ak, Bk to minimizejjT � sXk=1Ak 
BkjjF ;(1.1)where T is an n2 � n2 banded bttb matrix, and Ak , Bk are n � n banded Toeplitzmatrices. A general approach for constructing such an optimal approximation wasproposed by Van Loan and Pitsianis [25] (see also Pitsianis [23]). Their approach,which we describe in more detail in Section 2, requires computing principal singularvalues and vectors of an n2 � n2 matrix related to T .An alternative approach for computing a Kronecker product approximation T �A
B for certain deconvolution problems was proposed by Thirumalai [24]. A similarapproach for banded bttb matrices was considered by Nagy [22]. As opposed tothe method of Van Loan and Pitsianis, the schemes described in [22, 24] requirecomputing principal singular values and vectors of an array having dimension at mostn� n, and thus can be substantially less expensive. Moreover, Kamm and Nagy [20]show how these approximations can be used to e�ciently construct approximate svdpreconditioners.Numerical examples in [20, 22, 24] indicate that this more e�cient approach canlead to preconditioners that perform better than bccb approximations. However,theoretical results establishing optimality of the approximations, such as in equation(1.1), were not given. In this paper, we provide these results. In particular, we showthat some modi�cations to the method proposed in [22, 24] are needed to obtain anapproximation of the form (1.1). Our theoretical results lead to an e�cient algorithmfor computing Kronecker product approximations of banded bttb matrices.This paper is organized as follows. Some notation is de�ned, and a brief review ofthe method proposed by Van Loan and Pitsianis is provided in Section 2. In Section3 we show how to exploit the banded bttb structure to obtain an e�cient schemefor computing terms in the Kronecker product decomposition. A numerical examplefrom image restoration is given in Section 4.2. Preliminaries and Notation. In this section we establish some notation tobe used throughout the paper, and describe some previous work on Kronecker productapproximations. To simplify notation, we assume T is an n � n block matrix withn� n blocks.2.1. Banded bttb Matrices. We assume that the matrix T is a block bandedToeplitz matrix with banded Toeplitz blocks (bttb), so it can be uniquely determinedby a single column t which contains all of the non-zero values in T ; that is, some centralcolumn. It will be useful to de�ne an n� n array P as t = vec(P T ), where the vecoperator transforms matrices into vectors by stacking columns as follows:A = � a1 a2 � � � an � , vec(A) = 26664 a1a2...an 37775 :



TOPELITZ KRONECKER PRODUCT APPROXIMATION 3Suppose further that the entry of P corresponding to the diagonal of T is known1.For example, suppose that P = 24 p11 p12 p13p21 p22 p23p31 p32 p33 35 ;(2.1)where the diagonal of T is located at (i; j) = (2; 3). Then t = vec(P T ) is the sixthcolumn of T , and we write
T = toep2[t; 2; 3] = 26666666666664

p23 p22 p21 p13 p12 p11 0 0 00 p23 p22 0 p13 p12 0 0 00 0 p23 0 0 p13 0 0 0p33 p32 p31 p23 p22 p21 p13 p12 p110 p33 p32 0 p23 p22 0 p13 p120 0 p33 0 0 p23 0 0 p130 0 0 p33 p32 p31 p23 p22 p210 0 0 0 p33 p32 0 p23 p220 0 0 0 0 p33 0 0 p23
37777777777775 :(2.2)

In general, if the diagonal of T is pij , then the upper and lower block bandwidths ofT are i� 1 and n� i, respectively. The upper and lower bandwidths of each Toeplitzblock are j � 1 and n� j, respectively.In a similar manner, the notation X = toep(x; i) is used to represent a bandedpoint Toeplitz matrix X constructed from the vector x, where xi corresponds to thediagonal entry. For example, if the second component of the vector x = [x1 x2 x3 x4 ]Tcorresponds to the diagonal element of a banded Toeplitz matrix X , thenX = toep(x; 2) = 2664 x2 x1 0 0x3 x2 x1 0x4 x3 x2 x10 x4 x3 x2 3775 :2.2. Kronecker Product Approximations. In this subsection we review thework of Van Loan and Pitsianis. We require the following properties of Kroneckerproducts:� (A
B)T = AT 
BT ,� (A
B)(C 
D) = (AC)
 (BD),� If U1 and U2 are orthogonal matrices, then U1 
 U2 is also orthogonal,� (A
B)x = vec(BXAT ), vec(X) = x,A more complete discussion and additional properties of Kronecker products can befound in Horn and Johnson [16] and Graham [13].Van Loan and Pitsianis [25] (see also, Pitsianis [23]) propose a general techniquefor an approximation involving Kronecker products where jjT �Pk(Ak 
 Bk)jjF isminimized. By de�ning the transformation to tilde space of a block matrix T ,T = 26664 T11 T12 � � � T1nT21 T22 � � � T2n... ... ...Tn1 Tn2 � � � Tnn 37775 ;1In image restoration, P is often referred to as a \point spread function", and the diagonal entryis the location of the \point source". See Section 4 for more details.



4 J. KAMM AND J. NAGYas
~T = tilde(T ) = 2666666666664

vec(T11)T...vec(Tn1)T...vec(T1n)T...vec(Tnn)T
3777777777775 ;it is shown in [23, 25] thatjjT � sXk=1(Ak 
Bk)jjF = jj ~T � sXk=1(~ak~bTk )jjF ;where ~ak = vec(Ak) and ~bk = vec(Bk). Thus, the Kronecker product approximationproblem is reduced to a rank-s approximation problem. Given the svd of ~T , ~T =Prk=1 ~�k~uk~vTk , rank( ~T ) = r, it is well known [12] that the rank-s approximation ~Ts,s � r, which minimizes jj ~T � ~TsjjF is ~Ts = Psk=1 ~�k~uk~vTk . Choosing ~ak = p~�k~uk,~bk = p~�k~vk minimizes jj ~T �Psk=1 ~ak~bTk jjF over all rank-s approximations, and thusone can construct an approximation T̂ =Psk=1(Ak
Bk) which minimizes jjT � T̂ jjF .This general technique requires computing the largest s singular triplets of ann2 � n2 matrix, which may be expensive for large n. Thirumalai [24] and Nagy [22]show that a Kronecker product approximation of a banded bttb matrix T can befound by computing the largest s singular triplets of the n�n array P . However, thismethod does not �nd the Kronecker product which minimizes the Frobenius normapproximation problem in equation (1.1). In the next section we show that if T is abanded bttb matrix, then this optimal approximation can be computed from an svdof a weighted version of the n� n array P .3. bttb Optimal Kronecker Product Approximation. Recall that the VanLoan and Pitsianis approach minimizes jjT �Psk=1(Ak 
 Bk)jjF for a general (un-structured) matrix T , by minimizing jj ~T �Psk=1(~ak~bTk )jjF . If it is assumed that Akand Bk are banded Toeplitz matrices, then the array P associated with the centralcolumn of T can be weighted and used to construct an approximationwhich minimizesjj ~T �Psk=1(~ak~bTk )jjF .Theorem 3.1. Let T be the n2 � n2 banded bttb matrix constructed from P ,where pij is the diagonal element of T (therefore, the upper and lower block bandwidthsof T are i � 1 and n � i, and the upper and lower bandwidths of each Toeplitz blockare j � 1 and n� j). Further, let Ak be an n� n banded Toeplitz matrix with upperbandwidth i � 1 and lower bandwidth n � i, and let Bk be an n � n banded Toeplitzmatrix with upper bandwidth j� 1 and lower bandwidth n� j. De�ne ak and bk suchthat Ak = toep(ak; i) and Bk = toep(bk; j), and de�ne~T = tilde(T );~ak = vec(Ak);~bk = vec(Bk);Wa = diag(pn� i+ 1;pn� i+ 2; : : : ;pn� 1;pn;pn� 1; : : : ;pi+ 1;pi);



TOPELITZ KRONECKER PRODUCT APPROXIMATION 5Wb = diag(pn� j + 1;pn� j + 2; : : : ;pn� 1;pn;pn� 1; : : : ;pj + 1;pj);Pw =WaPWb:Then for s � r = rank(P ),jj ~T � sXk=1 ~ak~bTk jjF = jjPw � sXk=1(Waak)(Wbbk)T jjF :Proof. See Section 3.1. 2Therefore, if Ak and Bk are constrained to be banded Toeplitz matrices, thenjjT �Psk=1(Ak 
Bk)jjF can be minimized by �nding ak , bk which minimize jjPw �Psk=1(Waak)(Wbbk)T jjF . This is a rank-s approximation problem, involving a matrixof relatively small dimension, which can be constructed using the svd of Pw. Notingthat Wa and Wb are diagonal matrices which do not need to be formed explicitly, theconstruction of T̂ =Psk=1 Ak
Bk which minimizes jjT � T̂ jjF , where Ak and Bk arebanded Toeplitz matrices, can be computed as follows:� De�ne the weight vectors wa and wb based on the (i; j) location (in P ) of thediagonal entry of T :wa = � pn� i+ 1 � � � pn� 1 pn pn� 1 � � � pi �T ;wb = � pn� j + 1 � � � pn� 1 pn pn� 1 � � � pj �T ;� Calculate Pw = (wawTb ): � P and its svd Pw = Prk=1 �kukvTk , where \:�"denotes point-wise multiplication.� Calculate ak = (p�kuk):=wa;Ak = toep(ak; i);bk = (p�kvk):=wb;Bk = toep(bk; j);for k = 1; : : : ; s, s � r, where \./" denotes point-wise division.The proof of Theorem 3.1 is based on observing that ~T has at most n unique rowsand n unique columns, which consist precisely of the rows and columns of P . Thisobservation will become clear in the following subsection.3.1. Proof of Theorem 3.1. To prove Theorem 3.1, we �rst observe that if amatrix has one row which is a scalar multiple of another row, then a rotator can beconstructed to zero out one of these rows, i.e.,Q � �xTxT � = " �p�2+1 1p�2+1�1p�2+1 �p�2+1 # � �xTxT � = � p�2 + 1xT0T � :(3.1)If this is extended to the case where more than two rows are repeated, then a simpleinduction proof can be used to establish the following lemma.



6 J. KAMM AND J. NAGYLemma 3.2. Suppose an n� n matrix X has k identical rows:
X = 266666666664

xT1xT1...xT1xT2...xTn�k+1
377777777775 :Then a sequence of k�1 orthogonal plane rotators Q1; Q2; : : : ; Qk�1 can be constructedsuch that

QX = Qk�1Qk�2 � � �Q1X = 266666666664
pkxT10T...0TxT2...xTn�k+1

377777777775 ;thereby zeroing out all the duplicate rows.It is easily seen that this result can be applied to the columns of a matrix as well,using the transpose of the plane rotators de�ned in Lemma 3.2.Lemma 3.3. Suppose an n� n matrix X contains k identical columns:X = � x1 x1 � � � x1 x2 � � �xn�k+1 � :Then an orthogonal matrix Q can be constructed from a series of plane rotators suchthat XQT = � pkx1 0 � � � 0 x2 � � � xn�k+1 � :The above results illustrate the case where the �rst occurrence of a row (column)is modi�ed to zero out the remaining occurrences. However, this is for notationalconvenience only. By appropriately constructing the plane rotators, any one of theduplicate rows (columns) may be selected for modi�cation, and the remaining rows(columns) zeroed out. These rotators can now be applied to the matrix ~T .Lemma 3.4. Let T be the n2�n2 banded bttb matrix constructed from P , wherepij is the diagonal entry of T . In other words, T = toep2[vec(P T ); i; j]. Further,de�ne~T = tilde(T );Wa = diag(pn� i+ 1;pn� i+ 2; : : : ;pn� 1;pn;pn� 1; : : : ;pi+ 1;pi);Wb = diag(pn� j + 1;pn� j + 2; : : : ;pn� 1;pn;pn� 1; : : : ;pj + 1;pj):



TOPELITZ KRONECKER PRODUCT APPROXIMATION 7Then orthogonal matrices Q1 and Q2 can be constructed such that
Q1 ~TQT2 = 266666666664

0 � � � 0 0 0 � � � 0... ... ... ... ...0 � � � 0 0 0 � � � 00 � � � 0 WaPWb 0 � � � 00 � � � 0 0 0 � � � 0... ... ... ... ...0 � � � 0 0 0 � � � 0
377777777775 :

Proof. By de�nition,
T = 26666664 Ti T1 0. . . . . .Tn Ti T1. . . . . .0 Tn Ti

37777775 :De�ning ~tTi = vec(Ti)T , and representing ~T using the n� n2 submatrices ~Ti,
~T = 26666664 ~T1...~Ti...~Tn

37777775 ;it is clear that ~T contains only n unique rows, which are ~tT1 ; : : : ;~tTn , and that the ithsubmatrix, ~Ti contains all the unique rows, i.e.,~Ti = 26664 ~tT1~tT2...~tTn 37775 :Furthermore, it can be seen that there are n� i+1 occurrences of ~tT1 , : : :, n�1 occur-rences of ~tTi�1, n occurrences of ~tTi , n� 1 occurrences of ~tTi+1, : : :, and i occurrencesof ~tTn . Therefore, a sequence of orthogonal plane rotators can be constructed to zero



8 J. KAMM AND J. NAGYout all rows of ~T except those in the submatrix ~Ti, i.e.,
Q1 ~T = 266666666664

0...0Wa ~Ti0...0
377777777775 =

26666666666666666666666664

0T...0Tpn� i+ 1 ~tT1...pn� 1 ~tTi�1pn ~tTipn� 1 ~tTi+1...pi ~tTn0T...0T

37777777777777777777777775
:

Now, partitioning ~Ti, ~Ti = � ~Ti1 � � � ~Tij � � � ~Tin � ;where each ~Tij is an n � n submatrix, it can be seen that ~Ti contains only n uniquecolumns, which are the columns of P , p1; : : : ;pn, and that the jth submatrix ~Tijcontains all the unique columns, i.e.,~Tij = � p1 p2 � � � pn � = P:Furthermore, the matrix ~Ti contains n�j+1 occurrences of p1, : : :, n�1 occurrencesof pj�1, n occurrences of pj , n� 1 occurrences of pj+1, : : :, and j occurrences of pn.Therefore, a sequence of orthogonal plane rotators can be constructed such that
Q1 ~TQT2 = 266666666664

0 � � � 0 0 0 � � � 0... ... ... ... ...0 � � � 0 0 0 � � � 00 � � � 0 WaPWb 0 � � � 00 � � � 0 0 0 � � � 0... ... ... ... ...0 � � � 0 0 0 � � � 0
377777777775 : 2The following properties involving the vec and toep2 operators are needed.Lemma 3.5. Let T , ~T , and P be de�ned as in Lemma 3.4. Further, let Ak be ann� n banded Toeplitz matrix with upper bandwidth i� 1 and lower bandwidth n� i,and let Bk be an n� n banded Toeplitz matrix with upper bandwidth j � 1 and lowerbandwidth n� j. De�ne ak and bk such that Ak = toep(ak ; i) and Bk = toep(bk; j).Then1. vec(X)� vec(Y ) = vec(X � Y ), where X and Y are any two matrices of thesame size,



TOPELITZ KRONECKER PRODUCT APPROXIMATION 92. toep2(x; i; j) � toep2(y; i; j) = toep2(x � y; i; j), where x and y are any twovectors of the same length,3. toep2fvec[(Psk=1 akbTk )T ]; i; jg =Psk=1 Ak 
Bk, and4. toep2fvec[(P �Psk=1 akbTk )T ]; i; jg = T �Psk=1Ak 
Bk.Proof. Properties 1 and 2 are clear from the de�nitions of the vec and toep2operators. Property 3 can be seen by considering the banded Toeplitz matrices A =toep(a; i) and B = toep(b; j) and noting that the central column of A
B containingall the non-zero entries is
vec[(abT )T ] = 2666666666664

a1b1...a1bn...anb1...anbn
3777777777775 :Therefore, property 3 holds when k = 1 since both sides are banded bttb matricesconstructed from the same central column, and can be extended to k = 1; : : : ; s byapplying property 2. Property 4 follows from properties 2 and 3. 2Using these properties, Lemma 3.4 can be extended to the matrix ~T �Pk ~ak~bTk .Lemma 3.6. Let T be the n2�n2 banded bttb matrix constructed from P , wherepij is the diagonal entry of T . Further, let Ak be an n � n banded Toeplitz matrixwith upper bandwidth i� 1 and lower bandwidth n� i, and let Bk be an n�n bandedToeplitz matrix with upper bandwidth j � 1 and n � j. De�ne ak and bk such thatAk = toep(ak ; i) and Bk = toep(bk; j), and de�ne ~ak = vec(Ak) and ~bk = vec(Bk).Let ~T , Wa, and Wb be de�ned as in Lemma 3.4. Then orthogonal matrices Q1 andQ2 can be constructed such that

Q1( ~T � sXk=1 ~ak~bTk )QT2 = 266666666664
0 � � � 0 0 0 � � � 0... ... ... ... ...0 � � � 0 0 0 � � � 00 � � � 0 Wa(P �Psk=1 akbTk )Wb 0 � � � 00 � � � 0 0 0 � � � 0... ... ... ... ...0 � � � 0 0 0 � � � 0

377777777775 :Proof. Using Lemma 3.5,T � sXk=1Ak 
Bk = toep2fvec[(P � sXk=1 akbTk )T ]; i; jg:By de�nition of the transformation to tilde space,tilde(T � sXk=1Ak 
Bk) = ~T � sXk=1 ~ak~bTk :



10 J. KAMM AND J. NAGYApplying Lemma 3.4 to T �Psk=1 Ak 
Bk yields
Q1( ~T � sXk=1 ~ak~bTk )QT2 = 266666666664

0 � � � 0 0 0 � � � 0... ... ... ... ...0 � � � 0 0 0 � � � 00 � � � 0 Wa(P �Psk=1 akbTk )Wb 0 � � � 00 � � � 0 0 0 � � � 0... ... ... ... ...0 � � � 0 0 0 � � � 0
377777777775 : 2The proof of Theorem 3.1 follows directly from Lemma 3.6 by noting thatjj ~T � sXk=1 ~ak~bTk jjF = jjQ1( ~T � sXk=1 ~ak~bTk )QT2 jjF= jjWa(P � sXk=1 akbTk )WbjjF= jjPw � sXk=1(Waak)(Wbbk)T jjF :3.2. Further Analysis. It has been shown how to minimize jjT�T̂ jjF when thestructure of T̂ is constrained to be a sum of Kronecker products of banded Toeplitzmatrices. We now show that if T is a banded bttb matrix, then the matrix T̂ =PiAi 
 Bi minimizing jjT � T̂ jjF must adhere to this structure. Therefore, theapproximation minimizes jjT � T̂ jjF over all matrices T̂ = Pi Ai 
 Bi when T is abanded bttb matrix.If T is a banded bttb matrix, then the rows and columns of ~T have a particularstructure. To represent this structure, using an approach similar to Van Loan andPitsianis [25], we de�ne the constraint matrix Sn;!. Given an n� n banded Toeplitzmatrix T , with upper and lower bandwidths ! = � !u; !l �, Sn;! is an n2 � (n2 �(!u + !l + 1)) f�1; 0; 1g matrix such that STn;!vec(T ) = 0. For example, let T be a4� 4 banded Toeplitz matrix with bandwidths !u = 2 and !l = 1. ThenT = 2664 t2 t1 t0 0t3 t2 t1 t00 t3 t2 t10 0 t3 t2 3775 ;



TOPELITZ KRONECKER PRODUCT APPROXIMATION 11and
ST4;[2;1] =

26666666666666666664
1 0 0 0 0 �1 0 0 0 0 0 0 0 0 0 00 1 0 0 0 0 �1 0 0 0 0 0 0 0 0 00 0 1 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 1 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 1 0 0 0 0 �1 0 0 0 0 0 00 0 0 0 0 1 0 0 0 0 �1 0 0 0 0 00 0 0 0 0 0 1 0 0 0 0 �1 0 0 0 00 0 0 0 0 0 0 1 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 1 0 0 0 0 �1 0 00 0 0 0 0 0 0 0 0 1 0 0 0 0 �1 00 0 0 0 0 0 0 0 0 0 1 0 0 0 0 �10 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

37777777777777777775 :Note that STn;! clearly has full row rank. Given the matrix T in (2.2),
~T = 26666666666664

p22 p23 0 p21 p22 p23 0 p21 p22p32 p33 0 p31 p32 p33 0 p31 p320 0 0 0 0 0 0 0 0p12 p13 0 p11 p12 p13 0 p11 p12p22 p23 0 p21 p22 p23 0 p21 p22p32 p33 0 p31 p32 p33 0 p31 p320 0 0 0 0 0 0 0 0p12 p13 0 p11 p12 p13 0 p11 p12p22 p23 0 p21 p22 p23 0 p21 p22
37777777777775 ;

ST3;[1;1] = 26666664 1 0 0 0 �1 0 0 0 00 1 0 0 0 �1 0 0 00 0 1 0 0 0 0 0 00 0 0 1 0 0 0 �1 00 0 0 0 1 0 0 0 �10 0 0 0 0 0 1 0 0
37777775 ;and the rows and columns of ~T satisfyST3;[1;1] ~T (:; i) = 0;ST3;[1;1] ~T (i; :)T = 0;for i = 1; : : : ; n2. Using the structure of ~T , the matrix T̂ =Pki=1 Ai 
Bi minimizingjjT � T̂ jjF must be structured such that Ai and Bi are banded Toeplitz matrices, asthe following sequence of results illustrate.Lemma 3.7. Let A = � a1 a2 � � � an � be the n� n matrix whose structureis constrained by STn;!ai = 0, ai 6= 0, for i = 1; : : : ; n. Further, let A =Pri=1 �iuivTibe the svd of A, where r = rank(A). Then ui satis�es STn;!ui = 0, for i = 1; : : : ; r.Proof. Given the svd of A, Avi = �iui;for i = 1; : : : ; n, and subsequentlySTn;!Avi = �iSTn;!ui:



12 J. KAMM AND J. NAGYBy de�nition, STn;!A = 0 and �i > 0 for i = 1; : : : ; r. Therefore, STn;!ui = 0 fori = 1; : : : ; r. 2Applying this result to AT , it is clear that the right singular vectors of A satisfySTn;!vi = 0, for i = 1; : : : ; r if the rows of A are structured in the same manner.Lemma 3.8. Let A = 26664 aT1aT2...aTn 37775 be the n�n matrix whose structure is constrainedby STn;!ai = 0, for i = 1; : : : ; n. Further, let A =Pri=1 �iuivTi be the svd of A, wherer = rank(A). Then vi satis�es STn;!vi = 0, for i = 1; : : : ; r.Theorem 3.9. Let T be an n�n banded block Toeplitz matrix with n�n bandedToeplitz blocks, where the upper and lower block bandwidths of T are ! = � !u !l �,and the upper and lower bandwidths of each Toeplitz block are  = � u l �. Thenthe matrices Ai and Bi minimizingjjT � kXi=1(Ai 
Bi)jjF ;for k � n, are n� n banded Toeplitz matrices, where the upper and lower bandwidthsof Ai are given by !, and the upper and lower bandwidths of Bi are given by .Proof. Recall thatjjT � kXi=1(Ai 
Bi)jjF = jj ~T � kXi=1(~ai~bTi )jjF ;where vec(Ai) = ~ai and vec(Bi) = ~bi. The structure of T results in rank( ~T ) = r � nand STn;! ~T (:; i) = STn; ~T (i; :)T = 0, for i = 1; : : : ; n2. Letting ~T =Pri=1 ~�i~ui~vTi be thesvd of ~T , jj ~T �Pki=1(~ai~bTi )jjF , k � r, is minimized by ~ai = p~�i~ui and ~bi = p~�i~vi,where STn;!~ui = STn; ~vi = 0. Therefore, Ai is an n � n banded Toeplitz matrix withupper and lower bandwidths given by !, and Bi is an n� n banded Toeplitz matrixwith upper and lower bandwidths given by . 23.3. Remarks on Optimality. The approach outlined in this section resultsin an optimal Frobenius norm Kronecker product approximation to a banded bttbmatrix. The approximation is obtained from the principal singular components ofan array Pw = WaPWb. It might be interesting to consider whether it is possibleto compute approximations which are optimal in another norm. In particular, themethod considered in [20, 22, 24] uses a Kronecker product approximation computedfrom the principal singular components of P . Unfortunately we are unable to showthat this leads to an optimal norm approximation. However, there is a very closerelationship between the approaches. SinceWa andWb are full rank, well-conditioneddiagonal matrices, P and Pw have the same rank. Although it is possible to establishbounds on the singular values of products of matrices (see, for example, Horn andJohnson [15]), we have not been able to determine a precise relationship betweenthe Kronecker product approximations obtained from the two methods. However wehave found through extensive numerical results that both methods give similarly goodapproximations. Since numerical comparisons do not provide any additional insightinto the quality of the approximation, we omit such results. Instead, in the next



TOPELITZ KRONECKER PRODUCT APPROXIMATION 13section we provide an example from an application that motivated this work, andillustrate how a Kronecker product approximation might be used in practice. Wenote that further comparisons with bccb approximations can be found in [20, 24].4. An Image Restoration Example. In this section we consider an imagerestoration example, and show how the Kronecker product approximations can beused to construct an approximate svd preconditioner. Image restoration is oftenmodeled as a linear system: b = Tx+ n ;where b is an observed blurred, noisy image, T is a large, often ill-conditioned matrixrepresenting the blurring phenomena, n is noise, and x is the desired true image. Ifthe blur is assumed to be spatially invariant, then T is a banded bttb matrix [1, 21].In this case, the array P corresponding to a central column of T is called a pointspread function (psf).The test data we use consists of a partial image of Jupiter taken from the HubbleSpace Telescope (hst) in 1992, before the mirrors in the Wide Field Planetary Cam-era were �xed. The data was obtained via anonymous ftp from ftp.stsci.edu, inthe directory pub/stsdas/testdata/restore/data/jupiter. Figure 4.1 shows theobserved image. Also shown in Figure 4.1 is a mesh plot of the psf, P , where thepeak corresponds to the diagonal entry of T . The observed image is 256� 256, so Tis 65; 536� 65; 536.
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a. Observed, blurred image. b. psf, P .Fig. 4.1. Observed hst image and point spread function.We mention that if T is ill-conditioned, which is often the case in image restora-tion, then regularization is needed to suppress noise ampli�cation in the computedsolution [21]. Although T is essentially too large to compute its condition number,certain properties of the data indicate that T is fairly well conditioned. For instance,we observe that the psf is not very smooth (smoother psfs typically indicate more



14 J. KAMM AND J. NAGYill-conditioned T ). Another indication comes from the fact that the optimal circulantapproximation of T , as well as our approximate svd of T (to be described below) arewell conditioned; speci�cally these approximations have condition numbers that areapproximately 20.We also mention that if the psf can be expressed as P = �uvT (i.e., it hasrank 1), then the matrix T is separable. Using Theorem 3.1, T = A 
 B, whereA = toep(p�u) and B = toep(p�v). E�cient numerical methods that exploit theKronecker product structure of T (e.g., [2, 5, 11]) can then be used.However, as can be seen from the plot of the singular values of P in Figure 4.2,for this data, P is not rank one, and so T is not separable. We therefore suggest con-

0 10 20 30 40 50 60
0

0.02

0.04

0.06

0.08

0.1

0.12

Fig. 4.2. Singular values of the psf, P .structing an approximate svd to use as a preconditioner, and solve the least squaresproblem Tx � b using a conjugate gradient algorithm, such as cgls; see Bj�orck [3].This preconditioning idea was proposed in [20], and can be described as follows. GivenT � sXk=1Ak 
Bk;(4.1)an svd approximation of T can be constructed asT � U�V T ;U = UA 
 UB ;V = VA 
 VB ;� = diag(UTTV )= diag(UT (A1 
B1 +A2 
B2 + � � �+Ak 
Bk)V );where A1 = UA�AV TA and B1 = UB�BV TB . Note that the number of terms s onlya�ects the setup cost of calculating �. For s � 1, � = diag(UTTV ) clearly solves theminimization problemmin� jj�� UTTV jjF = min� jjU�V T � T jjF ;



TOPELITZ KRONECKER PRODUCT APPROXIMATION 15over all diagonal matrices � and therefore produces an optimal svd approximation,given a �xed U = UA
UB and V = VA 
 VB . This is analogous to the circulant andbccb approximations discussed earlier, which provide an optimal eigendecompositiongiven a �xed set of eigenvectors (i.e., the Fourier vectors).In our tests, we use cgls to solve the ls problem Tx � b using no preconditioner,our approximate svd preconditioner (with s = 3 terms in equation (4.1)) and the opti-mal circulant preconditioner. Although we observed that T is fairly well conditioned,we should still be cautious about noise corrupting the computed restorations. There-fore, we use the conservative stopping tolerance jjT Tb� T TTxjj2=jjT Tbjj2 < 10�4.Table 4.1 shows the number of iterations needed for convergence in each case, andin Figure 4.3 we plot the corresponding residuals at each iteration. The computedsolutions are shown in Figure 4.4, along with the hst observed, blurred image forcomparison. Table 4.1Number of cgls and pcgls iterations needed for convergence.cgls, no prec. pcgls, circulant prec. pcgls, svd prec.43 12 4
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Fig. 4.3. Plot of the residuals at each iteration.5. Concluding Remarks. Because the image and psf used in the previoussection come from actual hst data, we cannot get an analytical measure on the ac-curacy of the computed solutions. However, we observe from Figure 4.4 that allsolutions appear to be equally good restorations of the image, and from Figure 4.3we see that the approximate svd preconditioner is e�ective at reducing the numberof iterations needed to obtain the solutions. Additional numerical examples compar-ing the accuracy of computed solutions, as well as computational cost of bccb andthe approximation svd preconditioner, can be found in [19, 20]. A comparison of
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