
Autonomic Networking: Prototype Implementation of
the Policy Continuum

S. van der Meer1, A. Davy1, S. Davy1, R. Carroll1, B. Jennings1, J. Strassner2

1 Waterford Institute of Technology, Telecommunications Software & Systems Group,
Cork Road, Waterford, Ireland

{vdmeer, adavy, sdavy, rcarroll, bjennings}@tssg.org
http://www.tssg.org

2 Motorola Labs, Schaumburg, IL USA
john.strassner@motorola.com

Abstract. The focus of new service development continues to move from
network services towards application services. This is driven by many factors,
such as converged networks, ambient networks and seamless mobility. These
and other efforts enable customers to move from one service provider to
another based on the availability of desired application services, as well as
metrics concerning their performance (e.g., reliability and cost). In order to
enable rapid deployment of these new services, policy becomes paramount.
This paper presents first experiences with the implementation of the policy
continuum, which represents one of the cornerstones of Autonomic
Networking. It allows for the transformation of high-level (e.g. business)
policies towards low-level (e.g. device) policies and enables seamless mobility
and automated network and resource configuration. Based on a novel
architecture, this paper shows our first proof of concept implementation of the
policy continuum with results from a simulated network.

1 Introduction

Policy-based network management has been the focus of research and development
over the past several years. Much of this research has focused on the development of
models and languages for the representation and specification of policy. While this is
important, it is not sufficient to move policy-based network management (PBNM) out
of the laboratory and research environments into widespread commercial deployment.

Widespread commercial deployment of PBNM is dependant on the integration of a
consistent and coherent approach to policy that extends from the business support
systems through the network to the subscriber units at the very edges of the network.
In order to enable the pervasive deployment and utilization of policies, three
requirements are identified: 1) Definition of a Business policy language for the Policy
Continuum; 2) Translation of business policies into network device policies using the
policy continuum; and 3) Automatic network node configuration according to
business policies.

These problems must be solved in concert, as opposed to separately, in order to
develop a PBM architecture that can scale to meet the needs of a Service Provider or
large Enterprise. Then, we can consider future applications of PBM, such as for

2 S. van der Meer1, A. Davy1, S. Davy1, R. Carroll1, B. Jennings1, J. Strassner2

autonomic computing [12] and seamless mobility [13]. For example, how can policy
control the reconfiguration of a network element in the face of changing functionality
of the network element, changing demands of its users, and changing environmental
conditions?

The rest of this paper is organized as follows. First, we briefly introduce the Policy
Continuum (section 2) and the general architecture we are using (section 3). Section 4
shows how policies are processed automatically in order to simulate (for this phase of
the project) the Policy Continuum. Section 5 defines the scenario we are using to
simulate and test the implementation. Section 6 shows how phase one of our
implementation realizes the Policy Continuum, explains the simulation environment
and shows graphs and figures from a simplified trial within the given scenario.
Finally, sections 7 and 8 discuss conclusions and provide references, respectively.

2 The Policy Continuum

The policy continuum was developed in order to enable multiple constituencies,
which have different concepts and terminologies, to co-define and -develop policies.
This approach was presented in [3] and [2] (cf. Figure 1). Most systems define the
notion of a policy as a single entity. This is incorrect. For example, there are policies
to represent business rules, policies to control customer rebates, and even policies to
represent configuring a feature of a device. There is little in common with these
policies, because they use different grammars to express their function, and are used
by different constituencies. However, they are often in reality related to each other in
that they provide a different view of tasks that may be part of a some overall business
function or goal.. This is the theory behind the policy continuum, an example of
which is shown in Figure 1.

Business View: SLAs, Processes, Guidelines, and Goals

System View: Device- and Technology-Independent

Administrator View: Device- Independent, Technology-Specific

Device View: Device- and Technology-Specific

Instance View: Device-Specific MIBs, PIBs, CLI, etc.

Fig. 1. The Policy Continuum with Example

Each level of the policy continuum is optimized for a different type of constituency
that needs and/or uses information of a specific nature. For example, the business user
wants Service Level Agreement (SLA) information, and isn’t interested in the type of
queuing that will be used to forward traffic. Conversely, the administrator of the
network may want to develop specific commands to program the device, and may
need to have a completely different representation of the policy. DEN-ng [2] [6]
defines a set of views to support the needs of different constituencies. This is similar

Autonomic Networking: Prototype Implementation of the Policy Continuum 3

to the RM-ODP concept of viewpoints [4], except that DEN-ng defines a set of
strongly related views. This enables the needs of different constituencies to be
associated with each other. For instance, a business rule can be translated into
command changes to govern changes in a device configuration. The four DEN-ng
views are identical to the NGOSS views [5], which enables NGOSS to be used to help
attain our goals.

The DEN-ng information model is not a single model, but rather a set of models,
one per view. Each view has its own grammar and terminology, which enables each
view to express the needs of a particular set of constituencies through specific
semantics and structure. This enables policy to be treated as a continuum, where
policies in different views are related to each other through model mappings [2] of the
DEN-ng information model views. A model mapping is a translation from one type of
model to another type of model. A model mapping changes the representation and/or
level of abstraction used in one model to another representation and/or level of
abstraction in another model. This provides a layered set of policies with different
levels of abstractions, and model mappings to translate between them.

3 Autonomic Network Reference Architecture

Our autonomic network reference architecture (ANRA) uses four distinct architectural
constructs: shared information, virtual software, infrastructure, and policy [1].

Shared Information – Policy definition and structure is based on DEN-ng [6],
which is the foundation of TMF’s Shared Information and Data (SID) model [2] [7].
DEN-ng is based on UML, and uses abstraction mechanisms and software patterns to
provide an extensible structure that can integrate other models (whether or not they
are UML compliant) and technologies as appropriate. Object-oriented information
modeling provides a common language for representing the characteristics and
behavior of entities in the managed environment in a single, extensible lingua franca.
This extensibility is provided through patterns [8], roles [9], and various other
abstraction mechanisms. DEN-ng is a backbone framework that is used to translate
and refine high level business policies to low level network element policies, and
supports the formation of the context model for the virtual software layer.

Virtual Software – The purpose of the virtual software is to support autonomic
functionality for different heterogeneous networks and components. Autonomic
Networks achieve governance through (intelligent) decision-making. Hence, this
software contains a model of the desired behavior as well as the deduced current
behavior of the system or component being managed. One solution towards achieving
governance and intelligent decision making is through ontology [11]. An ontology
can be defined as a formal, explicit specification of a concept, along with its
taxonomy, a set of interrelationships, and a set of rules that govern how the concept is
used and reacts with other concepts. An ontology can enable inferences to be made
about the knowledge that they contain. Note that most information models do not
contain the semantics and constructs needed to do this.

Infrastructure – The infrastructure includes network elements and other
computing devices as well as the software that manages them. Since network
infrastructure is composed of heterogeneous devices, the infrastructure layer supports
a model mapping layer that enables different devices to communicate with each other.
At the same time, this layer also support control for different types of protocols and

4 S. van der Meer1, A. Davy1, S. Davy1, R. Carroll1, B. Jennings1, J. Strassner2

adaptability mechanisms depending on the current context as well as the type of
behavior that is being orchestrated.

Policy – Policies formalize the concept of decision making. This element of the
architecture is based on the DEN-ng policy model [2]. The different levels of
abstraction of the Policy Continuum are refined using a combination of information
modeling, ontological engineering, and knowledge-based reasoning for each level of
the continuum. The information model is used for two distinct purposes: (1) to
represent policies at each level using the same set of building blocks, and (2) to
explicitly define which set of managed entities are the subject and target of the policy.

4 Automated Processing of Policies

The implementation architecture of the prototype is illustrated in Figure 2. The
architecture is organized into three separate modules, which includes a policy wizard
graphical front end (later called GUI), a policy processing unit, and an OPNET
backend. This backend will be replaced in future iterations with a testbed. The core of
the policy processing unit is the Policy Continuum (in Figure 2 represented by all 5
layers) and the XML Transformation Logic, which allows the generation of XML so
that each level can be easily interfaced to a particular constituency.

The policy wizard GUI module provides a simple business user interface
specifying objects through a drop down menu. These objects include, (i) the different
customers and their associated policies, (ii) the available subscription package types
for the customers (Gold, Silver, or Bronze), (iii) subscribed content service list for the
selected package (VoIP, VoD, Web data), and (iv) various grade metrics for each type
of content service (e.g. grade 1 - 3).

Following the selection of the different components, the objects are captured and
translated into a restricted natural language that provides a business-friendly language
presented on the screen through the policy definition panel. This processing task is
performed by the Natural Language Processing component, and as shown in Fig. 2 is
passed through a feedback loop to the Policy Wizard GUI for presentation. An
example of an output presented in a policy definition panel includes:

Start Policy Definition
 John has purchased Gold Service package type
 John services and minimum response time selection
 includes:
 VoIP with grade 1
 VoD with grade 2
 Web data with grade 3
End Policy Definition

Each level of the policy continuum has an associated set of objects, e.g. sub-sets of
the policy language expressed by one specific dialect per level. The Policy processing
component is also responsible of capturing objects selected in the GUI and requesting
that appropriate XML is generated for each level of the policy continuum. The
mapping process from the continuum to XML is performed by XML pipelining,
where each layer of the policy continuum will be represented by a dialect of the
policy language. The policy transformations between the layers are performed by
corresponding XSLT documents. As shown in Figure 2, the XML file is transformed

Autonomic Networking: Prototype Implementation of the Policy Continuum 5

to a suitable representation that can be passed to the OPNET backend. This is
performed through the OPNET interface.

GUI Policy Wizard

Policy Processing

Business
System

Architecture
Device

Instance

XML

OPNET Interface

OPNET
model

OPNET
Command

Natural Language
Processing

XML Repository

GUI Policy Wizard

Policy Processing

Business
System

Architecture
Device

Instance

XML

OPNET Interface

OPNET
model

OPNET
Command

Natural Language
Processing

XML Repository

Fig. 2. Implementation Architecture

5 Scenario

The scenario depicted for the prototype implementation presents the ability to
synthesize different requirements from multiple constituencies that are all working on
the same solution. This captures the unique requirements of each constituency in a
particular policy continuum that is represented by a unique interface and grammar;
the grammar corresponds directly to both interface components as well as DEN-ng
model objects. All constituencies are connected by the different levels in the continua.
In this particular case, the scenario demonstrates the changes at the business level,
which will be transformed into suitable low level network configuration commands.
The advantage of this approach is that it maintains the concepts and terms that users
in each level of the continuum are used to, while providing a way to integrate their
requirements into a single coherent solution.

The main contribution that this scenario demonstrates is the definition of a business
interface to the policy system, the translation of business level to network device level
configuration policy, and the automatic configuration of network entities according to
business policy.

The scenario that is depicted for the demonstration is an Internet Service Provider
(ISP) that controls the resource management for different customers that are
subscribed with the service provider. The ISP has one particular customer by the
name of John who has subscribes to a particular package with the service provider
and at the same time also has subscription to a number of content services (e.g., VoIP,
VoD, and broadband), where John also has the ability to specify the priority grade for
each application service (e.g. for VoIP, John has selected grade 1 (Grade 1 – 3, where
grade 1 is the best). Currently, John’s VoIP is selected as grade 1, VoD is selected as
grade 2, and web application is selected as grade 3. However, John is a big soccer fan,
and thus is keen to watch the upcoming premiere league match between Manchester

6 S. van der Meer1, A. Davy1, S. Davy1, R. Carroll1, B. Jennings1, J. Strassner2

United and Chelsea. Therefore, for the VoD service, John has decided to select grade
1 for an hour before and after the match (in order to be able to listen to all the pre- and
post-analysis of the match) in HD (High Definition) video mode. In order to do this,
John contacts his ISP who uses the Policy Wizard to change the grade level for VoD.

The scenario will demonstrate the changes that are made at the network
configuration due to the changes that John’s ISP has made at the business level. Since
the network that John is currently subscribed to conditions its traffic using Diffserv
QoS, the network configuration changes will illustrate changes in resource
management at the Edge and Core DiffServ routers. The changes include the
improved level of QoS for VoD and also degraded service for VoIP and web services.
We assume here that each customer has a set amount of bandwidth allocated by the
ISP.

6 Implementation

The preliminary prototype implementation for the policy continuum includes a Policy
Wizard GUI, and a simple policy continuum that maps between the business language
and the configuration language. The Policy Wizard evaluates the objects selected
from the GUI and processes the objects into natural language. The captured objects
are then passed to the Policy language represented in XML and transforms to a
representation suitable for OPNET simulator through the OPNET interface. This
process demonstrates business level policy refinement to network device level
configuration policy.

6.1 The Policy Continuum

The business view is supported by a business policy language that supports the
description of business goals, e.g. “Offer gold, silver and bronze service packages”.
This will be mapped towards the system view, which is able to express that “customer
has selected gold service package, with 1 to 3 content services and a service grade
attached to each content service”. This information is further mapped to the relevant
network architecture (e.g., “need to provide Diffserv configuration for 2 Mbps, with
grade one service 50% bandwidth, service grade 2 of 30% bandwidth, and service
grade 3 of 20% bandwidth”). The device view shows how this information is used to
reconfigure the Core and Edge routers of the Diffserv network. The instance view
shows the specific configuration commands on a per-device and –vendor basis. The
policy continuum will be shown by the following means:
• The policy wizard operates as the interface to the customer, allowing her/him to

specify business-level configuration changes.
• Information from the wizard is transformed into the business policy language (by a

language recognizer/parser).
• All steps of the policy continuum are realized by cascaded XML transformations

using the apache cocoon framework.
• The instance configuration and the final testbed are realized with an XML file that

represents the configuration information. This XML file will be further
transformed by the OPNET interface in order to simulate its operation.

Autonomic Networking: Prototype Implementation of the Policy Continuum 7

Package AppSvc and Grade Configuration

Gold == 2 Mbps => VoIP (1) VoD (2) Web (3) => VoIP (50%) VoD (30%) Web (20%)

 => VoIP (1) VoD (3) We (2) => VoIP (50%) VoD (20%) Web (30%)

 => VoIP (2) VoD (1) Web (3) => VoIP (30%) VoD (50%) Web (20%)

 => VoIP (2) VoD (3) Web (1) => VoIP (30%) VoD (20%) Web (50%)

 => VoIP (3) VoD (1) Web (2) => VoIP (20%) VoD (50%) Web (30%)

 => VoIP (3) VoD (2) Web (1) => VoIP (20%) VoD (30%) Web (50%)

Silver == 1.5 Mbps => VoIP (1) VoD (2) Web (3) => VoIP (50%) VoD (30%) Web (20%)

 => VoIP (1) VoD (3) Web (2) => VoIP (50%) VoD (20%) Web (30%)

 => VoIP (2) VoD (1) Web (3) => VoIP (30%) VoD (50%) Web (20%)

 => VoIP (2) VoD (3) Web (1) => VoIP (30%) VoD (20%) Web (50%)

 => VoIP (3) VoD (1) Web (2) => VoIP (20%) VoD (50%) Web (30%)

 => VoIP (3) VoD (2) Web (1) => VoIP (20%) VoD (30%) Web (50%)

Bronze == 1 Mbps => VoIP (1) VoD (2) Web (3) => VoIP (50%) VoD (30%) Web (20%)

 => VoIP (1) VoD (3) Web (2) => VoIP (50%) VoD (20%) Web (30%)

 => VoIP (2) VoD (1) Web (3) => VoIP (30%) VoD (50%) Web (20%)

 => VoIP (2) VoD (3) Web (1) => VoIP (30%) VoD (20%) Web (50%)

 => VoIP (3) VoD (1) Web (2) => VoIP (20%) VoD (50%) Web (30%)

 => VoIP (3) VoD (2) Web (1) => VoIP (20%) VoD (30%) Web (50%)

Table 1. Content service specification and business to system mapping

The assumptions made for this mapping process includes (i) the mapping process is
based on a ratio that is fixed and does not change between different packages and (ii)
the ratio between the different packages for the three types of grades are identical in
order to minimize complexity.

The basis of mapping between the levels is based on the translation table shown in
Table 1. The table represents the translation from the business view to the system
view in the policy continuum. It shows the possible combinations between the
different objects that a customer can select from the GUI. For example, if John selects
Gold class package with VoIP as Grade 1, VoD as Grade 2, and web as Grade 3 will
result in the VoIP service throughput limited to 50%, VoD limited to 30% and Web
limited to 20% of the total amount of bandwidth allocated to John, which is 2 Mbps.

6.2 Simulation Environment

The simulation environment is shown in Figure 3. The developed network uses
Diffserv to manage Quality of Service. Marking and policing of traffic is performed at
the edge routers. Each service flow per end user is identified at the edge router by an
Access Control List made up of Source and Destination IP addressing and port
numbering, plus a DSCP (DiffServ Code Point) to identify the required traffic
conditioning.

The service packets are marked with the appropriate DSCP code, to identify Per
Hop Behavior (PHB) routines within the core routers. Each service flow is subject to
a rate limiting policer policy. Once traffic is identified to be within a particular flow,
the appropriate policer policy limits the throughput of that traffic to match the
relevant high-level policy settings the end user has set for that particular service. For
each user there are access control lists defined on the edge routers to identify each
flow of traffic for each service.

8 S. van der Meer1, A. Davy1, S. Davy1, R. Carroll1, B. Jennings1, J. Strassner2

Fig. 3. Simulation Environment

The rate limit is calculated by mapping values within the deployed policy to
throughput limits for each service flow of a particular user. For example, John is
subscribed to a Gold service package. His VoIP service is assigned Grade 1, VoD
service is assigned Grade 2, and Web service is assigned Grade 3. This will map to 2
Mbps (Gold) bandwidth being divided into three portions namely: Grade 1 VoIP
getting 1 Mbps (50% of 2 Mbps), Grade 2 VoD getting 600 Kbps (30% of 2 Mbps),
and Grade 3 Web getting 400 Kbps (20% of 6Mbps).

6.3 Simulation

Once the policy has been deployed, a PDP process will invoke the required changes
on edge routers within the network. Customer Flows are identified by access control
lists on the edge routers. Policer policies for identified flows are updated with the new
rate limit values, calculated from the high-level policies and translation algorithms.
The end user begins to use the service around 1m 50s into the simulation. The figures
4 to 7 show the users’ throughput in bps for each service after 2m 20s:
• Figure 4: John’s Package is set to Gold; thus, his maximum bandwidth available is

2Mbps. His VoIP service is set up as grade 1. Grade 1 is 50% of the overall
package. This figure depicts an average throughput of 1Mbps, showing that the
network is configured properly for John’s VoIP service.

• Figure 5: John’s Video on Demand service is set to Grade 2. As grade 2 is 30% of
the overall package bandwidth, John should receive a max throughput of 600 Kbps.

• Figure 6: John’s Web service is set to Grade 3. As grade 3 is 20% of the overall
package bandwidth, John should be receiving a maximum throughput of 400 Kbps.
Figure 6 shows that the average throughput of the Web service is less than 400
Kbps, thus showing that this grade is suitable the current generation of web traffic.

• Figure 7: The total amount of bandwidth used by the user between the three
services averages just under the 2Mbps mark.
Once a policy is modified and deployed (PM – Policy Modification), the PDP

within the OPNET simulated network runs through the same process as the initial
phase, updating any QoS parameters that need to be set. The end user deploys a
modified policy at around 2m 20s into the simulation. The figures 8 to 11 depict the
users’ throughput (bps) for each service after the modified policy deployment at 1m
20s to the end of the simulation:

Autonomic Networking: Prototype Implementation of the Policy Continuum 9

Fig. 4. VoIP Traffic Fig. 5. VoD Traffic Fig. 6. Web Traffic Fig. 7. User Throughput

Fig. 8. VoIP Traffic Fig. 9. VoD Traffic Fig. 10. Web Traffic Fig. 11. User Throughput

• Figure 11: John modified his package to Bronze within the policy editor. We know
from Table 1 that the maximum throughput of Bronze Package is 1Mbps. We can
see that this policy has been invoked within the network, as the average throughput
received by John drops from 2Mbps to around 1Mbps.

• Figure 8: John modified his VoIP service to Grade 3. As grade 3 is 20% of total
package throughput. VoIP service is reduced to 20% of 1Mbps, which is 200 Kbps.

• Figure 9: John modifies VoD traffic from Grade 2, to Grade 1. Traffic throughput
decreases from 30% of Gold (600 Kbps) to 50% of Bronze (500 Kbps).

• Figure 10: John modifies Web traffic from Grade 3 to Grade 2. This means that
allowable traffic throughput for Johns Web service is reduced from (Gold @ 20%
= 400 Kbps) to (Bronze @ 30% = 300 Kbps). The graph shows that when the
modified policy was deployed, average web traffic was slightly reduced.

7 Conclusion

This paper has presented an implementation and simulation for a novel policy-based
architecture for end-to-end network management. The architecture and the
implementation are based on a set of key principles, which include: (i) the use of a
policy continuum to enable different constituencies to express their needs and define
goals and/or rules that govern the system, (ii) the use of an object-oriented
information model (DEN-ng) that provides an extensible representation of
information of interest; key is its ability to work using patterns and abstractions (e.g.,
capabilities, constraints and context) to manage the inherent complexity of a network
(only partly shown in this paper), (iii) the use of a set of ontologies that augment the
knowledge contained in the information model to better define semantics and
meaning of data and events (background processes), (iv) the use of an extensible
policy model that is independent of content to express goals and rules for all
constituencies, (v) The focus of modeling behavior, not just current state, to control
the life cycle of a managed element (future extension for the policy language). Future
work will concentrate on stressing the above architecture, as well as incorporating

10 S. van der Meer1, A. Davy1, S. Davy1, R. Carroll1, B. Jennings1, J. Strassner2

additional reasoning capabilities (in the form of reinforcement and concept learning,
as well as abductive and inductive reasoning algorithms) to give the autonomic
system greater understanding of its environment. We also intend to move to a test
bed environment where we can measure performance and scalability. As this future
work grows, we expect the role of policy to be even more pronounced.

References

1. Davy, S., Barrett, K., Balasubramaniam, S., van der Meer, S., Jennings, B., Strassner, J.:
Policy-Based Architecture to Enable Autonomic Communications - A Position Paper. IEEE
CCNC 2006, Special Session on Autonomic Communication, Las Vegas, Nevada, Jan 7-10,
(2006)

2. Strassner, J.: Policy-based Network Management: Solutions for the Next Generation.
Morgan-Kaufman Publishers. ISBN 1-55860-859-1, Sep (2003)

3. TMF: TMF 053: The NGOSS™ Technology Neutral Architecture. plus Addenda, 2000-
(2005)

4. Open Distributed Processing Reference Model – Foundations, ISO/IEC 10746-2, (1996)
5. TeleManagement Forum: GB927: The NGOSS™ Lifecycle and Methodology. Nov (2004)
6. DEN-ng forms the foundation of the TeleManagement Forum’s Shared Information and Data

Model, and is partially incorporated in the following specifications: GB922 main, GB922
Addenda 1A, 1BI, 1P, 1-POL, 1R, 4SO, 4S-QoS, 5RO, 5PR, and 5LR.

7. Strassner, J. How Policy Empowers Business-Driven Device Management. in proceedings of
the Third International Workshop on Policies for Distributed Systems and Networks
(Policy’ 02), Monterey, California, USA, June (2002).

8. See, for example, M. Fowler: Analysis Patterns – Reusable Object Models.
9. In particular, variations of the role object pattern are used – please see

http://www.riehle.org/computer-scienceresearch/1997/plop-1997-role-object.pdf (2006)
10. Strassner, J. Autonomic Networking – Theory and Practice. IM 2005 Tutorial, May (2005)
11. van der Meer, S., O'Sullivan, D., Lewis, D., Agoulmine, N. Ontology Based Policy

Mobility for Pervasive Computing. 9th IFIP/IEEE International Symposium on Integrated
Network Management, IM 2005 Nice, France, May 15-19, (2005)

12. Kephart, J.O. and Chess, D.M., The Vision of Autonomic Computing. Jan 2003,
www.research.ibm.com/autonomic/research/papers/AC_Vision_Computer_Jan_2003.pdf
(2006)

13. Motorola, Seamless Mobility page: http://www.motorola.com/content/0,,2364-4393,00
(2006)

