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Abstract. This paper considers the problem of finding n X n matrices Ay and By, that minimize
[|IT — Z Ay, ® Bi||r, where ® denotes Kronecker product, and 7' is a banded n x n block Toeplitz
matrix with banded n x n Toeplitz blocks. It is shown that the optimal A; and Bj are banded
Toeplitz matrices, and an efficient algorithm for computing the approximation is provided. An
image restoration problem from the Hubble Space Telescope is used to illustrate the effectiveness of
an approximate SVD preconditioner constructed from the Kronecker product decomposition.
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1. Introduction. A Toeplitz matrix is characterized by the property that its
entries are constant on each diagonal. Toeplitz and block Toeplitz matrices arise
naturally in many signal and image processing applications; see, for example, Bunch
[4] and Jain [17] and the references therein. In image restoration [21], for instance,
one needs to solve large, possibly ill-conditioned linear systems in which the coefficient
matrix is a banded block Toeplitz matrix with banded Toeplitz blocks (BTTB).

Iterative algorithms, such as conjugate gradients (CG), are typically recommended
for large BTTB systems. Matrix-vector multiplications can be done efficiently using
fast Fourier transforms [14]. In addition, convergence can be accelerated by precondi-
tioning with block circulant matrices with circulant blocks (BCCB). A circulant matrix
is a Toeplitz matrix in which each column (row) can be obtained by a circular shift of
the previous column (row), and a BCCB matrix is a natural extension of this structure
to two dimensions; c.f. Davis [10].

Circulant and BCCB approximations are used extensively in signal and image
processing applications, both in direct methods which solve problems in the “Fourier
domain” [1, 17, 21], and as preconditioners [7]. The optimal circulant preconditioner
introduced by Chan [8] finds the closest circulant matrix in the Frobenius norm. Chan
and Olkin [9] extend this to the block case; that is, a BCCB matrix C is computed to
minimize

1T = CllF.

BCCB approximations work well for certain kinds of BTTB matrices [7], especially
if the unknown solution is almost periodic. If this is not the case, however, the
performance of BCCB preconditioners can degrade [20]. Moreover, Serra-Capizzano
and Tyrtyshnikov [6] have shown recently that it may not be possible to construct a
BCCB preconditioner that results in superlinear convergence of CG.

Here we consider an alternative approach: optimal Kronecker product approxi-
mations. A Kronecker product A ® B is defined as

auB s alnB

AeB=| :
anlB s annB
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In particular, we consider the problem of finding matrices Ay, Bj to minimize

s

(1.1) 1T -3 Ay o Byllr,
k=1
where T is an n? x n? banded BTTB matrix, and A, By are n x n banded Toeplitz
matrices. A general approach for constructing such an optimal approximation was
proposed by Van Loan and Pitsianis [25] (see also Pitsianis [23]). Their approach,
which we describe in more detail in Section 2, requires computing principal singular
values and vectors of an n? x n? matrix related to T'.

An alternative approach for computing a Kronecker product approximation 7' ~
A® B for certain deconvolution problems was proposed by Thirumalai [24]. A similar
approach for banded BTTB matrices was considered by Nagy [22]. As opposed to
the method of Van Loan and Pitsianis, the schemes described in [22, 24] require
computing principal singular values and vectors of an array having dimension at most
n X n, and thus can be substantially less expensive. Moreover, Kamm and Nagy [20]
show how these approximations can be used to efficiently construct approximate svD
preconditioners.

Numerical examples in [20, 22, 24] indicate that this more efficient approach can
lead to preconditioners that perform better than BCCB approximations. However,
theoretical results establishing optimality of the approximations, such as in equation
(1.1), were not given. In this paper, we provide these results. In particular, we show
that some modifications to the method proposed in [22, 24] are needed to obtain an
approximation of the form (1.1). Our theoretical results lead to an efficient algorithm
for computing Kronecker product approximations of banded BTTB matrices.

This paper is organized as follows. Some notation is defined, and a brief review of
the method proposed by Van Loan and Pitsianis is provided in Section 2. In Section
3 we show how to exploit the banded BTTB structure to obtain an efficient scheme
for computing terms in the Kronecker product decomposition. A numerical example
from image restoration is given in Section 4.

2. Preliminaries and Notation. In this section we establish some notation to
be used throughout the paper, and describe some previous work on Kronecker product
approximations. To simplify notation, we assume 7' is an n X n block matrix with
n X n blocks.

2.1. Banded BTTB Matrices. We assume that the matrix 7" is a block banded
Toeplitz matrix with banded Toeplitz blocks (BTTB), so it can be uniquely determined
by a single column t which contains all of the non-zero values in T'; that is, some central
column. It will be useful to define an n x n array P as t = vec(PT), where the vec
operator transforms matrices into vectors by stacking columns as follows:

a
a2
A=]a a - a, | & vec(d)=

an
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Suppose further that the entry of P corresponding to the diagonal of T' is known!.
For example, suppose that

b11 P12 P13
(2.1) P=1 pa p22 ps |,
P31 P32 P33

where the diagonal of 7' is located at (i,5) = (2,3). Then t = vec(PT) is the sixth
column of T', and we write

[ P23 pas po1 | p13 P12 p11| O 0 0 W
0 p3 pa2| 0 pi3 pi2| O 0 0
0 0 o3 0 0 pi3 0 0 0

3 P32 P31 | P23 P22 P21 | P13 P12 P11
P33 P32 0  p23 poo 0 pi3 pr12
0 p33| 0 0 p3| 0 0 pi3
0 0 |p3ss P32 p31 | P23 P22 P21
0 0 0 p33 p32 0  pa3z poo
0 0 0 0 D33 0 0 D23 J

(2.2) T = toep2[t,2,3] =

OOOOO:?

In general, if the diagonal of T" is p;;, then the upper and lower block bandwidths of
T are i — 1 and n — 7, respectively. The upper and lower bandwidths of each Toeplitz
block are 5 — 1 and n — j, respectively.

In a similar manner, the notation X = toep(x,) is used to represent a banded
point Toeplitz matrix X constructed from the vector x, where x; corresponds to the
diagonal entry. For example, if the second component of the vector x = [z} =5 x3 747
corresponds to the diagonal element of a banded Toeplitz matrix X, then

) I 0 0
I3 ) I 0
X = toep(x,2) = Ts T3 Ty @

0 x4 x3 x9

2.2. Kronecker Product Approximations. In this subsection we review the
work of Van Loan and Pitsianis. We require the following properties of Kronecker
products:

e (A2 B)T = AT @ BT,
(A® B)(C ® D) = (AC) ® (BD),

e If U; and U, are orthogonal matrices, then U; ® Us is also orthogonal,

¢ (A® B)x = vec(BX AT), vec(X) = x,
A more complete discussion and additional properties of Kronecker products can be
found in Horn and Johnson [16] and Graham [13].

Van Loan and Pitsianis [25] (see also, Pitsianis [23]) propose a general technique
for an approximation involving Kronecker products where ||T' — >, (Ar ® By)||F is
minimized. By defining the transformation to tilde space of a block matrix T,

Ty, T2 - Ty
Tyy Toy -+ Toy

T = . . . )
Tnl Tn2 tee Tnn

!In image restoration, P is often referred to as a “point spread function”, and the diagonal entry
is the location of the “point source”. See Section 4 for more details.
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as

]

vec(Ty)T
T = tilde(T) = : ,
vec(T1,)T

L vec(Tpn)T J
it is shown in [23, 25] that

S S

1T = > (A @ Bi)llr = [|T = > (axbf)||r,

k=1 k=1

where a;, = vec(Ay,) and by, = vec(B}). Thus, the Kronecker product approximation
problem is reduced to a rank-s approximation problem. Given the svD of T, T =
Sy, Gr vy, rank(T) = r, it is well known [12] that the rank-s approximation T,
s < r, which minimizes |7 — Ts||r is Ts = Y;_, G50V} . Choosing aj, = /Gy,
by, = /v, minimizes ||T — P akb || over all rank-s approximations, and thus
one can construct an approximation 7' = > 7—1(Ar ® By) which minimizes ||T — T||p.

This general technique requires computing the largest s singular triplets of an
2 matrix, which may be expensive for large n. Thirumalai [24] and Nagy [22]
show that a Kronecker product approximation of a banded BTTB matrix 7' can be
found by computing the largest s singular triplets of the n x n array P. However, this
method does not find the Kronecker product which minimizes the Frobenius norm
approximation problem in equation (1.1). In the next section we show that if 7" is a
banded BTTB matrix, then this optimal approximation can be computed from an SvD
of a weighted version of the n x n array P.

n?xn

3. BTTB Optimal Kronecker Product Approximation. Recall that the Van
Loan and Pitsianis approach minimizes ||T — Y} _ 1(Ax ® By)||F for a general (un-
structured) matrix 7', by minimizing ||T — 3, _, (axb})||r. If it is assumed that Ay
and By are banded Toephtz matrices, then the array P associated with the central
column of T' can be weighted and used to construct an approximation which minimizes

1T = 325 (@bl

THEOREM 3.1. Let T be the n? x n? banded BTTB matriz constructed from P,
where p;; is the diagonal element of T (therefore, the upper and lower block bandwidths
of T arei—1 and n — i, and the upper and lower bandwidths of each Toeplitz block
are 5 — 1 and n — j). Further, let Ay be an n X n banded Toeplitz matriz with upper
bandwidth i — 1 and lower bandwidth n — i, and let By, be an n X n banded Toeplitz
matriz with upper bandwidth j — 1 and lower bandwidth n — j. Define a; and by, such
that Ay = toep(ag,i) and By = toep(bg, j), and define

T = tilde(T),
a; = vec(Ag),
by, = vec(By),

Wa:dzag(\/n—z'+1,\/n—i—|—2,...,\/n—1,\/5,\/71—1,...,\/i+1,\/z_’),
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Wy = diag(\/n —j+1,/n—j+2,...,vVn— Lv/n,vn—1,...,/5+1,/4),
P, = W,PW,.

Then for s < r = rank(P),

S

1T =" axbillr =[Py = > (Waar) (Wybi) |-
k=1 k=1

Proof. See Section 3.1. a

Therefore, if A; and By are constrained to be banded Toeplitz matrices, then
T — > %_,(Ax ® Bg)||F can be minimized by finding ay,, by which minimize || P, —
i1 (Weag)(Wyby)T||p. This is a rank-s approximation problem, involving a matrix
of relatively small dimension, which can be constructed using the svD of P,. Noting
that W, and W, are diagonal matrices which do not need to be formed explicitly, the
construction of 7' = > %—1 Ak ® By, which minimizes ||T" — T||r, where A, and By, are
banded Toeplitz matrices, can be computed as follows:
e Define the weight vectors w, and wy, based on the (i, j) location (in P) of the
diagonal entry of T

—

wo=[Va=iF1 - Va-1 Vi Va-1 - Vil
wy=[Va—JjF1 -« va—-1 va va-1 - il ,

—

“ ”

e Calculate P, = (w,w]).* P and its svD P, = Y., _, opuv; , where
denotes point-wise multiplication.
e Calculate

.k

ap = (y/orug)./Wa,
Ay = toep(ag, i),
by, = (\V/okvE)./ Wy,

By, = toep(bkaj)a

for k=1,...,s, s <r, where “./” denotes point-wise division.
The proof of Theorem 3.1 is based on observing that T has at most n unique rows
and n unique columns, which consist precisely of the rows and columns of P. This
observation will become clear in the following subsection.

3.1. Proof of Theorem 3.1. To prove Theorem 3.1, we first observe that if a
matrix has one row which is a scalar multiple of another row, then a rotator can be
constructed to zero out one of these rows, i.e.,

(3.) Q[GXT]zlﬁ ﬁ“a{]:[mxw.

T o T
X Vaz+1 VaZ+1 X 0

If this is extended to the case where more than two rows are repeated, then a simple
induction proof can be used to establish the following lemma.
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LEMMA 3.2. Suppose an n X n matriz X has k identical rows:

- x; 1
X1
X = xT
X3
T
L Xnfk+1 J
Then a sequence of k—1 orthogonal plane rotators Q1,Qs,...,Qr_1 can be constructed
such that
( \/Exf i
OT
QX =Qr-1Qk—2- Q1 X = 0" ;
<7
2
T
L Xp—k+1 J

thereby zeroing out all the duplicate rows.

It is easily seen that this result can be applied to the columns of a matrix as well,
using the transpose of the plane rotators defined in Lemma 3.2.

LEMMA 3.3. Suppose an n X n matriz X contains k identical columns:
X:[Xl X1 e Xg X9 "'xn7k+1]-

Then an orthogonal matriz Q) can be constructed from a series of plane rotators such
that

XQT:[\/EXI 0 --- 0 X9 - Xn7k+1:|‘

The above results illustrate the case where the first occurrence of a row (column)
is modified to zero out the remaining occurrences. However, this is for notational
convenience only. By appropriately constructing the plane rotators, any one of the
duplicate rows (columns) may be selected for modification, and the remaining rows
(columns) zeroed out. These rotators can now be applied to the matrix 7.

LEMMA 3.4. Let T be the n? x n? banded BTTB matriz constructed from P, where
pij is the diagonal entry of T. In other words, T = toep2lvec(PT),i,j]. Further,
define

T = tilde(T),

W, = diagvVn—i+1L,Vn—i+2,....v/n—1,v/nvn—1,...,Vi+1,Vi),

Wy = diag(\/n—j+1,v/n—j+2,....,vVn—1,vn,vVn—=1,...,7/7+ 1,\/4).
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Then orthogonal matrices Q1 and Q2 can be constructed such that

0 0 0 0 0
0o --- 0 0 0 --- 0
QTR =10 --- 0 WoPW;, 0 --- 0
0o --- 0 0 0 --- 0
L O 0 0 0 0 |
Proof. By definition,
T; T: 0
T=|T1T, T; T:
0 T, T;

Th
T4 .
7,
it is clear that T’ contains only n unique rows, which are t7,...,tT, and that the *"

submatrix, T; contains all the unique rows, i.e.,

iT
o
- t3
Ti=1| .
T
tn
Furthermore, it can be seen that there are n — i+ 1 occurrences of t7, ..., n— 1 occur-
rences of t7 |, n occurrences of t7, n — 1 occurrences of tZTH, ..., and 7 occurrences

of tL. Therefore, a sequence of orthogonal plane rotators can be constructed to zero
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out all rows of T except those in the submatrix T}, i.e.,
o
o”
0 1 Vn—i+1tf
0 N

QIT - WaTi = \/ﬁ EZ
0 vn—1 tZT+1

0 Vi
OT

Lo
Now, partitioning Ti,
where each Tij is an n x n submatrix, it can be seen that T} contains only n unique

columns, which are the columns of P, pi,...,pn, and that the j** submatrix T;;
contains all the unique columns, i.e.,

T,j=[pP1 P2 - pPn|=P
Furthermore, the matrix T; contains n — j + 1 occurrences of p1, ..., n— 1 occurrences
of pj_1, m occurrences of pj, n — 1 occurrences of pj;1, ..., and j occurrences of p,.

Therefore, a sequence of orthogonal plane rotators can be constructed such that

0O --- 0 0 0 --- 01

. 0o --- 0 0 0O --- 0
QTR =0 --- 0 W,PW, 0 --- 0
0 0 0 0 0

L0 0 0 0 0 |

The following properties involving the vec and toep2 operators are needed.

LEMMA 3.5. Let T, T, and P be defined as in Lemma 3.4. Further, let Ay be an
n X n banded Toeplitz matrix with upper bandwidth i — 1 and lower bandwidth n — i,
and let By be an n x n banded Toeplitz matriz with upper bandwidth j — 1 and lower
bandwidth n — j. Define aj, and by, such that Ay = toep(ay,i) and By = toep(bg, j).
Then
1. vee(X) — vec(Y) = vee(X —Y), where X and Y are any two matrices of the
same size,
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2. toep2(x,i,j) — toep2(y,i,j) = toep2(x —y,i,j), where x and 'y are any two
vectors of the same length,

3. toep2{vec[(>r_, arb})T],4,5} =Y ;_, Ax ® By, and

4. toep2{vec[(P — > ;_ a;bi)T],i,j} =T — >;_, Ax ® By.

Proof. Properties 1 and 2 are clear from the definitions of the vec and toep2
operators. Property 3 can be seen by considering the banded Toeplitz matrices A =
toep(a,i) and B = toep(b, j) and noting that the central column of A® B containing
all the non-zero entries is

]

albn
vec[(abT)T] =

anbl

|

Therefore, property 3 holds when k& = 1 since both sides are banded BTTB matrices
constructed from the same central column, and can be extended to £k = 1,...,s by
applying property 2. Property 4 follows from properties 2 and 3. O

Using these properties, Lemma 3.4 can be extended to the matrix T - >k ékf)[.

LEMMA 3.6. Let T be the n? x n? banded BTTB matriz constructed from P, where
pij is the diagonal entry of T. Further, let Ay be an n x n banded Toeplitz matriz
with upper bandwidth 1 — 1 and lower bandwidth n — i, and let By, be an n X n banded
Toeplitz matriz with upper bandwidth j — 1 and n — j. Define a; and by such that
Ay = toep(ay,i) and By, = toep(byg,j), and define ay = vec(Ay) and by = vec(By,).
Let T, W,, and W, be defined as in Lemma 3.4. Then orthogonal matrices Q1 and
Q2 can be constructed such that

(0 .0 0 0o --- OW

_ s B 0 --- 0 0 0O --- 0
Qi(T - ab)Q7 =] 0 -+ 0 Wo(P—Y;_jarbl)W, 0 --- 0
k=1 0 --- 0 0 0 --- 0

LO .00 0 0o --- OJ

Proof. Using Lemma 3.5,

T - A ® By = toep2{vec[(P — > _ayb})"],i,j}.
k=1 k=1
By definition of the transformation to tilde space,

tilde(T — Y A, ®By) =T — Y aybj.
k=1 k=1
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Applying Lemma 3.4 to T — Y., _, Ay ® By, yields

( 0 0 0 0 0 W
s 0 0 0 0 0
Q1(T - ab{)Q7 = | 0 0 Wi(P—Y;_jasbD)W, 0 0
k=1 0 0 0 0 0

L 0 0 0 0 0 J

The proof of Theorem 3.1 follows directly from Lemma 3.6 by noting that

1T = aby|lr =11Q:(T - > arbi)Q5 ||r
k=1 k=1

= [|[Wa(P ) arb{)Ws||F
k=1

=||P, — Z(Waak)(wbbk)THF'
k=1

3.2. Further Analysis. It has been shown how to minimize ||T'—7'||r when the
structure of 7' is constrained to be a sum of Kronecker products of banded Toeplitz
matrices. We now show that if T is a banded BTTB matrix, then the matrix T =
>;A; ® B; minimizing ||T — T||r must adhere to this structure. Therefore, the
approximation minimizes ||T — THF over all matrices T = > ;A ®B; when T is a
banded BTTB matrix.

If T is a banded BTTB matrix, then the rows and columns of 7 have a particular
structure. To represent this structure, using an approach similar to Van Loan and
Pitsianis [25], we define the constraint matrix S, ,. Given an n x n banded Toeplitz
matrix 7', with upper and lower bandwidths w = [ wy, w; |, Sn.w is an n? x (n? —
(wu +w; + 1)) {1,0,1} matrix such that ST vec(T) = 0. For example, let T be a
4 x 4 banded Toeplitz matrix with bandwidths w,, = 2 and w; = 1. Then

ts t1 tg O
|t ta tn to
T=10 t5 to 1, |

0 0 t3 ¢t
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and
(1 0 0 0|0 -1 0 00 O 0 0|0 O 0 0 ]
010 0(0 0O -1 0|0 O 0 0|0 O 0 0
0 01 0|0 O 0 0|0 O 0 0|0 O 0 0
0 00 1(0 O 0 0|0 O 0 0|0 O 0 0
0 00 01 O 0 0|0 -1 0 0|0 O 0 0
g7 |0 00 0|0 1 0O 0/0 0 -1 0|0 O 0 0
421710 0 0 0|0 O 1 0(0 O 0O —-1(0 O 0 0
0 00 0|0 O 0 1|0 O 0 0|0 O 0 0
0 00 0|0 O 0 0|1 o0 0 0|0 -1 0 0
0 00 0|0 O 0 0|0 1 0 0|0 0 -1 0
0 00 0|0 O 0 0|0 O 1 0|0 O 0 -1
LO 0 0 0|0 O 0 0|0 O 0 0|1 0 0 0 |

Note that ST clearly has full row rank. Given the matrix 7' in (2.2),

( P22 P2z 0| pa1 Doz D23 |0 par poa |
p32 P33 0 |p3r p32 p33 |0 p3r P32
0 0 0| O 0 0 (0 O 0
_ piz P13 0 |pun pi2 pi3 |0 pun pi2
T=| p22 p23 0|pa p22 p23 |0 p21 p22 s
p32 P33 0 |p3r p32 p33 |0 p3r pao
0 0 0O 0 0|0 O 0
pi2 P13 0| pun pi2 p13 |0 pu1 pro
L P22 P23 0| par pa2 p23 | 0 P21 po ]
( 1 0 0j]0 -1 0 |0 O 0
01 00 0 —-1({0 O 0
gT _ 0 0 110 O 0|10 O 0
3,[1,1] 0 0 01 O 0|0 -1 O ’
0 0 0|0 1 0|0 0 -1
L 0 0 0/0 O 0|1 0 0

and the rows and columns of T satisfy

Ssq'j[l,l]f(%i) =0,
Sg’,‘[l,l]T(L :)T = 0,
for i = 1,...,n%. Using the structure of T, the matrix T = Zle A; ® B; minimizing

|T — T'||r must be structured such that A; and B; are banded Toeplitz matrices, as
the following sequence of results illustrate.

LEMMA 3.7. Let A = [ a; as --- a, ] be the n x n matriz whose structure
is constrained by Siwai =0,a; #0, fori=1,...,n. Further, let A=Y, ou; vy
be the SVD of A, where r = rank(A). Then u; satisfies S;f’wui =0, fori=1,...,r.

Proof. Given the svD of A,

Av; = o;u;,
for s = 1,...,n, and subsequently

T T
Sn’wAVz' = aiSn’wui.
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By definition, S;‘ZWA =0and o; > 0 for : = 1,...,r. Therefore, Sg:wui = 0 for

1=1,...,r. O
Applying this result to A7, it is clear that the right singular vectors of A satisfy
Siwvi =0, fori=1,...,r if the rows of A are structured in the same manner.
aj
aj
LEMMA 3.8. Let A = . be the n X n matriz whose structure is constrained
a,,

by Sg’wai =0, fori=1,...,n. Further, let A=Y, o;u; vl be the SVD of A, where
r = rank(A). Then v; satisfies Sg’wvi =0, fori=1,...,r.

THEOREM 3.9. Let T be an n x n banded block Toeplitz matriz with n x n banded
Toeplitz blocks, where the upper and lower block bandwidths of T are w = [ Wy Wy ],
and the upper and lower bandwidths of each Toeplitz block are v = [ Yo M ] Then
the matrices A; and B; minimizing

k

1T~ (Ai ® Bi) ||,

i=1

for k <n, are n x n banded Toeplitz matrices, where the upper and lower bandwidths
of A; are given by w, and the upper and lower bandwidths of B; are given by 7.
Proof. Recall that

k k

T34 By)llp = 1T — S (@b,

i=1 i=1

where vec(A4;) = a; and vec(B;) = b;. The structure of T results in rank(T) =r < n
and SZ:WT(:, i) = STZIWT(Z', 9T =0, fori=1,...,n% LettingT = 37_, 5,#;V be the
svp of T, ||T — Zle(ﬁiBZT)HF, k < r, is minimized by a; = \/3;@; and b; = \/5;v;,
where S;‘f’wﬁi = Sgﬁv’i = 0. Therefore, A; is an n x n banded Toeplitz matrix with
upper and lower bandwidths given by w, and B; is an n x n banded Toeplitz matrix
with upper and lower bandwidths given by 7. O

3.3. Remarks on Optimality. The approach outlined in this section results
in an optimal Frobenius norm Kronecker product approximation to a banded BTTB
matrix. The approximation is obtained from the principal singular components of
an array P, = W,PW,. It might be interesting to consider whether it is possible
to compute approximations which are optimal in another norm. In particular, the
method considered in [20, 22, 24] uses a Kronecker product approximation computed
from the principal singular components of P. Unfortunately we are unable to show
that this leads to an optimal norm approximation. However, there is a very close
relationship between the approaches. Since W, and W}, are full rank, well-conditioned
diagonal matrices, P and P, have the same rank. Although it is possible to establish
bounds on the singular values of products of matrices (see, for example, Horn and
Johnson [15]), we have not been able to determine a precise relationship between
the Kronecker product approximations obtained from the two methods. However we
have found through extensive numerical results that both methods give similarly good
approximations. Since numerical comparisons do not provide any additional insight
into the quality of the approximation, we omit such results. Instead, in the next
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section we provide an example from an application that motivated this work, and
illustrate how a Kronecker product approximation might be used in practice. We
note that further comparisons with BCCB approximations can be found in [20, 24].

4. An Image Restoration Example. In this section we consider an image
restoration example, and show how the Kronecker product approximations can be
used to construct an approximate SVD preconditioner. Image restoration is often
modeled as a linear system:

b=Tx+n,

where b is an observed blurred, noisy image, T is a large, often ill-conditioned matrix
representing the blurring phenomena, n is noise, and x is the desired true image. If
the blur is assumed to be spatially invariant, then T is a banded BTTB matrix [1, 21].
In this case, the array P corresponding to a central column of 7T is called a point
spread function (PSF).

The test data we use consists of a partial image of Jupiter taken from the Hubble
Space Telescope (HST) in 1992, before the mirrors in the Wide Field Planetary Cam-
era were fixed. The data was obtained via anonymous ftp from ftp.stsci.edu, in
the directory pub/stsdas/testdata/restore/data/jupiter. Figure 4.1 shows the
observed image. Also shown in Figure 4.1 is a mesh plot of the PSF, P, where the
peak corresponds to the diagonal entry of 7. The observed image is 256 x 256, so T’
is 65,536 x 65, 536.

0.1

| I I
50 100 150 200 250

a. Observed, blurred image. b. PsF, P.

Fic. 4.1. Observed HST image and point spread function.

We mention that if T is ill-conditioned, which is often the case in image restora-
tion, then regularization is needed to suppress noise amplification in the computed
solution [21]. Although T is essentially too large to compute its condition number,
certain properties of the data indicate that T is fairly well conditioned. For instance,
we observe that the PSF is not very smooth (smoother PSFs typically indicate more
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ill-conditioned T'). Another indication comes from the fact that the optimal circulant
approximation of T, as well as our approximate svD of T' (to be described below) are
well conditioned; specifically these approximations have condition numbers that are
approximately 20.

We also mention that if the PSF can be expressed as P = ocuv” (i.e., it has
rank 1), then the matrix T is separable. Using Theorem 3.1, T = A ® B, where
A = toep(y/ou) and B = toep(y/ov). Efficient numerical methods that exploit the
Kronecker product structure of T' (e.g., [2, 5, 11]) can then be used.

However, as can be seen from the plot of the singular values of P in Figure 4.2,
for this data, P is not rank one, and so T is not separable. We therefore suggest con-

0.12

0.1

0.04-

0.02-

FiG. 4.2. Singular values of the pS¥, P.

structing an approximate SVD to use as a preconditioner, and solve the least squares
problem T'x ~ b using a conjugate gradient algorithm, such as caLs; see Bjorck [3].
This preconditioning idea was proposed in [20], and can be described as follows. Given

(4.1) T~ Ay @By,
k=1

an SVD approximation of 7' can be constructed as

T~USVT,
U=Ua®Usg,
V=V4® Vg,

Y = diag(UTTV)
= diag(UT(Al Q@B +A45 By + -+ A ® Bk)V),
where 4; = UAZAVE and B; = UBEBVg. Note that the number of terms s only

affects the setup cost of calculating ¥. For s > 1, ¥ = diag(UTTV) clearly solves the
minimization problem

%PHEfUpﬂmF:ngﬂUEVTmea
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over all diagonal matrices ¥ and therefore produces an optimal SVvD approximation,
given a fixed U = U, ® Ug and V = V4 ® Vp. This is analogous to the circulant and
BCCB approximations discussed earlier, which provide an optimal eigendecomposition
given a fixed set of eigenvectors (i.e., the Fourier vectors).

In our tests, we use CGLS to solve the LS problem 7'x ~ b using no preconditioner,
our approximate SVD preconditioner (with s = 3 terms in equation (4.1)) and the opti-
mal circulant preconditioner. Although we observed that T is fairly well conditioned,
we should still be cautious about noise corrupting the computed restorations. There-
fore, we use the conservative stopping tolerance ||T7b — TTTx||5/||TTb||, < 10~*.

Table 4.1 shows the number of iterations needed for convergence in each case, and
in Figure 4.3 we plot the corresponding residuals at each iteration. The computed
solutions are shown in Figure 4.4, along with the HST observed, blurred image for
comparison.

TABLE 4.1
Number of CGLS and PCGLS iterations needed for convergence.

CGLS, no prec. PCGLS, circulant prec. PCGLS, svd prec.
43 12 4

residual 2—norm

\ . circulant prec. no prec.

svd prec

10° L L L L L L L L L
5 10 15 20 25 30 35 40 45 50

iteration

Fi1G. 4.3. Plot of the residuals at each iteration.

5. Concluding Remarks. Because the image and PSF used in the previous
section come from actual HST data, we cannot get an analytical measure on the ac-
curacy of the computed solutions. However, we observe from Figure 4.4 that all
solutions appear to be equally good restorations of the image, and from Figure 4.3
we see that the approximate sVvD preconditioner is effective at reducing the number
of iterations needed to obtain the solutions. Additional numerical examples compar-
ing the accuracy of computed solutions, as well as computational cost of BCCB and
the approximation SvD preconditioner, can be found in [19, 20]. A comparison of
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1 1 1
50 100 150 200 250 100

a. HST blurred image. b. cGLS solution, 43 iterations.

50 100 150 200 250 50 100 150 200 250

c. PCGLS solution, circ. prec., 12 its. d. PcGLS solution, svd prec., 4 its.

F1G. 4.4. The observed image, along with computed solutions from CGLS and PCGLS.

computational complexity between BCCB preconditioners and the approximate svD
preconditioner depends on many factors. For example:

e What is the dimension of P (i.e., the bandwidths of 7')?

e Is a Lanczos scheme used to compute svDs of P, A; and B;?

e Do we take advantage of band and Toeplitz structure when forming matrix-
matrix products involving U, Ug, Va, Vg and Ay, By, k=2,---,s7
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e How many terms, s, do we take in the Kronecker product approximation?
e For BCCB preconditioners: is n a power of 27

If we assume 7' is n2 xn?, and s = O(1), then set up and application of the approximate
svD preconditioner is at most O(n?®). If we further assume that n is a power of 2, then
the corresponding cost for BCCB preconditioners is at least O(n?log, n). It should be
noted that the approximate svD preconditioner does not require complex arithmetic,
does not require n to be a power of 2, or any zero padding. Moreover, decomposing
T into a sum of Kronecker products, whose terms are banded Toeplitz matrices,
might lead to other fast algorithms (as has occurred over many years of studying
displacement structure [18]). In this case, the work presented in this paper provides
an algorithm for efficiently computing an optimal Kronecker product approximation.
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