THE EASST NEWSLETTER
\Volume 12
March 2006

European Association of Software Science and Technology

Special Issue
FRCSS 06: Future Research Challengesfor Software and
Services

THE EASST NEWSLETTER

EASST Board:
Prof. Dr. Tiziana Margaria (President),
email ; tiziana.margaria@cs.uni-goettingen.de
Prof. Dr. Hartmut Ehrig (Vice-President),
email : ehrig@cs.tu-berlin.de
Prof. Dr. Herbert Weber (Treasurer),
email : herbert.weber@isst.fhg.de
Dr. Julia Padberg (Secretary),
email : padberg@cs.tu-berlin.de
Prof. Dr. Marie-Claude Gaudel (representative in the ETAPS steering committee),
email : Marie-Claude.Gaudel@!Iri.fr
Prof. Dr. Egidio Astesiano (representative in the ETAPS steering committee),
email : astes@disi.unige.it
Dr. Michel Wermelinger (column editor),
email : m.a.wermelinger@open.ac.uk
Prof. Susanne Graf,
email : Susanne.Graf@imag.fr

Homepage of EASST:

http://www.easst.org

Subscription:

EASST NEWSLETTER is distributed among the members of EASST, the European
Association of Software Science and Technology. If you are not yet a member of
EASST, but you wish to receive the EASST NEWSLETTER, then you are kindly
invited to become a member! Note, there are no membership fees. The application
form can be found on the last page.

Or apply online at http://www.easst.org

Guest Editors:

Prof. Dr. Tiziana Margaria

Universitat Potsdam

Prof. Dr. Matteo Banti

Prof. Dr. José-Luis Fernandéz-Villlacafias Martin

European Commisssion, DG Information Society and Media Unit D3
Editor:

Dr. Julia Padberg

Technische Universitat Berlin

Fakultat IV - Elektrotechnik und Informatik
Sekr. FR 6-1, Franklinstr. 28/29

D-10587 Berlin

E-mail : padberg@cs.tu-berlin.de

URL : http://tfs.cs.tu-berlin.de/~padberg/
Tel :+49-30/314-24165

FAX : +49-30/314-23516

COMMUNICATIONS OF EASST

Foreword

This first edition of the EASST-EU International Workshop on Future Research
Challenges for Software and Services aims at refining and discussing the key challenges and
future directions of

Software and Services in general, and

Fundamental Software Engineering,

Complexity and Self-Properties,

Services,

Open Source Software, and

Industrial initiatives

as key ingredients of our Strategic Objective.

w) W W W W W

The workshop is divided in two parts with distinct character:

8§ the morning session is devoted to presentations from our currentd&edractivities
in the above fields: a presentation from our expert group for Frarkewl, followed
by a presentation of the NESSI platform and of a number of thentuongoing
projects of the Unit. All these presentations formulate theiowisf the challenges
and their specific and synergetic contribution.

8§ The afternoon sessions are devoted to the revision of the challeilages open
participation workshop, on the basis of refereed contributions.

Thirteen contributions (Six regular papers and seven short pyeees)een selected out of
21 good quality submissions, covering relevant theoretical topiegethsas industrial case
studies.

We thank all the members of the programme committee and aldthioaal referees for
their careful and timely evaluation of the submitted papers.

FRCSS'06: Future Research Challenges for Software and Services

COMMUNICATIONS OF EASST

We are also grateful to the organisers of the ETAPS comierfam hosting our workshop
and taking care of the many organisational aspects.

We hope that you will find this program interesting and thought-provoairdy that the
workshop will provide you with a valuable opportunity to share ideas with otBearchers
and practitioners from institutions around the world.

Vienna, April 1%, 2006

The FRCSS Co-Chairs

Tiziana Margaria

Universitat Potsdam
(EASST President)

Matteo Banti
José-Luis Fernandez-Villacarias Martin

European Commission, DG Information Society and Media Unit D3

Information Society

and Media

TECHNISCHE

I UNIVERSITAT
I WIEN

VIENNA

VIENNA UNIVERSITY OF

TECHNOLOGY

FRCSS'06: Future Research Challenges for Software and Services

COMMUNICATIONS OF EASST

Program Committee

Co-Chairs

Tiziana Margaria

Universitat Potsdam

(EASST President)

José-Luis Fernandez-Villacafias Martin EU, Software Technologies
EU, Software Technologies

Matteo Banti

Members

Michael Butler
Pascal Drabik

Brian Fitzgerald

Karl M. Goeschka
Nikolaos Georgantes
Rishab Aiyer Ghosh
Harmke de Groot
Alan Hartman

Jens Knoop

Charles MacMillan
Neil Maiden

Mira Mezini

Philippe Millot

Simin Nadjm-Tehrani
Stefano de Panfilis
Awais Rashid
Alexander Romanovsky
Jari Veijalainen
Mathias Weske

Subreviewers

Yvonne Howard
Eva Kihn

Michel Lacroix
Stephane Lo Presti

University of Southampton
EU, Software Technologies
Limerick University
TUWien
INRIA
MERIT
Philips
IBM Haifa
TU Wien
EU, Software Technologies
City University London
TU Darmstadt
Thales
Linkoping University
Engineering
Lancaster University
Newcastle University
HPI
HPI

(RODIN)

(CALIBRE)
(DediSys)
(AMIGO)
(CALIBRE)
(AMIGO)
(ModelWare)
(ETAPS General Chair)

(SeCSE)
(AOSD)
(ModelWare)
(DeDiSys)
(SeCSE)
(AOSD)
(RODIN)
(ASG)
(ASG)

Abdolbaghi Rezazadeh

Corina Sas

Markus Schordan

Colin Snook

FRCSS'06: Future Research Challenges for Software and Services

COMMUNICATIONS OF EASST

Projects

Service Cealbric Sypelan Enginmiring

CALIBRE

Coordination Action
for LIBRE software

DeDlS S

AOSD-euUrore

eu network of excellence

FRCSS'06: Future Research Challenges for Software and Services

COMMUNICATIONS OF EASST

Program

Welcome
Tiziana Margaria, José-Luis Fernandez-Villacafias Martin

The Austrian Perspective
Prof. Steinhard, Dean TU Wien

Keynote:
The future of Software and Services
Giulnter Bockle, Siemens

The NESSI perspective
Stefano de Panfilis, Engineering

Project presentation of challenges

AOSD - Awais Rashid

RODIN - Alexander Romanovsky
SECSE - Stefano de Panfilis
DEDISYS - Karl Goeschka
MODELWARE - Philippe Millot
ASG - Jari Veijalainen

AMIGO - Maddy Janse
INFRAWEBS - H.-J. Nern

PYPY - Alistair Burt

MADAM - Svein Hallsteinsen

Technical Session |: From Software to Services

Maintaining large software distributions: new challenges from the BSS era 7
Roberto Di Cosmo, Berke Durak, Xavier Leroy, Fabio Mancinelli, Jerome Ngouil

Softure: Adaptable, Reliable and Performing Software for the Future 21
Valerie Issarny, Antonia Bertolino, Wolfgang Emmerich, Paola Inverardi

Requirements Composition and Refinement: Towards Composition-Geric Requirements

FRCSS'06: Future Research Challenges for Software and Services

COMMUNICATIONS OF EASST

Engineering 35
Ruzanna Chitchyan, Awais Rashid, Pete Sawyer

Short contributions

Business Modelling Environment. BMETool a7
Miguel Jose Montesdeoca, Juan Hernandez, Ana Placido, Mario Hernandez

A European Open Source Project Information Server 66
Chris Chedgey, Micheal O'Foghlu, Eamonn de Leastar

Perspectives for a Model-driven Service Engineering Discipline

Claus Panhl
Technical Session |1: Semantics and Services as Complexity Challenge 74
Emergent Phenomena in Aml Spaces 82

loannis Zaharakis, Achilles Kameas

A semantic choreography-driven Frequent Flyer Program 97
José-Manuel Lépez-Cobo, Alejandro Lépez-Pérez, James Scicluna

Characterization of Semantic Grid Engineering 112
Joachim Bayer, Fabio Bella, and Alexis Ocampo

Short contributions

Extended Service Binder: Dynamic Service Availability Management in Abient
Intelligence 125
André Bottaro, Anne Gérodolle

Service-Oriented Development In a Unified framework (SODIW) — Future Research
Challenges 133
Arne Berre, H. Hoff, D. Skogan, A. Tsalgatidou G. Athanasopoulos, M. Pantazoglou

Research Challenges in Mobile and Context-Aware Service Developnten 141
Julien Pauty, Davy Preuveneers, Peter Rigole, Yolande Berbers

Context Management and Semantic Modeling for Ambient Intelligence 149

Fano Ramparany, Jérbme Euzenat, Tom Broens, Jérbme Pierson

FRCSS'06: Future Research Challenges for Software and Services

THE EASST NEWSLETTER

Maintaining large software distributions:
new challenges from the FOSS era

Roberto Di Cosmo *and Berke Durak **and Xavier Leroy **and Fabio Mancinelli *and J érdome
Vouillon *
*PPS, University of Paris Firstname.Lasthame@pps.jussieu.fr
*INRIA Rocquencourt,Firsthame.Lastname@inria.fr

Abstract. In the mainstream adoption of free and open source software (F@&®)jbution
editorsplay a crucial role: they package, integrate and distribute a wide variety of software,
written in a variety of languages, for a variety of purposes of unprecedented breadth.

Ensuring the quality of a FOSS distribution is a technical and engineering challenge, owing to
the size and complexity of these distributions (tens of thousands of software packages). A number
of original topics for research arise from this challenge. This paper is a gentle introduction to this
new research area, and strives to clearly and formally identify many of the desirable properties
that must be enjoyed by these distributions to ensure an acceptable quality level.

Keywords: Open source software, dependency management, EDOS project

1 Introduction

Managing large software systems has always been a stimulating challenge for the research field in Com-
puter Science known as Software Engineering. Many seminal advances by founding fathers of Comp.
Sci. were prompted by this challenge (see the book “Software Pioneers”, edited by M. Broy and E.
Denert [BD02], for an overview). Concepts such as structured programming, abstract data types, modu-
larization, object orientation, design patterns or modeling languages (unified or not) [Szy97, GHJIV94],
were all introduced with the clear objective of simplifying the task not only of the programmer, but of
the software engineer as well.

Nevertheless, in the recent years, two related phenomena: the explosion of Internet connectivity and
the mainstream adoption of free and open source software (FOSS), have deeply changed the scenarii that
today’s software engineers face. The traditional organized, safe world where software is developed from
specifications in a fully centralized way is no longer the only game in town. We see more and more
complex software systems that are assembled from loosely coupled sources developed by programming
teams not belonging to any single company, cooperating only through fast Internet connections. The
availability of code distributed under FOSS licences makes it possible to reuse such code without formal
agreements among companies, and without any form of central authority that coordinates this burgeoning

THE SPECIAL ISSUES TITLE

THE EASST NEWSLETTER

activity.

This has led to the appearance of the so-catlestribution editors who try to offer some kind of
reference viewpoint over the breathtaking variety of FOSS software available today: they take care of
packaging, integrating and distributing tens of thousands of software packages, very few being developed
in-house and almost all coming from independent developers. We believe that the role of distribution
editors is deeply novel: no comparable task can be found in the traditional software development and
distribution model.

This unique position of a FOSS distribution editor means that many of the standard, often unstated
assumptions made for other complex software systems no longer hold: there is no common program-
ming language, no common object model, no common component model, no central authority, neither
technical nor commercial

Consequently, most FOSS distribution today simply rely on the general notion of sofiackagé: a
bundle of files containing data, programs, and configuration information, with some metadata attached.
Most of the metadata information deals widbpendenciesthe relationships with other packages that
may be needed in order to run or install a given package, or that conflict with its presence on the system.

We now give a general description of a typical FOSS process. In figure 1 we have an imaginary project,
calledfoo , handled by two developers, Alice Torvalds and Bob Dupont, who use a common CVS or
Subversion repository and associated facilities such as mailing lists at a typical FOSS development site
such as Sourceforge. Open source software is indeed developedjexsts which may group one or
more developers. Projects can be characterized by a common goal and the use of a common infrastruc-
ture, such as a common version control repository, bug tracking system, or mailing lists. For instance, the
Firefox browser, the Linux kernel, the KDE and Gnome desktop environments or the GNU C compiler
are amongst the largest FOSS projects and have their own infrastructures. Of course, even small bits of
software likesysstat consitute projects, even if they are developed by only one author without the
use of a version control system. A given project may lead to one or products For instance, the
KDE project leads to many products, from tkenqueror browser to the desktop environment itself.

Each FOSS product may then be included in a distribution. In our example, the gogjedelivers the
productsgfoo , kfoo andfoo-utils . A port is the inclusion of a product into a distribution by one
or moremaintainersof that distribution. The maintainers must:

e Import and regularly track the source code for the project into the distribution’s own version control
or storage system (this is depicted in figure 1 by a switch controlling the flow of information from
the upstream to the version control system of the distribution).

e Ensure that the dependencies of the product are already included in the distribution.
e Write or include patches to adapt the program to the distribution.
e Write installation, upgrading, configuration and removal scripts.

o Write metadata and control files.

1In the world of Windows-based personal computing, for example, the company controlling Windows can actually impose
to the ISV the usage of its APl and other rules.
2Not to be mistaken for the software organizational unit present in many modern programming languages.

THE SPECIAL ISSUES TITLE

THE EASST NEWSLETTER

Developer 1
Alice Torvalds

Developer 2
Bob Dupont

Principal information flow in an open-source project

------ > Human information
———> Computer information
Computer information

i

make install

(bandwidth-heavy)

Product 1 Product 2 Product 3
gfoo kfoo foo-utils
User machine 1
(other distribution)
Upstream Version control system Unpackaged
Checkout installations Package)
managemen
Snapshots wget ... software
tar xzf ...
./configure
make

User machine 1
(distribution 1)

User machine 1
(distribution 1)

o m -—=
N Bug-tracking system
Maintaine db. | Bug g Sy ! User feedback
 feedback > Message boards :4..3.”{--- - | Package Package
! Wikis | management management
; R Y Sttt 4 software software
i i User machine 1 User machine 1
Port for distribution 1 Port for distribution 2 (distribution 1) (distribution 1)
L L P Package Package
Mam't|amer 1 Mamt'amer 2 Maintainer 3 management
software software
< <
\] g
h B B User machine 1 User machine 2
= = (distribution 1) (distribution 2)
Control files § §
Metadata Patches & 3 Package Package
S B management management
% Patches % software software
—> Sources 2 —> Sources Control files &
= Metadata 3

[Build system

—

[Build system

—

system / pool

system / pool

urpmi gfoo

User machine 2
(distribution 2)

User machine 2
(distribution 2)

Package Package
Distribution & storage Distribution & storage management management
software software

|
|
|
|
|
|
|
|
|
|
|
1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
I | management
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1

UnitUl | Unit U2 Unit U1 |[Unit U2 |[Unit U3 User machine 2 User machine 2
gfoo gfoo-doc gfoo gfoo-doc|| libgfoo (distribution 2) (distribution 2)
Archi Package Package Package Package Package Package Package
rehitecture (ALULVI) || (ALLU2,V1) (ALULVD|| (ALU2VD)|[(AL,U3,V]) management management
Al software software
1386
* Package Package Package Package R T
(ALULV2) || (ALU2,V2) (ALULV2) (ALU3,V2)
Architecture
arm Package Package Package Package
(A2,U1,V2) || (A2,U2,V2) (A2,U1,V2) || (A2,U1,V2)

—

apt-get install gfoo

Figure 1: Major flow of information in a FOSS project.

THE SPECIAL ISSUES TITLE

THE EASST NEWSLETTER

o Communicate with the upstream developers by forwarding them bug reports, patches or feature
requests.

We see that the job of maintainers is substantial for which attempts to automate some of those tasks, such
as automated dependency extraction tools [Tuu03, TTO1] or getting source code updates from developers
[EKIO5] are no substitute. In our example, we have a Debian-based distribution 1, with two maintainers
for foo , and an RPM-based distribution 2 with one maintainer. A given product will be divided into
one or moreaunits, which will be compiled for the differerdrchitecturessupported by the distribution (a
given unit may not be available on all architectures) and bundl@aelsagesThe metadata and control
files specify how the product is divided into units, how each unit is to be compiled and packaged and
on which architectures, as well as the dependency information, the textual description of the units, their
importance, and classification tags. These packages are then automatically downloaded (as well as their
dependencies) by the package management software (for inségrtcey urpmi) of the users of that
distribution. Some users may prefer to download directly the sources from the developers, in which case
they will typically execute a sequence of commands suclicamfigure && make && make
install to compile and install that software. However, they then lose the many benefits of a package
management system, such as tracking of the files installed by the package, automated installation of the
dependencies, local modifications and installation scripts.

We now turn to the problem of ensuring the quality of a distribution. This problem is the focus of
the European FP6 project EDOS (Environment for the development and Distribution of Open Source
software). This problem can therefore be divided into three main tasks:

Upstream tracking makes sure that the package in the distribution closely follows the evolution of
the software development, almost always carried over by some team outside the control of the
distributor.

Testing and integration makes sure that the program performs as expected in combination with other
packages in the distribution. If not, bug reports need propagating to the upstream developer.

Dependency managemenimakes sure that, in a distribution, packages can be installed and user in-
stallations can be upgraded when new versions of packages are produced, while respecting the
constraints imposed by the dependency metadata.

In this paper, we focus on the last task: dependency management. This task is surprisingly complex
[Tuu03, vdS04], owing to the large number of packages present in a typical distribution and to the com-
plexity and richness of their interdependencies. It is at the very heart of the research activity conducted
in workpackage 2 of the EDOS project.

More specifically, our focus is on the issues related to dependency management for large sets of soft-
ware packages, with a particular attention to what must be done to maintain consistency of a software
distribution on the repository sideas opposed to maintaining a set of packages instalted client
machine

This choice is justified by the following observation: maintaining consistency of a distribution of soft-
ware packages mndamentato ensure quality and scalability of current and future distributions; yet, it
is also annvisibletask, since the smooth working it ensures on the end user side tends to be considered

THE SPECIAL ISSUES TITLE

10

THE EASST NEWSLETTER

as normal and obvious as the smooth working of packet routing on the Internet. In other words, we are
tackling an essentiafrastructureproblem that has long been ignored: while there are a wealth of client-
side tools to maintain a user installatiapf , urpmi , smart and many others [Sil04, Man05, Nie05]),
there is surprisingly little literature and publically available tools that address server-side requirements.
We found very little significant prior work in this area, despite it being critical to the success of FOSS in
the long term.

The paper is organised as follows. Section 2 contains a formal description of the main characteristics
of a software package found in the mainstream FOSS distributions, as far as dependency are concerned.
In Section 3 we identify and formally define three desirable properties of a distribution with respect
to dependency management. Section 4 discusses the feasibility of checking these properties. A few
empirical measurements are given in section 5, followed by conclusions in section 6.

2 Basic definitions

Every package management system [DG98, Bai97] takes into account the interrelationships among pack-
ages (to different extents). We will call these relationshgupiirements Several kinds of requirements
can be considered. The most common onedgpendencyequirement: in order to install packadgg,
it is necessary that packags is installed as well. Less often, we fiednflictrequirements: package P
cannot coexist with package P

Some package management systems specialize these basic types of requirements by allowing to specify
the timeframeduring which the requirement must be satisfied. For example, it is customary to be able
to expresgre-dependencies kind of dependency stating that a packdgeneeds packagés to be
present on the systebeforeP; can be installed [DG98].

In the following, we assume the distribution and the architecture are fixed. We will identify packages,
which are archive files containing metadata and installation scripts, with pairs of a unit and a version.

Definition 1 (Package, unit). A packages a pair (u, v) wherew is a unit andv is a version. Units are
arbitrary strings, and we assume that versions are non-negative integers.

While the ordering over version strings as used in common OSS distributions is not discrete (i.e., for
any two version strings; andwv, such that; < wvs, there existas such that; < vs < wv9), taking
integers as version numbers is justified for two reasons. First, any given repository will have a finite
number of packages. Second, only packages with the same unit will be compared.

For instance, if our Debian repository contains the versiph§-6 ,2.16.1cvs20051117-1 and
2.16.1cvs20051206-1 of the unitbinutils , we may encode these versions respectivelf), as
and2, giving the package®inutils,0), (binutils, 1), and(binutils, 2).

Definition 2 (Repository). A repositoryis a tupleR = (P, D,C') whereP is a set of packaged) :
P — 2(2(P)) is the dependency functigrandC C P x P is the conflict relation. The repository
must satisfy the following conditions:

e The relationC is symmetric, i.e.(m1, m2) € C ifand only if (w2, 1) € C for all 71,7 € P.

3We write 2(X) for the set of subsets of .

THE SPECIAL ISSUES TITLE

11

THE EASST NEWSLETTER

--------- Conlflicts

Dependencies

Figure 2: The repository of example 1.

e Two packages with the same unit but different versions cdhflicat is, if 1y = (u,v;) and
o = (u, v9) With vy # vo, then(my, m) € C.

In arepositoryR = (P, D, (), the dependencies of each packagee given byD(p) = {dy,...,d;}
which is a set of sets of packages, interpreted as followsislfo be installed, then all its dependencies
must be satisfied. Faf; to be satisfied, at least one of the package afiust be available. In particular,
if one of thed; is the empty set, it will never be satisfied, and the packaigeot installable.

Example 1. Let R = (P, D, C) be the repository given by

P ={a,b,c,d,e, f,g,h,i,j}

D(a) = {{b},{c,d}, {d, e}, {d, f}}

D) = {{g}} D(c)={{g,hi}} D(d) = {{h,i}}
D(e) = D(f) = {{j}}

C ={(ce),(ec), (1), (i e),(g,n), (h,g)}

wherea = (u4,0), b = (up,0), ¢ = (u.,0) and so on. The reposito§ is represented in figure 2. For
the package to be installed, the following packages must be instalte@itherc or d, eitherd or ¢, and
eitherd or f. Packages ande, e andi, andg andh cannot be installed at the same time.

In computer science, dependencies are uswalhjunctive that is they are of the form

a— by Aby A -+ A by

“This requirement is present in some package management systems, notably Debian’s, but not all. For instance, RPM-based
distributions allow simultaneous installation of several versions of the same unit, at least in principle.

THE SPECIAL ISSUES TITLE

12

THE EASST NEWSLETTER

wherea is the target andy, bo, ... are its prerequisites. This is the casanake files, where all the
dependencies of a target must be built before building the target. Such dependency information can be
represented by a directed graph, and dependencies can be solved by the well-known topological sort
algorithm. Our dependencies are of a more complex kind, which we migpenctivedependencies.

Their general form is a conjunction of disjunctions:

a— b1V VO A ALV v D). (1)

Fora to be installed, each term of the right-hand side of the implication 1 must be satisfied. In turn, the
termb; V.-V b' whenl < i < s is satisfied when at least one of thjewith 1 < j < r; is satisfied. If
a is a package in our repository, we therefore have

D(a) = {{b1,...,b7"}, -, {b},..., bl }).

In particular, if one of the terms is empty @ € D(a)), thena cannot be satisfied. This side-effect
is useful for modeling repositories containing packages mentioning another padkegés not in that
repository. Such a situation may occur because of an error in the metadata, because theipaagkage
been removed, dris in another repository, maybe for licensing reasons.

Concerning the relatio€’, two packages; = (u1, v1), m2 = (ug2,v2) € P conflict when(ry, m3) € C.
Since conflicts are a function of presence and not of installation order, the refat®xsymmetric.

Definition 3 (Installation). Aninstallationof a repositoryR = (P, D, C) is a subset of?, giving the
set of packages installed on a system. An installatidrealthywhen the following conditions hold:

e Abundance: Every package has what it needs. Formally, for everg I, and for every depen-
dencyd € D(w) we havel Nd # &.

e Peace:No two packages conflict. Formallyf x I) N C = @.

Definition 4 (Installability and co-installability). A packager of a repositoryR is installableif there
exists a healthy installatiohh such thatr € I. Similarly, a set of packagds of R is co-installableif
there exists a healthy installatiahsuch thafll C 1.

Note that because of conflicts, every member of a’X§e€ P may be installable without the séf
being co-installable.

Example 2. Assumea depends om, ¢ depends onl, andc andd conflict. Then, the sefa, b} is not
co-installable, despite each @andb being installable and not conflicting directly.

Definition 5 (Maximal co-installability). A setX of co-installable packages of a repositaRyis max-
imal if there is no other co-installable subs&t of R that strictly containsX. We writemaxco(R) for
the family of all maximal co-installable subsetsraf

Definition 6 (Dependency closure) Thedependency closut&(IT) of a set of packagH of a repository
R is the smallest set of packages includedArthat containsIl and is closed under thenmediate
dependencjunctionD : 2(P) — 2(P) defined as

D= [J d
well
deD(m)

THE SPECIAL ISSUES TITLE

13

THE EASST NEWSLETTER

Figure 3: The subrepository generated by packadée dependency closure{s, g, h,i}.

In simpler words,A(II) containsII, then all packages that appear as immediate dependendigs of
then all packages that appear as immediate dependencies of immediate dependéhcaxaso on.
Since the domain ab is a complete lattice, anB is clearly a continuous function, we immediately get
(by Tarski’'s theorem) that such a smallest set exists and can be actually computed as follows:

Proposition 1. The dependency closufg(Il) of IT is:

A() = |) D"(m).

n>0

The notion of dependency closure is useful to extract the part of a repository that pertains to a package
or to a set of packages.

Definition 7 (Generated subrepository).Let R = (P, D, C) be a repository andl C P be a set of
packages. Theubrepository generated blis the repositoryR|;; = (P’, D', C") whose set of packages
is the dependency closureldfand whose dependency and conflict relations are thogerestricted to
that set of packages. More formally we hae= A(II), D' : P' — (P (P')),n — {dNP' | d e
D(m)}andC’ =CnN (P x P').

Figure 3 shows the subrepository generated by the packafyexample 1. The dependency closure of
cis the set of package nodes of that subrepository.

We then have the following property, which allows to consider only the relevant subrepositories when
answering questions of installability.

Proposition 2 (Completeness of subrepositoriesA packager is installable w.r.t.R if and only if it is
installable w.r.t.R| ;. (Similarly for co-installability.)

3 Maintaining a package repository

The task of maintaining a package repository is difficult: the maintainance team must monitor the evo-
lution of thousand of packages over time, and address the error reports coming from different sources

THE SPECIAL ISSUES TITLE

14

THE EASST NEWSLETTER

(users, QA teams, developers, etc.). It is desirable to automate as much of this work as possible. Our
medium-term goal is to build tools that help distribution maintainers track dependency-related problems

in package repositories. We detail here some of the desirable properties of a repository. The first is
history-freg in that it applies to a given state of a repository.

Being trimmed We say that a repositori is trimmedwhen every package @t is installable w.r.t.R.

The intuition behind this terminology is that a non-trimmed repository contains packages that cannot be
installed in any configuration. We call those packalgedken They behave as if they were not part of

the repository. It is obviously desirable that at any point in time, a repository is trimmed, that is, contains
no broken packages.

The next properties argistory-sensitivemeaning that they take into account the evolution of the
repository over time. Due to this dependency on time, the precise formulation of these properties is
delicate. Just like history-free properties are relevant to users who install a distribution from scratch,
history-sensitive properties are relevant to users who upgrade an existing installation.

Monotonicity Let R; be the repository at timeand consider a coinstallable set of packaggesSome
users can actually have packagesinstalled simultaneously on their system. These users have the
possibility of installing additional packages frofy, resulting in a coinstallable set of packaggs
These users can reasonably expect that they will be able to do so (€xtémtd C;) at any future time
t’, using the repositoryz;, which, beingnewer is supposed to bieetterthan the oldR;.

Of course, users are ready to accept thakinthey will not get exactlyC’;, but possiblyC’;/, where
some packages were updated to a greater version, and some others have been replaced as the result of
splitting into smaller packages or grouping into larger ones. But, clearly, it is not acceptable to evolve
R, into Ry if R, allows to install, sayapache together withsquid , while R, does not.

We say that a repository history line monotoneif the freedomof a user to install packages is a
monotone function of time. Writing'(z, R) for the set of possible package setdirthat are a possible
replacement of packageaccording to the metadata, monotonicity can be formally expressed as

Mon(R) =Vt < t'.VP € Con(R;). 3Q € Con(Ry).Vz € P.Q N F(x,Ry) # &

Upgradeability Another reasonable expectation of the user is to be able to upgrade a previously in-
stalled package to the most recent version (or even any more recent version) of this package that was
added to the repository since her latest installation. She is ready to accept that this upgrade will force the
installation of some new packages, the upgrade of some other packages, and the replacement of some sets
of package by other sets of packages, as the result of the reorganization of the structure of the packages.

She may even accept, in order to perform an important upgrade, to see some previously installed pack-
ages removed, as it happens when using all the meta package management tools available today.

We remark that these properties aret interdefinable. We give here a proof of this assertion by
exhibiting example repositories showing this independence of the properties. For the first two cases,

THE SPECIAL ISSUES TITLE

15

THE EASST NEWSLETTER

consider three repositorids;, Re, R3 whose sets of packages afe = {(a,1),(b,1),(c,1)}, P» =
{(a,1),(b,1)}, P3 = {(a,1),(a,2),(b,1)} with no conflicts nor dependencies among the verdion
packages and a conflict amofig 2) and(b, 1). Notice that at each momenin time, R; is trimmed.

1. A repository that stays trimmed over a period of time is not necessarily monotone, nor upgrade-
able. Sincgc, 1) disappears between timésand?2, this step in the evolution does not preserve
monotonicity. Sincéa, 2) has a new conflict (namely witth, 1)) in R3, the evolution fromR; to
R3 does not preserve upgradeability.

2. A repository that stays trimmed over a period of time and evolves in a monotone fashion is not
necessarily upgradeable. The evolution frén to Rs above is monotone, each & and R3
is trimmed, but we fail upgradeability because there is no way of going froml), (b,1)} to
{(a,2), (b,1)} because of the conflict.

3. Arepository that stays trimmed over a period of time and is upgradeable is not necessarily mono-
tone.

Consider repositorie®; and Rz with P, = {(a,1),(b,1)} and P, = {(a,2),(b,1)}. Assume
(a,1) and (b, 1) are isolated packages, while,2) conflicts with (b,1). Now, a user having
installed all of R; and really willing to geta, 2) can do it, but at the price of giving up, 1). This

evolution of the repository is therefore upgradeable but not monotone.

4. Arepository that evolves in a monotone and upgradeable fashion is not necessarily timmed at any
time: indeed, the monotonicity and upgradeability property only speakmgistensubsets of a
repository, that cannot contain, by definition, any broken packages.

Consider for example repositorids;, Ry with P, = {(a,1)}, P, = {(a,1),(b,1)}. Assume
(a,1) and(b, 1) are broken because they depend on a missing padkage Here, the evolution
of Ry to R, is trivially monotone and upgradeable, because thame tonsistent subset ¢t; and

R», and bothR; and R; are not trimmed because they contain broken packages.

The examples above to prove that the three properties are actually independent may seem contrived, but
are simplifications of real-world scenarii. For instance, example 3 can actually happen in the evolution
of real repositories, when for some reason the new version of a set of interrelated packages is only
partially migrated to the repository. Many packages are split into several packages to isolate architecture-

independent files, as in the Debian packagyeisprolog andswi-prolog-doc . When performing
this split, it is quite natural to add a conflict éwi-prolog-doc against old, non-splitted versions of
swi-prolog . If the new version obwi-prolog-doc slips into a real repository before the new,

splitted version obwi-prolog , we are exactly in situation number 3 above.

Package developers seem aware of some of these issues: they actually do their best to ensure mono-
tonicity and upgradeability by trying to reduce as much as possible the usage of conflicts, and sometime
resorting to naming conventions for the packages when a radical change in the package happens, like in
the case okserver-common vs. xserver-common-v3 in Debian, as can be seen in the depen-
dencies foxserver-common

THE SPECIAL ISSUES TITLE

16

THE EASST NEWSLETTER

Package: xserver-common

Conflicts: xbase (<< 3.3.2.3a-2), xsun-utils, xbase-clients (<< 3.3.6-1),
suidmanager (<< 0.50), configlet (<= 0.9.22),
xserver-3dlabs (<< 3.3.6-35), xserver-8514 (<< 3.3.6-35),
xserver-agx (<< 3.3.6-35), xserver-common-v3 (<< 3.3.6-35),
xserver-fbdev (<< 3.3.6-35), xserver-i128 (<< 3.3.6-35),
xserver-mach32 (<< 3.3.6-35), xserver-mach64 (<< 3.3.6-35),
xserver-mach8 (<< 3.3.6-35), xserver-mono (<< 3.3.6-35),
xserver-p9000 (<< 3.3.6-35), xserver-s3(<< 3.3.6-35),
xserver-s3v (<< 3.3.6-35), xserver-svga (<< 3.3.6-35),
xserver-tga (<< 3.3.6-35), xserver-vgal6 (<< 3.3.6-35),
xserver-w32 (<< 3.3.6-35), xserver-xsun (<< 3.3.6-35),
Xserver-xsun-mono (<< 3.3.6-35), xserver-xsun24 (<< 3.3.6-35),
xserver-ragel28, xserver-sis

4 Algorithmic considerations

Our research objective within the EDOS project is to formally define the desirable properties of reposi-
tories stated in section 3 (and possibly other properties that will appear useful), and to develop efficient
algorithms to check these properties automatically.

It is really not evident that any of these problems are actually tractable in practice: due to the rich
language allowed to describe package dependencies in the mainstream FOSS distributions, even the
simplest problems (checking installability of a single package) may involve verifications over a large
number of other packages. During our first investigations of these problems, we have indeed already
proven the following complexity result.

Theorem 1 (Package installability is an NP-complete problem)Checking whether a single package
P can be installed, given a repositofy, is NP-complete.

The full proof of this result will be published separately. It relies on a simple, polynomial-time reduction
of the 3SAT problem to the installability problem. Given an instance of 3SAT, a repository is constructed
having one package for the whole 3SAT formula, one package per clause of that formula, and three
packages for each propositional atom occurring in that formula. Dependencies and conflicts between
these packages are added in such a way that the package for the whole formula is installable if and only
if the 3SAT formula is satisfiable.

Nevertheless, this strong limiting result does not mean that we will not be able to decide installability
and the other problems in practice: the actual instances of these problems, as found in real repositories,
could be quite simple in the average.

In particular, the converse of the reduction used for the NP-completeness proof leads to an effective way
of deciding package installability. We developed an algorithm that encodes a repdsaoryits depen-
dencies as a Boolean formulg R). (Details of the encoding will be published in a forthcoming paper.)
Assignments of truth values to boolean variables that safi§fit) are in one-to-one correspondence
with sets of co-installable packages. Therefore, a packaiganstallable if and only if the Boolean for-
mulaC(R) A P is satisfiable, which we can check relatively efficiently using off-the-shelf SAT solving

THE SPECIAL ISSUES TITLE

17

THE EASST NEWSLETTER

\ 7
10000 - 14
E 075
8 E I] o
o | 3
a - q] 3
5 I i =
100 - =
z g 105 g
g F] O
z 5]
10 —0.25
1Jm Ll Ll w Ll w ‘ HN H‘H ! L H .
0 250 500 75 1000 1250 1500 1750 2000

Dependency closure size
Figure 4: Number of packages as a function of the size of their dependency closures.

technology.

We implemented the conversion algorithm as well a SAT solver [ES04] and ran it over both the De-
bian pool (over 30,000 packages) and the Mandriva Cooker distribution (around 5,000 packages). The
execution time is entirely acceptable, and the tool found a humber of non-installable packages in both
distributions.

We are now focusing our attention on the two time-dependent desirable properties for the repositories,
which are, algorithmically speaking, much harder.

5 Empirical measurements

In parallel with our formal complexity and algorithmic investigations, we also performed some empirical
measurements on the Debian and Mandriva distributions, to try and grasp the practical complexity of the
problems.

Figure 4 gives a histogram showing the number of packages as a function of the size of the dependency
closure, from the Debian stable, unstable and testing pools on 2005-12-13, which has 31149 packages.
The average closure size is 158; 50% of the packages have a closure size of 71 or less, 90% of 372 or
less, and 99% of 1077 or less. These numbers show that naive combinatorial algorithms, exponential in
the size of the dependency closure, are clearly out of the question.

Figure 5 estimates the complexity of solving the Boolean formulae generated by our encoding of the
installability problem. The “temperaturd” of a formula in 3SAT conjunctive normal form is defined as
T = m/n wherem is the number of clauses amcthe number of variables. There is strong theoretical

THE SPECIAL ISSUES TITLE

18

THE EASST NEWSLETTER

—1
10000]
i - =ml m o8
M] A M n
$ 1000 |- B M] o
g F 11 063
k] i [i1 =
g 100 M b g
2 - i H04©
10 | E
E L] d *: 0.2
: L ml E
fl . | . | . | 3
1 0
0.75 1 1.25 15
Temperature

Figure 5: Number of packages as a function of the “temperature” of the SAT problems corresponding to
their installability problems.

and practical evidence that hard SAT problems have a temperature close to 4.2, while SAT problems with
temperatures well below or above that limit are easier to solve. The temperatures for the SAT problems
corresponding to installability of the Debian packages range from 0.75 to 1.49, well below the threshold
value of 4.2. This result confirms that we are dealing with relatively easy satisfiability problems, maybe
owing to the small-world nature of the dependency graphs [LWO05].

6 Conclusions

We have presented and motivated in this paper three fundamental properties for large repositories of
FOSS packages that are quite different from the usual properties of component collections, due to the
large spectrum of languages, technologies, frameworks and interfaces spanned by a contemporary FOSS
distribution.

Despite their algorithmic complexity, we have already performed large-scale tests indicating that the
first of these properties can be mechanically checked in reasonable time. We continue similar investiga-
tions on the other properties.

We claim that providing efficient tools to check these properties is an essential step in order to ensure
that the FOSS development model stays sustainable, and we suggest that researchers should look into
the specificities brought by FOSS in the software engineering world.

THE SPECIAL ISSUES TITLE

19

THE EASST NEWSLETTER

References

[Baig7]

[BDO2]

[DGOS]

[EKIOS]
[ES04]

[GHIV94]

[LWO5]

[Man05]
[Nie05]
[Silo4]
[Szy97]

[TTO1]

[Tuu03]

[vdS04]

Edward C. Bailey. Maximum RPM, taking the Red Hat package manager to the limit.
http://rikers.org/rpmbook/,http://www.rpm.org, 1997.

Manfred Broy and Ernst Dener&oftware Pioneers: Contributions to Software Engineering
Springer-Verlag, 2002.

Debian Group. Debian policy manual. http://www.debian.org/doc/debian-policy/, 1996—
1998.

David Eklund. The lib update/autoupdate suite. http://luau.sourceforge.net/, 2003—2005.

Niklas Een and Niklas 8rensson. An extensible SAT-solver. In Enrico Giunchiglia and Ar-
mando Tacchella, editorsheory and Applications of Satisfiability Testing, 6th International
Conference, SAT 2003. Santa Margherita Ligure, Italy, May 5-8, 2003 Selected Revised Pa-
pers volume 2919 ot ecture Notes in Computer Scienpages 502-518. Springer, 2004.

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlisdé=sgn Patterns: Elements
of Reusable Object-Oriented Softwasddison-Wesley, 1994.

Nathan LaBelle and Eugene Wallingford. Inter-package dependency networks in open-
source softwareSubmitted to Journal of Theoretical Computer Scig2€€5.

Mandriva. URPMI. http://www.urpmi.org/, 2005.
Gustavo Niemeyer. Smart package manager. http://labix.org/smart/, 2005.
Gustavo Noronha Silva. Apt-howto. http://www.debian.org/doc/manuals/apt-howto/, 2004.

Clemens SzyperskComponent Software: Beyond Object-Oriented Programméiytlglison
Wesley Professional, 1997.

L. Taylor and L. Tuura. Ignominy: a tool for software dependency and metric analysis with
examples from large HEP packages Pimceedings of CHEP'Q12001.

L. A. Tuura. Ignominy: tool for analysing software dependencies and for reducing complex-
ity in large software systems. Proceedings of the VIII International Workshop on Advanced
Computing and Analysis Techniques in Physics Resgantiime 502, pages 684—-686, 2003.

Tijs van der Storm. Variability and component compositionPioceedings of the Eighth
International Conference on Software Reuse (ICSR@)4.

THE SPECIAL ISSUES TITLE

20

COMMUNICATIONS OF EASST

Softure: Adaptable, Reliable and Performing
Software for the Future

Antonia Bertolino*, Wolfgang Emmerich**,
Paola Inverardi***, Valérie Issarny****
*CNR, Italy, **UCL, UK,
University of L’Aquila, Italy, *INRIA, France

Abstract. This paper discusses the approach that will be taken by the PLASTIC
project (http://www.ist-plastic.org) in order to assist the development of adaptable,
reliable and performing software services for Beyond 3rd Generation networks.

Keywords: B3G network, service-oriented architecture, middleware, validation.

1 Overview

Software in the future (Softure) will need to cope with variability, as software systems get deployed on
an increasingly large diversity of computing platforms. Software will have to be usable in various
environments, due to tremendous evolution in information and communication technologies.
Heterogeneity of the underlying communication and computing infrastructure, mobility and
continuously evolving requirements demand new software paradigms that span the entire life-cycle
from development to deployment and execution. Softure must be developed in a way that facilitates
both its deployment over heterogeneous networks of heterogeneous nodes, and its interaction with end
users, their environment and/or other existing systems, depending on the application domain.
Moreover, Softure should be reliable and meet the user’s performance requirements and needs.
Softure can greatly differ in nature, varying from complex and distributed software systems for highly
dynamic networks of mobile nodes to embedded software systems for wireless, resource-constrained
nodes. Additionally, the user-centric dimension of the new emerging applications requires Softure to
be adaptive to a context that combines user-centric data (e.g., what is the information of interest for the
user given his/her current situation?) and resource/computer-centric data (e.g., what is the service that
can be delivered to the user given available energy?). Finally, due to its pervasiveness, Softure must be
dependable, which is made more complex given the highly dynamic nature of service provision.

Supporting the development and execution of Softure systems raises numerous challenges, from
elaborating languages, methods and tools for the systems’ thorough design and validation in order to
ensure dependability of the self-adaptive systems that are targeted, to developing supporting
middleware infrastructures in order to ease the implementation and deployment of the target systems
on highly heterogeneous and dynamic platforms. The next section discusses in more details the
challenges that arise to support the development of dependable, adaptable Softure systems. Section 3

FRCSS'06: Future Research Challenges for Software and Services

21

COMMUNICATIONS OF EASST

then describes the approach undertaken in the IST PLASTIC project for a specific instance of Softure
focused on software for Beyond 3rd Generation (B3G) networks. Section 4 presents concluding
remarks.

2 Research Challenges for Softure

Various abstractions for modeling behavioral adaptation of applications in response to changes in the
executing environment have been proposed recently, ranging from resource aware programming to
adaptive software architectures.

2.1 Developing Adaptable Applications

Proposed solutions to supporting the development of adaptable applications include approaches for the
customization of the source code. For example, aspect oriented programming (AOP) for conventional
computing infrastructures has gained popularity to increase programming flexibility [1]. More
advanced solutions propose context-aware programming for ad hoc mobile environments [2]. Overall,
the objective of these approaches is to assist the development of applications that are generic and can
be adapted with respect to a dynamically provided context, which is in particular characterized in
terms of available (hardware or software) resources, each one with its own characteristics. It is then
crucial to enforce correctness of the adaptive, generic applications, which can be achieved using a
declarative and deductive approach that enables the construction of generic adaptable application code
and its correct adaptation with respect to a given execution context [6, 7]. Yet another approach to
adaptability of software applications is presented in [3, 4], which focus on correct dynamic linking
rather than on correct tailoring of generic applications. Specifically, these papers address dynamic
software update using verifiable native code, such as Proof Carrying Code (PCC), to deliver correct
patches that may be applied at runtime to software, according to availability requirements. The
approach requires the code to be written so that it can be dynamically updated. It deals with dynamic
linking in order to patch on the fly executable code, and with code verification in order to ensure that
the received patch is correct with respect to some safety properties. Along this line of research, it is
worthwhile mentioning the research project on Resource Aware Programming [5] ended in 2005,
which focuses on functional programming and on programming in presence of bounded resources in
the more confined context of embedded software. The newly started Global Computing IP project
MOBIUS [38] is also of relevance although focusing on security. Still, the security attribute is taken in
its full generality and accounts also for resource usage and management and for distribution and
mobility. MOBIUS proposes the use of PCC techniques integrated with type theory in order to attach
to (mobile) components certificates that state the security and safety properties of the dynamic
behavior of the component.

Adaptation of a software system may also be addressed in a compositional way. In that direction,
software architectures are very effective tools for the description and the modeling of complex systems
in terms of the composition of component systems [8]. Software architectures support the description
of the static and dynamic components of the system together with how they interact. Software
architectures are the basis for early analysis, verification and validation of software systems. Software

FRCSS'06: Future Research Challenges for Software and Services

22

COMMUNICATIONS OF EASST

architectures are the earliest comprehensive system model in the software lifecycle built from
requirements specification. They are increasingly part of standardized software development processes
because they represent a system abstraction in which design choices relevant to the correctness of the
final system are taken. Software architectures can be used for validating the final system with respect
to architectural properties [39]. Moreover, software architecture modeling is also particularly useful
for assessing, so-called non-functional requirements, notably dependability requirements such as
security and reliability [40] and quantitative requirements like performance and scalability [41].
Therefore, much of software architecture research has been concentrated on the specification and
analysis of both qualitative and quantitative system properties. The state of the art in the field of
software architectures for dependable self-adaptive distributed systems is still preliminary and
fragmented, focusing on a small set of the systems’ attributes. Software architectures for self-adaptive
systems can be found in the literature, e.g., [9-12]. However, proposed approaches still lack associated
design and validation methodologies and further address very specific adaptation with respect to
computer-centric context awareness. Comprehensive design and validation of self-adaptive systems
require accounting for both functional and non-functional properties in front of highly dynamic
environments. Some proposals in this direction are emerging for service oriented architectures [42]. In
addition, adaptation applies to both the application and middleware layers, regarding both the overall
distributed systems and component embedded systems.

2.2 Middleware Supporting Adaptation

As argued above, development of adaptive software systems shall be accounted for at the middleware
layer, which must both adapt its behavior according to context (i.e., available computing and
networking resources and application requirements) and provide relevant feedback about the
underlying infrastructure to the application layer. The former requirement may be addressed using
component-based middleware, which allows enforcement of the required quality of service through
the integration of adequate middleware-related services [13]. However, customization of the
middleware is mostly addressed at design time, including possible middleware adaptation to deal with
environmental changes [14]. To effectively support the development of Softure, context-aware
composition must be enabled anytime, anywhere and hence must not rely on a priori knowledge of the
computing environment, and in particular of available service instances. In other words, while most
existing middleware systems require application developers to specify the instances of (middleware-
and application-related) services to be used in the composition of applications, this composition shall
be automated with respect to the context in Softure. Further, middleware for Softure will deal with the
heterogeneity of the networking and computing environment. This includes both (i) addressing the
integration of available middleware that offer effective support for their target application domains,
and (ii) devising novel, advanced middleware for emerging application domains and/or infrastructures.
Solutions to the former issue range from providing a new middleware API that allows benefiting from
the various functionalities of the integrated middleware (e.g., [15, 16]) to implementing transparent
mapping from one middleware to another at the network layer (e.g., [17]). The latter issue ranges from
devising new solutions to meeting traditional non-functional requirements in order to cope with the
evolving computing environment (e.g., trust management to deal with privacy and security
requirements in the open networking environment [18]), to introducing new middleware architectures

FRCSS'06: Future Research Challenges for Software and Services

23

COMMUNICATIONS OF EASST

to cope with the specifics of emerging networking infrastructure and devices (e.g., B3G networks [19],
sensor networks [20]).

Many middleware systems have concentrated on abstracting the complexities of supporting context-
awareness [21-23], by providing transparent communication mechanisms in a pervasive environment,
and resource management that supports adaptations to the particular domain in which the
infrastructure operates. The approaches on which the systems are based vary from system to system,
though some key middleware paradigms are favored. For instance, for decoupling software
components, supporting complex communication patterns, and allowing transparent communication
between objects, the publish-subscribe (distributed event service) paradigm has been used
considerably [24-25]. In general, various middleware infrastructures have been proposed since the end
of the last century to support the development of context-aware systems. The i-Land project supports
the collaboration of people within an environment full of ubiquitous components [26]. An
infrastructure called Beach [27] supports the dynamic configuration of the components. The COAST
framework [25] provides Beach with the functionality to distribute, replicate and synchronize objects.
Aura [28] has been developed for wearable, handheld devices, providing for nomadic, possibly
intermittent file access, resource monitoring and application-aware adaptation. Gaia [29] enables the
coordination of software entities and heterogeneous networked devices by extending the typical
operating system concepts to include context and other basic services. Dynamic and automated
composition of middleware-related services for enforcing dependability according to the context is
addressed by the CANS infrastructure [30], which allows components to be injected into the network
for dynamically adapting the system to resource characteristics of end devices and network links. A
similar approach is undertaken by the WSAMI environment [31], which builds on the Web services
architecture and realizes on-line distributed connector customization for increased availability of
services.

As outlined above, providing solutions to the development of Softure that are adaptive to the rich
context raises a number of challenging issues relevant to all phases of software development. And,
although useful approaches have emerged since the early 2000s, open problems remain to be
addressed and solutions need be integrated into a comprehensive development platform, possibly
aimed at a specific application domain and/or computing infrastructure. In that direction, the following
presents an overview of the research that we will undertake as part of the IST project PLASTIC
(Providing Lightweight and Adaptable Service Technology for pervasive Information and
Communication) project (http://www.ist-plastic.org), which has commenced in February 20086.
Specifically, the PLASTIC project focuses on assisting the development of adaptable software
services for B3G distributed computing platforms, in particular enforcing dependability of services.
The PLASTIC consortium brings together expertise in the target technical fields: the University
partners (University of L’Aquila, UCL, and University of Lugano) have unique expertise in devising
novel software engineering solutions for advanced software applications, and in particular applications
for next generation, wireless networks; the national research institutes partners (INRIA and CNR-
Pisatel) have a long track record in investigating solutions for supporting the development of
innovative applications for next generation networks; and the industrial partners (IBM, Siemens
Business Services, Telefonica, Virtual Trip, Pragmatica Technologies and 4D Soft) together provide

FRCSS'06: Future Research Challenges for Software and Services

24

COMMUNICATIONS OF EASST

major capabilities for the development and deployment of software services for next generation
networks.

3 The PLASTIC Approach

Infrastructure-based networks

ulti-hop ad hoc network

Ad hoc WLAN

Figure 1: The B3G open wireless environment

The PLASTIC project aims to offer a comprehensive provisioning platform for software services
deployed over B3G networks (see Figure 1), integrating a supporting development environment and
middleware. The platform will enable dynamic adaptation of services to the environment with respect
to resource availability and delivered QoS, via a development paradigm based on Service Level
Agreements and resource-aware programming. The middleware will be service oriented, to enable
integration and composition of heterogeneous software services from both infrastructure-based and ad
hoc networks. The middleware will integrate key functions for supporting the management of adaptive
services in the open wireless environment, dealing with resource awareness and dependability. The
following section further discusses the PLASTIC vision, leading to introduce the supporting PLASTIC
platform in Section 3.2. Sections 3.3 and 3.4 then concentrate on the two key elements of the
PLASTIC platform, i.e., (i) the PLASTIC development environment enabling the comprehensive
development of dependable, adaptive services, which is complemented with (ii) the PLASTIC

FRCSS'06: Future Research Challenges for Software and Services

25

COMMUNICATIONS OF EASST

middleware supporting the deployment and execution of adaptive software services over the
heterogeneous platforms that are networked in B3G.

3.1 The PLASTIC Vision

The vision of PLASTIC is that users in the B3G era should be provided with a variety of application
services exploiting the network’s diversity and richness, without requiring systematic availability of an
integrated network infrastructure. The success of the provided services then depends on the user
perception of the delivered Quality of Service (QoS), which varies along several dimensions,
including: type of service, type of user, type of access device, and type of execution network
environment. In order to manage these various factors, the network’s diversity and richness must be
made available and be exploitable at the application layer, where the delivered services can be most
suitably adapted. This demands a comprehensive software engineering approach to the provisioning of
services, which encompasses the full service life cycle, from development to validation, and from
deployment to execution.

The PLASTIC answer to the above needs is to offer a comprehensive platform for the creation and
provisioning of lightweight, adaptable services for the open wireless environment. Various service
delivery platforms have been proposed for the 2G+ to 3G cellular networks (e.g., JAIN [32], 3GPP
[33] initiatives including CAMEL, OSA and IMS, PARLAY [34]). However, these platforms are
focused on network-layer services. For B3G networks, there are proposals for extending the above
solutions, dealing with the provision of network-layer services that can be adapted at the middleware
layer [35]. At the application layer, modeling, development and deployment tools for programming,
uploading and instantiating applications and code on mobile, wireless devices have been in use
worldwide by many manufacturers. The major standards in this space include J2ME [36], OSGi [37]
and others. Java virtual machines, lightweight messaging systems, lightweight Web Services tool Kits,
small-footprint databases for device controllers and programming environments have been developed
(e.g., see the software available at https://secure.alphaworks.ibm.com, which will be exploited in
the development of PLASTIC software tools and middleware). In addition, much research has been
conducted in the areas of mobile computing frameworks, mobile grids and environments for enabling
ad hoc communication and integration. The techniques, methods, tools and programming models are
still evolving. However, they are primarily focused horizontally, which is to say, on a single layer of
the system’s infrastructure. For example, the state of the art in adaptiveness to resources and QoS,
which is a key feature of mobile adaptive services, addresses individually the network, middleware
and application layers.

A key challenging contribution of the PLASTIC project is to coherently manage adaptation in a

vertical way across the different layers, from application to middleware to network. This will be

achieved by modeling and supporting the relevant characteristics of the various heterogeneous

infrastructures, so that they are made visible and manageable to the application layer through an

integrated service development and execution platform. Key research points are:

e The identification of the fair tradeoffs among resources to be made visible at the application and
middleware layers, and adaptation capabilities of the service;

FRCSS'06: Future Research Challenges for Software and Services

26

COMMUNICATIONS OF EASST

e The ability to maintain QoS through adaptation.

The core objective of the PLASTIC project is to enable the development and deployment of cost-
effective application services, both in terms of development and usage costs, regarding both financial
and resource usage aspects, for B3G networks. Service development platforms for B3G networks will
be effective and successful only if the services they deliver are adaptive and offer quality of service
guarantees to users despite the uncontrolled open wireless environment, which will be a key focus of

the PLASTIC project.

3.2 The PLASTIC Platform

PLASTIC

Deployment
Tools

Functional Interface +SLA

Functional Interface +SLA

Functional Interface +5LA

PLASTIC
Service
Instance

PLASTIC

Service
Instance

PLASTIC
Service
Instance

Functional Interface +SLA

PLASTIC
Service

PLASTIC Middleware

Monitoring

Discovery

Communication

Trust & Security

Virtual Shared

Management Memory L)
PLASTIC-specific
Network layer delivery platforms components
(OSA, Parlay, ...)
Network
IP-based Networks Platform-specific
components
(2G..3G, WiFi, Bluetooth, ...)

Figure 2: The PLASTIC platform

PLASTIC
Development
Tools

FRCSS'06: Future Research Challenges for Software and Services

27

COMMUNICATIONS OF EASST

The PLASTIC platform (see Figure 2) will integrate software development methods and tools, and
supporting middleware, enabling service provision in the open wireless environment. Specifically, the
PLASTIC platform shall support:

development of adaptive services for all-IP networks, i.e., development of QoS- and resource-
aware, platform-independent, dependable services that adapt to the networking environment to
deliver the best achievable quality of service and that may be deployed on a rich variety of
devices, including wireless, resource-constrained devices;

deployment and adaptive composition of services in the wireless environment, whether ad hoc,
infrastructure-based or a combination of both, so as to realize complex and rich applications and
make them available in most environments;

run-time service management oriented toward monitoring and maintaining a quality of service that
meets user expectations.

In order to fulfill the above requirements, research will be pursued in the following directions:

Development and provisioning of robust adaptive services for the open wireless environment:
0 Service robustness will be promoted through integrated software engineering methods

and tools, from design to validation. Service development will in particular build on
the software engineering paradigms of service-oriented and component-based
computing, i.e., an application is defined as the (possible) composition of
autonomous, networked services, with an individual service being developed as a
composition of components. This will allow the exploitation of existing development
support oriented toward the functional robustness of applications.

Services will be adaptive to the environment with respect to resource availability and
delivered quality of service, via a development paradigm based on Service Level
Agreements (SLAS) and resource-aware programming.

Middleware for service provisioning and composition in B3G networks:
o The middleware will be service oriented, to enable integration and composition of

heterogeneous software services, including services from both infrastructure-based
and ad hoc networks.

The PLASTIC technology aims to be compatible with existing standards. PLASTIC
will thus provide service developers with a set of platform-independent abstractions
that will leverage, extend or interface with open APIs like those of OSA/PARLAY or
of specific protocols. On the client side, the PLASTIC technology will allow service
adaptation with respect to different access protocols (e.g., SMS, MMS, and WAP) and
will provide the necessary run-time support to execute the service according to the
user’s expectation regarding QoS. In general, the PLASTIC middleware will allow
interaction with, and exploitation of, services from the cellular network, using
standard APIs defined for service platforms aimed at 2 to B3G networks.

The middleware will integrate key functions for supporting the management of
adaptive services in the open wireless environment, dealing in particular with resource
awareness, dependability, trust and security.

Testing methods and tools to validate the dependability of mobile, adaptive services:

FRCSS'06: Future Research Challenges for Software and Services

28

COMMUNICATIONS OF EASST

0 Due to the mobility and strong dynamism of the considered systems, PLASTIC must
provide new techniques for service evaluation and testing. In particular, dynamic
adaptability is a pervasive requirement that is not adequately addressed by traditional
testing methodologies. Hence, the PLASTIC platform will embody mechanisms to
verify that an application, or part of it, will be able to “correctly” interact in different
environments by taking advantage of the services that are available.

0 QoS (particularly performance) constitutes another important characteristic of service-
oriented architectures that needs to be carefully assessed. As QoS of mobile service-
oriented applications is heavily influenced by communication mechanisms, the
PLASTIC project will experiment with the applicability of testing methodologies for
empirical QoS evaluation.

The two next sections further discuss the PLASTIC development environment and associated
middleware, focusing on the requirements that we aim to address.

3.3 The PLASTIC Development Environment

Supporting the development of resource-aware and self-adapting components composing adaptable
services requires focusing on the Quality of Service (QoS) properties offered by services. Although
the functional properties of services are equally important for assuring the development of a
competitive service, current component and service development technologies offer good solutions to
achieve required levels of quality in the composition of components and services. To this respect, the
PLASTIC platform will make use of consolidated technologies at the design and at the implementation
level. In particular, the use of UML and MDA (Model Driven Architecture) for the design, and the use
of the Java family languages for implementation will be considered.

For the management of non-functional/Quality of Service (QoS) properties offered by services, which
is one of the innovative cornerstones of the PLASTIC platform, the work will rely on the specification
of service level agreements (SLAs), i.e., abstract specification of the Quality of Service (QoS)
properties offered by services as a compromise with the capabilities of the target platforms. In order to
manage SLAs, we lay on analysis techniques that are capable of reasoning about the resources that
components require in order to meet given service levels. An important objective is to devise the
required notations and tools to support such designs. In order to support systematic development from
the design level to the implementation of adaptable services and components, we will investigate the
use of transformational approaches and rely on techniques and tools that emerge from MDA and
generative programming research areas.

We will further develop a methodology for the validation of mobile adaptable component-based
services from the standpoint of both functional and non-functional properties. The methodology will
be supported by a test framework, part of the PLASTIC platform. Due to mobility requirement and to
the strong dynamism of the considered systems, we need to study and implement new techniques for
evaluation and testing. This includes the development of strategies to identify test cases aimed at
validating interoperability aspects in the composition of networked services. These strategies will be
built in line with the above innovative modeling and development approaches devised. In addition, the

FRCSS'06: Future Research Challenges for Software and Services

29

COMMUNICATIONS OF EASST

same application will have to interact with newly dynamically added services at runtime. Hence we
will have to devise related methods and tools to be deployed for on-line and off-line testing. We will
also study the applicability of testing methodologies for empirical QoS evaluation.

3.4 The PLASTIC Middleware

The PLASTIC service-oriented middleware will support the PLASTIC development methodology for
the deployment of mobile, adaptable services in beyond 3G networks. Specifically, the middleware
shall be deployed over a large diversity of computing platforms, including wireless, resource-
constrained devices, so that services may indeed be deployed on the mobile, wireless devices and not
only accessed from them. The middleware shall further interface with the large diversity of networks
composing the beyond 3G network. This includes benefiting from the functionality of latest network
service platforms. Specifically, the PLASTIC middleware will be service-oriented, offering core
middleware functions for the naming and discovery of networked services, and for interactions among
networked services. The core middleware will further be enriched with a number of middleware-
related services that are of prime importance in enabling mobile, adaptable services. Also, the
middleware will allow applications to use high-level network-layer services —if and when available
(e.g., location-awareness).

The core middleware supporting the PLASTIC mobile and adaptable services will build upon open
standards related to service-oriented architectures and to network-layer service delivery platforms.
Specifically, the PLASTIC middleware will adapt technologies related to the Web services
architecture so as to enable development and deployment of PLASTIC-compliant Web services on
various platforms, including wireless, resource constrained devices. Following the PLASTIC
development environment for adaptable services, Web services will in particular be enriched with the
specification of SLAs, further leading to related SLA-aware service discovery and access.

A key aspect of the PLASTIC middleware is to support interoperability among services deployed on
devices that are heterogeneous in the software and hardware dimensions. Interoperability is addressed
in PLASTIC by undertaking a service-oriented approach, which has been proven quite successful for
the development of distributed applications in open environments, through the Web services
architecture. PLASTIC further adopts an all-IP network view, leading to networks structured around
IP domains. Services within one IP domain may then interact according to the access control policy of
that domain, while interaction spanning multiple domains is made possible by dedicated bridges. The
PLASTIC middleware operates over IP domains enabled by the network operator and/or ad hoc
networking; PLASTIC does not offer any bridging functionality, for which various solutions may be
found in the literature. The PLASTIC middleware makes available network-layer functionalities to the
applications, like functions defined by service delivery platforms for 2 to 3G networks and more
recently for beyond 3G networks. One key issue that arises is then which of the network-layer services
should be offered to applications as is and which should be exploited at the middleware-layer and
made transparent at the application-layer. For instance, the middleware may exploit the existence of
multiple radio interfaces when interacting with the environment, so as to favor cost-effective
interactions with respect to financial cost for the user, resource-usage and network-level quality of

FRCSS'06: Future Research Challenges for Software and Services

30

COMMUNICATIONS OF EASST

service. Also, the PLASTIC middleware will rely on capabilities of the underlying network for
seamless mobility. The impact of network heterogeneity on the middleware and application behavior
will then be addressed through the elicitation of a comprehensive semantics for service interaction
(i.e., connector types offered by the PLASTIC middleware), accounting for the various network-
related properties of relevance (e.g., impact of mobility management on failure and synchronization
semantics) based on adequate interfacing with the network.

Service management includes service discovery, access, reservation and accounting&billing, for
which we additionally have to consider mobility and security issues. Regarding service mobility, we
distinguish between logical and physical mobility. As mentioned above, physical mobility relies on its
handling by the underlying network, and is addressed through the definition of appropriate interaction
semantics. Logical mobility is supported by enabling the downloading of appropriate software
components to dynamically compose services. Context-aware discovery of networked services in the
PLASTIC middleware will take into account SLAs associated with the services, prior client-side
subscriptions (service advertisement and service push) and reachable network domains. In addition,
since there is a large number of service discovery protocols, each aimed at a specific network, we will
reuse existing solutions to service discovery protocols interoperability (e.g., [15, 17]) so that the
PLASTIC middleware may build upon them. Regarding service access, the PLASTIC middleware will
rely on interaction functionalities provided by the core middleware and will further support
functionalities for the orchestration/choreography of distributed services. Last but not least, the
PLASTIC middleware will provide functions to enforce SLASs in the dynamic network environment.
This includes monitoring of resources and adapting service composition and access based on specified
SLAs and evolution of resource availability.

4 Conclusion

As information and communication technologies get increasingly pervasive, diverse and rich, Software
for the future (Softure) must be adaptive to context, i.e., must change its behavior according to the
context in which the software applications are provisioned and accessed. In addition, Softure needs to
be self-adaptive according to both the resource- and user-centric context, which evolves over time.
The IST project PLASTIC aims at offering comprehensive development support for Softure and
focuses specifically on Softure to be deployed over next generation, B3G networks.

The PLASTIC methodology embraces both service creation and service execution. Thus, the
PLASTIC platform comprises software tools for the creation, development and testing of software
services/components and a middleware to support service deployment and execution with respect to
established Quality of Service (QoS) parameters in the B3G networking environment. Service
development also includes service/components discovery and their orchestration for the creation of
new service instances. In this context, development is mixed with dynamic execution, which requires
dynamic adaptation and customization of generic components and thus innovative validation
techniques (e.g., pre-static certification, synthesis, etc.).

FRCSS'06: Future Research Challenges for Software and Services

31

COMMUNICATIONS OF EASST

The PLASTIC approach is based on component and service technologies, making services adaptable
with respect to the components they integrate and the networked services with which they interact,
according to the networking environment and QoS (non-functional) requirements. Adaptable service
composition, from the service- to component-level, is then realized through suitable characterization
of components/services. This in particular allows validating components/services with respect to
interaction and coordination, including QoS requirements, and independently of the actual execution
platform.

The PLASTIC platform will support the development of diverse application services exploiting the
significant number and diversity of wireless resources that are (expected to be) networked, thanks to
next generation, B3G networks. “Killer applications” in such a pervasive mobile environment are yet
to be identified. Also, success of the PLASTIC platform depends on the achieved cost-effectiveness,
regarding the cost of both service development and service usage, compared to developing services for
the infrastructure-based/cellular network. The PLASTIC project will address the latter issue, and may
be the former one, through the development of a number of mobile e-services in the areas of eHealth,
eVoting, eLearning and eBusiness.

References

[1] CACM. Issue on Aspect Oriented Programming. Communications of the ACM. 44(10).
October 2001.

[2] C. Julien and G-C. Roman. Egocentric Context-aware Programming in Ad hoc Mobile
Environments. In Proceedings of SIGSOFT FSE. 2002.

[3] M. Hicks, S. Weirich, and K. Crary. Safe and Flexible Dynamic Linking of Native Code. In
Proceedings of TIC 2000, LNCS 2071. 2001

[4] M. W. Hicks, J. T. Moore, and S.Nettles. Dynamic Software Updating. In Proceedings of the
SIGPLAN Conference on Programming Language Design and Implementation. 2001.

[5] RAP Project. Resource Aware Programming. http://www.cs.rice.edu/~taha/RAP/.

[6] P. Inverardi, F. Mancinelli, and G. Marinelli. Adaptive Applications for Mobile

Heterogeneous Devices. In Proceedings of the 22nd International Conference on Distributed
Computing Systems Workshops. 2002.

[7] P. Inverardi, F. Mancinelli, and M. Nesi. A Declarative Framework for Adaptable
Applications in Heterogeneous Environments. Proceedings of the 19th ACM Symposium on
Applied Computing, 2004

[8] D. Garlan. Software Architecture: A Roadmap. The Future of Software Engineering, aside
ICSE00, ACM Press. 2000.
[9] S.-W. Cheng et al. Using Architectural Style as a Basis for Self-repair. In Proceedings of the

3rd Working IEEE/IFIP Conf. on Software Architecture (WICSA 2002). 2002.

[10] E. M. Dashofy, A. van der Hoek, and R. N. Taylor. Towards Architecture-based Self-
Healing Systems. In Proceedings of WOSS '02. 2002.

[11] B. Schmerl and D. Garlan. Exploiting Architectural Design Knowledge to Support Self-
repairing Systems. In Proceedings of the 14th International SEKE Conference 2002.

[12] D. Garlan, S. Cheng, and B. Schmerl, Increasing System Dependability through

FRCSS'06: Future Research Challenges for Software and Services

32

COMMUNICATIONS OF EASST

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

Architecture-based Self-repair, in Architecting Dependable Systems, R. de Lemos, C. Gacek,
A. Romanovsky (Eds), Springer-Verlag, 2003.

V. lIssarny, C. Kloukinas, and A. Zarras. Systematic Aid for Developing Middleware
Architectures. Communications of the ACM, Issue on Adaptive Middleware, 45(6). 2002.

G. Blair, L. Blair, V. Issarny, P. Tuma, and A. Zarras. The Role of Software Architecture in
Constraining Adaptation in Component-based Middleware Platforms. In Proceedings of the
ACM/IFIP International Middleware Conference. 2000.

P-G. Raverdy and V. Issarny. Context-aware Service Discovery in Heterogeneous Networks.
In Proceedings of the IEEE International Symposium on a World of Wireless, Mobile and
Multimedia Networks (WoWMoM'2005). 2005.

P. Grace, G. Blair, and S. Samuel. Middleware Awareness in Mobile Computing. In
Proceedings of the 1% International ICDCS Workshop on Mobile Computing Middleware.
2003.

Y-D. Bromberg and V. Issarny. INDISS: Interoperable Discovery System for Networked
Services. In Proceedings of the ACM/IFIP/USENIX 6th International Middleware
Conference. 2005.

Proceedings of the International Conference on Trust Management. LNCS. 2003-2005.
Sensor Networks. References at
http://www.research.rutgers.edu/~mini/sensornetworks.html.

E2R Workshop on Reconfigurable Mobile Systems and Networks Beyond 3G.
http://e2r.motlabs.com/workshops/e2r-workshops. 2004.

A. K. Dey and G. D. Abowd. The Context Toolkit: Aiding the Development of Context-
aware Applications. In Workshop on Software Engineering for Wearable and Pervasive
Computing (CHI '99). 1999.

C. D. Kidd, R. J. Orr, G. D. Abowd, C. G. Atkeson, I. A. Essa, B. Maclntyre, E. Mynatt, T.
E. Starner, and W. Newstetter. The Aware Home: A Living Laboratory for Ubiquitous
Computing Research. In Proceedings of the 2™ International Workshop on Cooperative
Buildings.1999.

L. Capra, W. Emmerich, and C. Mascolo. CARISMA: Context-Aware Reflective
mlddleware System for Mobile Applications. IEEE TSE, 29(10). 2003.

A. Carzaniga, D. S. Rosenblum, and A. L. Wolf. Design and Evaluation of a Wide-Area
Event Notification Service, ACM Transactions on Computer Systems, 19(3). 2001.

C. Schuckmann, L. Kirchner, J. Schummer, and J. Haake. Designing Object-oriented
Synchronous Groupware with COAST. In Proceedings of the ACM Conference on
Computer Supported Cooperative Work. 1996.

N. A. Streitz, J. Geiyler, T. Holmer, S. Konomi, C. Muller-Tomfelde, W. Reischl, P.
Rexroth, P. Seitz, and R. Steinmetz. i-Land: An Interactive Landscape for Creativity and
Innovation. In Proceedings of the ACM Conference on Human Factors in Computing
Systems. 1999.

P. Tandler. Software Infrastructure for Ubiquitous Computing Environments: Supporting
Synchronous Collaboration with Heterogeneous Devices. In Proceedings of UbiComp 2001:
Ubiquitous Computing, LNCS 2201. 2001.

A. Smailagic, P. Steenkiste, D. Garlan, and D. Siewiorek. Project Aura: Toward Distraction-

FRCSS'06: Future Research Challenges for Software and Services

33

COMMUNICATIONS OF EASST

[29]

[30]

[31]

[32]
[33]
[34]
[35]
[36]
[37]
[38]
[39]

[40]

[41]

[42]

free Pervasive Computing. IEEE Pervasive Computing, 1(2). 2002.

R. Cerqueira, A. Ranganathan, R. H. Campbell, M. Roméan, C. K. Hess, and K. Nahrstedt.
Gaia: A Middleware Infrastructure to Enable Active Spaces. IEEE Pervasive Computing,
1(4). 2002.

X. Fu, W. Shi, A. Akkerman and V. Karamcheti. CANS: A Composable, Adaptive Network
Services Infrastructure. In Proceedings of the Usenix Symposium on Internet Technologies
and Systems. 2001.

V. Issarny, D. Sacchetti, F. Tartanoglu, F. Sailhan, R. Chibout, N. Levy, and A. Talamona.
Developing Ambient Intelligence Systems: A Solution based on Web Services. Journal of
Automated Software Engineering. Vol 12. 2005.

JAIN. http://java.sun.com/products/jain/.

3GPP. http://www.3gpp.org/.

PARLAY. http://www.parlay.org/.

Ed. T. Zahariadis and B. Doshi. IEEE Wireless Communications Magazine. Special Issue on
Applications and Services for the B3G/4G Era. October 2004.

J2ME. http://java.sun.com/j2me/

OSGi. http://www.0osgi.org/.

MOBIUS: http://mobius.inria.fr/

H. Muccini, A. Bertolino, and P. Inverardi. Using Software Architecture for Code Testing.
IEEE Transactions on Software Engineering, 30(3). 2004.

V. Issarny and A. Zarras. Software architecture and Dependability. in Formal Methods for
Software Architecture, M. Bernardo, P. Inverardi (Eds.), LNCS 2804, Springer-Verlag.
2003.

S. Balsamo, A. Di Marco, P. Inverardi, and M. Simeoni. Model-based Performance
Prediction. Software Development: A Survey IEEE Transaction on Software Engineering.
2004.

A. Bertolino and A. Polini. The Audition Framework for Testing Web Services
Interoperability”. In Proceedings of 31th Euromicro Conference on Software Engineering
and advanced Applications, EUROMICRO 2005. 2005.

FRCSS'06: Future Research Challenges for Software and Services

34

COMMUNICATIONS OF EASST

Requirements Composition and Refinement: Towards
Composition-Centric Requirements Engineering

Ruzanna Chitchyan*, Awais Rashid*, Pete Sawyer*
* Computing Department, Lancaster University,
Lancaster, LA2 4YR, UK

Abstract. Requirements represent what stakeholders are concerned about, i.e. their
concerns. These concerns are often interrelated, and so are their representations in
requirements or other artefacts. We discuss an approach to modularising and refinement
of concern relationships and using them during requirements composition. Some concepts
from Aspect-Oriented Software Development paradigm are used to support composition.

Keywords: aspect-oriented requirements engineering, requirements composition,
composition refinement

1. Introduction

Aspect-Oriented Software Development is a newly emerging software development
paradigm, that comes with a promise to help in modularising crosscutting concerns, in their
requirements, designs, and corresponding implementations.

Following the definition of [1], we define a concern as a matter of interest related to software
development. Requirements represent the concerns at their analysis and specification phase.
Concerns can also have design and implementation representations. A concern may be
specified through one or more requirements, for instance, in some system, security could be a
concern represented through such requirements as:

. Each user of the system shall be authenticated via login and password;

. Only an authenticated customer can purchase an item.

Thus, by definition, concerns are relative (as they vary depending on the
stakeholders/developers perspectives); they are also dynamic, since they change with time and
perspective. Concerns can participate in multiple relationships with each other. For instance,
security can motivate an ‘audit of records’ concern, and hinder ‘response time’, etc.

The issue of crosscutting emerges when concerns are represented in some formalism and that
chosen formalism does not support modular representation of certain concerns or their
relationships. If a concern is not modularised in the software architecture, it has to be
represented within modules that implement other concerns (in order to remain available in the

FRCSS'06: Future Research Challenges for Software and Services

35

COMMUNICATIONS OF EASST

system). A well-known example of this is the problem of implementing logging in object-
oriented systems.

Inter-concern relationships, on their part, propagate down into relationships between concern
representations, and if not modularised adequately, often cause some representation of the
related concerns to be included into the representation of the concerns themselves (e.g.,
inheritance relationship between objects is represented through injecting foreign key attributes
into the objects represented in a relational database). This lack of modular representation of
some concerns and their relationships causes scattering and tangling of concern
representations in requirement, design, and implementation artefacts.

Scattering is the occurrence of units that belong to one concern in representations of others;
and rangling is the contamination of concern representation with units alien to it [2]. Poor
modularisation along with scattering and tangling, in turn, affects understandability,
maintainability, and reusability of software artefacts.

The above discussion demonstrates the need for modular representation of concerns and their
relationships. While concern modelling and modular representation have been addressed, for
instance, in [1, 3], the issues related to concern relationships are relatively unexplored.
Concern relationships and composition is the focus of our work.

In this paper we present our approach to modularising concern relationships and using them
for requirement composition. The composition is used to detect and address conflicts between
requirements early on, as well as gain an early understanding of relationships between
artefacts of later development stages. Our approach to modular representation of relationships
at requirements and later stages is based on encompassing these relationships in composition
actions and operators. These actions and operators are then used for concern composition,
preserving the semantics of concern relationships.

The concerns and their relationships are gradually refined into more detailed representations
through an analysis process. This gradual increase of detail in requirements and
actions/operators takes the requirements closer and closer to the design space, transparently
bridging the gap between the two. Through this refinement, we also preserve the traceability
of requirements [4, 5], thus contributing to improved requirements management.

In section 2 of this paper we discuss our composition-centric approach to requirement
engineering, a simple example of this approach is presented in section 3. Section 4 presents
related work, finally, conclusions and future work are discussed in section 5.

2. A Composition-Centric Approach (CoCA) to Requirements Engineering!

In this section we focus on main elements of the CoCA which are concerns, their
relationships, representations, composition, and refinements. In CoCA (for requirements
engineering phase) concerns are represented via requirements, and their relationships are

! Further work on CoCA (including work on operator semantics and derivation, etc.) is presented in [20, 21].

FRCSS'06: Future Research Challenges for Software and Services

36

COMMUNICATIONS OF EASST

represented as actions and operators. The composition is supported through a refinable
joinpoint model and refinable composition semantics - concepts brought in from the Aspect-
Oriented Software Development paradigm. At each refinement level, the joinpoint model
exposes structured points through which requirements can be composed and composition
actions and operators provide clear semantics to the composition. Thus, composition is
supported at different levels of refinement of concerns and their relationships.

2.1 Composition, Relationships, and Operators

One of the cornerstones of Software Engineering is the separation of concerns principle [6].
However, composition is an equally important issue as the end product of software
development has to act as a single composed unit. Having a unified view of the system is
desirable at all development stages, starting from requirements engineering. Thus, once the
individual concerns, relationships and their corresponding requirements have been identified,
it is beneficial to compose them into a single coherent requirements specification. This is
useful not only for viewing the requirements as a whole to perceive the entire system, but also
for detecting conflicts and inconsistencies between requirements early on and taking
appropriate steps for their resolution before they have propagated further into the
development process. Moreover, if, as desired, the modularity of requirement level concerns
is preserved at the later stages of the software development lifecycle, the early composition of
requirements will also reflect the relationships between corresponding artefacts at the later
development phases. Hence, the relationships of artefacts of later lifecycle phases will be
revealed very early on in the development process. This knowledge, in turn, will be valuable
for early test planning, change management, etc.

Thus, it is important to capture the relationships and to propagate them down to design and
implementation in a modular way. However, it is also apparent that relationships are relative
and dynamic, as are concerns. It will be very difficult, if at all possible, to say that one
concern always relates to another in a definite way, except in very general cases and in
general terms. Each software system will have specific, often domain-defined, relationships
between its concerns. That is why we propose relative and dynamic representation for concern
relationships.

In this work relationships are represented thorough an open set of composition actions and
operators. Rashid et. al [7] defined a set of composition operators and actions used in XML-
based composition rules. We too follow similar representation. Some examples of
composition operators and associated actions are presented in Figure 1 below, while examples
of composition can be seen in section 3 of this paper.

Here operators reflect the nature of concern interrelationships, while actions define what
should be done about these interrelationships. For instance, a temporal interval between two
requirements (defined by between operator) can be merely observed without any intervention

FRCSS'06: Future Research Challenges for Software and Services

37

COMMUNICATIONS OF EASST

(observe action) or intentionally enforced (enforce action). A further example of use of such
actions and operators is provided in section 3.

Having an open set of operators and actions and an easy to use operator definition language,
allows the analysts to adopt the pre-defined operators or provide new operators to serve their
project-specific needs.

Fig. 1: Example of Actions and Operators

Action:
observe: monitor an additional condition over a set of requirements;
enforce: enforce an additional condition over a set of requirements;
provide: specify additional features to be incorporated for a set of requirements;

Operators:
between: temporal interval falling between satisfaction of two requirements.
for: additional features will complement requirements.

2.2 Join Points for Concern Composition Representation

Having flexible composition operators, however project-specific, is not enough, as
relationships between concerns do not need to equally affect all elements representing a
concern (e.g., all requirements representing a concern). Some representations can participate
in a relationship fully, others partially or not at all. For instance, going back to our earlier
example, the purchase an item concern is related to security, but buying can be represented as
a requirement to pay for an item and a requirement to receive the item that has been paid for.
While the requirement on paying for an item is closely related to the security concern for the
on-line shop, the requirement on receiving the purchased item is not>. Thus, we need a
mechanism for segregating the concern representations (and their sub-parts) that will
participate in a certain relationship with other concern representations. This is where we draw
on the power of Aspect-Oriented mechanisms such as joinpoints and pointcuts.

We characterise joinpoints as well defined points in the body of software modules. Since
joinpoints are clearly defined, we can reference them and employ other software modules to
interact with a given module at these points. For instance, a requirement in the concern
representation is a clearly defined point in the body of a requirements specification document.
We can use another requirement to replace or augment it, if we want.

2 In another project we could have defined security to be also concerned with safe delivery of the purchased item, but here (as
shown in the Introduction section) we only defined it as related to user authentication while purchasing an item at the on-
line shop.

FRCSS'06: Future Research Challenges for Software and Services

38

COMMUNICATIONS OF EASST

Fig. 2: Join points in the Security concern.

Concern: Security

-

T ®
! @ Red. 1: Each user of the system shall be authenticated via login and password,;
\ Req. 2: Only authenticated customer can purchase an item.
\ Join Points

\

) Req. 1.a : Each user of the system shall be authenticated via retinal scan.

In Figure 2 above the authentication requirement Req. 1 in the security concern is being
replaced with a new one Req. l.a. Here we clearly defined the point (Req. 1 in security
concern) in our artefact where we wanted to introduce a change, thus, the requirement
statement in this case can act as joinpoint.

Pointcuts allow the referencing of more than one joinpoint at a time. For instance, we can say:
replace all requirements within the security concern with some new ones. Thus, in this case,
the reference “all requirements within the security concern” is our pointcut.

We can define the relationships between concerns in terms of actions and operators applied to
selected parts of concern representations referenced through a pointcut.

2.3 Relationships and Pointcut Refinement

We have discussed so far that we aim to modularise the concern relationships as composition
actions and operators, and we define joinpoints and pointcuts to segregate parts of concern
representations which should participate in certain relationships with other concern
representations. But we also recognise that concern representations are dynamic throughout
the software development process. For example, requirements defined as statements (as in our
example in Figure 2 above) may be derived from use-case analysis, they may be elaborated
via details obtained during the course of analysis (using, for example, interaction diagrams)
and so refined to augment understanding and expose the solution space (see example in
section 3 below).

Once more detail is exposed in the requirements, we aim to make the concern relationships
more precise using these new elements. This has prompted us to make both composition
operators and pointcuts available for refinement in the same way as the requirements
themselves. Thus, at the early stage of analysis, when only user-level requirements are
available, we define composition using more general composition operators with reference to
requirement statement level joinpoints, as shown in Figure 2. As analysis proceeds, leading
eventually to the derivation of the more detailed software requirements, more precise
composition operators, derived from the previous more generic ones, are used that reference
finer-grain joinpoints, such as those of operation or attribute activation points (see example in
section 3 below). Figure 3 below demonstrates some possible refinements for some operators.

FRCSS'06: Future Research Challenges for Software and Services

39

COMMUNICATIONS OF EASST

Fig. 3: Refined between operator

Operator: between: temporal interval falling between satisfaction of two requirements.
Sub-Operators:
before: temporal interval falling between satisfaction of two requirements
where the first requirement has been completed before the second one is
commenced.
along: temporal interval falling between satisfaction of two requirements where
the second requirement has commenced while the first one is still being satisfied.

Not only should composition operators be traceably mapped to artefacts of different
granularity within the same lifecycle phase, but also between artefacts at the different levels
of the lifecycle [8]. This however is not considered in the present paper.

An example demonstrating some of the issues discussed in this section is presented in section
3 below. It is also important to note that although the example demonstrates finer level
joinpoints that match operation and attribute definition, refined join points can be used for
matching any other refinements of previously more coarse-grained decomposition. We also
believe that different decomposition approaches (e.g., per objects, features, roles, functions,
etc.) may require different operators and actions and different types and granularities of join
points. Our approach is not restricted to any decomposition or composition and allows all
types of relationships to be reflected through corresponding composition operators and
joinpoints. Thus, it is a multi-dimensional approach.

3. Demonstration of the Composition-Centric Approach

The case study used for the demonstration is an extension to an existing online shopping
system. In this system the customers would have already been registered with the company
and have credit accounts to buy on-line. The new extension is to provide bidding
functionality. The registered customers will be able to place bids for items on sale. Only
registered customers can participate in bidding and a bid should be accepted only if the
customer has sufficient credit on his/her account.

The main concerns of this extension are biding functionality and the security of bidding.
These two concerns can be represented in XML notation similar to [7, 9] via requirements, as
demonstrated in Figure 4 below.

Fig. 4. Representation of Security and Bidding concerns.

<Concern name ="Security”>
<Requirement id ="1"> Authenticate customer </Requirement>
<Requirement id ="2"> Authorize for bidding only authenticated customers </Requirement>
<Requirement id ="3"> Ensure sufficient credit in account </Requirement>

</Concern>

<Concern name ="Bidding">
<Requirement id ="1" > Place bid</Requirement>
</Concern>

FRCSS'06: Future Research Challenges for Software and Services

40

COMMUNICATIONS OF EASST

The composition of the concerns presented in Figure 4 with action observe and operator
between (similar to those in [9]) is presented in Figure 5 below. At this stage only the high-
level requirements have been defined: the details of operations and data related to each
requirement are not yet available. Consequently, the joinpoints available for composition are
simply those of requirement statements within the concerns. This allows us to define only
high-level pointcuts with reference to requirement statement joinpoints.

In Figure 5(a) we have defined a pointcut which contains two joinpoint sets. The joinpoint
sets are the sets of points at which we expect the security and bidding concerns to interact.
This additional element level is used to allow for grouping of affected concerns, which is
particularly useful when requirements from more than one concern are affected by a group of
requirements of some other concerns.

The rather high-level composition, demonstrated in Figure 5(b), states that some temporal
interrelationship (defined by operator between) shall be observed between the JinpointSet 1
and JoinpointSet2 of sets of points in pointcut SecureBid. However, it is yet unclear what
kind of temporal relationship it is, e.g., should the authentication requirement be activated
first, followed by bidding, authorisation and credit check, or should some other order be
selected?

Fig. 5. Composed concerns

<Pointcut name="SecureBid">
<JoinpointSet id="1">
<Concern name ="Security”>
<Requirement id ="1 2 3"/>
</Concern>
</JoinpointSet >
< JoinpointSet id="2>
<Concern name ="Bidding">
<Requirement id ="1"/>
</Concern>
</JoinpointSet >
</Pointcut> (a) (b)

<Composition>
<Action ="observe”/>
<Operator ="between”/>
<Pointcut name="SecureBid"/>
<Composition>

Upon carrying out additional analysis, using, for instance use cases, interaction diagrams, or
any other requirements engineering methods, more detailed requirements will be acquired. In
parallel with adding detail to the requirements (demonstrated in bold in Figure 6(a)), more
detailed decisions can be made about requirement composition. Thus, if in our example we
have used sequence diagrams, such details as operations and attributes associated to each
requirement will be available, as well as the order of authentication, authorisation, credit
check, and bidding will be defined. These details will in turn expose finer-grained joinpoints
at which requirements can be composed, thus allowing more specific pointcuts, as shown in
Figure 6(b).

The composition specification too becomes more precise as more requirement detail is
exposed. In our example in Figure 6(c), we demonstrate how the composition initially
specified through the operator between and action observe has been refined into the more
specific before operator with more restrictive enforce action. This decision has been made

FRCSS'06: Future Research Challenges for Software and Services

41

COMMUNICATIONS OF EASST

once the order of requirement activation has been established. Figure 6(c) contains references
to two parts of the SecureBid pointcut. These are provided to match the semantics of the
before operator: the first set of requirement joinpoints shall be activated before the second set.

Fig. 6. More detailed concerns and composition

<Concern name ="Security”> <Pointcut name="SecureBid">
<Requirement id ="1”> Authenticate customer if registered <JoinpointSet id="1">
<attribute id ="1”> login</attribute> <Concern name ="Security”>
<attribute id ="2”> password</attribute> <Requirement id ="1">
<operation id =”1”> checkLogin</operation> <operation id =1 27/>
<operation id =”2”> checkPassword</operation> </Requirement>
</Requirement> <Requirement id ="2">
<Requirement id ="2"> Authorize for bidding only correctly <operation id =1 2”/>
authenticated customers </Requirement>
<operation id ="1"> authorise</operation> <Requirement id ="3">
</Requirement> <operation id ="1"/>
<Requirement id ="3"> Ensure sufficient credit in account </Requirement>
<attribute id =”1”"> bidAmount</attribute> </Concern>
<operation id ="1”> checkPassword</operation> </JoinpointSet >
</Requirement> <JoinpointSet id="2">
</Concern> <Concern name ="Bidding”>

<Requirement id ="1">
<operation id ="1”/>

<Concern name ="Bidding”> </Requirement>
<Requirement id ="1"> Place bid </Concern>
<attribute id =”1”> bidAmound</attribute> </JoinpointSet > (b)
<operation id =”1”> placeBid</operation> </Pointcut>
</Requirement>
</Concern> <Composition>

<Action ="enforce”/>

<Operator ="before”/>

(a) <Pointcut name="SecureBid”
joinpointSetld="1"/>

<Pointcut name="SecureBid”

wyn,

<Composition> (c)

In this section we have demonstrated that requirements specification, pointcuts, and
compositions can be defined in generic terms, independent of any particular requirements
engineering approach, decomposition, or implementation language. We have also shown that
as the requirements specification is refined towards design and implementation, pointcut and
composition definitions, along with composition operators, can also undergo such a
refinement.

4. Related Work

The work in [9] also addresses representation of concern relationships through composition.
However, the composition rules in [9] are defined once per concern at the top concern level
and are not refineable like our composition operators. Our work is also distinguished by the
introduction of explicit notions of refinable requirement-level joinpoints and pointcuts and the
gradual refinable composition of concerns and requirements.

Both [9] and our work use the idea of multidimensional separation of concerns put forward in
[10, 11] in that the decomposition is not restricted to any single dimension. However, [10, 11]

FRCSS'06: Future Research Challenges for Software and Services

42

COMMUNICATIONS OF EASST

do not deal with concern relationships at all; and unlike [9], our work provides improved
support for traceability and mapping of concerns to later stages of the software development
lifecycle.

Some similarity to our work in modelling concerns along with their relationships can also be
found with the approaches proposed in [1, 3] and [12]. In this work Sutton et. al. argue for the
need to model concerns as first class entities. They put forward a schema for concern
classification where a section for relationships is also included. These relationships, however,
are classified only into broad categories, such as Membership, Generalisation, etc. While we
certainly value such classifications and use them for defining some classes of composition
operators, the relationships in our work need not be simply categorical. We can also use more
concrete, domain specific relationships, taking account of their relativity and flexibility in
each specific case. We also use relationships as the basis for composition at different levels of
granularity, while Sutton et. al. simply classify them.

The issue of relationships between concerns has also been discussed in more established
requirements engineering approaches, such as the NFR Framework [13]. Here relationships
are considered from the perspective of how some concern (a softgoal) contributes to another
concern. The contributions are limited to such levels as strong positive, weak positive, strong
negative, weak negative, etc. We reflect such relationships within composition operators as
well as allowing for selective application of the operators to parts of concerns at different
granularity.

Some work on requirement management also considers the dependencies between
requirements and they affects on traceability [5], release planning [14], as well as change
management [15], or importance of dependency types for particular development situations
[16]; however none of these consider either composition of requirements, or relationship
refinement.

Our work also expands some ideas from [7, 17]. In particular we use the idea of composition
operators and their XML-based representation, as well as XML-based representation of
requirements. However, in this work we depart from viewpoint-oriented requirement
decomposition and embrace multidimensionality of requirements specification. Moreover, we
expand the semantics of composition operators to act as encompassing units for concern
relationship representations. We also add the notions of relationship traceability, composition
refinement, as well as operator and concern granularity and joinpoint and pointcut granularity.

5. Conclusions and Future Work

In this paper we have presented the Composition-Centric Approach to Requirements
Engineering. The approach supports requirement composition all the way through form the
very initial high-level requirements identification stage up to detailed requirement
specifications. Amongst the benefits of such composition support are:

FRCSS'06: Future Research Challenges for Software and Services

43

COMMUNICATIONS OF EASST

e holistic view on the system requirements all through requirements engineering
process;

e assistance with very early conflict and inconsistency detection, thus preventing
potential costs of late corrections;

e exposure of relationships between requirements, thus assisting in requirements
traceability, requirements reuse and software release planning;

e discovery of expected relationships between artefacts of later development stages
early on, thus providing basis for such activities as software change management, test
planning, etc.

Besides composition-centric focus, other key contributions of this approach are the notion of
composition refinement and explicit representation of concern relationships. The relationships
are explicitly represented though semi-formal operators, complemented with composition
actions. The relationships, modelled as composition actins and operators, can be defined and
adopted by the users for each specific development project. Yet, both relationships and
composition specification are dynamic, as they can be evolved and refined as more detail
about the requirements and relationships is revealed throughout the requirements engineering
process. This flexibility of composition is based on the refinable joinpoint model and
refinable composition semantics.

CoCA approach also provides a strong support for traceability, as it preserves concern
identities linked to their representations, and modularity of concern relationships all
throughout requirements engineering (and further on, if this approach is followed at later
stages of development lifecycle).

As part of our future work we intend to further investigate the concern relationships and their
corresponding composition operators that represent the relationships at different levels of
granularity. We are also working on more precise pointcut definition and investigating the
types of decomposition and their related joinpoint refinements. A larger case study
demonstrating our approach is also under development. Yet another avenue of our research is
looking at ways of identifying relationships between concerns and their requirement level
representations. In this respect we are looking at linguistic engineering methods [18]
developed in the REVERE project [19] as well as traditional requirements engineering
approaches.

References

[1] S. M. Sutton and I. Rouvellou, "Concern Modeling for Aspect-Oriented Software
Development," in Aspect-Oriented Software Development, R. E. Filman, T. Elrad, S.
Clarke, and M. Aksit, Eds.: Addison-Wesley, 2004, pp. 479-505.

FRCSS'06: Future Research Challenges for Software and Services

44

COMMUNICATIONS OF EASST

(2]

(3]

(4]

[5]
[6]
[7]

[8]

[9]

[10]

[11]
[12]

[13]

[14]

[15]

[16]

W. Harrison and H. Ossher, "Subject-Oriented Programming - A Critique of Pure
Objects," presented at Proc. 1993 Conf. Object-Oriented Programming Systems,
Languages, and Applications (OOPSLA 93), 1993.

S. Sutton and I. Rouvellou, "Modeling of Software Concerns in Cosmos," in Proc. Ist
Int" Conf. on Aspect-Oriented Software Development (AOSD-2002), G. Kiczales, Ed.,
2002, pp. 127-133.

O. Gotel and A. Finkelstein, "An Analysis of the Requirements Traceability Problem,"
presented at International Conference on Requirements Engineering, Colorado Springs,
Colorado, USA, 1994.

B. Ramesh and M. Jarke, "Towards Reference Models for Requirements Traceability,"
IEEE Transactions on Software Engineering, vol. 37, 2001.

E. W. Dijkstra, Selected Writings on Computing: A Personal Perspective: Springer-
Verlag.

A. Rashid, A. Moreira, and J. Araujo, "Modularisation and Composition of Aspectual
Requirements," presented at 2nd International Conference on Aspect Oriented Software
Development (AOSD), Boston, USA, 2003.

S. Katz and A. Rashid, "From Aspectual Requirements to Proof Obligations for Aspect-
Oriented Systems," presented at International Conference on Requirements Engineering
(RE), Kyoto, Japan, 2004.

A. Moreira, J. Araujo, and A. Rashid, "A Concern-Oriented Requirements Engineering
Model," presented at Conference on Advanced Information Systems Engineering
(CAiSE'05), Porto, Portugal, 2005.

P. L. Tarr, H. Ossher, W. H. Harrison, and S. M. Sutton, "N Degrees of Separation:
Multi-Dimensional Separation of Concerns," presented at Proc. 21st International
Conference on Software Engineering (ICSE 1999), 1999.

P. L. Tarr and H. Ossher, Hyper/J user and Installation Manual: IBM Research, 2000.
W. Harrison, H. Ossher, S. Sutton, and P. Tarr, "Concern Modeling in the Concern
Manipulation Environment," IBM Research Division Thomas J. Watson Research
Center, Yorktown Heights, NY, USA RC23344 (W0409-136), 2004.

L. Chung, B. A. Nixon, E. Yu, and J. Mylopoulos, Non-Functional Requirements in
Software Engineering: Kluwer Academic Publishers, 2000.

J. Karlsson, S. Olsson, and K. Ryan, "Improved Practical Support for Large-scale
Requirements Prioritisation," Requirements Engineering Journal, vol. 2, pp. 51-60,
1997.

G. Kotonya and I. Sommerville, Requirements Engineering - Processes and
Techniques: John Wiley & Sons, 1998.

A. Dahlstedt and A. Persson, "Requirements Interdependencies - Moulding the State of
Research into a Research Agenda," presented at The Ninth International Workshop on

FRCSS'06: Future Research Challenges for Software and Services

45

COMMUNICATIONS OF EASST

[17]

[18]

[19]

[20]

[21]

Requirements Engineering: Foundation for Software Quality (REFSQ 2003), held in
conjunction with CAiSE 2003, Velden, Austria, 2003.

A. Rashid, P. Sawyer, A. Moreira, and J. Araujo, "Early Aspects: a Model for Aspect-
Oriented Requirements Engineering," presented at International Conference on
Requirements Engineering (RE), Essen, Germany, 2002.

A. Sampaio, N. Loughran, A. Rashid, and P. Rayson, "Mining Aspects in
Requirements," presented at Early Aspects 2005: Aspect-Oriented Requirements
Engineering and Architecture Design Workshop (held with AOSD 2005), Chicago,
Illinois, USA, 2005.

P. Sawyer, P. Rayson, and R. Garside, "REVERE: Support for Requirements Synthesis
from Documents," Information Systems Frontiers, vol. 4, pp. 343-353, 2002.

R. Chitchyan and A. Rashid, "Tracing Requirements Interdependency Semantics," to be
presented at Workshop on Early Aspects (to be held with ASOD 06), Bonn, Germany,
March 2006.

R. Chitchyan, A. Sampaio, A. Rashid, P. Sawyer, S. Khan, “Initial Version of Aspect-
Oriented Requirements Engineering Model”, Lancaster University, AOSD-Europe
project report (D36) No: AOSD-Europe-ULANC-17, February 2006.

FRCSS'06: Future Research Challenges for Software and Services

46

COMMUNICATIONS OF EASST

Business Modelling Environment
BMETool

Miguel Montesdeoca* Jose Juan Hernandez**
Ana Placido**, Mario Hernandez **
*MMCICOM Telecomunicaciones
** [USIANI, University of Las Palmas de Gran Cani

Abstract. BMETool will provide a dynamic, interactive and interoperable
modelling environment to the enterprises, through platforms where they can share the
maintenance and operational costs.

Keywords: Modelling, business, architecture, metadata

1. Introduction

1.1 Objectives

The main objective of BMETool project from a scientific point awiis to respond to the

scientific-technical problem of how to achieve an adequate caibin of business
modelling at abstract organisation level and a middleware ini@graupport based on
services and service ontology. Initially, the aim is to integii@e service meta-models within
the business meta-model.

0]

0]

From a more specific perspective, this main objective leads us to otheredbdisiw:

Empirical Testing. To provide case studies of business modellingy wsvailable
standards, and their subsequent evolution.

To investigate dynamic business process analysis and modetlingHe point of view of
Digital Business Ecosystems.

To design user interface design patterns for eBusiness fropethpective of optimising
usability and processes in a comprehensive, rather than individualised manner.

To study and validate the most suitable service modelling appragti: generic
solutions at one extreme and more specific approach based on business type at the other.
To validate the hypothesis that modelling in a business fielddigital ecosystems may
lead to a working solution for the business model approach to new tedeablogdiums
and their medium and long term feasibility.

FRCSS'06: Future Research Challenges for Software and Services

47

COMMUNICATIONS OF EASST

o Identify and study the critical success factors to anabyssness needs, and to ensure
strategic alignment of Business Models with Operational aestiricdogical configuration
model

1.2 Inter-operability

The BMETool consortium will consider the kinds of inter-operabiiggently defined by the
EIF (European Inter-operability Framewotkprganisational, semantic and technical inter-
operability.

Organisational inter-operability deals with defining the businesgctives, modelling
business processes and the exchange of information between dingperaities. It
identifies and satisfies the requisites of the user community thie availability of user
oriented accessible services.

Semantic inter-operability ensures that the meaning of the iatmm exchanged is
comprehensible for other applications. This semantics defined on XMdbutazies should
be based on an in depth review of trends and the recent standardisation results.
Technical inter-operability covers the essential aspects ableeo combine and link services
and information systems. The EIF distinguishes four levels of sagdtieti. The first two
concern front office inter-operability (interfaces, presentatimh exchange of data, etc.) and
the other two, the back office (data integration, middleware, inter-connectiocese etc.).

1.3 Business Modelling

Business models and methodologies are being effectively adoptedodomatibn systems
engineer to describe important aspects of many organizalibesexpressive power of these
models is desirable not only to describe but also to design and dMekeApplications and
Web Services for these organizations. On the other hands, models thutiotagies for
implementing Web solutions are primarily focused on softwagneering and technical
aspects. This may fail in capturing important business aspects of thes¢oviie delivered.
Also, the issue of interoperability between different businesselsecoming critical. In
developing and modelling enterprise applications, it is necessanyjegrate applications on
both, operational and technological levels.

Recently, the Object Management Group introduced the Model-Driven éctimé (MDA)
initiative as an approach to system-specification and interopéyabidsed on the use of
formal models. In MDA, platform-independent models (PIMs) are Ihitiexpressed in a
platform-independent modelling language, such as UML. The platfornpéndent model is

L ICT Industry Recommendations - BRUSSELS, 18 FEBRUARY 2004)

FRCSS'06: Future Research Challenges for Software and Services

48

COMMUNICATIONS OF EASST

subsequently translated to a platform-specific model (PSM) lppimg the PIM to some
implementation language or platform (e.g., Java) using formal rules.

At the core of the MDA concept are a number of important OM#BAdztrds: The Unified
Modelling Language (UML), Meta Object Facility (MOF), XML &¥hdata Interchange
(XMI), and the Common Warehouse Metamodel (CWM). These standarae dié core
infrastructure of the MDA, and have greatly contributed to the custate-of-the-art of
systems modelling. Other business modelling languages suétiRi&s [17], IDEFO [18],
IDEF3, as well as languages based on CATALYST [CSC] notation hasemiee very
popular.

ARIS (Architecture of Integrated Information Systems) isurdaque and internationally
renowned method for optimising business processes and implementingiiq@plgystems.
The ARIS-approach provides a generic and well documented methodbfogieawork. The
ARIS-architecture distinguishes between organization, functiomrnration and control
view. In Scheer (1994) is argued that a formal language imposteEtrens on the day-to-
day usability by potential end users. Business processes amgbel@siosy process chain
diagrams. ARIS focuses on the analysis and requirements idefipltase during the design
of managerial information systems, not on the execution of businessspes. The modeling
is done using a toolset instead of a language. The informafubured by the ARIS toolset is
stored into a database following the ERM (entity-relationship-model).

IDS Scheer recently announced a new of its ARIS EasySCQfosothat is based on the
Supply-Chain Council's (SCC) Supply-Chain Operations Reference m8G€R model).
The SCOR model captures the council’s consensus view of supply caaagement. While
much of the underlying content of the model has been used by prattiom many years,
the SCOR-model provides a unique framework that links business prooestass, best
practices and technology features into a unified structure to suppurhunication among
supply chain partners and improves the effectiveness of supply chaagement and related
supply chain improvement activities.

The project team will also review other relevant approaches dmelvaments. For instance,
the works of the University of St. Gallen, mainly those reladbeBusiness Model Design and
Architectures for Business Networking.

1.4 Digital Business Ecosystems

Digital business ecosystems for SMEs is a research area that aowidingran environment
and suitable operative models enabling small-and medium-sized organisatioiptraie,
through the idea of dynamic virtual organisations.

DBEs are the logical continuation of eBusiness, incorporating aletely new concept. The
aim is to offer the additional functionality of an ‘Evolution Enwinoent’, in which
phenomena such as self-organisation and self-optimisation, which caemeén the natural

FRCSS'06: Future Research Challenges for Software and Services

49

COMMUNICATIONS OF EASST

world, are abstracted and transferred to a platform where thegvailable as services, with
the aim of modelling the dynamic behaviour of organisations usingg theetaphors as

frameworks of reference. This unique capacity will enablestiosystem to suggest ongoing
improvements to services and transactions as part of that same ecosystem.

In dynamic virtual organisations, it is required that all pgréiting parties have a common
understanding of the offering to be supplied. To achieve the understamdih@iy ontology
that conceptualises and visualizes the ebusiness context is deqOm&logies provide
concepts, relations between these, and rules which are supposedterfeted the same
way by stakeholders, to conceptualise a specific domain.

The aim of eBusiness ontology is to create a shared, formal xphdteconceptualisation of
an eBusiness model:

» Conceptualisation refers immediately to business model. A conceptiaii is a model
of reality, the business logic.

» Shared refers to idea that stakeholders should interpret a busiodskin the same way
(ontological commitment); this is specifically important forbuwsiness since many
stakeholders from multiple enterprises are involved.

* Formal refers to a machine-understandable e-business model, sudoftheare can
support and analyze a business model. An eBusiness model should bi& éxalics not
only in the minds of people, but written down.

As well, to achieve interoperability, the acquisition of web sergiemantic is required. This
is a time consuming and complex task whose automation is desaaldenalled by many
researchers in this field. This problem can be addressed by buigiaegfic service

ontologies (e.g. TicketBooking). Different general purpose ontologash as BMO, e3

value, Resource-Event-Agent (REA) Ontology (Geerts and McZa@99) or the Service
Ontology (Akkermans, Baida et al. 2004), could also solve the interoperability goal.

1.5 Usability and eBusiness

Usability is becoming the object of increased interest witiénsoftware development world,
as a key quality factor. Larman [1] sustains that there is prplabbther technique with a
greater disparity between its importance for the successfisiare development and its lack
of attention and formal education than usability engineering and tigndef user interfaces.
Organisations are beginning to include usability requisites im Hufiware specifications,
since they are now aware of how a software product’s usalelisl can influence their
employees’ productivity.

FRCSS'06: Future Research Challenges for Software and Services

50

COMMUNICATIONS OF EASST

Most of the available models for usability design seem to be tsowand focus too much
on a general landscape of interaction problems, without appropriattlyufficiently relating
it to the business context.

Software usability can benefit from knowledge of the user andttdsks. The user interface
should be regarded as a crucial part of doing business and its dlesigd therefore be based
on business modelling and, at the same time, business processesb&hdelksigned with
usability in mind.

When designing the user interface it is common to consider diffarsability factors.
Effective use of contextual data about the users and their saskadial for the design of
usable and useful systems. Also, the knowledge about what works anis whatmportant,
especially in projects where the time is limited but a high quality inter$astél desired.

1.6 Model Driven Architectures

The proper quality management which all organisations now needvedodeor sustain

competitiveness and further their business activities is theimpsttant challenge currently
facing those responsible for implementing information technology irpaares. Traditional

business management models have become obsolete and are now beieg tBplarocess-
based rather than product-based management systems. Conseqtentychitectural

approaches selected should support rather than hinder business processes.

Model-driven architectures (MDA) represent a new paradigm imwacdtdevelopment, where
the models guide all the development process. This is named Model &mggner Model
Driven Engineering. MDA is a Registered Trade Mark of the Object Manageaneup.

Currently, software construction is undergoing constant changegasds implementation
technologies, which in turn means that concerted efforts have todeimhoth the design of
the application, in order to integrate the different technologe®Ilved, and in its
maintenance, in order to adapt it to changes in requisites and implementdtraidgies.

MDA separate the business or application logic from the underplatéprm technology and
represent this logic with precise semantic models. MDA reiefthe use of an enterprise
architecture strategy and to enhance the efficiency of sa@tdearelopment. MDA provides a
solution to business and technological changes, by allowing the cdimstro€ platform
independent applications, which can be implemented in CORBA, J2EE gy Wéeb
Services.

In order to gain these benefits, MDA uses the following developnresesgs: the requisites
are used to obtain a platform-independent model (PIM); this motietmstransformed, with
the help of tools, into one or more platform-specific models (P&n;finally, each PSM is
transformed into a code. Therefore, MDA incorporates the ideamdgformations between
models (PIM to PSM, PSM to code), which is why it needs toolsittmnaate this task. These
transformation tools are, in fact, one of the basic elements of MDA.

FRCSS'06: Future Research Challenges for Software and Services

51

COMMUNICATIONS OF EASST

1.7 Enterprise Service Bus

The integration of applications is increasingly becoming aegfi@tfactor which must be
taken into consideration by companies. The integration of applicationsigdleware opens
up new possibilities for SMEs, given that someone has to supply theohalittes that
provide a high level of integration. This whole issue is gaining spaidthe adoption of
Web services that enable users to construct new applicatioresnektr quickly, thereby
taking advantage of existing products.

In the architecture that is going to be developed in this wadkamge, we will deal with
problems relating to the integration of business processes liokibe distributed control of
business processes.

The system to be developed will integrate the concept of an &@3Bnterprise Service Bus.

An ESB is a type of middleware designed to respond to the integra@eds of companies

based on Service Oriented Architectures (SOA). In an ESBomtlected systems are either
providers or consumers of services, even with legacy systemdahadt provide services.

Therefore, service oriented architectures (SOAs) can beplwithout demanding that

participating systems offer a service-based interface.

2. Approaches

2.1 User Driven Approach

BMEtool will be designed around the effectiveness of the aatish of the user necessities,
so the project is strongly user driven designed and includes tasiksstwe it from the
beginning, through the logical building process in the definition genesis.

Starting from the user needs on secure, transparent, powerful apte sawectess, the
functional and technical analysis will define a first step esysimetaphor by refining the
conceptual model presented in this document.

The project includes activities to carry out a global check ogratien and on transparency
requirements which will make possible a progressive definitiomémient) of the modeling
environment and the associated tools..

The logic is always user driven because the main target éaliae a wide accessible secure
infrastructure where complexity is totally hidden for useralyna block that deals with a
global overview on consistency and reliability has to be inserted.

This logical track end with a feedback on user requirements edaeigprocess can put in
evidence new possibilities, so that the user driven logical gsocan be refined and go to
further steps and help to define the final scenario.

FRCSS'06: Future Research Challenges for Software and Services

52

COMMUNICATIONS OF EASST

2.2 Modelling Approach

o g ™

) S Responsible

2]~]=]=]

Clients

A Business Unit in BMEtool
The modelling approach is based on Business units. They are atomicsbusiméies
promoted by an organisation (legal or virtual) and focussed on providingients with
services. Any business unit is managed by a head whose taskaage resources properly
[R] to provide clients with services [S].

=

. EI Business Units working together in BMEtool
- s ‘R
a %' % Modelling will be done at three levels:
5] V] E(e 7] Organisational Operational and
Y =] [5] — Technological.

As well, BMEtool will provide functions
that will enable to couple business units
creating new compound business units,
making their composition and their
internal assignations transparent to the outside.

BMEtool will include federation mechanisms for encapsulating the rekabetween business
units that will allow transparent communication without the need of translation metisa

oo@n
[=]=]=]=]

A

3. Architectural Process

The initial concept of the architecture is inspired in two techncdbg@pproaches: Model
Driven Architecture and Enterprise Service Bus where the miogledpproach is based in
three abstraction levels: organisational, operational and techndlddis@ever, requirements
for specific MDA and ESB capabilities will need to be analyisedetail in order to identify
suitable solutions patterns and implementation technologies. Solutiogrngafor ESB

FRCSS'06: Future Research Challenges for Software and Services

53

COMMUNICATIONS OF EASST

implementation such as Basic Adaptors, Service Gateway, Weltesenompliant Broker,
EAI Infrastructure for SOA, Service Choreographer, will be analysed [1].

The principal components that make up the architecture are, on the one hand, applications for
editing and exploiting models, BM-editor and BM-boost, respectively; and on the atner, t
business models whose syntax and semantics are supported by modelling languages and me
models. (Figure below) Users of the model editor (BM-editor) will be méausness model
engineers. This tool will help engineers translate the model on the basisefuistes

analysed in the business units. BM-boost, the exploitation tool, is mainly designedistedbe

by the technical and management staff of the business units, and aims to servenéss busi

unit as a tool for ensuring the efficient execution of their everyday processes

BMEtool MDA Framework Business Unit
Model, Meta-model, Meta-meta-model W

Business
BM-editor — Model — BM-boost

Busiress Madel Engincer

Mansger
1 Starr
Sam

Business Mocel Ergieer Techological, operational
organizational models
(XML, WSDL)

Architecture vision: BMEtool MDA Framework

Given that the architecture is oriented towards services, Bidredlill incorporate a service
model management component (Service Composer). These models ddbdrébed using
the appropriate standards and will be stored in a catalogue intoreieable their storage and
subsequent consultation and discovery during the preparation of business models

Business
BM-editor — Model —> BM-boost

Senice metadatos Senice Service

Campaoser ‘ Customer Provider

Service
Ontologies| Made!
n Catalogue
|

metadatos

|
|
! l Service Directon
_ | Senice Senice Offars and dermands
Translator Market of senvices

= Esh = \
services provided by services provided by services provided by
ather platform aother platfarm sharing EMEtanl platfarm

the ontologies

Architecture vision: BMEtool ESB
Learning form the achievements of the DBE project (Digitalifaegs Ecosystems), the
Service Composer will provide &ervice Recommendation Functionthat will act as
autonomous processes that manage organisation (Companies, SMisefgeces, (either

FRCSS'06: Future Research Challenges for Software and Services

54

COMMUNICATIONS OF EASST

business preferences or service preferences) and matches pineferences with available
business descriptions and service descriptions.

Before starting the design and implementation of the Recomni@mdaiechanisms, the
project team will study the existing business and service omgldigat capture the semantics
of business models and service descriptions. These ontologies willeetaiglefine the
corresponding preferences for businesses and services. Thesenpesfene attached to the
business model of each organisation and will be used to geread@®mfiguration Model. In
the Service Model Catalogue, the ontologies will be described IKML based language
(XMI) or OWL. A decision on this issue will be taken as soon as possible.

The Service Model Cataloguestores service descriptions in a widely accepted standard like
Web Service Definition Language (WSDL). Business models shostdbe comprehensive
enough to contain semantics for importing web services definitions W&DL documents
and exporting business process flows to an appropriate output standddddikess Process
Execution Language for Web Services (BPEL). Internally, thé/ BRodelling process
follows four phases: Service requirements; Service Import; WorkfGnmposition; and
Workflow Export. Thus, internal components are required to discovemekssrvices and to
publish services to other business units. BM-boost would have two dedamianponents for
managing services: Service Customer, whose function would be to, ldsat@ver, negotiate
and exploit the services provided by other business units; and SeraceldP, whose
mission it would be to provide services to other business units and pabtdssell them on
the service market.

The external available services (mainly those described ideaatit way) will be “captured”
and described by the “external services tool”. A specific compadentifies an external
service and its characteristics. These tools can present ffeedi modes: The simple one,
where it just browses for Services and the advanced one where dgwa@uiidance for query
formulation when a user looks for particular characteristics.

From the perspective of service access, we need to assesmsdiudit will enable the system
to remain heterogeneous and approach that of a Digital Businesyskan, in which
resources (software, servers, databases, etc.) are combined walriabo pre-defined
hierarchy.

We will therefore have catalogues of models distributed amofegeatit servers or platforms.
Some models will be stored in system databases made up ity f@althe merging of
different individual repositories. Other models will be storechangervices themselves (for
example SDE or Service Data Elements in the OGSI servackeln or even through HTML
tags embedded into websites.

Since some models will be located in external repositories, irr ¢odensure their proper
management, we will need to resolve heterogeneity in a distlibetevironment.
Furthermore, we will need tools that enable the creation of repesitat a certain level
through the injection of one or more metadata distributed at a lower level.

FRCSS'06: Future Research Challenges for Software and Services

55

COMMUNICATIONS OF EASST

BMEtool will integrate the concept of an ESB, or Enterprise $erBus. The purpose of an
ESB is to provide a transparent medium for exploiting serviceshich the service customer
is abstracted from the technology and specific implementatidnwhich it was developed.
For example, a merger mechanism may exist to encapsulatelétiens between business
units that enable a transparent relationship without needing to wously identify the
service customer.

The ESB could contain a mapping component, Service Translator, whichemiused to
ensure the transformation from different Ontology languageshé¢o standard Ontology
descriptions used in the BMEtool.

4. Interoperability Mechanisms: Models and Ontologes

The BMEtool approach is based on metamodelling concepts as well but with different
abstraction levels. Three modelling levels have been identified:

1. Organisational. From a strategic point of view, business modudstrthe need of
targeting the market, defining the business goals, monitoring ioade and assigning
resources.

2. Operational. From a tactic point of view, business models expmgscompanies
provide their clients with services and how they manage their respuscocesses,
customer relations, etc.

3. Technological. From a technological point view, an IT infrastrectarneeded to
provide support for business everyday tasks.

4.1 Modelling at organisation level

“Re-engineering business” is a response to the problems caonseztbmpanies by
competitiveness in today's changing world. Internet introduces aasuiastchange in the
way business is done. It is not enough to introduce technology; SMEs$chmake an effort
to restructure their business.

The reconstruction of processes requires companies to break away
from the old processes of the division and specialisation of tasks.
omecnveﬂ [Results The starting point is to focus companies on the “processes”, that is
the activities that lead to valuable results for the client.
ji Our approach to model at this level of abstraction is using the

Promoting organisation

Business definition — Mission and vision

concept of Business Unit. A businesses unit is an atomic business
entity promoted by an organisation (legal or virtual) and focussed
on providing its clients with services. Any business unit is managed
by a head whose task is to manage resources properly [R] to provide

a
a
i)
]

FRCSS'06: Future Research Challenges for Software and Services

56

COMMUNICATIONS OF EASST

clients with services [S].
At this level, it is required then definition of the strategydfusiness unit. Strategic planning
is a continuous process that considers the nature of the business,rtongpjectives are
defined (mission-vision), quantifiable objectives are identified ardesfies are developed to
attain these objectives, the head of the business unit is appointeditaide resources are
assigned to meet the objectives.
The typical tasks on the strategic level are:
1. Create a shared vision of the business, establishing how the cosmoarhy compete
(clients and markets, products and services)
2. Define the criteria that will govern the business purpose; and evaluagsitis
3. Evaluation of the results is necessary for monitoring and confioli@ah up of the
business.
4. Design the operation model that optimises the use of resoumdekeaquality of the
service (QoS) provided to clients.

— ‘ At this level, it is required then definition of
‘ the strategy of a business unit. Strategic

planning is a continuous process that
Business definition Results considers the nature of the business, long
I i term objectives are defined (mission-vision),
Viesion - guantifiable objectives are identified and
Vision T bkt strategies are developed to attain these

objectives, the head of the business unit is
appointed and suitable resources are assigned to meet the objectives.

Small firms are face by a changing culture in which thayst participate in clusters or
networks to guarantee their survival in the new knowledge economng. action of
establishing relations that shape these groups is known as netwdkiigess networking
creates a space where ideas are exchanged and initiagvesaed in order to carry out
collective actions. Organisations can be more flexible by dysaiyi assigning virtual
resources (based on the services provided by other organisations)pnirisuting to the
development of Digital Business Ecosystems.

FRCSS'06: Future Research Challenges for Software and Services

57

COMMUNICATIONS OF EASST

//

R

R
..... -
N IE‘ s

<«

Business Units working together in BMEtool

Organisations can be more flexible by dynamically assggnésources (based on the services
provided by other organisations), thus contributing to the development m&lCBgiSiness
Ecosystems. BMEtool will provide tools that will enable groupingsusiness units to define
themselves as new compound business units or virtual business units, nifaing
composition and their internal assignations transparent to the outside.

4.2 Modelling at operational level

Any business unit will have to develop an operation model to provide its clients witteservi
by managing its resources optimally. The manager is the maximum respaisibl

P coordinating resources to provide services to the customers.
e ﬁ%— s The idea behind this project considers that:
N § EUEH P * Client orders are planned and organised in the service
g, queue [C]
N v EUEH R * Processes and tasks are generated [P] for providing a
— Operation model E .. service.
-) » Tasks are assigned to resources automatically or manually

to implement processes.
» The head supervises the execution of the processes.

Objectives\ ‘ Results

T
A

Senvice Resource
reduest P P assignment
— C -
N A P P S
Senvice % Work done
provision
Operation model

FRCSS'06: Future Research Challenges for Software and Services

58

COMMUNICATIONS OF EASST

The main tasks on an operational level are as follows:

Monitor fulfilment of objectives

Analyse clients’ requests for services

Define the work flow

Assign tasks to resources (dispatching)

Evaluate that resources are operative and carrying out tasks properly.

Monitor the execution of tasks

Evaluate the quality of the service

. Provide measurements of the results

Communication is a horizontal set of functions in any company. ®bsolutely essential

for their operational functioning and contribute to building identity andtucail

Communication could be either internal to the business unit or exteitmabther business

units. The goal is that BMEtool gives support to those functions bysnefathe following

functions:

» Authentication. The availability of solid authentication functions provigdesrs with a
secure platform to develop collaboration, communication, trade, and business processes

» Transmission. The development of channels for good communication witlt dffe
perceptions that the workers and the environment have of the company.uGization
helps to create commitment and cohesion among workers.

» Coordination. Coordination is basic to generating joint work strategidsstrengthening
the development of common goals.

The operational model will be supported on these functions based in the following approach:

The head (responsible) deals with all the outstanding servicesteqlie provide the service,

he generates tasks that he assigns to resources of the busihe$se resources (real and

virtual) of a business unit have an associated tray where the tasks they haveetpldoeat.

ONOOAWNE

,,,,,,,,,,,,,,,,,,,,,,,,,,,, " | |Trayof tasks pEREeE R

g (Task] |

| Task | — |

o L [Task| | !
! ‘ Task P

—

Responsible f---ts-----mmmmmeee - \\\
Process | |Tray oftasks [***"" oz

Business unit task dispatcher

Each task has an associated dossier containing all the necessary docomiemtedirrying
out the task. The resources need to have access to all or part of this documentation

FRCSS'06: Future Research Challenges for Software and Services

59

COMMUNICATIONS OF EASST

Request

Dossier

Tray of tasks |......

=<

=[=]=]=]

—
Service

— 1 Task [provision \

. Work

Interoperating business units

4.3 Modelling at technological level

IT’s are an integral part of eBusiness, and so the design and constructionaifla rel
infrastructure is considered a key aspect of business management. Theréfore aife to
have success with eBusiness, they must create an optimized IT infrasttogespond to
business requirements.

In general, an eBusiness infrastructure comprises the following componedtgategr
operating systems, networks, security, application servers and managergéot,c
applications and services. The infrastructure must be complemented by pre@ettlre
personnel to put it into operation and maintain it in order to guarantee the necegsiargfi
service.

An infrastructure for eBusiness requires transparent integrationitsf edinstituent services
with the following criteria for quality:

Flexibility. The adoption of eBusiness is an evolutionary procesdb#gns with simple
implementations that become more complex as the business model becoraasingly
integrated with IT.

Scalability. To meet unforeseen variations in customer demand andvoddoad, an
eBusiness infrastructure must be scalable to adapt to variatioie iworkload while
maintaining a high level of availability.

Reliability. To guarantee the stability, continuous and secure aperatd availability of
the applications by minimising the degradation effects of all icgancies on the
functioning of the system.

Interoperability. To resolve relations of trust between business and problems of
communications between business units. There are three possible sototidhe
problems of communication: addressing communication problems individually,
discovering the services that other companies offer automatiaallly federation of
services around a common ontology.

FRCSS'06: Future Research Challenges for Software and Services

60

COMMUNICATIONS OF EASST

SME’s do not have the possibility of building such an infrastructureithally. Firstly, they
do not have the resources and, secondly, because investment in IT melsitdze to their
contribution to the organisation’s goals. SME’s must perform teesggly impossible task
of offering quality IT services while controlling investment.

The fundamental vision of project is to link consumers and providers inasuay that the
provision of services can be modelled on the provision of other utilgiesh as water,
electricity and telephone. For example, when consumers connect doapgsisnces to the
power supply, they do not have to worry about where the power statiomiedpor whether
they have standard sockets for the plugs. The user does not needraitglgenerator in the
house, and all aspects of where the current is generated and how it artireesogket remain
a mystery to the user, who simply makes use of the electricity service.

The intention is to solve the problems faced by organisationspardit the dynamic
configuration of the IT infrastructure in line with organisational needs. While the
organisation’s own resources physically exist within the orghoisavhich must, therefore,
be responsible for configuring, managing and updating them, an extesmlrce exists
virtually in the organisation by means of a service offered byhenatrganisation. Ideally, an
organisation could configure its entire IT infrastructure from redleresources provided by
many different organisations.

The management of eBusiness applications is complicated since reempmust
continuously update applications with new functionalities. Companies caffoat to spend
a year or more implementing the required management environmentjeorontrary,
management needs must be satisfied as soon as the applicatiors.appesagfore, it is
essential to be able to guarantee the immediate availability of eBsisipplications.

The orientation to services on the BMEtool guarantees that compaameslyoamically
change the eBusiness application by automatically migrating. dat services are key
services that can be provided by several business units.

Our approach integrates the management of the meta-data &sbwathtservices with meta-
data associated with models, as the services meet the tegjoisorganisations expressed in
the form of operational models built from meta-models that definéatigaiages for creating
the models. The operational models are requested in set up muwdelse the components
available for meeting the requisites presented in the operatimu#l| as closely as possible.
The evolution and improvement of the service platforms will evolveina With the
evaluation and improvement of the models requested to gradually appiheaoperational
models of the organisations.

To automatically identify inter-operable services and selecbest one for each user profile
with a minimum human intervention, high level services must usefbenation on resource
capacities and on their mechanisms for providing the service. 8gmiagst be characterised

FRCSS'06: Future Research Challenges for Software and Services

61

COMMUNICATIONS OF EASST

by means of information that should include a description of their itegsaand the policies
for using them.

L LIl

The interoperable approach will be based on federations. A federstamechanism for
encapsulating the relations between business units that allamspérent communication
without the need for translation. Federations not only solve probleneemimunications
between business units. Identities can also be federated and, thus manage oélatisins

Transparent interoperability mechanisms

4.3 Modelling language definition

One of the main tasks is to define the restrictions and chastice of the modelling
language and identify its elements: semantic and grammakia following aspects will be
taken into account:

1. The modelling language must serve to specify, visualise, buiadplocument the
elements of a business ecosystem.

2. One of the objectives is to understand, design, mange and contrblgheess
ecosystems’ information.

3. The language must capture the information regarding the staticture and the
dynamic behaviour of the organisation.

4. Modelling will be done at three levels: organisational, operatiowhltechnological.
Each organisation will be modelled as a discreet object colletttadrwill interact to
carry out a work for the benefit of the organisation.

5. The modelling language will unify the past experience on modelimg will
incorporate best practices as a standard approach.

6. The language architecture must accomplish with the OMGts @bject Facility
specification (Meta-metamodel, Metamodel, Model and User’s objects).

7. The modelling language will be focued to the System EngineandmBusiness
Engineer, who will use the language as a modelling tool to devBigness
modelling environments.

8. BMEtool will integrate code generators to allow the models dewtlogeng this
language will be executable in the selected business platforms.

5. Scoping and Integration in Existing Platforms

FRCSS'06: Future Research Challenges for Software and Services

62

COMMUNICATIONS OF EASST

BMEtool goes further than simple organisation modelling, since this organidatiodel
serves as the springboard for the automatic or assisted generation ohttwdogical model
required by the organisation. The integration of BMEtool in some of the existingheBsisi
platforms selected in the project is a basic requisite for testingatitaybetween different
business units. The eBusiness platforms themselves are, at heart, businésatyniside
technological infrastructure services. One of these platforms is Diashuseviirst version
was the result of a'5European R+D Framework Programme project. The platform itself will
be defined as a business unit, providing the “Internet Spaces” service, amongldtisers
Business Unit makes it possible to implement the most complex case, ab& mihde up of
the aggregation of the primary business units. Along with Dias.net, two other pktfatm
be integrated as business units. The final objective is to create a fedefdtimmess units.

Bibliography

[1] The OWL-S Services Coalition. OWL-S: Semantic Markup forWeb ServichgeW

Paper. www.daml.org/services/owl-s/1.0/owl-s.pdf, 2003.

[2] C. Wroe, C. Goble, M. Greenwood, P. Lord, S. Miles, J. Papay, T. Payne, and L. Moreau.
Automating Experiments Using Semantic Data on a Bioinformatics Gtk IBtelligent
Systems, 19(1):48-55, 2004.

[3] ECOOP 2000 Workshop on Metadata and Active Object-Models, June, 2000, Cannes,
France. Lecture Notes in Computer Science 1852, Springer-Verlag, btzglel
http://www.adaptiveobjectmodel.com/ECOOP2000/.

[4] Object Management Group, The Common Warehouse Metamodel (specificatioms, pape
presentations, OMG press kit, etc.). http://www.cwmforum.org/, http://www.onig.org

[5] D'Souza, D., "Model-Driven Architecture and Integration: Opportunities andeDigais",
Version 1.1.http://www.catalysis.org/publications/papers/2001-mda-reqs-desmond-6.pdf
[6] OMG Model-Driven Architecture Home Page:http://www.omg.org/mda/index.htm

[7] OMG Meta Object Facility Specification, Version 1.3, September, 1999.
http://www.dstc.edu.au/Research/Projects/MOF/rtf/. http://www.omg.org/

[8] Object Management Group, XML Metadata Interchange Specificatiosjovet.1,
http://www.omg.org/.

[1] Larman, C.: Applying UML and Patterns. Prentice-Hall (2002)

[2] International Organisation for Standardisation: ISO 9241 - Ergonomic Retgnis for
Office Work with Visual Display Terminals (1995)

[3] C. Alexander, S. Ishikawa and M. Silverstein. A Pattern Language, volume 2teir Gw
Environmental Structure Series. Oxford University Press, New York, NY, 1977.

FRCSS'06: Future Research Challenges for Software and Services

63

COMMUNICATIONS OF EASST

[4] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elemenisaifl®e
Object-Oriented Software. Addison-Wesley Professional Computing Seriesofediesley
Publishing Company, New York, NY, 1995.

[5] P. Coad, D. North, and M. Maryfield. Object Models: Strategies, Patterns, and
Application. Yourdon Press, New Jersey, NJ, 2nd edition, 1997.

[6] J. Vlissides. Pattern Hatching: Design Patterns Applied. SoftvaterRs Series.
Addison-Wesley, New York, 1998.

[7] D. C. Hay. Data Model Patterns: Conventions of Thought. Dorset House Publishing, New
York, 1996.

[8] R. Robinson.. Understand Enterprise Service Bus scenarios and solutions in-Service
Oriented Architecture. IBM. http://www.ibm.com/developerworks/ webserflibesy/ ws-
esbscen2.html.

[9] David A. Chappell Enterprise Service Bus. O'Reilly. 2004

[10] A. Kleppe, J. Warmer, and W. Bast, MDA Explained: The Model Driven Architecture
Practice and Promise. Addison Wesley, 2003.

[11] A. Brown. An Introduction to Model Driven Architecture. Part 1: MDA and today’s
systems. IBM. The Rational Edge. 2004.

[12] D. Frankel, Model Driven Architecture: Applying MDA to Enterprise ComputiNgey
Press, 2003.

[13] Richard Soley and OMG Staff Strategy Group, “Model Driven Architectivevember
2000.

[14] P. Harman, “MDA: An Idea Whose Time Has Come.” Cutter Consortium, 2003.

[15] B. Selic, “The Pragmatics of Model-Driven Development,” IEEE Softwaog, 20, #5,
September 2003.

[16] T. Gardner, C. Griffin, J. Koehler, and R. Hauser, “A review of OMG MOF 2.0
Query/View/Transformation Submissions and Recommendations Towards the Final
Standard”. IBM Whitepaper submitted to the OMG, September 17, 2003.

[17] D.K. Barry, Web Services and Service Oriented Architectures. Morgan Kaufman, 2003.
[18] P. Clements and L. Northrop, Software Product Lines: Practices arthBafddison
Wesley, 2001.

[19] CSC Catalyst Methodology, CSC Inc, 1995 Comparing two Business Modeb@iatol
for Designing e-Business Models and Value Constellations

[20] A. Thomas Manes, Web Services: A Manager’'s Guide. Addison Wesley, 2003.

[21] S. Mellor et al., MDA Distilled. Forthcoming from Addison Wesley, 2004.

[22] S. Mellor et al., Executable UML: A Foundation for MDA. Addison Wesley, 2003.
[23] J. Warmer and A. Kleppe, The Object Constraint Language: Getting Youldvieelady
for MDA, second edition. Addison Wesley, 2003.

[24] J. Daniels, “Modelling with a Sense of Purpose.” IEEE Software, pp8-10, b20B2.
[25] A.W. Scheer. Aris-Business Process Modeling, Springer Verlag. 1999

FRCSS'06: Future Research Challenges for Software and Services

64

COMMUNICATIONS OF EASST

[26] S.C. Hill. 1994 A Concise Guide to the IdefO Technique: A Practical Approach to
Business Process Reengineering, Enterprise Technology Concepts Inc.

FRCSS'06: Future Research Challenges for Software and Services

65

COMMUNICATIONS OF EASST

A European Open-Source
Project Information Server

Chris Chedgey, Micheal O Foghli, and Eamonn de Leastar
Telecommunications Systems and Software Group (TSSG),
Waterford Institute of Technology

Abstract. We propose an extensible Open-Source softwareqirmjeollect data
from the source cocand plethora of tools used in development envirerisand to
provide aggregatecfiltered, analyzed, trended information to devehlspgmd managers.

Keywords: software development, metrics, project management, open source

Overview

Each year, over €500B is spent globally to fund development teams that design, build,
enhance and maintain software code. Despite this huge investment, softwasprdenels
plagued by a lack of integrated, timely information for developers and maeagérhis
fundamental lack of visibility means that software development has remaiaddrgsly
inefficient and unpredictable activity, with significant implications fostcand efficiency.

Solving this problem is extremely challenging because to date there masdeeifying
Information Model for so doing. We propose the development of a “Software Mapping
Server” to automatically extract key data from the source code and plefttos used in
development environments. This project map is then used as a source of aggregated,
analysed, trended, filtered information for the creation of accurate ang tirablcontent,
reports and alerts.

We have prototyped and validated a framework for such an SMS and propose that an Open
Source project could use this to implement a European solution to this global problem.

The Information Deficit

On a typical software development project, a manager establishes schedulesesseproc
with the team members who use role-specific tools to evolve a code-baseHidmpvoduct
increments are ultimately released.

The manager attempts to track progress by soliciting and mergingaatéh various roles
(requirements, engineering, test, design ...).

FRCSS'06: Future Research Challenges for Software and Services

66

COMMUNICATIONS OF EASST

The other team members each have their own view of the code-base, specificawriheie
and set of tools.

Since the primary source of management data is team members, it is sandntargely
subjective and necessarily inaccurate.

As time goes by, well-meaning
engineers often try to provide good
: = A news by adjusting the project
b — . = S 1 g | activities without moving the
i = ' F | deadline. They probably had built in
“fat” to the initial schedule for this
very purpose.

Alternatively, engineers and team-
leads may be liberal in their
interpretation of task “completion”. After all, a software component isdardmplete when
it is implemented, unit tested, integrated, user tested ... And there is all kindgidElat the
meaning of “tested”.

Worst of all, when under pressure, programmers can use many shortcuts to finish a
component on-time, but at the cost of quality. This can deceive a manager that hisgrojec
on schedule, whereas in reality he is accumulating a deficit that wilheash more later —
during testing, integration, future iterations, maintenance, etc. This prattdespread,

has caused many projects to fail disastrously, necessitating huge delays it r@iedse, the
rewrite of significant proportions of the application and/or the release oy asappointing
product.

Two projects may be reported to be 80% complete, but there could be significaht actua
differences in completeness and risk. This would be exposed by standardized data on
essential indicators such as design compliance, code quality, test epwedatlity, the rate
of new code versus changing of existing code etc.

While the goals of developers and managers are well aligned, seemishef lgaed division
of responsibility, are mutually empowering, and provide the basis for good, sek-and
improving engineering, the lesson learned is that it takes more than goodng¢atmake a
project succeed. It takes actionable information — and this, compared to the sea of non-
actionable information, is generally unavailable.

ualit Time
Q . Y -

4
[T
+‘;.'I

Cost

Figure 1 - Software - the invisible product

A New Kind of Information

The required information does exist in the development environment. However it is buried in
the code, the CM system, the file system, design tools, bug-tracking toolsaargkaf other
activity-specific tools. There are tools, such as Maven, that collect rémontslifferent

FRCSS'06: Future Research Challenges for Software and Services

67

COMMUNICATIONS OF EASST

tools into a single location. This is valuable to the development team and Maven has
achieved a reasonable adoption rate.

However, the information of most value is often drawn from multiple sources andaiacka
over time.

For example:

* The real indicator of integration risk is as measured not by what is checked-in a
working on the mainline, but rather by how much is checked-out on developer
branches, to what degree the branches overlap, and what proportion of the interfaces
for the key abstractions in the system are changing.

» Knowing the number of violations of complexity thresholds is less interesting tha
whether the total number is increasing or decreasing, or which developers are
contributing most to the increase or decrease.

* | may know to which projects my principal engineers are assigned. | alsothabw
their time is heavily taxed helping to put out fires on other projects. Are they
spending their valuable time on areas that are important to the business, on projects
that are using new technologies, coaching less experienced developers?h@y a
constantly dragged onto tasks just because they are urgent, tasks that do noereally us
their experience?

* 100% test coverage is not practical, but 30% coverage that includes the most complex
and most changing parts of the code is better than 60% that only test the unchanged
code.

* What is the bug density, not just simplistically, but by subsystem, or by customer
category; are bugs in certain subsystems taking longer to fix, or impaubirgyfiles;
is the test suite efficient; is the resource split between serviciegtdefnd developing
new features acceptable; where is the mounting code needing refactoring?

This paper is not another proposal for a software development process, forward-
engineering/planning tool, or reverse-engineering tool. Instead citlges a revolutionary
metaphor for actionable information — the software map. The Software Mapping Serve
(SMS) delivers information from the map to managers and developers, at difésadatof
detail to support their unique needs.

The SMS supports agile development processes and traditional ones, and recogrizes the
no need for additional forward-planning, nor is there a need to reverse enginamighe
because the code, itself, has the answers.

We start with bottom-up information from various systems, abstract it to the appedpvel
of detail, correlate it to the truth — the code — and present it in either an abtipded, or
browsing medium.

FRCSS'06: Future Research Challenges for Software and Services

68

COMMUNICATIONS OF EASST

Actionable Project Information
The key attributes of information that make it actionable are listed below.

* Reality-based Information that is derived from aspirational artefacts such as project
plans, designs or test plans are of limited use unless correlated with hardmatizefr
development environment.

* Aggregated We need to integrate data from multiple domains, such as source, version
control, test, etc., in order to make the information truly actionable.

* Analyzed. A lot of time can be spent wading though vast amounts of data from
diverse sources in order to discover the answer to specific questions. The data needs
to be analyzed, prioritized and filtered so that the actionable information itrcorgai
quickly recognized and used.

* Relevant. Actionable information is in the eye of the beholder, requiring flexible
definition, collection, and presentation.

» Accessible.Actionable information sometimes occurs as events (alarms), and
sometimes results from analysis (browsing), so both need to be supported in a way that
respects the user’s desired level of detail. Also, the user should not need tolibe fami
with any more than standard office-automation tools to access the information.

* Time based It is usually more effective to scan information about what has changed
rather than reviewing all the information about the current state of a piojgobt
actionable information. The SMS must continuously or regularly collect data for
analysis and presentation.

* Automatically extracted. Manually assembled analyzed, analyzed and presented
information is expensive and time-consuming to generate. Often it is not obvious
whether the information is relevant until after it has been generated. Manual
generation is simply not sustainable as part of an ongoing process.

FRCSS'06: Future Research Challenges for Software and Services

69

COMMUNICATIONS OF EASST

SMS Architecture
The architecture of is open, XML-based and easily extended.

| Users |

| Fresentolion Layer |

Customizahion
Tools

| easxrement Information Model |

| Extraciors |

Domains

Figure 2 - Software Mapping Server (SMS) Architectue

 Domainsare not a part of the SMS as such. They are the source code, development
environment and project management tools in use on the projects at a customer site.
They are the source of much of the information presented to the users by the system.

» Extractors extract information from a specific tool in a specific domain and add it into
the Map (through the Information Framework). The need to implement an extractor
for each of the many domains that exist in the software development industsytpoint
the Opensource development model.

e TheMeasurement Information Model defines how data from the various domains is
combined into higher-level

information. For example it Coupling
could define a “quality” metric Weighting gg';:lg;ty
for each source code item

based on the elemental metrics .

generated by source code ererty Lt e gmpglzx.ty B
extractors, or deflne a ﬁfp; P

“Productivity” metric for each { Sooc
employee based on the) N
“Quantity” and “Quality” of ce

source code he or his team : :
Figure 3 - Example Measurement Information Model

FRCSS'06: Future Research Challenges for Software and Services

70

COMMUNICATIONS OF EASST

generates, as gleaned from the version control extractors. This isusigmizable.

« TheMapis at the centre of the SMS. As in Geographical Information Systems (GIS),
the Map is built out of layers. Where GIS layers may be topology, roadsioggctr
grid, water grid, cover type, etc., SMS layers correspond to source code, ezaploye
work, etc. Unlike a GIS system that shows the state of an area at a singie p
time, however, the software Map also tracks how the software project ie sy

over time. This is performed by recording Snapshots at discrete intergals (e
weekly).

* ThePresentation Layer defines how information contained in the Map is presented to
the user via a Map Browser, Reports, Dashboards and Alerts.

Prototype Results

The SMS architecture has been largely validated by several mamney@aosotyping effort.
This implements the Map in a relational database. The Presentationd ygely XSL-
based. Interfaces predominantly use XML.

Figure 4 shows the type of output achieved using a browser interfact to the SkI8llavas
the user to understand how key metrics are changing over time, how they havel circge
a specific point in time, and how values are distributed across projects and components.

[i L LISEEC I P £ gl 1 P

B
& . .
"
B
"

Prgeits Uy Bire

Fragecty by Compinatty
.

Figure 4 - Browser Interface to SMS

FRCSS'06: Future Research Challenges for Software and Services

71

COMMUNICATIONS OF EASST

Customizable templates define the content of reports. These can be specifiecet@vanbl
(e.g. Project Manager/ release review meeting) basis, and gemarsger-friendly formats
such as html, pdf and Word.

B Adobs Aorabst - [smpiaesring_repon pd] o IR

B adobe dcrohet - [management_report pdf] 1k L) R

M Dl Docurwnl Toos ew Wedlos Eelp & el e R Docinen i Took Vs Windne e &
MB&ISEH eI o+ DEN 22 A MEBHEO@ v e DTN G A
| _-_|L| - . . Ll
o ey @milgr=smr Raprn) B - B i] s =
gl === 2
|| fir—r— 1| r—

Eomoags TT Cpwemme S0 pie— —
- — —
5} E A . = —
] . [= - — - A
1 —
1 _J e
& —
I} 4] _ —
“F Tifj e= = =
—
—
R —
—
w raf Sl i 1 o =
-I Tl =L — €L - -
- P
{ —
—
——
—
—_
i 4 £ o m— g | e b =
d"f:'.“ﬂ::!"—. _:i'-T.TTil' I | TI i '.ﬂ_LI FF L Jugl o S L
Figure 5 - PDF format reports
Conclusion

There is a dearth of actionable information available for decision-makessftovare projects.
The provision of such information promises to have a hugely positive impact on the
productivity of development teams, and yet adequate solutions have not yet surfaced.

We propose a framework that is scaleable and that has been validated through the
implementation of a prototype server. The main challenge to implementing a fullHaMS t
can work for heterogeneous development environments is the creation and mairméaance
wide range of data extractors.

We believe that the Opensource development model is ideally suited to this prollehgtan
an IST-initiated OSS project could result in a European solution that is a majorenmant
on current alternatives.

FRCSS'06: Future Research Challenges for Software and Services

72

COMMUNICATIONS OF EASST

References

[Bansiya02] Bansiya, J., Davis, C.@. Hierarchical Model for Object-Oriented Design Qity
AssessmentEEE Transactions on Software Engineering, Jand@0€2, pp. 4-17.

[Beck99] Beck, K. Extreme Programming Explained: Embrace Changddison Wesley, 1999.

[Chidamber94] Chidamber, S.R. and Kemerer, GARMetrics Suite for Object Oriented DesjdEEE
Transactions on Software Engineering, June, 19944 16-492.

[Chidamber98] Chidamber, S.R., Darcy, D.P., and &em C.F.Managerial use of Metrics for Object-
Oriented Software: An Exploratory AnalysiEEE Transactions on Software Engineering,
Aug 1998, pp. 629-639.

[Fowler99] Fowler, M.Refactoring Addison Wesley, 1999.
[Fowler02] Fowler, M.Reducing CouplinglEEE Software August 2001, pp. 102-105.
[Hunt99] Hunt, Andrew, and Thomas, Davithe Pragmatic ProgrammgAddison-Wesley, Oct 1999,

ISBN: 020161622X

[Lieberherr89] Lieberherr, K.J., Holland, I.MAssuring Good Style for Object-Oriented ProgratiEE
Software, September 1989, pp.38-48.

[Martin02] Martin, Robert C.Agile Software Development, Principles, Patterms] BracticesPrentice
Hall, 2002.

[McCabe94] McCabe, Thomas J. & Watson, ArthuSidftware ComplexityGrosstalk, Journal of Defense
Software Engineering 7, 12 (December 1994): 5-9.

[McGarry01] McGarry, J., Card, D., Jones, C., LaymB., Clark, E., Dean, J., Hall, Practical Software
Measurement — Objective Information for Decisionkigls Addison-Wesley, 2001.

FRCSS'06: Future Research Challenges for Software and Services

73

COMMUNICATIONS OF EASST

Perspectives for a Model-driven Service Engineering
Discipline

Claus Pahl *
*Dublin City University, School of Computing, Dublin 9, Ireland

Abstract. The notion of services has become ubiquitous in recent approaches to software engi-
neering. Services and processes are abstractions that suit the modelling requirements at different
stages of the software systems development process. We propose a model-driven service engi-
neering approach based on the model-driven architecture framework and adapted to the specific
needs of the services context and service-oriented architecture as the principle of the deployment
platform. Service process composition and semantic modelling are here central aspects. We
present solutions for a services engineering framework and outline perspectives that need to be
addressed in a services engineering discipline.

Keywords: Service-oriented Architecture, Process Composition, Model-Driven Archi-
tecture, Service Ontology, Web Services

1 Introduction

The service notion has become omnipresent in recent discussions about software platforms and software
engineering approaches. Services as a deployment paradigm is at the core of service-oriented architecture
(SOA). The Web Services framework (WSF) is the central platform implementation for this paradigm
[ACKMO04]. SOA deals with distribution, interoperability, and process description and deployment. The
service concept is also used to capture business and workflow processes at a higher level of abstraction,
developing services based on flow-based processes. A business service is the realisation of a business
goal. Although both have their specific requirements and implications, both aspects raise the issue of an
integrating discipline of service engineering.

Model-driven architecture (MDA), promoted by industry bodies such as the OMG, proposes an ap-
proach that, although not specific to the services context, can provide a framework for this discipline
[Obj03]. MDA focuses on maintainability through model-centricity and on automation of programming
activities through code generation. MDA can be adapted to the services context by, firstly, focussing on
the WSF as the platform, secondly, enhancing the semantic modelling capabilities, and, thirdly, improv-
ing the service reuse aspect. Although ontologies [DOKO03] have predominantly been used to support
data-intensive applications, we make the case here for their use as a modelling technique in a service-
and process-oriented context [Dju04, GJHOS, PahO5a]. Based on our experience resulting from several

FRCSS’06: FUTURE RESEARCH CHALLENGES FOR SOFTWARE AND SERVICES

74

COMMUNICATIONS OF EASST

case studies, we discuss a service engineering discipline along the following perspectives: service de-
velopment and deployment, rigour and formality, and methods and techniques. We look at each of the
perspectives addressing the aims, challenges, and opportunities based on the case studies we have been
involved in. Our objective is to identify cornerstones of a service engineering methodology using the
discussion of the individual perspectives. We refer to the case studies to illustrate our experience and
how it has influenced the design of our approach.

2 Platform and Software Engineering Implications

Service-oriented architecture as the architectural platform and the Web Services framework as the de-
ployment platform have implications on a corresponding service engineering framework. A service is a
software component provided at a given location. Services are usually used ’as-is’, based on abstract de-
scription published by the provider in directories and used by potential clients to locate suitable services.
Several aspects characterise the targeted service platform [ACKMO04]:

e Distribution: This deployment aspect characterises the services platform as a distributed infras-
tructure. Handling invocations is its central task.

e Independent deployment: This development aspect refers to the independent, blackbox deploy-
ment of services where different organisations are involved as clients and providers. This requires
suitable description techniques to communicate service requirements and properties. Additionally,
trust between the actors is an issue in these open, unconstrained environments.

e Process-orientation: The development of services is tightly linked to the notions of architecture and
process. The composition at various levels ranging from business workflows to service processes
is central [PV02].

Cost effectiveness and cost reduction are the primary drivers of current software technology develop-
ment. Reuse is a method to achieve reduced costs and sustain or improve quality. Automation is a method
to reduce time-to-market and to improve maintainability. MDA emphases automation and encourages
model reuse. SOA focuses on reuse-as-is in service form.

We propose here cornerstones of a discipline of model-driven service engineering, characterised by two
specific modelling foci. Firstly, composition-centric modelling shall address services, processes, and
layered reuse. Secondly, ontology-based semantic modelling shall address formality, exchange and col-
laboration, and automation. This is influenced by various industry-led initiatives such as MDA (OMG),
Ontology-driven Architecture ODA (W3C), and the Business Process Modeling Notation BPMN (OMG).

We have identified a number of perspectives by reviewing different case studies, which are facets that
characterise the discipline and that reflect aspects that have impacted the design of our proposed devel-
opment approach.

e Rigour and Formality — the foundations of the modelling notation and techniques in terms of
ontology technology.

FRCSS’06: FUTURE RESEARCH CHALLENGES FOR SOFTWARE AND SERVICES

75

COMMUNICATIONS OF EASST

e Service Development and Deployment — the software process lifecycle with its stages and activities
based on Model-driven Architecture.

e Methods and Techniques — composition-centric modelling and service architecture to support the
activities.

Three project case studies have influenced the design of the proposed methodology and our discussion
of a path towards a discipline of service engineering.

e An e-learning system consisting of platform and content services is being re-engineered to a ser-
vices platform. The project focuses on an in-house developed system and is motivated by main-
tenance problems that arose after several years in service while undergoing constant changes and
extensions.

e An application service provider (ASP) infrastructure was re-engineered to a portal-based service
platform. A large number of software providers provide their services now as Web services allow-
ing different clients to access services through a customisable service portal. This empirical case
study is a typical example of legacy systems integration. It provides challenges in terms of data
modelling and data integration in heterogeneous service-based environments.

e A services-based online banking application has been used as a conceptual case study to address
architecture topologies and patterns. Service and process compositions on an abstract, logical level
need to be mapped onto possible distributed architectures with different interaction mechanisms.

3 Service Development and Deployment Process

The first of the perspectives is software process-centric. The overall development and deployment pro-
cess is based on general constraints of the services context and our experience, see Fig. 1. The banking
case study has highlighted the importance of service engineering in terms of business processes and
workflows. Standard procedures of account management have to be implemented. The e-learning case
study has drawn attention to the deployment and code generation aspects. Current reusable learning
objects and services are widely discussed, raising the importance of publishable semantic descriptions.

e Business service modelling. The recent discussions of MDA have increasingly focused on this
layer that addresses business objects and processes at a high level of abstraction.

e Architecture modelling. The visual definition of service, processes, and their architecture needs to
be based on a UML notation in order adopt to current practice and to allow the reuse and integration
of existing models.

e Service process analysis. Process composition based on services from different sources requires a
rigourous analysis of structural and behavioural properties.

e Process composition. The implementation of abstract process definitions in a services-based de-
ployment context requires again rigourous matching analysis between required and provided ser-
vices.

FRCSS’06: FUTURE RESEARCH CHALLENGES FOR SOFTWARE AND SERVICES

76

COMMUNICATIONS OF EASST

Business Service BPMN + UML %

Modelling diagrams

domain to
architecture model
transformation

A\ 4

Architectural UML activity D‘%
Modelling diagram

UML to

ontology
transformation

process composition
analysis 7

A 4

process:Choice
Service Process process:hasinput
: WSPO ontology- process: ...
Analysis process:hasOutput
process:..."

Ontology \
Gomposifion)3
Engine

service
implementation

A 4
Service Process WSPO ._D
Implementation + services I:l

service process
publication and BPEL

generation ShHocES=2
A <flow> ...
</flow>
</process>

P

Service Process BPEL + WSMO

Deployment WSMO
\ <interface>

<capabilities>

Figure 1: Development and Deployment Stages with corresponding Techniques.

e Service process deployment. Automated code generation for services comprises of executable
process specifications and abstract service descriptions.

A layered modelling approach addresses different abstraction levels. Process composition is a central
activity at different stages. Code generation creates executable and non-executable code. Tool support in
form of a composition engine is required for the modelling, composition, and code generation activities.

4 Rigour and Formality

The second perspective looks at foundations. Rigour is a central requirement for two reasons. Firstly,
extensive modelling is required in an environment based on collaboration and exchange of information.
Precision and detail are here mandatory. Secondly, the automation of analyses and code generation at
development time and deployment activities at runtime equally requires formal techniques.

e Service and process modelling is traditionally well supported by formal techniques. Process be-
haviour is supported by process algebras and calculi. The composition of services is supported by
component matching and interface refinement techniques. A wide range of analysis and reasoning
techniques (including deadlock and matching analysis) are available.

FRCSS’06: FUTURE RESEARCH CHALLENGES FOR SOFTWARE AND SERVICES

COMMUNICATIONS OF EASST

e Formal semantics for a modelling notation also supports other aspects such as the exchange and
publication of models in a common format and the (horizontal and vertical) transformation of
models.

Semantic service description, composition, and matching is the aim. In particular, the ASP project
required the semantic integration of information. Data from various legacy systems had to be integrated
in order to facilitate the flexible and automated composition of services to suit the needs of individual
clients.

We propose an ontology-based formal foundation as the solution for these requirements. We argue that
this foundation suffices to integrate the different aspects just outlined and that it addresses the aspects
adequately. Description logic, which gives a foundation for ontology languages such as OWL-DL, is the
proposed formal language [BMNSO03]. It provides interoperability and enables a multilayered framework
through ontologies. It supports process description and composition through extensions of classical
description logics [Pah05a]. This formal foundation is based on the following principles of ontology-
based knowledge representation and its extension for service and process modelling and composition:

e Concepts representing entities of a domain and relationships between these concepts that explain
the properties of concepts are the cornerstones of ontology-based modelling.

e An extended relationship subexpression language using process combinators realises process ex-
pressions that characterise accessibility relations between states of a system, where the latter ones
are the concepts of the model,

e Additional extensions can cover data aspects by introducing names to represent e.g. parameters.

Reasoning is based on a subsumption (subclass) relationship at the core. Necessary refinement and
simulation notions for service matching and process analysis can be mapped into subsumption-based
reasoning. For instance, a simple dynamic logic — a modal logic of programs — can be represented in
description logic that addresses service matching [PahO5al].

The complexity of composition in an architecture-centric setting is a major challenge [ACKMO04]. Ser-
vice ontologies such as OWL-S and WSMO [PL04] are good starting points; the research into the Web
Service Process Ontology (WSPO) which focuses on service composition has, however, shown some
limitations [PahO5b]. Still, we consider ontologies and their underlying logic sufficient to deal with the
required composition analysis and matching tasks, although sometimes not as powerful as other dedi-
cated formal frameworks such as process algebras.

S Methods and Techniques

The third perspective looks at the methods and techniques of an engineering discipline. The method has
service modelling at its core. The aims are to achieve cost reduction by providing a framework for reuse
based on service-orientation as the concept, and by providing a framework for maintenance based on
layered, automated transformation. Ontologies allow us to integrate both strands.

The techniques are based on an ontology-based composition engine. This will provide description,
reasoning, and transformation techniques. A number of constraints have to be considered:

FRCSS’06: FUTURE RESEARCH CHALLENGES FOR SOFTWARE AND SERVICES

78

COMMUNICATIONS OF EASST

UML is an accepted IT sector standard for modelling.

Service-oriented architecture with the Web Services platform is the trend in enterprise application
integration (EAI) and legacy systems integration.

Ontologies are a standard for semantic domain and services modelling.

Formal analysis and reasoning for composition has been extensively researched.

Automated transformation and code generation is at the core of MDA.

The service platform is not about implementation, which shifts the focus of services engineering to an
architectural level. The abstract properties of services and their architectural composition to processes in
terms of platform features is central. Topologies and patterns of process interaction are key aspects.

Legacy systems integration in the ASP-project required process composition support for individual
services. The need for semantic descriptions at domain- and also service-level arose in the e-learning case
study, where discovery and matching of provided services usually starts with domain-specific aspects,
before the services are looked at in terms of their functionality.

The role of models for service engineering is central and crucial. In addition to the development per-
spective, models are the basis of published service descriptions and also contracts between providers and
clients of services. We will focus on the architecture and platform modelling layers now.

5.1 Visual Modelling

Based on the MDA philosophy, modelling needs to be supported at different layers, here specific to
the services context. Business service modelling (called computation-independent in MDA) is the first,
followed by architecture modelling (platform-independent in MDA), and finally process execution and
service description (platform-specific in MDA).

The objective at the architecture layer is the definition of service architectures as processes. Exten-
sions of UML activity diagrams customise the diagrams for the semantic modelling of service processes
[GJHOS5, Pah05b]. This would add semantic annotations such as preconditions and postconditions (ef-
fects) to individual services. OCL provides a basic framework [WKO03], but service ontologies enable
richer and more comprehensive description and reasoning [PLO4].

5.2 Formal Reasoning

Composition is an activity that occurs in two forms in the services context. Firstly, process analysis:
the abstract composition of individual services to processes requires some constraints to be satisfied,
e.g. pipe-based combinators require the output of the first element to match the input of the second.
Sometimes, postconditions of one process element have to satisfy the precondition of the next element.
Semantic annotations provide the necessary information; a refinement-based reasoning approach pro-
vides the matching support.

Secondly, process implementation: each service element of an abstract process definition has to be
implemented by a concrete service that matches its syntactical and semantical requirements. Various

FRCSS’06: FUTURE RESEARCH CHALLENGES FOR SOFTWARE AND SERVICES

79

COMMUNICATIONS OF EASST

properties are used to determine the closest match. Based on semantic information, a refinement-based
inference system (e.g. weaken the precondition, strengthen the postcondition) as it is realised in services
ontologies such as OWL-S or WSPO can support this activity.

The proposed ontology-based composition engine, see Fig. 1, can implement these two reasoning activ-
ities. Semantic Web and ontology technology creates an opportunity as continuing research and support
in this area can be expected due to the commitment of industry and standardisation bodies.

5.3 Transformation

Transformations occur in two contexts. Firstly, horizontal transformation refers to the transformation
of UML models into ontology representations (or vice versa). UML activity diagrams consist of activ-
ity nodes and edges using control flow nodes to describe control and data flow. These models can be
mapped to a WSPO ontology with its service elements and process combinators. UML models and their
extensions can be semantically defined and analysed using ontologies.

Secondly, transformations between the stages including the final code generation step are the forms of
vertical transformation. The last step is platform-specific, which in the SOA case means executable ser-
vice process definitions and publishable service descriptions. The latter ones are ideally service ontology-
based, which makes an ontology-based framework suitable. Executable service process definitions in
WS-BPEL can almost directly be generated from the ontology-based process representations.

6 Conclusions

We have introduced service engineering as a multi-layered, multi-stage activity, ranging from defining
business services based on workflow processes to platform-specific service implementations. In addition
to standard software industry aims of cost reduction through automation and improved maintenance, ser-
vice engineering requires semantic integration and process-orientation as central elements, both relying
on composition and transformation techniques.

e Semantic service and process models can form the missing link between domain-level matching
(for example in e-learning where learning objects can be searched in repositories based domain-
level annotations) and syntactical service interface matching (for example in ASP where service
repositories can be searched based on WSDL descriptions).

e Processes based on services are essential abstractions across all stages. MDA supports this layered
development from semantic modelling to service deployment; specific business process modelling
and execution languages are available in form of BPMN and WS-BPEL at the different layers.

Ontologies play a central role in integrating these aspects. Their capability as an abstract modelling
tool is obvious, which, as we hope to have motivated, can extend to computational concepts such as
services and processes. The formal, logic-based foundation makes ontologies also a suitable tool for
defining and reasoning about composition. These observations, that have led us to the organisation of
a services engineering discipline, are based on empirical research that we have carried out. While an

FRCSS’06: FUTURE RESEARCH CHALLENGES FOR SOFTWARE AND SERVICES

80

COMMUNICATIONS OF EASST

ontology-based modelling and composition can address central problems, a discipline needs to reach
further. Interoperability, cooperation, and trust are perspectives that characterise this wider context.

A services-centred discipline also needs to shift the traditional focus of software engineering approaches.

A software value chain can be distinguished into stages which follow a top-down abstraction hierarchy.
While in the past the main attention has been put on lower program and software-related aspects, ele-
ments higher up also need to be addressed. This includes workflow and business process modelling and
overall semantic integration. The current focus on business modelling and analysis and corresponding
notations — such as BPMN - is one of the activities demonstrating the importance of this aspect.

References

[ACKMO04] G. Alonso, F. Casati, H. Kuno, and V. Machiraju. Web Services — Concepts, Architectures

[BMNSO03]

[Dju04]

[DOKO3]

[GJHOS5]

[Obj03]
[PahO5a]

[PahO5b]

[PLO4]

[PVO02]

[WKO3]

and Applications. Springer-Verlag, 2004.

F. Baader, D. McGuiness, D. Nardi, and P.P. Schneider, editors. The Description Logic
Handbook. Cambridge University Press, 2003.

D. Djuri¢. MDA-based Ontology Infrastructure. Computer Science and Information Systems
(ComSIS), 1(1):91-116, 2004.

M.C. Daconta, L.J. Obrst, and K.T. Klein. The Semantic Web. Wiley, 2003.

R. Grgnmo, M.C. Jaeger, and H. Hoff. Transformations between UML and OWL-S. In
A. Hartman and D. Kreische, editors, Proc. Model-Driven Architecture — Foundations and
Applications, pages 269-283. Springer-Verlag, LNCS 3748, 2005.

Object Management Group. MDA Model-Driven Architecture Guide. OMG, 2003.

C. Pahl. An Ontology for Software Component Matching. International Journal on Soft-
ware Tools for Technology Transfer (STTT), Special Edition on Component-based Systems
Engineering., 7, 2005. (in press).

C. Pahl. Ontology Transformation and Reasoning for Model-Driven Architecture. In
M. Kifer and S. Spaccapietra, editors, Proc. Intl. Conference on Ontologies, Databases
and Applications of Semantics ODBASE 2005. Springer-Verlag, 2005.

T. Payne and O. Lassila. Semantic Web Services. IEEE Intelligent Systems, 19(4), 2004.

F. Plasil and S. Visnovsky. Behavior Protocols for Software Components. ACM Transac-
tions on Software Engineering, 28(11):1056-1075, 2002.

J.B. Warmer and A.G. Kleppe. The Object Constraint Language — Precise Modeling With
UML. Addison-Wesley, 2003. (2nd Edition).

FRCSS’06: FUTURE RESEARCH CHALLENGES FOR SOFTWARE AND SERVICES

81

COMMUNICATIONS OF EASST

Emergent Phenomena in Aml Spaces

loannis D. Zaharakis' and Achilles D. Kameas'?
! Computer Technology Institute, Patras, Hellas
2 Hellenic Open University, Patras, Hellas

Abstract. This work aims at a) identifying the forthcoming changes in our everyday life
due to the ever-increasing level of complexity that inculcates our interactions with the
devices surrounding us, b) introducing a bio-inspired world model (framework) that deals
with different perspectives of the interrelations developed in symbiotic ecologies where
people and artefacts coexist, and c) proposing a high level architectural scheme of an Aml
space reflecting the basic ingredients of the future indoors/outdoors applications based on
Swarm Intelligence and Complexity Science.

Keywords: Complex Systems, emergent behaviour, Ambient Intelligence,
Swarm Intelligence, Ubiquitous Computing

1 Introduction

The vision of Ambient Intelligence (Aml) implies a seamless environment of computing,
advanced networking technology and specific interface ([9], [11]). In one of its possible
implementations, technology becomes embedded in everyday objects such as furniture,
clothes, vehicles, roads and smart materials, and people are provided with the tools and the
processes that are necessary in order to achieve relaxing interactions with this environment.
The Aml environment can be considered to host several Ubiquitous Computing (UbiComp)
applications, which make use of the infrastructure provided by the environment and the
services provided by the Aml objects therein.

An important characteristic of Aml environments is the merging of physical and digital
space (i.e. tangible objects and physical environments are acquiring a digital representation).
As the computer disappears in the environments surrounding our activities, the objects therein
become augmented with Information and Communication Technology (ICT) components (i.e.
sensors, actuators, processor, memory, wireless communication modules) and can receive,
store, process and transmit information [11]. The Aml objects differ from traditional objects
in that they can communicate with other Aml objects and can interact with the environment.
Of special interest is the information that AmI objects process, which can be descriptions of
the context of use, data to be used for a task, guidelines on how to perform a task, messages to
be sent or that have been received from other objects. The result of information processing is

FRCSS'06: Future Research Challenges for Software and Services

82

COMMUNICATIONS OF EASST

a set of services, that is, a set of abilities that appear in the digital space and relate to

information.

On the road to becoming an Aml space, our living space as of today is already populated by
many devices, which are able to process (and sometimes store) and communicate digital
information. These are divided in three major categories [8]:

e The PC Internet world where PC and PC peripherals communicate.

e The broadcast world that serves set-top boxes and traditional consumer electronics, e.g.
TVs, VCRs, stereo systems, CD/DVD players etc.

e The mobile world, consisting of multimedia mobile phones, PDAs, laptop computers and
similar devices, that provides unparalleled connectivity and freedom of movement into and
out of the home environment.

A new fourth category, as a consequence of the gradual realization of the Aml vision, is the
white-goods devices, like refrigerators, microwaves ovens, air-conditioners, etc, which
recently is including everyday objects enhanced with sensing, processing and communication
abilities.

This work builds upon the envisaged structure of Aml environment as one populated by
thousands of communicating tangible objects and virtual entities [13]. Following an agent-
oriented programming approach [21], we can classify them into active, in the sense that they
have an explicit goal to achieve (i.e. a TV has a goal to display a selected broadcast, an air-
conditioner has a goal to maintain a certain air temperature, etc) and passive. The latter are
those being used as part of tasks (i.e. numerous everyday objects surround us like tables,
chairs, walls, photo frames etc), according to the plan of active objects (e.g. a wall may be
used to hang a poster out or to project a video). At a minimum, Aml environment will contain
network infrastructure will be available that will make anytime, anyplace (within boundaries
of acceptability) interaction among and with these objects feasible.

2 Research Issues and Requirements

The heterogeneity of Aml objects make necessary the development of middleware systems on
top of which UbiComp applications can function transparently with respect to the
infrastructure [13]. In order to preserve the autonomy of Aml objects and to cater for the
dynamic nature of UbiComp applications, ad-hoc networking has to be supported; thus, no
specific network infrastructure can be taken for granted. The underlying physical networks
used are heterogeneous ranging from infrared communication over radio links to wired
connections. Since every node serves both as a client and as a server (devices can either
provide or request services at the same time), the required communication can be considered
as peer-to-peer [12].

As a consequence of the dynamic nature of UbiComp applications and of the mobility of
Aml objects, the middleware has to use services and capabilities with changing availability

FRCSS'06: Future Research Challenges for Software and Services

83

COMMUNICATIONS OF EASST

[14]. In addition, even a service that is both functional and reachable can become unavailable
(the volatility problem). As objects of all sizes are candidate components of ubiquitous
computing applications, the enabling middleware has to be adaptable to the physical
properties (e.g. size, power) in the case of tangible objects and computational abilities (e.g.
memory) of a broad range of devices [10].

Since UbiComp applications operate within an extremely dynamic and heterogeneous
environment, the context definition, representation, management and use become important
factors that affect their composition and operation. UbiComp applications have to
dynamically adapt to changes in their environment as a result of users' or other actors'
activities. To ease the development of such applications it is necessary to decouple application
composition from context acquisition and representation, and at the same time provide
universal models and mechanisms to manage context [7].

Current digital paradigms for interacting with the digital world are often inadequate and are
leading towards a dead-end of frustration-in-use and impoverished digital living. This
situation will deteriorate once computers become dispersed into everyday environments;
interaction problems will be significantly multiplied and shift towards a different, under-
explored territory of paradigms that originate from having to interact with hundreds
interacting nodes, many of which will be physically imperceptible. Additionally, as
computational power diffuses in our living/working environment and the everyday devices
that are capable of sensing, processing and communicating continuously grow in numbers,
new requirements are posed by i) the people who use UbiComp applications, ii) the
heterogeneity of the involved devices, and iii) the large number of the involved devices.

As a consequence, key research challenges have to focus in services availability including
both services aimed at end users as well as machine to machine services, and to deal with
dynamic composability and adaptability, context awareness, autonomy and semantic
interoperability. Essentially, new research issues arise concerning i) the system complexity
emerging by the thousands local interactions between people and artefacts, ii) the need for
flexible and dynamic system architecture capable to evolve and adapt to new situations and
configurations, iii) the context dependence of the exchanged information, and iv) the human
involvement and especially new, more natural, human-machine interaction schemes.

The abovementioned features impel to the development of a framework that will help
ordinary people deal with the complexity of using UbiComp applications that will exist within
Aml environment, and especially assist them in dealing with the interactions occurring
therein. The framework must be capable to host and reflect transparently the available
services as well as the potential use of the participating objects. Although the available
services may somehow be exhibited, the potential use of the objects emerges mainly from the
interactions of the humans with the active and passive devices and these interactions are not
only time-dependent but also space- or context-dependent. Specifically, the framework should
employ a scheme based on five premises:

FRCSS'06: Future Research Challenges for Software and Services

84

COMMUNICATIONS OF EASST

e An easy-to-understand-and-use end-user programming model, which will build upon
known world models, interaction metaphors and usage concepts.

e The exploitation of locally stored knowledge into the surrounding devices as well as the
Aml environment.

e A classification mechanism based on attributes of social behaviour of the components of
UbiComp applications.

e Procedures for distributed decision making, which will facilitate the emergence of
UbiComp applications as compositions of collaborating services, with or without the
explicit intervention of the humans.

e A composition mechanism of previous successful/failed actions aiming at feeding back the
UbiComp applications.

The next sections set the scene of a near future everyday living/working environment and
describe an engineering approach inspired by biological structures capable to deal with
phenomena arising in such an environment. Subsequently, a related high level architectural
scheme is introduced. A depiction of the involved technologies and associated research
directions follows and the paper concludes summarising the most prominent elements of this
work.

3 Proposed Conceptual Framework

A living/working Aml space comprising of many heterogeneous objects with different
capabilities and provided services could be considered that is populated by a heterogeneous
swarm. There are many potential benefits of such an approach including greater flexibility
and adaptability of the system to the environment, robustness to failures, etc. The swarm will
comprise different typologies of societies, and so it will be heterogeneous also from the
provided services point of view. Such differences will contribute to the overall capabilities of
the system. As a general principle, the services should be as simple as possible, according to
the concept of summing the capabilities of extremely simple members by the swarm system
increasing the number of agents, sharing the resources and maximizing the effectiveness of
the communication. ldeally, the composition should emerge based on previous interactions
and on the context (time and place) they took place.

From a macroscopic perspective, a natural system (or ecology) consisting of thousand
living organisms exhibits superiority, in terms of stability, coherency, flexibility and
adaptability, because these organisms are integrated and optimized with respect to their
computation and control strategies, morphology, materials, and their environment (see details
in http://www.neuro-it.net). The participants (or organisms) are deployed in such an
ecosystem where coherent choices are manifest across the whole space of options, rather than
just at the computational/control level. These organisms live, obey rules and reap the benefits
of a society of kin. Societies may vary in size and complexity but they share a common

FRCSS'06: Future Research Challenges for Software and Services

COMMUNICATIONS OF EASST

property: they provide and maintain a shared culture. Intelligent creatures create and refine
social rules in order to perpetuate the society. These rules constitute a culture which is
communicated and shared by the society, and has important effects on the individual
members. In this context individual intelligence needs to be analyzed within its social and
therefore cultural environment.

An ecology is defined by the environment it resides in, the members it consists of, and the
interactions between the members and the environment. In detail, an ecology is i) concerned
with the interrelationship of organisms and their environments, ii) the totality or pattern of
relations between organisms and their environment. Thus, the members of an ecology are the
organisms, meaning i) complex structures of interdependent and subordinate elements whose
relations and properties are largely determined by their function in the whole, ii) individuals
constituted to carry on several activities by means of organs separate in function but mutually
dependent. Advancing in more detailed decomposition, each organism is composed of organs
that are i) differentiated structures performing some specific function in an organism, ii)
bodily parts performing a function or cooperating in an activity, iii) parts of an organism that
have been adapted to perform a specific function. Finally, the fundamental ingredients of the
organ are the cells, which are elementary units capable alone or interacting with other cells of
performing specific functions, and forming the smallest structural unit of a matter capable of
functioning independently.

For engineering such problems and in an attempt to create a metaphor of the biological
structures and principles into the information systems, the traditional Artificial Intelligence
(Al) focused on addressing intelligence as an individual phenomenon. This approach
considers (intelligent) agents with cognitive states which maintain a (partial) model of the
world they inhabit in and a (partial) model of the others. These agents are usually
autonomous, social and try to accomplish tasks they are designed for [23]; in any case, the
deliberation and the activation of these kinds of agents are based on their maintained models
of the world and of the others. Despite of many interesting results, the abstractions made by
this approach, led to isolated and disintegrated solutions regarding the development of large-
scale intelligent artificial systems. A radical different approach is based on the belief that
intelligent behaviour is inextricably tied to its cultural context and cannot be understood in
isolation. Indeed, many natural systems can be described in terms of many individually
“simple” components, interacting in “simple” ways and influencing their neighbours, and yet,
are able to exhibit “complex” overall system level behaviour; those systems that exhibit this
“emergent” globally complex behaviour from simple components are referred to as “complex
systems” [6]. In contrast to traditional Artificial Intelligence, Swarm Intelligence (SI) is
defined as the emergent collective intelligence of groups of simple agents, or in more detail,
Sl is the property of a system whereby the collective behaviours of (unsophisticated) agents
interacting locally with their environment cause coherent functional global patterns to emerge
([3], [15]). As an engineering approach, Sl offers an alternative way of designing intelligent

FRCSS'06: Future Research Challenges for Software and Services

86

COMMUNICATIONS OF EASST

systems, in which autonomy, emergence, and distributed functioning replace control, pre-
programming, and centralization.

Thus, when focusing on situated social systems in dynamic and non-deterministic
environments, it is very hard (if not aimless) to embody into each organism complete models
of the environment and of the others. Alternatively, none explicitly represented world models
could be considered ([4], [5]); all the necessary information is out there changing dynamically
and as so the world is the model itself. All we need is the means to capture, qualify and
exploit the information that surround us. In order to deal with the collective behaviour of large
ecologies in situated domains, a recent approach is the analysis and synthesis of small pieces
of primitive behaviours that result from individual interactions.

Inspired by the biological social systems (ecologies), the analysis of artificial swarm
systems could range in different levels depending on the desired granularity. For example, in
a macro-scale domain where many autonomous and heterogeneous agents interact, every
single agent could be considered as a single behaviour building block which models a set of
primitive behaviours [16]. Every single agent has specific capabilities and therefore the
members of the society could play the role of sensors, actuators and computation building
blocks leading to both physical and functional construction. In this two-level granularity, the
agents are the organisms that constitute the ecology. In a three-level granularity, the
specialised agents could form structures resembling to organs (e.g. for sensing, acting etc) and
thus the swarm becomes an abstract loosely coupled organism and several swarms constitute
an ecology. From another perspective, the society could be formed (or modelled) as a neural
network (sensors/actuators building blocks representing the input/output neurons and
computation building blocks representing hidden neurons) that can learn and evolve [17].
Now, the whole network is the ecology, the neurons are the organisms and the synapses
between neurons represent the local interactions of the organisms. A third perspective is to
consider the large amount of (different) artefacts as sensor networks owning limited power,
computational capacities and memory. Sensor networks are densely deployed, have not global
identification (ID), and their topology changes very frequently. Based on their (limited)
processing abilities, instead of sending raw data, they may locally carry out simple
computations and transmit only the required and partially processed data [1]. Hence, the
combination of sensor networks with artefacts with computing and effecting capabilities may
trigger the continuous formation of new societies that provide services not existing initially in
the individuals and exhibiting them in a consistent and fault-tolerant way.

Independently of the analysis level, the computational capabilities (and the intelligence) of
the ecology are distributed over the central “nervous” system, the peripheral system, the
materials of the ecology’s body and the physical phenomena created by the interaction of the
ecology with its environment. Putting such entities into a UbiComp environment could lead to
extelligent ecologies, where knowledge and tools are diffused in the environment [22],
underlying thus the corporal literacy of the ecology, meaning the awareness of the

FRCSS'06: Future Research Challenges for Software and Services

87

COMMUNICATIONS OF EASST

extelligence and the working knowledge of all senses. This will pave the way for the
generation of theory and technology of synthetic phenomenology (of the resulting ecology)
meaning the understanding of the own self and its relation with the surrounding world (Fig.
1).

Swarm Intelligence “world is the model™

feads feads
\‘/ knowledge and tools that are
Exteligence outside the people's heads
the fexible structuring of the internal and
leads | “extraction of S axternal stimull aimed at defving
=a0s I0— exiraction of meaning biologleally ratevant information from a
complex, dynamic and noisy back-ground
L4 awareness of axtalligence
Corporal literacy —tand & working knowledge of
all senses
results to

tha undarstanding of the own
Synthetic phenomelogy — self and its relation with the
| surrounding world

— — — — — applies to the ecology
(self-reconfigurable)

Fig. 1. Concepts relations on how dynamic changes of the environment and local interactions can lead to self-
awareness.

Drawn from the above, the proposed high level architectural scheme that consistently
reflects bio-inspired self-aware emergent symbiotic Aml space ecologies consists of the
following ingredients (Fig. 2):

Basic building blocks: Everything can be regarded as a potential building block of a larger
system, including sensors, hardware resources, software modules, artefacts. Every building
block has an internal part, which is proprietary and possibly closed, and an external part,
which is public or manifested as an influence to the environment, thus making the building
block open to use or perceivable. Thus, building blocks are structures with physical and
functional specification, capable to perceive the environment they reside in and to act upon it.

Ecologies: Groups of building blocks, their interrelationships and the associated
environment form the ecologies. This means that ecology is more the configuration of the
elements, rather than the elements per se. Although the members of the ecology have only
local perceptions and local interactions, the ecology acts as a whole, which is not necessarily
more than the sum of its parts but undoubtedly different from them (Gestalt Theory). The

FRCSS'06: Future Research Challenges for Software and Services

88

COMMUNICATIONS OF EASST

behaviour of ecology is not determined by that of its individual elements, but where the part-
processes are themselves determined by the intrinsic nature of the ecology.

emergent, self-uware, self-reconfigurabie,
symbiotic ecologies

ABSTRACT LEVEL SOCIAL LEVEL DEFINITION LEVEL
Ubiquitous digital o |m"_fal=9= with the end
environment: | Emergent ecology: user:)
social memory, context memory, groups of interacting basic i the necessary direct and
task ontologies, leamed activities bullding blocks inhablinga | indirect interfaces for the
and evolved eclology & dynamic and nan- application initialization and/
compasitions comprise the deterministic environment, ar thle perception of the
ambient knowledge, which is fed - user's habits
back to the ecologies as stimuli L
from the environment. A

F 3
INDIVIDUAL LEVEL
INFRASTRUCTURE LEVEL
Tools for the designer of the Basic building blocks:
system: structures with physical and
all the necessary tools for the 2| functional specification, >
» <

design and development of an capable to parcelve the
application. Tools include environment they resida in
madals, paradigms, and to act upon it.
methodologies, algorithms,
simulators, editors etc.

Fig. 2. High level architecture of the system. Individual and Social levels correspond to the basic building blocks
and ecologies, respectively. Abstract level encloses the social memory of the ecologies; such knowledge must be
transferred to the ecologies implicitly e.g. as stimuli of the environment, since individuals and consequently the
emergent ecologies do not contain any knowledge representation scheme neither reasoning mechanism.
Infrastructure level provides system designers with the appropriate tools to develop a system. Definition level is
the user interface with the final user.

Ambient knowledge: It includes decentralised coordination models and selective interaction
models which provide the abstractions and mechanisms for (i) environmental and context
state reuse and reasoning, (ii) social and cultural memory representation, (iii) knowledge and
experience interchange. Emergent behaviour, in this context, is considered to be as a result of
some form of consensus on a shared view of the environment enabled by interactions among

FRCSS'06: Future Research Challenges for Software and Services

&9

COMMUNICATIONS OF EASST

heterogeneous, potentially arbitrary entities. Thus, ambient knowledge paves the way to
emergent consensus as a substitute for social and cultural memory. Emergent consensus on a
common view of a shared environment by interacting entities is a basis for establishing
collective behaviour or complex adaptive system behaviour. Ambient knowledge is fed back
to the ecologies as stimuli of the environment.

People: The involved users can be divided into several different categories such as building
block developers, hardware designers, artefact manufacturers, applications developers and
end-users. As each of these categories plays a different role in the system and has a variant
perception for the world model, they are divided into two classes.

The first class includes the people that create the infrastructure of the system that includes
models, theories, architectures, algorithms, behaviours, knowledge, protocols, mechanisms,
interfaces etc. Thus, this category includes all the people that take part in the procedure of
“creating” the building blocks and pose the driving force for the emergence of the ecologies.
People of this category fall into architecture designers, building block designers and
developers, knowledge engineers and hardware designers. Essentially, they perceive the
world as a set of building blocks, architecture models, behaviours, shapes, proposed services,
paradigms and guidelines, which will use in order to develop a variety of building blocks and
ecologies.

The second class includes the end-users that use/cohabit with the ecologies. The end-users
can play more than one role, as they can only use the provided building blocks and ecologies
or they can co-create applications based on their own needs and desires. Thus the end-users
can partly adapt and/or configure applications in order to compose personalised applications.
The people of this category perceive the world as a set of symbiotic ecologies, which can be
initialised and can learn and self-adapt according to their needs.

4 Instruments

Along these lines and aiming at building complete UbiComp systems, which make optimum
use of distributed intelligence embedded in the periphery (sensors, actuators, body
morphology and possibly materials), the involved theories, technologies and scientific
communities are undoubtedly interdisciplinary. It is mentioned that the aimed outcome is the
development of self-aware and self-reconfigurable symbiotic ecologies where artificial beings
and humans coexist. The applications consist of tangible entities and ubiquitous services
applied in indoors and outdoors areas. Particularly, the applications include autonomous
software populating autonomous devices where the social interactions arise among the
different elements and adaptation to unforeseen (at design time) situations encountered in
dynamic environments is needed. The abovementioned aim requires the establishment of a
commonly accepted paradigm of the life-cycle (specifying, designing, developing and
integrating) of the artefacts participating in this type of ecologies. In more detail, the

FRCSS'06: Future Research Challenges for Software and Services

90

COMMUNICATIONS OF EASST

following steps are involved in the establishment of a well defined framework for the
development of self-aware and self-reconfigurable symbiotic ecologies.

1. Formulation and development of bio-inspired models and theories focusing on emergence,
modelling cognitive and awareness processes, physical growth, and ontogenesis.

These will help to design, construct and experiment with the interacting basic building
blocks that will constitute the aimed ecologies. Clearly, a fostering research and synergistic
work is needed between a broad range of scientific fields such as cognitive/experimental
neuroscience, cognitive/developmental psychology, biological cybernetics, neuroinformatics
and IT communities. A bio-inspired conception must be adopted based on the natural laws of
evolution, survival and reproduction. Models relating energy, perception, computation, local
interactions and interface plasticity must be studied in order to help in a counterbalance of
low-energy consumption and sufficient capacity of extraction of meaning. This will pave the
way for the generation of theory and technology of synthetic phenomenology (of the resulting
ecology) meaning the understanding of the own self and its relation with the surrounding
world. The accomplishment of these tasks involves i) the development or the refinement of
dynamic bio-inspired specification models that describe how local behaviour becomes global
and how to control it/reverse it or even how global strategies transform into local ones, ii) the
specification of the morphology, “primal instincts” and limited capabilities of the artefacts
inspired by the natural organisms that enable them to interact and cohabit with the others, iii)
the specification of a minimal set of building blocks having certain physical properties and
exhibiting certain behaviours, which will allow coherent society development and also the
control of the communication between the participating individuals so that they can develop a
desired behaviour and capabilities through their interaction with the environment.

2. Development of a methodology on how to construct autonomous entities with “flexible
structuring of the internal and external stimuli’” and an integration framework that leads to
the realization of self-reconfigurable ecologies.

The techniques must be focused on intelligent periphery, morphology and possibly
materials, inspired by the wide range of intelligent adaptations in non-human (neural)
systems, gathering and exploiting knowledge about the world and the tasks, “environment
models” used to codify world/task knowledge. By allying theoretical aspects such as the
abovementioned to more practical bio-inspired technology driven aspects, the aim is to obtain
a large understanding of social systems that learn from observing and from interacting with
other more advanced systems. Key issues that have deep functional and economic
significance for the design, construction, and maintenance of emergent ecologies include i)
learning and evolution in an embodied artificial system; ii) autonomous self-construction and
growth of artefacts (“epigenetic robotics™); iii) adaptation to the environment (possibly over
several generations), and iv) robustness in performance. The tight multi-disciplinarity
naturally addresses issues such as the practical limits of intelligent systems, the essential

FRCSS'06: Future Research Challenges for Software and Services

91

COMMUNICATIONS OF EASST

properties of networks and sensors, the emergence of the complexity phenomena and how to
control and profit from complex systems.

3. Design and implementation of ambient knowledge/experience repositories available as
substitutes of social memory.

This could also contribute to the higher level cognitive processes including self-awareness,
learning, and adaptation. As the symbiotic societies are dynamically reconfigured aiming at
the accomplishment of new tasks (targeting to satisfy a higher goal), their formation heavily
depends not only on space and time but also on the context of previous local interactions,
previously configured teams, successfully achieved goals or failures. This means that in order
to initially create, manage, communicate with, and reason about, such kinds of emergent
ecologies, we need somehow to model and embed to these entities social memory, enhanced
context memory, and shared experiences. These models should provide the appropriate
abstractions and mechanisms for i) context reuse and reasoning, ii) social memory
representation, and iii) knowledge and experiences inheritance. One step to this end is the
design and implementation of evolving multi-dimensional ontologies that will include both
non-functional descriptions, and rules and constraints of application, as well as aspects of
dynamic behaviour and interactions. A core ontology could be open and universally available
and accessible; however, during the ecology life-time the core ontology may be evolved into
higher goal, application and context specific one [7]. Hence, ontologies describing specific
application domains could be proprietary. Emerging behaviour, in this context, might be
considered as a result of interactions among heterogeneous, seemingly incompatible or non
pre-defined entities. Moreover, all higher-level constructions could be inherently able to use
all the knowledge they will be able to access.

4. Development of the necessary tools that constitute a development environment.

New innovative concepts must be introduced and must be supported by specialized tools
integrated in a development environment. The emergent ecologies must be based on the
notion of the “autopoietic machine” built from basic building blocks (or cells in terms of
genetics) [18]. Therefore, tools that provide representation schemes from physical world to
digital space, learning and evolution mechanisms, communication protocols, and interaction
patterns must be implemented and integrated in a development environment. The
development environment will support the creation, management, communication with, and
reasoning about, the emergent ecologies. Furthermore, it will apply novel methodologies for
engineering the autonomous entities at different granularity levels. New programming
paradigms are necessary (e.g., subject-oriented programming with subjects that are born, have
a life cycle, can diminish, and have internal goals and intensions).

FRCSS'06: Future Research Challenges for Software and Services

92

COMMUNICATIONS OF EASST

5 Engineering Emergent Phenomena

An especially complex task is to model and build autonomous interactive entities that could
form extelligent ecologies exhibiting corporal literacy and leading to a synthetic
phenomenology approach. The task is additionally complicated by considering that the
resulting ecologies will operate into a ubiquitous environment and will be driven by
autonomy, local perceptions and interactions, emergence, and distributed functioning. An
important aspect on this focus is that although the entities will not have explicitly represented
models of the world or of the others the emergent ecologies will unfold coherent collective
behaviour based only on the entities’ own agenda of actions and their intrinsic inclination to
preserve their own goals.

Realizing the potential benefits of the UbiComp applications populated by autonomous
simplistic entities will require improvements in currently available technology platforms and
a translational research paradigm from basic-research findings. Hence the driving force
behind the whole idea focuses on the adaptation of concepts from complex biological systems
and novel fabrication technology platforms to build truly innovative swarm robotic systems
for emerging real-life applications. Technological challenges posed by this approach and the
investigative methodology to overcome them are described below.

5.1 Basic building blocks development

As described above, several levels of abstraction are possible for the formulation of the basic
building block. Immediately, the engineer strives with the questions on i) which should be the
basic building block, ii) what structural and functional properties it should encompass, iii)
how it could interact with the others, and iv) how it could be realised. From a technology
development point of view, an essential plan is needed which initially centres about the basic
building block and considers as such every self-sustained digital (h/w or s/w) artefact with
certain functionality that can operate without the contribution of others. That type of artefacts
could be robots with pre-defined specialised capabilities, or could be sensors, motors,
computational sources etc. In both cases emergent ecologies are possible to be formed
exhibiting capabilities not found in the individuals.

Undoubtedly, this “macro” or high level perspective does not deal with issues as the
structural parts, the realisation approach or the interaction patterns of the basic building
blocks. Rather, such issues could be studied by disciplines such as artificial neural networks
[2], evolutionary robotics [20] and machine learning [19] concentrated on building intelligent
control systems. On the other hand, the problem-solving concepts from social systems in
nature could be analysed and adapted for technical applications by using simulations.
Simulation environments could give the possibility to study artificial ecologies of bio-inspired
entities to close the capability gap between natural information processing systems and
human-made ones. Additionally, they could help to reveal fundamental interrelations between

FRCSS'06: Future Research Challenges for Software and Services

93

COMMUNICATIONS OF EASST

rules for entities of intelligent ecologies and the resulting global behaviour. Instead, as the
focal point remains at the range of the behaviours that a basic building block should manifest,
then the engineering methodology and the development starting point should be driven by the
primitive behaviours approach followed in robotics applications. According to this approach,
the overall behaviour of the system becomes the emergent effect of the interaction with the
environment and the coordination of the primitive behaviours.

5.2 Engineering emergent behaviour

In dynamic environments, an individual must be reactive, that is, it must be responsive to
events that occur in its environment, where these events affect either the individual’s goals or
the assumptions, which underpin the procedures that the individual is executing in order to
achieve its goals. However, what turns out to be hard is building a system that achieves an
effective balance between goal-directed and reactive behaviour. Furthermore, as the
construction of the individuals must be based on the development of primitive behaviours, the
issues of how to select potentially the correct behaviours in different circumstances and how
to resolve conflicts between them are raised. The primitive behaviours approach considers
that all the (individual) behaviours run in parallel and depending on the stimuli of the
environment some of them manifest themselves by enabling a suppression mechanism and
taking control of the actuators. However, this technique requires a pre-defined and
exhaustively tested set of implicit rules (usually encoded into finite state automata) of firing
priorities. Thus, this technique does not scale well even in moderate number of primitive
behaviours and it lacks learning even in very often tasks.

In order to apply the well-established primitive behaviours approach in swarm societies that
can learn and evolve component-oriented principles and practices could be employed.
Synthetic behaviour control mechanisms could be developed based on bio-inspired
approaches like spiking neural networks. These behaviour control mechanisms responsible for
the arbitration and/or the composition of the primitive behaviours could also be subject of
learning and evolution. The individuals may exhibit varying behaviour — capable of
perceiving/exploring their environment, selectively focusing attention, initiating and
completing several tasks. The learning and evolution could be studied and investigated at both
the individual and social levels. In this case, the focal point must be the components of
behaviour control mechanisms. The outcome could contribute to a novel dynamic and
adaptive architecture of swarm systems that exploits the global effects through local
rules/behaviour.

5.3 Engineering collective behaviour

Developing a robust swarm system, capable of exhibiting emergent intelligent collective
behaviour is a non-trivial task. The nature of the social/collective behaviour sought and the
environment that allows efficient development of ecologies requires research. In building a

FRCSS'06: Future Research Challenges for Software and Services

94

COMMUNICATIONS OF EASST

swarm system communication plays a pivotal role and this explains the profuse number of
publications in this area.

A flexible and light-weight approach is the indirect (stigmergic) communication. The
essence of stigmergy is that the individual modifies a local property of the environment,
which subject to environmental physics, should persist long enough to affect the individual’s
behaviour later in time. It is the temporal aspect of this phenomenon, which is crucial for
emergent collective behaviour (collaborative exploration, building and maintenance of
complex insect nest architectures etc) in societies of ants, agents and robotics. Thus, the
individuals could be provided with the proper periphery (actuators/sensors) enabling them to
emit/perceive electromagnetic signals emulating thus the biological “quorum sense” signals.
Such a quorum sense communication may be based on an application-specific vocabulary that
will be encoded in the signal. The specifics of the temporal modulation aspect of this “quorum
sense signal” will come from theoretical biology and existing simulation studies.
Additionally, the frequency of the signal will be determined after studying the combined
influence of the physical medium properties, the range and interference constraints, power
requirements and the size of available hardware components.

6 Summary

As everyday objects are being enhanced with sensing, processing and communication
abilities, the near future of our everyday living/working is indicated by a high degree of
complexity. The emergent complexity concerns the machine-machine and human-machine
interactions as well as the provided services aimed at end users and at other machines. Into
this rapidly changing Aml environments new requirements and research issues arise, and the
need for a conceptual and analysis framework is apparent. This work attempts to introduce a
bio-inspired word model that draws features from natural systems and applies them into
symbiotic ecologies inhabited by both humans and artefacts. Furthermore, it introduces a
high-level architecture of Aml spaces that encloses the fundamental elements of bio-inspired
self-aware emergent symbiotic ecologies.

References

1. Akyildiz, I. F., Su, W., Sankarasubramaniam, Y., and Cayirci, E. A survey on sensor networks.

IEEE Communications Magazine, 40(8):102-114, 2002.

Arbib, M. A., Handbook of Brain Theory and Neural Networks, MIT Press, MA, 1995.

3. Bonabeau E., Dorigo M., and Theraulaz G. Swarm Intelligence: From Natural to Artificial
Systems. Oxford University Press, 1999.

4. Brooks, R. A. Intelligence Without Reason. In Proceedings of 12th Int. Joint Conf. on Artificial
Intelligence, Sydney, Australia, August 1991, pp. 569—595, (1991).

5. Brooks, R. A. Intelligence without representation. Artificial Intelligence, 47:139-159, 1991.

N

FRCSS'06: Future Research Challenges for Software and Services

95

COMMUNICATIONS OF EASST

6. Bullock, S., and CIiff, D., Complexity and emergent behaviour in ICT systems, HP Labs report
HPL-2004-187, 2004.

7. Christopoulou E., Goumopoulos C., Zaharakis I., Kameas A., "An Ontology-based Conceptual
Model for Composing Context-Aware Applications"”, Workshop on Advanced Context Modelling,
Reasoning and Management, Sixth International Conference on Ubiquitous Computing
(UbiComp04), Nottingham, England, 7-10 September 2004.

8. Digital Home Working Group, http://www.dhwg.org

9. Disappearing Computer initiative: http://www.disappearing-computer.net/

10.e-Gadgets project website: http://www.extrovert-gadgets.net

11.1STAG website: http://www.cordis.lu/ist/istag.htm

12.Kameas A., Mavrommati I., Ringas D., Wason P., "eComp: an architecture that supports P2P
networking among ubiquitous computing devices”, in Proceedings of the IEEE 2nd P2P
Conference, pp 57-64, Linkoping, Sweden, 5-7 September 2002

13.Kameas A., Bellis S., Mavrommati I., Delanay K., Colley M., Pounds-Cornish A., "An architecture
that treats everyday objects as communicating tangible components”, in Proceedings of the First
IEEE International Conference on Pervasive Computing and Communications, (PERCOM2003),
Texas-Fort Worth, 2003.

14.Kameas A., Mavrommati |. and Markopoulos P., “Computing in tangible: using artifacts as
components of Ambient Intelligent Environments”. In “Ambient Intelligence: The evolution of
Technology, Communication and Cognition”, (G. Riva, F. Vatalaro, F. Davide and M. Alcaniz,
eds), 10S press, pp 121-142, 2004.

15.Kennedy, J. Eberhart, R. Swarm Intelligence. Morgan Kaufmann Publishers, 2001.

16.Lund, H-H., Marti, P. Physical and Conceptual Constructions in Advanced Learning Environments.
Interaction Studies Journal, 5(2): 271-301, 2004.

17.Lund, H. H. Neural Building Blocks. In 1st International IEEE EMB Conference on Neural
Engineering, Capri, Italy, March 20-22 2003. IEEE Press.

18.Maturana, H. and Varela, F., Autopoiesis and Cognition: The realization of the living, D.Reidel,
Boston, 1980.

19.Mitchell, T. M., Machine Learning, McGraw-Hill, 1997.

20.Nolfi, S. and Floreano D., Evolutionary Robotics, MIT Press, MA, 2000.

21.Shoham, Y. Agent-oriented Programming, Artificial Intelligence, 60(1):51-92, 1993.

22.Stewart, 1., Cohen, J. Figments of Reality: the origins of the curious mind. Cambridge University
Press, 1997.

23.Wooldridge, M., Intelligent Agents, in G. Weiss (ed.) Multiagent Systems: A Modern Approach to
Distributed Artificial Intelligence, MIT Press, pp. 27-77, 1999.

FRCSS'06: Future Research Challenges for Software and Services

96

COMMUNICATIONS OF EASST

A Semantic Choreography-driven Frequent Flyer Program

José-Manuel Lopez-Cobo* and Alejandro Lopez-Pérez* and James Scicluna**
*Atos Origin SAE, Albarracin 25, Madrid, Spain
**University of Innsbruck, Digital Enterprise Research Institute, Technikerstrasse 21a, 6020 Innsbruck,
Austria

Abstract. Frequent Flyer Programs reward their members with Travel Services from affiliated
Service Providers. In this paper, we present a semantic application performing a Frequent Flyer
Program in which the customers can create and reuse travel packages. The application is built
upon a Service Oriented Architecture, accessing, discovering, composing and invoking Semantic
Web Services for the management of the Travel Packages. The composition of semantic services
is driven by Choreography, using the Web Service Modelling Ontology (WSMO) as a framework
to describe both the service capability and the Service behavior.

Keywords: Semantic Web Services, Case Studies, Choreography, Frequent Flyer Pro-
grammes

1 Introduction

Loyalty marketing has become a key element in many marketing companies, because it has been proven
to be measurable, and considerably effective. In fact, many companies have changed their marketing
strategy from mass-market advertising to different direct-marketing strategies, like loyalty-marketing.
Frequent flyer programs (FFP) are the most visible and the most highly developed of the award programs.
They are in fact a subset of a larger class of related marketing approaches known as frequency marketing,
relationship marketing or loyalty marketing. Frequent flyer programs are loyalty-marketing programs
[ffp]. STREAM Airlines is a fictitious airline company of the fictitious STREAM Group. The STREAM
Group has a FFP called STREAM Flows! System (SFS in short). The customers of the SFS (by means of
a membership) can obtain travel points from purchasing services of the STREAM Group. These services
might be an airline ticket, a hotel booking, a car rental or a shuttle booking (amongst others). There are
several companies affiliated to SFS. Each service of the program has its counterpart in points and these
points can be consolidated and exchanged with one or more services. With respect to the cost of the
FFP, a division can be made from the IT perspective and the rest. In particular, for a consulted FFP of a
medium-size European airline company the possible costs might include:

o IT costs such as software development, human resources, hardware and facilities: €3.5 Million
per year

FRCSS’06: FUTURE RESEARCH CHALLENGES FOR SOFTWARE AND SERVICES

97

COMMUNICATIONS OF EASST

e Communication such as to create and send material to the customers and retain their loyalty: €1
Million per year

e Organization and Marketing such as the cost for maintaining the business and all the relationships
with the partners of the program: €1.5 Million per year

e Point cost such as those stored in the FFP. In that sense, the FFP acts as a bank, a voucher for the
points from the customers: €36 Million per year.

For us it’s quite clear that solutions like SFS can allow FFPs to decrease their I'T cost, making them
more profitable due to the increasing incomes from advertisement and marketing.

SES allows customer and Service Providers to collaborate with each other to reduce the cost of the
system and share information. Using this paradigm, the share of knowledge and the understanding from
the machine point of view arises as a necessity. The Semantic Web comes at this point as one possibility
to reduce the gaps between the ability of the customer and the operability of Service Providers. SFS
provides a catalogue to their members where they can search and browse travel services. It also provides
mechanisms to create packages of travel services (packages which can be stored and reused). Each travel
service contracted is paid using the points gathered in previous transactions with the SFS.

Within the EU funded INFRAWEBS project, we have faced the challenge to build a Semantic appli-
cation performing a Frequent Flyer Program for a fictitious airline company. The architecture of the
application follows the guidelines of the project and it is based on a Service Oriented Architecture over
a P2P paradigm as shown in Figure 1. In this architecture, each peer has the same infrastructure and im-
plements the same set of components (SWS Designer, SWS Composer, SWS Executor, Organisational
Memory (OM), Semantic Information Router (SIR), and Distributed Repository among others).

Semantic interoperability has been sought in this application. For that reason we have used the frame-
work proposed by WSMO [RLKO5], paying special attention to the WSMO choreography and orchestra-
tion [SPRO5] to show the interaction between the customer and the Service Provider and within a Service
Provider. The INFRAWEBS architecture is based on two different stages: Design and Runtime. Figure
1 shows the INFRAWEBS overall architecture organized by stages. Some of the components belong to
more than one stage, because they offer features that are used in more than one stage. Consequently, we
have put them at the boundary of both stages, thus making them shared.

At Design/Development stage all the activities offer components for annotating, designing and com-
posing Semantic Web Services. At the Runtime stage there are the execution, monitoring and runtime-
discovery components to represent the core group. All of these components are briefly described below.

The Functional Architecture of the Designer is a set of functions organized semantically as modules,
which are needed for designing a semantic web service using a selected framework for service de-
scription. According to the above mentioned basic design principles, a semantic service created by
INFRAWEBS SWS Designer will be described in WSMO.

SWS-Executor is responsible for executing Semantic Web service descriptions based on WSMO. At
the heart of this module are the choreography and orchestration engines which execute the rules defined
in the interface descriptions. On top of the executor is also a Quality of Service Broker (QoS Broker)
responsible for monitoring and calculating metric data of the Web services that are being executed.

FRCSS’06: FUTURE RESEARCH CHALLENGES FOR SOFTWARE AND SERVICES

98

COMMUNICATIONS OF EASST

~d Imfr=unshes Arckitarthiire Nasiand/Bordi ros ,-"I
cd Infravebs Architecture Design/Runtime -
LEWrs-R AR
Rurti me E -~ é ‘ . Design
whrakers E wrepositon :-I::::::: SWS-C
QoS Broker DEWS-R L
IS S)
| E internalnterface E: ‘
IQaShanitar $:| ::
@: - wagents R SWE-0
'S SAM L.
| . - T
. externalnterface : e : SWSD2SIR
: DMIntIarface el “SP’THD'—"'
xexecutors «k0 Repositan SIEzOM |«CMS aggregators
S'S-E Ot —O}— SIR
«SPARQL.
W2 WP3 | WP |
] | |
WPS WPE | WPT |
] |]

Figure 1: Infrawebs Architecture

FRCSS’06: FUTURE RESEARCH CHALLENGES FOR SOFTWARE AND SERVICES

99

COMMUNICATIONS OF EASST

OM (Organizational Memory) contains non-logical representation of the WSMO objects stored in
DSWS-R (so called “knowledge objects) as well as some additional non-semantic data e.g. graphi-
cal models of SWS and “natural language” templates for WSMO Goals needed for modifying or using
these objects. OM is a Web service implementation of a case-based memory.

SIR is a meta-data based content management and aggregation platform, that will have a SPARQL
[PS06] query interface, which will be used by the SWS-D to query for service description meta-data, and
the UDDI interface integration with UDDI based service repository.

DSWS-R Repository is designed to enable efficient storage and retrieval of WSMO SWS descriptions.
It is realized as an extension of the wsmo4j and ORDI components, which already provide basic WSMO
software infrastructure. The DSWS-R API defines the interface methods that are available to the other
INFRAWEBS components.

SAM (Service Access Middleware) provides a retrieval and execution interface for advertised SW ser-
vices. The user/customer mandates a user interface agent for fulfilling the service demand. The user/in-
terface agent gives recommendations based on the user’s query.

The rest of the paper is structured as follows: in Section 2 a scenario will be described for the creation of
a package using the application, in Section 3 we will describe the WSMO elements we have created for
this application, emphasising on the Ontologies needed for describing the domain and the application.
In Sections 4 and 5 we will show how this application faces the discovery and composition of travel
services, highlighting the orchestration and choreography needed both from the requester and provider
point of view. We will finally wrap up with some related work and conclusive remarks in Sections 6 and
7 respectively.

2 Scenario Description

In this section we will describe a typical scenario in which a customer uses the SES portal for the creation
of a package of Travel Services, find suitable services for each slot of the package and, finally, contract
the proposed services for booking a flight, a hotel room and the renting of a car.

1. The customer logs in the application. We will define a scenario in which a customer ”Jane Doe”,
having 2500 points in her account wants to go to Madrid from Brussels and rent a car in Madrid
Airport (Barajas) to go to Toledo and book a room in a 4 stars hotel in Toledo” .

2. The customer defines her desires on the ”Voyage Planner”. Within the planner, Jane can choose
a stored package (flight + hotel + rent-a-car with standard restrictions) or create a new one. Jane
will create her own package. A box will appear and she will drag and drop icons from the left (one
for the flight, one for the hotel and one for the car). Each slot in the box represents an abstract
service (abstract in terms of desired behaviour but not fully specified [Pri04]). The definition of
the constraints may be based on time, distance, accumulated amount of points and whatever other
property with an ordinal and quantitative metric. Any of these properties can be graphically defined
as connections between the slots. For her own package she defines the following set of constraints:

o The location parking of the rent-a-car service has to be within 3 km of the destination airport.

FRCSS’06: FUTURE RESEARCH CHALLENGES FOR SOFTWARE AND SERVICES

100

COMMUNICATIONS OF EASST

£)SFS portal - Mozilla Firefox

P

(D)3 it/ ioealhost:8080 fnfrawebs/showNenPackage. do7idT emplate=car E el

perico palotes || Available Points: 25000 Histarial |_Customer profile | Search catalogue | CreatePackage | ==] Logout

» Create package » New package

Customer profile

Search catalogue

CreatePackage
= Logout

I Historial m New package

Create package

[

Customer packages
Package offers
Package templates
New package

wNew package

Hotel template
Car rental template

I Flight template
Shuttle template

[Contact] [Legal]

Figure 2: Screenshot of the creation of a package by means of SFS

o The rent-a-car service must be open at the scheduled landing time.
o The hotel check-in date has to be later than the scheduled time for landing.

e The accumulated amount of points for the three services can not be greater than 2200 points.

3. Once she has the package with the three slots filled, a WSMO goal is created using the templates
and the values obtained from the customer interaction with the interface. These goals are sent to
the Discovery Component and the Discovery searches into the SFS Catalogue for services that are
available for each slot.

4. The selection phase not only performs selection task but also checks the coherence between the
services chosen (the set of services chosen, as a whole, have to fulfil the constraints for the package
imposed by the customer).

5. The customer invokes the services which fulfil her package and each Service Provider will contact
SES for the payment of the service (the payment, from the customer perspective is made with
points, but from the Service Provider perspective is made by the SES). This arrangement between
SES and Service Providers is out of the scope of this paper.

FRCSS’06: FUTURE RESEARCH CHALLENGES FOR SOFTWARE AND SERVICES

101

COMMUNICATIONS OF EASST

3 Ontological Structure of the SFS

In this section we describe briefly the SFS ontologies that model the domain presented in our scenario,
and which will be used by the Semantic Web services developed by the Service Providers. These ontolo-
gies have been written in the Web Service Modelling Language (WSML) [dBLK"05] which is the base
language of the WSMO Conceptual Model.

VAN
General / \ / \
ontologies / Customer \ / Location /DateAndTime',
/ \ / \ \
/
/
/ Travel
/ Faciliies

Domian

ontologies

A
F N / N\
/ \ \ ”/ ‘ /
/ Fight \ / Hotel \ /Car rental\ / shuttle \

Application

ontologies

/,f’ Booking \ /. Template \
/ Flight \ /' Hotel /CarRental / Shuttle
/ Booking /' Booking /' Booking '\ / Booking \,
\ / \ / \ / \

Figure 3: SFS Ontologies

According to the classifications of Van Heijst et al. in [VHSW97] and Mizoguchi et al. in [MvWI95],
we can distinguish between the following types of ontologies:

e General ontologies, which represent common sense knowledge reusable across domains.
e Domain ontologies, which represent reusable knowledge in a specific domain.

o Application ontologies, which represent the application-dependent knowledge needed.

We will now describe in more detail some of these ontologies, paying more attention to those that are
related to the templates and packages. In the following sections we will use them to explain how SFS
makes use of the template and the packages for discovering, selecting, composing and invoking Semantic
Web Services. Some of the ontologies used in this paper will be only named. For a complete overview
of the SFS Ontologies, we refer the reader to [LCLPPOS].

FRCSS’06: FUTURE RESEARCH CHALLENGES FOR SOFTWARE AND SERVICES

102

COMMUNICATIONS OF EASST

3.1 Domain Ontologies

These ontologies describe domain concepts used in the SFS application. Amongst these ontologies are
Tourism Service Providers and the Services’s Ontologies (flight, hotel, rent-a-car, shuttle). The service
providers will offer different flights, hotel rooms, cars, shuttles and they will have to store the reservations
already made in order to be able to make future bookings. The ontologies also include taxonomies such
as the rooms of a hotel.

3.2 Template and Package Ontologies

This ontology describes the template and package concepts. It also describes the package constraints.
The ontology will be used to find the necessary goal templates for building the package. Logically, the
template and the package template are stored in the SFS as instances of these concepts. Each instance
will have a file (for a template) or many (for a package) which represent the abstract capability that
the requester wants to achieve. The system will build the goal (for a service or for "many” services)
using these templates and the inputs from the customer (using a rich graphical interface or even natural
language in future versions). The example below describes a goal template for booking a hotel room
(Listing 1).

namespace {_"http://www.wsmo.org/goals/sts/hotelRoomBookingGoalTemplate#”,
bo _“http://example.org/sfs/bookingOntology#”,
hb _“http://example.org/sfs/hotelBooking#”,
cu _“http://example.org/customer#”,
dc _“http://purl.org/dc/elements/1.1#”,
wsml _http://www.wsmo.org/wsml/wsml—syntax#”}

goal _http://www.wsmo.org/goals/sfs/hotelRoomBookingGoalTemplate”
capability hotelRoomBookingGoalTemplateCapability

postcondition
definedBy

?HotelBooking[
hotelStay hasValue ?BookingRequest,
buyer hasValue ?Buyer

] memberOf hb#hotelRoomBooking and

?BookingRequest[
checkln hasValue ?Checkln,
checkOut hasValue ?CheckOut,
numberOfPersons hasValue ?Amount,
hotelStars hasValue ?Stars,
numberOfBeds hasValue ?NumberOfBeds,
smoking hasValue ?Smoking

| memberOf hb#hotelStay and

?Buyer|
email hasValue ?Email,
name hasValue ?Name,
surname hasValue ?Surname

] memberOf cu#customer.

Listing 1: Goal Template for booking a Hotel Room

FRCSS’06: FUTURE RESEARCH CHALLENGES FOR SOFTWARE AND SERVICES

103

COMMUNICATIONS OF EASST

3.3 Booking Ontologies

The booking ontology describes the domain of booking services (which is a specialization of the purchase
of an item) within a B2C scenario. The main constructs of the booking ontology are: Booking: the
overall construct that holds all aspects for a booking where a buyer reserves a service from a service
provider, Booking Partners: the parties involved in a booking, i.e. buyer and seller, Payment: specifies
notions of payment, Delivery: specifies delivery methods for delivering a booking ticket from the seller
to the buyer

4 Discovery Related Aspects of Templates and Packages

The ability to build packages of Travel Services is one of the main features of the SFS Application. The
whole idea of the system is to provide the customers the ability of build packages to pack services into
a whole service for reusing and pricing purposes, reducing the interaction with humans in the Provider
side of the program, letting the customer the responsibility of the decision.

4.1 Abstract Services vs. Concrete Services

The SFS administrator will publish templates in the Catalogue. These templates are in the form of an
Abstract Service Description (ASD) [Pri04]. An ASD is the scaffolding used by the requester to build
the goal which represents the desire of the customer when she wants to obtain some Service (or some
of them) to perform her need. When the customer chooses a template the ASD linked to the template
is incomplete. The costumer will fill the ASD with constraints. These constraints will form part of
the axioms and functions of the requested capability. Once she has the package with the slots filled, a
WSMO Goal is created using the templates and the values obtained from the customer interaction with
the interface. These goals are sent to the Discovery Component which searches into the SFS Catalogue
for available services that can fulfil each slot. The following goal Template is selected when the customer
wants to book a room in a hotel:

Desire : The booking of a room in a hotel and the delivery of the ticket to the buyer via email.

Postcondition : a hotel room booking for a buyer (the SFS customer), the payment method chosen will
be by points.

Effect : delivery of the hotel room booking ticket via email.

4.2 Discovery and Selection

The customer will send a query to the Discovery module to obtain the set of Services which better suits
the requirements of the Customer. For each slot belonging to the package, the Discovery module will
be asked to find a set of Services that performs the desired behaviour, maintaining the integrity with
respect to the constraints of the slot and checking that the package constraints are satisfied. The process
for the selection is as follows (the interaction of the customer with the Discovery has been depicted as a
choreography interface in Figure 4):

FRCSS’06: FUTURE RESEARCH CHALLENGES FOR SOFTWARE AND SERVICES

104

COMMUNICATIONS OF EASST

[N_slots != 0] servicesAvailable = 0

servicesAvailable service

Discovery
servicesAvailable=
check(service,constaints,servicesAvailable)

N_slots=N_slots-1

[N_slots = 0]

.

N_slots

constraints

servicesAvailable != 0

Figure 4: Process of Backtracking and Selection phase

e The user receives a list of possible results for each slot She can manually select one service or
she can be advised by the system (using QoS metrics or other customer preferences defined previ-
ously).

o The selected service is asked for final offers which can fulfil the customer preferences and con-
straints (the service may have more than one possible realisation of the service for a concrete
goal). These offers are specific instantiations of the service. If an offer is finally accepted by the
customer, the concrete invocation endpoint of the service is stored until all the services are chosen.

o When all the slots are concretized with final offers, then the package is ready to be enacted. Since
all the services have agreed with the overall constraints, the order for the enactment is not an issue
and they can be contracted in whatsoever order and time (even in parallel).

5 Composition and Enactment of Services

We have defined Web Services for booking a flight, a hotel room or renting a car. These Web Services
can be composed of other Web Services. This setting allows modelling all notions of a WSMO Web Ser-
vice description: a Capability of the end-user service and its Choreography for user-service interaction,
as well as the orchestration which incorporates the aggregated Web Services. WSMO Choreography
deals with interactions of the Web service from the client’s perspective. We base the description of the
behaviour of a single service exposed to its client on the basic ASM models: (1) they are state-based, (2)
they represent a state by a signature, and (3) it models state changes by transition rules that change the
values of functions and relations defined by the signature of the algebra. Taking the ASM methodology
as a starting point, a WSMO choreography consists of the following elements:

e State: A state is described in terms of non-empty set of ontologies.

e Guarded transitions: Transition rules that express changes of states by changing the set of in-
stances. These rules are expressions that take the form of: if Cond then Updates, forall Variables

FRCSS’06: FUTURE RESEARCH CHALLENGES FOR SOFTWARE AND SERVICES

105

COMMUNICATIONS OF EASST

ServiceB

+ " Chor g E

J

—3asm| ORCH-
- ASM

F 3

> Goal

r'y

ServiceA

Figure 5: WSMO Choreography and Orchestration Interfaces

with Cond do Updates (for universal quantification) and choose Variables with Cond do Updates
(for non-deterministic choices)

e The Orchestration part of a service interface defines how the overall functionality of the service
is achieved in terms of the cooperation with other service providers. It describes how the service
works from the provider’s perspective (i.e. how a service makes use of other WSMO services or
goals in order to achieve its capability, see Figure 5)

We will detail the elements that define a Web Service, highlighting the interface of the Web Service
and, especially the Ontologies used for describing the choreography and the orchestration. We use the
example of the Hotel Room Booking Web Service . This web service is provided by MH hotel service
provider. It offers 4 stars hotels in Spain.

Functionality : A booking for a hotel room will be created and the reservation ticket will be sent to the
buyer’s email.

Capability :
o Assumption: The required payment method is defined. In this case it will be by the subtrac-
tion of points from the FFP membership.
e Precondition: The required inputs for this service are

1. The buyer contact information, including the e-mail address
2. the buyer hotel room booking preferences

FRCSS’06: FUTURE RESEARCH CHALLENGES FOR SOFTWARE AND SERVICES

106

COMMUNICATIONS OF EASST

e Postcondition: A hotel room booking for a buyer is performed and the payment for this room
will be made with points. The hotel provider is identified.

o Effect: The delivery of the hotel room reservation is done by email to the buyer.

For the sake of clarity, the semantic description is split in two separate listings: one for the capability
(Listing 2 and the other for the interface description (Listing 3). In both cases the same namespace is
assumed to be used. The assumption in Listing 2 is omitted since the reduction of the points from the
system is out of the scope of the SFS scenario.

namespace {_"http://example.org/sfs/services/MHHotelRoomBookingWS#”,
bo _"http://example.org/sfs/ontologies/bookingOntology#”,
hb _"http://example.org/sfs/ontologies/hotelBooking#”,
cu _“http://example.org/customer#”,
dc _“http://purl.org/dc/elements/1.1#”,
wsml _"http://www.wsmo.org/wsml/wsml—syntax#”}

webService _“http://example.org/sfs/services/MHHotelRoomBookingWS”
capability MHotelWSCapability
sharedVariables{?BookingRequest, ?Buyer}

precondition
definedBy
?BookingRequest memberOf hb#hotelStay and
?Buyer memberOf cuf#customer.

postcondition
definedBy
?BookingRequest[
checkin hasValue ?Checkln,
checkOut hasValue ?CheckOut,
numberOfPersons hasValue ?Amount,
hotelStars hasValue ?Stars,
numberOfBeds hasValue ?NumberOfBeds,
smoking hasValue ?Smoking
| memberOf hb#hotelStay and
?Buyer[
email hasValue ?Email
| memberOf cu#customer implies
exists {?HotelBooking} (
?HotelBooking[
hotelStay hasValue ?BookingRequest,
buyer hasValue ?Buyer
| memberOf hb#hotelRoomBooking and
?BookingRequest|
checkin hasValue ?Checkln,
checkOut hasValue ?CheckOut,
numberOfPersons hasValue ?Amount,
hotelStars hasValue ?Stars,
numberOfBeds hasValue ?NumberOfBeds,
smoking hasValue ?Smoking
| memberOf hb#hotelRoomBooking and
?Buyer[
email hasValue ?Email
| memberOf cu#customer).

FRCSS’06: FUTURE RESEARCH CHALLENGES FOR SOFTWARE AND SERVICES

107

COMMUNICATIONS OF EASST

effect
definedBy
?HotelRoomBooking [
bookingldentifier hasValue ?Bookingldentifier,
bookingTicket hasValue ?HotelRoomBookingTicket,
buyer hasValue ?Buyer,
seller hasValue ?MHotelServiceProvider
| memberOf hb#hotelRoomBooking implies
exists {?OnlineDelivery}
(?OnlineDelivery [
deliveryltem hasValue {?HotelRoomBookingTicket},
sender hasValue ?MHotelServiceProvider,
receiver hasValue ?Buyer,
onlineDeliveryMethod hasValue “email”
ImemberOf bo#onlineDelivery).

Listing 2: Capability Description for the Hotel Booking Web Service

Interface :

o Choreography:

— When a hotelBookingRequest is received, if it fulfils the service provider constraints, all
the hotel-room combinations will be returned to the customer (using the findHotelStay-
Mediator).

— Once the customer selects the best combination, and the hotelStayInfo is checked, a
hotelBookinglnstance is completed with all the attributes filled in.

e Orchestration: When a hotelBookingRequest is received, the service must make use of an-
other service which provides the HotelStay (this internal Web Service looks into the infor-
mation space of the provider and returns instances of the concept HotelStay)

The behaviour of the Interface of the Web Service is depicted in 6 below.

Network
Choreography Orchestration

/N /N <<wgMediator>> <<Goal>>
/ \—/ \ findHotelStayMediator finHotelStayGoal

MH hotel //\

Web service /<

N

Hotel booking preferences

v

Buyer contact information

A

Hotel booking

w0
-

\ /
\/

Figure 6: MH Hotel Web Service accepts the Hotel Booking preferences and the buyer contact informa-
tion and returns the booking to the customer

FRCSS’06: FUTURE RESEARCH CHALLENGES FOR SOFTWARE AND SERVICES

108

COMMUNICATIONS OF EASST

The Interface of the WSMO Web Service is shown in Listing 3. Note that we omit descriptions such
as non-functional properties to keep the document concise. Furthermore the orchestration description is
not shown since this is still ongoing work within the WSMO community.

interface MHotelWSInterface
choreography
stateSignature

importsOntology{
~"http://www.wsmao.org/ontologies/sfs/hotelBooking”,
_’http://example.org/customer”

}

in
hbi#hotelStay withGrounding _"http://example.org/MHotelWS#wsdl.interfaceMessageReference(
MHotelServicePortType/HotelRoomBooking/In)”,
cu#customer withGrounding _"http://example.org/MHotelWS#wsdl.interfaceMessageReference(
MHotelServicePortType/HotelRoomBooking/In)”

out
hb#hotelRoomBooking withGrounding _"http://example.org/MHotelWS#wsdl.interfaceMessageReference(
MHotelServicePortType/HotelRoomBooking/Out)”

transitionRules

forall {?HotelRoomBookingRequest} with
((?HotelRoombookingRequest]
hotelCity hasValue “?city,
checkin hasValue ?checkin,
checkOut hasValue ?checkOut,
hotelStars hasValue ?stars,
allowPets hasValue ?allowPets,
allowGroupsReservation hasValue ?allowGroupsReservation
| memberOf hbi#hotelRoombookingRequest)
and (
exists ?MHotelServiceProvider
(?MHotelServiceProvider[
hasCompanyID hasValue "MH Hotels”,
availableCities hasValue ?city,
allowPets hasValue _boolean(false”),
allowGroupsReservation hasValue _boolean("true”),
minStars hasValue 4,
hotels hasValue {?Hotel}
ImemberOf hb#HotelServiceProvider)
)
) do
add(-# memberOf hb#hotelBooking)
endForall

forall { ?HotelStayRequest} with

(?BookingRequest[
checkln hasValue ?Checkln,
checkOut hasValue ?CheckOut,
numberOfPersons hasValue ?Amount,
hotelStars hasValue ?Stars,
numberOfBeds hasValue ?NumberOfBeds,
smoking hasValue ?Smoking

] memberOf hb#hotelStay and

?Buyer[

FRCSS’06: FUTURE RESEARCH CHALLENGES FOR SOFTWARE AND SERVICES

109

COMMUNICATIONS OF EASST

email hasValue ?Email
| memberOf cu#customer) do
add(_#[
hotelStay hasValue ?BookingRequest,
buyer hasValue ?Buyer
] memberOf hb#hotelBooking)
endForall

Listing 3: Interface Description of the Hotel Booking Web Service

6 Related Work

Most of the related work in this area has been produced by the WSMO Community in terms of Use
Cases. One of these Use Cases relates to Amazon [KRS05] which follows a bottom-up approach for
providing semantics to the Amazon Web Service. First, an ontology which describes the data types
used by the Amazon WSDL file is defined. The capability and interface descriptions use the concepts
in this ontology to describe what the service provides and how the client can interact with the service.
The Virtual Travel Agency (VTA) Scenario [SLLT04] is a similar approach to the Stream Flows System
depicted in this paper. However, the VTA scenario does not describe the interaction of the client with
the service by means of a choreography description. Within the DIP integrated project [dip] various
case studies have been carried out. These include: a Business to Business Telecommunications scenario
acitedip:d83, e-Government [DD03] and also an eBanking study [LCC*05].

7 Conclusions and Further Steps

In this paper we have presented an application for a Frequent Flyer Program. It takes advantages of
the Semantic Web, particularly of Semantic Web Services. Goal templates ease the usage of the system
for the customer since they hide the complexity of the logical descriptions of WSMO. A choreography-
driven selection phase has been proposed for this kind of composite services (packages). The compo-
sition and invocation of composite services has been also detailed, making use of the orchestration and
choreography proposed in WSMO. Our next steps for the application is the improvement of the descrip-
tion by means of mediators, taking advantage of the different kinds of mediators which are supported by
WSMO (mediators for not only data mismatching in terms of ontologies but also for the interconnec-
tion of goals and web services and among them). Finally, we have created the INFRAWEBS process, a
software development driven methodology that will guide all the partners to integrate the INFRAWEBS
components in the framework. The final implementation of the SES system, scheduled for this year,
will instantiate this INFRAWEBS Integrated Framework. Furthermore, we plan to improve its features
including security aspects and the inclusion of tools for the graphical creation and management of Goals
templates based on the SWS Designer of the INFRAWEBS Project.

Acknowledgments We would like to thank the aid of the INFRAWEBS team for their fruitful dis-
cussions concerning this use case. This work is supported by the EC funded IST project INFRAWEBS
(FP6-511723).

FRCSS’06: FUTURE RESEARCH CHALLENGES FOR SOFTWARE AND SERVICES

110

COMMUNICATIONS OF EASST

References

[dBLKT05] Jos de Bruijn, Holger Lausen, Reto Krummenacher, Axel Polleres, Livia Predoiu, Michael

[DDO05]

[dip]
[ffp]
[KRSO05]

[LCC105]

[LCLPPOS]

[MvWI95]

[Pri04]

[PS06]

[RLKO5]

[SLLT04]

[SPROS]

[VHSWI97]

Kifer, and Dieter Fensel. The Web Service Modeling Language WSML. Technical Report
D16.1, DERI Innsbruck, 2005.

Rob Davies and Christian Drumm. Case Study eGovernment: Prototype Requirements
Specification. Technical Report D9.2, DIP Integrated Project, 2005.

Data, information and process integration with semantic web services.
Frequent flyer.com and frequent flyer marketing.

Jacek Kopecky, Dumitru Roman, and James Scicluna. Wsmo Use Case: Amazon E-
Commerce Service. Technical Report D3.4, DERI Innsbruck, 2005.

Silvestre Losada, Oscar Corcho, Jesus Contreras, Ménica Martinez Montes, José Luis Bas,
Sergio Bellido, Richard Benjamins, and Jordi Ribas. Case Study eBanking: WSMO De-
scriptions of Application. Technical Report D10.4, DIP Integrated Project, 2005.

José-Manuel Lépez-Cobo, Alejandro Lépez-Pérez, and Clara Pezuela. Requirements Pro-
file and Knowledge Objects. Technical report, Atos Origin SAE, 2005.

Riichiro Mizoguchi, Johan van Welkenhuysen, and Mitsuru Ikeda. Task Ontology for Reuse
of Problem Solving Knowledge. In Second International Converence on Building and Shar-
ing of Very Large-Scale Knowledge Bases (KB&KS 1995), Twente, The Netherlands, 1995.

Chris Priest. A Conceptual Architecture for Semantic Web Services. In Third International
Semantic Web Conference (ISWC 2004), November 2004.

Eric Prud’hommeaux and Andy Seaborne. SPARQL Query Language for RDF. Technical
report, World Wide Web Consortium, 2006.

Dumitru Roman, Holger Lausen, and Uwe Keller. Web Service Modeling Ontology
(WSMO). Technical Report D2, DERI Innsbruck, 2005.

Michael Stollberg, Holger Lausen, Ruben Lara, Uwe Keller, Michal Zaremba, Armin
Haller, Dieter Fensel, and Michael Kifer. WSMO Use Case: Virtual Travel Agency. Tech-
nical Report D3.3, DERI Innsbruck, 2004.

James Scicluna, Axel Polleres, and Dumitru Roman. Ontology-based Choreography and
Orchestration of WSMO services. Technical Report D14, DERI Innsbruck, 2005.

G. van Heijst, A. Th. Schreiber, and B.J. Wielinga. Using Explicit Ontologies in KBS
Development. In International Journal of Human-Computer Studies, volume 46, pages
183-292, 1997.

FRCSS’06: FUTURE RESEARCH CHALLENGES FOR SOFTWARE AND SERVICES

111

COMMUNICATIONS OF EASST

Characterization of Semantic Grid Engineering

Joachim Bayer*, Fabio Bella*, Alexis Ocampo*
* Fraunhofer Institute for Experimental Software
Engineering (IESE)

Abstract. Currently, there is confusion about processes to apply for engineering
solutions based on semantic-rich descriptions of services. We present the results of a
survey that aimed at identifying suitable engineering processes in this emerging domain.

Keywords: Software Engineering Process, Software Engineering Lifecycle

1 Introduction

Although the basic concepts of service-oriented architectures and web services, on the one
hand, and grid technologies on the other hand, have become very popular in the last few years
and are recognized as enabler architectural styles for modern enter-prise and scientific
applications, much confusion remains concerning strategies and processes suitable for
engineering grid-enabled web services. Real projects indicate that many difficulties arise
related to a concerted application of the practices and that suitable means for such
coordination are urgent needed.

Existing modeling approaches such as object-oriented analysis and design, enter-prise
architecture frameworks, and business process modeling represent widely-accepted, high-
quality practices for identifying and defining appropriate abstractions within service-oriented
solutions [11].

Concerning the adoption of grid technologies, many organizations do fully under-stand the
value of virtualizing organizational resources and making them available in the form of
services, yet it is still unclear where to start and which strategy to apply in order to minimize
risks and provide real benefits. Things become even more difficult when grid services are
coupled with the emerging semantic web services paradigm, which promises automated
discovery, creation, composition, and enactment of such services. The idea behind handling
services in a semantic-oriented way is based on formal semantic-rich descriptions of services
and machines capable of processing the information contained in these descriptions.
Engineering a solution in this area mainly means the following: a) the semantic annotation

FRCSS'06: Future Research Challenges for Software and Services

112

COMMUNICATIONS OF EASST

and publication of services, b) the engineering of machines (e.g., agents) capable of
autonomously coming up with a solution to a given problem. The latter implies several steps
including, for example, a machine to break down the problem to be solved into smaller
problems that can be solved through atomic services, discovering the needed services,
orchestrating them for achieving one composed service suitable for solving the main problem,
invoking the services discovered according to the sequence orchestrated, and eventually
translating the results from some atomic services according to the semantic expected by other
services for their input (e.g., translating an output in inches into an input in centimeters).

In this paper, we present a systematic investigation of the field of semantic grid together with
its related fields and the results of a literature search aimed at determining currently available
engineering processes. The paper is focused on the fields of web services, grid services, and
semantic web services.

The remainder of this paper is structured as follows: Section 2 provides an over-view of the
main fields related to semantic grid. Section 3 presents a practical example that illustrates
how the same scenario can be implemented in different ways by applying web services, grid
services, or semantic web services. Section 4 presents existing engineering approaches in the
considered fields. Section 5 summarizes the paper.

2 Semantic Grid Domain

The semantic grid domain is an emerging domain and a stable reference terminology does not
exist yet. In this section, we provide an overview of our understanding of the domain. The
characterization does not aim at being a reference characterization but rather at improving the
readability of the reminder of the article.

The field of semantic grid strongly relates to several other emerging areas of interest, such as
grid services and semantic web services. Due to the novelty of many of the related fields, the
relationships between them are not always clear and will be highlighted in the following. Fig.
1 gives an overview of the relevant fields. The arrows in the figure mean that a field is based
on concepts and solutions provided by other underlying fields. The fields of grid computing,
web services, and semantic web depicted at the bottom of the figure do not present mutual
relationships, since they originate from different research areas and address different
problems. They provide the concepts needed for the definition of the fields grid services and
semantic web services, which are both characterized by the use of technologies related to web
services. The field of semantic grid, which results from the idea of describing grid-enabled
web services in a semantic-rich way, is shown at the top of the figure.

In the following, the fields are further discussed in terms of the main problems addressed, the
organizations involved in their solution, and the approaches currently proposed.

Grid Computing - The idea behind the field of grid computing is to make use of unused
resources such as CPU cycles, network bandwidth, or data storage for solving massive
computational problems. To achieve the goal, heterogeneous sets of computers such as

FRCSS'06: Future Research Challenges for Software and Services

113

COMMUNICATIONS OF EASST

desktop computers and supercomputers are treated as a virtual cluster embedded in a
distributed environment. Furthermore, grid computing solutions support virtual organizations
in sharing resources and data beyond the boundaries of administrative domains.

Research in this field began in the early days of computer networks and several different
approaches have been proposed. [22] provides a brief overview of eminent projects such as
Condor, CODINE, Legion, Nimrod, and UNICORE.

Semantic Grid

O

Grid Services Semantic Web Services
Grid Computing Web Services Semantic Web

Fig. 1. Semantic grid and related fields

Web Services - Web service technology is used for exchanging data between applications. Its
main goal is to enable the exchange of data over computer networks (like, for example, the
internet) between heterogeneous software applications (i.e., applications written in various
programming languages and running on various platforms) in a way similar to the inter-
process communication taking place on single computers.

OASIS and the World Wide Web Consortium (W3C) are the steering committees responsible
for the architecture and standardization of web services.

Currently available protocols for web services include SOAP (called Simple Object Access
Protocol in its first version), the Web Service Description Language (WSDL), and the
protocol for Universal Description, Discovery, and Integration (UDDI).

Solutions based on web services apply the service-oriented architecture pattern and are
usually characterized by the communication between a service requester (i.e., the system that
needs a service), a service provider (i.e., the system that provides the service), and a service
broker (i.e., a system that collects and provides information about available services). SOAP
is generally used for communication between requester and provider; WSDL can be used to
describe services provided by the broker; UDDI can be used to publish available services in
service registries.

OASIS is also the steering committee responsible for the standardization of the Business
Process Execution Language for Web Services (WSBPEL). The language aims at formally
specifying business processes and business interaction protocols. WSBPEL extends the web

FRCSS'06: Future Research Challenges for Software and Services

114

COMMUNICATIONS OF EASST

services interaction model, enables it to support business transactions, and defines an
interoperable integration model to facilitate the expansion of automated process integration in
both the intra-corporate and the business-to-business spaces.

Semantic Web - In its current form, the web presents the user with documents, called web
pages, containing links to other documents or information systems. By selecting one of these
links, the user can access more information about a particular topic. Since the primarily
intended users are humans, the language used to create web pages (i.e., the Hypertext Markup
Language, HTML) emphasizes the visual presentation of information and does not provide
any support for the semantic classification of information blocks. This approach makes the
automated handling of web page content very difficult, if not impossible.

In February 2004, W3C released the Resource Description Framework (RDF) and the Web
Ontology Language (OWL) as W3C Recommendations: RDF is used to represent information
and exchange knowledge in the web. OWL is used to publish and share sets of terms called
ontologies, supporting advanced web search, software agents, and knowledge management.
These new technologies allow enhancing usability and usefulness of the web in several ways:
web documents become machine-readable through new tags suitable for semantic-based web
search; document creators can use common metadata ontologies and maps between
vocabularies to annotate their documents so that agents can use the information in the
supplied metadata; automated agents can perform tasks for users of the semantic web using
this metadata.

Grid Services — Grid Services result from engineering grid computing solutions in accordance
with the service-oriented architecture pattern. In this case, resources are virtualized in the
form of services.

The Global Grid Forum (GGF) is a community-initiated forum of thousands of individuals
from industry and research leading the global standardization effort for grid computing [1].
One of the main results of GGF is the Open Grid Service Architecture (OGSA). OGSA is a
service-oriented architecture that specifies a set of distributed computing patterns realized
using web services. OGSA can be regarded as the industry blueprint for standards-based grid
computing. The Open Grid Services Infrastructure specification (OGSI) is a further result of
GGF. OGSl is a set of conventions and extensions of WSDL and its related XML schema to
introduce grid-enabled services as a particular type of web services. OGSI introduces the idea
of stateful web services and defines approaches for creating, naming, and managing the
lifetime of instances of services; for declaring and inspecting service state data; for
asynchronous notification of service state change; for representing and managing collections
of service instances; and for common handling of service invocation faults.

Since OGSl is not a pure subset of web services and requires a modification of WSDL (Grid
WSDL), current tools must be extended to parse and process WSDL for grid services. The
Web Services Resource Framework (WSRF) represents a further approach for the
specification of grid services. WSRF, like OGSI, defines conventions for managing “states”

FRCSS'06: Future Research Challenges for Software and Services

115

COMMUNICATIONS OF EASST

so that applications can reliably share changing information. In combination with other web
service-standards, the purpose is to make grid resources accessible within a web services
architecture. Coupled with WS-Notification, WSRF is a response to, and supersedes, OGSI.
WSRF was announced by the Globus Alliance and IBM (with contributions from HP, SAP,
Akamai, Tibco and Sonic) in January 2004. The framework is already implemented in
available solutions such as version 4.0 of the open source Globus Toolkit for grid computing.
Semantic Web Services - Web services allow a new level of service on top of the current web,
since they can be assembled to perform functions or execute business processes. On the other
hand, ontologies, which can be considered the basic building blocks of the semantic web,
enable the automated handling of documents available on the web based on their content. The
combination of the two approaches, which is called semantic web services, opens new
possibilities and promises to transform the web from a static collection of information to a
distributed device of computation. Technologies related to semantic web services aim at
making the web machine-interpretable and will allow the automation of a broad spectrum of
activities related to web services, such as discovery, selection, composition, negotiation and
contracting, invocation, monitoring of progress, and recovery from failure.

Currently, five initiatives aim at providing semantic mark-up and means for semi-automated
discovery, composition and execution of web services: OWL-S (formerly DAML-S) [4],
METEOR-S [5], WSMO [6], IRS [14], and ASG .[7].

The OWL-based ontology for services OWL-S is developed by the semantic web services
branch of the DAML program.

The METEOR-S project is led by the LSDIS Lab (University of Georgia). The project
focuses on adding semantics to WSDL and UDDI, on adding semantics to BPEL4WS, and
introduces a semi-automatic approach for annotating web services described using WSDL.
The Digital Enterprise Research Institute (DERI) is the main initiator of the SDK WSMO
working group. Major results of this initiative are the Web Services Modeling Ontology
(WSMO), the Web Services Modeling Language (WSML), and the Web Services Execution
Environment (WSMX). WSMO defines a conceptual model for the semantic description of
web services and is based on the Web Service Modeling Framework (WSMF)

The Knowledge Media Institute (KMI) works on the Internet Reasoning Service (IRS), a
Semantic Web Services framework, which allows applications to semantically describe and
execute web services. The IRS supports the provision of semantic reasoning services within
the context of the semantic web. IRS-11 and DERI’s WSMX are functionally similar, and the
newest IRS release (IRS-111) has become a platform and infrastructure for creating WSMO-
based semantic web services.

The Adaptive Service Grid Project (ASG) is an Integrated Project supported by the European
Union. ASG started on September, 2004, and involves 22 partners from seven countries. The
project aims at developing a proof-of-concept prototype of an open platform for adaptive

FRCSS'06: Future Research Challenges for Software and Services

116

COMMUNICATIONS OF EASST

services discovery, creation, composition, and enactment. Since DERI is one of the involved
partners, the ASG and WSMO initiatives share their experience continuously.

Semantic Grid - The combination of technologies applied in the fields of grid services and
semantic web services led to the introduction of semantic grid services as semantically and
formally annotated, stateful, and grid-enabled web services and to the notion of the semantic
grid as a grid computing environment supporting and providing these. According to this, the
main goal of semantic grids is to enable the automated processing of data, information, and
computing resources within and across virtual organizations. Some of the activities related to
this area are coordinated through the Semantic Grid Research Group of the Global Grid
Forum.

3 A Practical Example

In this section, we illustrate how the same scenario can be implemented in different ways by

applying web services, grid services, or semantic web services.

The example is called “buddy scenario”. The idea behind the scenario is that a user tries to

find the location of one of his or her buddies. The user knows the buddy’s name. The user’s

request is to find the location of the buddy, preferably in a graphical way. For this example,
we assume that the following services are available:

— S1-aweb service that, for a defined group of buddies, provides the phone number for an
identified buddy. This service is based on a local database that provides other services as
well, like different personal data for the buddies, such as postal or email addresses.

— S2 - alocation web service provided by mobile phone network providers. This web
service takes as input a mobile phone number and provides as result the location of the
respective mobile phone. The location data is based on the mobile cell the mobile phone is
currently in and is given in this example as GPS data of the center of the mobile cell. We
assume that different mobile phone network providers provide such a location web service
to locate their users if those agree to this procedure.

— S3-amap web service that is able to graphically display GPS data on a map. This web
service takes as input GPS data and display a marker at the respective position on a map
that displays the area around the location given by the GPS data.

Web Services - In a web service based solution, the user trying to find a buddy is required to

find appropriate services. S1 is a local service the user is aware of, so the overall problem of

finding the buddy is partially solved: the mobile number is known once this service has been
invoked. The user then needs to use web service registries to find services that match the

buddy search based on phone numbers. Searching a service registry for services that provide a

location for a given mobile phone number will result in the services provided by the different

mobile phone network providers. The user then needs to select the provider of the buddy
either by trying the different services or by knowing the buddy’s provider based on the

FRCSS'06: Future Research Challenges for Software and Services

117

COMMUNICATIONS OF EASST

number. Once the location web service is identified, the user knows that the result is given as
GPS data. With this information, finally, the map service S3 can be identified and invoked.
Thus, the user can now invoke the selected services manually, passing the result of one
service to the next service, until, finally, the map with the buddy’s location is displayed.

In the web service based solution, the user needs to autonomously search for appropriate
services, understand and match their interfaces, and finally, invoke the services in the proper
order forwarding the results from one service as input to the next.

Grid Services - From a user’s point of view, the situation is not very different in a grid
service based solution, since the grid is transparent to its users. The difference can be that the
different services are available on the same grid and the search for appropriate services is thus
simplified. There is, however, a big difference on the service provider side. They can exploit
the sharing of grid resources to provide a higher quality of service, resulting in services that
are, for instance, faster, more available, and more reliable.

Semantic Web Services - For the user, the situation changes dramatically if the solution is
based on semantic web services. This is because the user can directly invoke a request that
finds and displays the buddy’s location providing as input the buddy’s name only. The
semantic annotation of the web services enables the automatic selection of the phone number
service S1, the location service S2, and the map service S3, as well as their composition based
on the types of input and output parameters of the involved services, as well as on their pre
and post conditions. The automatic invocation forwards the results from one service as input
to the next service and provides the final result to the user. The selection of the right mobile
provider can be either done by trial and error or by automatically discovering the appropriate
service by relating the semantic annotations given by the user with ontological information
contained with in the service that associates phone numbers with mobile phone providers.
The difference for the users of semantic web services is that they are required to augment
their service request with semantic information. If, however, they provide this information,
they do not need to search for appropriate services, find services that fit and together solve
their problem, and invoke the services, since these activities can all be performed
automatically, based on the provided semantic information.

4 Engineering Processes

In this section, we present the results of a literature survey we performed in order to
determine available reference processes for engineering solutions in the semantic grid
domain. Processes for engineering and setting up grid infrastructures are out of the scope of
the survey. Keyword searches were performed in databases such as TEMA and Fraunhofer
Publica. Other sources of information were the Internet (in particular, the domains related to
DAML, DERI, GGF, Globus Alliance, IBM, and W3C) and the publications of thematically

FRCSS'06: Future Research Challenges for Software and Services

118

COMMUNICATIONS OF EASST

related international conferences (e.g., Grid Services Engineering and Management GSEM
2004 [23]).

In the following, processes are arranged in three main groups according to their application
field: web services, grid services, and semantic web services.

Web Services - Zimmermann et al. [11] discuss the Service-oriented Analysis and Design
(SOAD) approach, which aims at helping organizations to discover new business
opportunities and threats. Solutions engineered following this approach should be based on
reusable services, which in turn must use and provide well defined, standard-compliant
interfaces. In the following, a brief description is provided.

Describe the business scenario - The objective of this activity is to create a workflow
description that will be used for modeling the service. There are no suggested notations or
techniques that could be mapped to this activity.

Create a conceptual service model - Traditional requirements analysis techniques can be
performed through interviews or group meetings with stakeholders in order to discover
candidate services. Another possibility is to follow the Component Business Modeling (CBM)
technique. CBM is a technique that could help in deriving services in a top-down manner
[37]. It provides a framework for viewing the business as a network of discrete services,
turning the services into unique building blocks.

Create a business process model - Business process models shall be described after having
identified the candidate services. They shall be described as a sequence of operations/services
performed with a specific business goal in mind. The creation of a business process model
consists of two steps: create a service states model and create a business interaction model.
Once the business process model has been identified, techniques from enterprise architecture
frameworks and object-oriented analysis and design can be used for implementing and
deploying the service(s).

Similar approaches and examples for identifying, designing, implementing, and deploying
services were found in the telecommunications domain [8],[9]. Here, one proposal of a
process model and its application to provide a means for systematically creating services with
interoperability capabilities is provided in [10]. In this approach Service Information Objects
(SIO) and their relationships are drawn in a conceptual model. Then, a first sketch of the
services interaction is recorded in a behavioral model. Service Information Objects identified
in the previous phase are structured into Computational Objects (COs). This is done by
encapsulating service information objects into computational objects with an operational
interface as a wrapper. Detailed representations from the conceptual model and the behavioral
model are recorded in interactions and class diagrams respectively.

Grid Services - Many examples can be found on Internet about how to develop user grid
services using Globus Toolkit [16], [17], [24]. A generalization of the process is described in
the following.

FRCSS'06: Future Research Challenges for Software and Services

119

COMMUNICATIONS OF EASST

Create the service interfaces - Grid services interfaces can be defined either manually by
using WSDL or automatically.

Generate stub and support code - After defining the grid service interface, stubs can be
created, which, in turn, enable the service to be accessed through protocols such as SOAP
over HTTP.

Write server-side-implementation code - Once stubs have been generated, the grid service can
be implemented following the guidelines provided in [19].

Write the client-side implementation code - In order to create a client that accesses the grid
service, an implementation of the client side is needed. Possibilities can be to implement a
web interface (e.g., a portal) or to implement a language specific API.

Deploy and test the grid service - In order to deploy the service, the developer must write an
XML descriptor file, which describes and configures the service. Finally, the file can be
included in any suitable grid services hosting environment.

Examples were also found based on a different platform: the OGSI.net tool. In this case, the
activities create service interface, and generate stub and support code are not performed;
instead, after implementing the logic of the service, annotations are attached to the service
implementation with the goal of exposing the operations, data, and policies defined in the
service as metadata. The annotations can be processed by static analysis tools and the
container’s runtime system to transform the author’s service logic into a grid service without
requiring the author to have a detailed knowledge of the container [18].

Semantic Web Services - As introduced in section 2, an infrastructure allowing the semantic
annotation of services is needed by software agents to handle services autonomously, i.e., to
reason about services. Section 2 also introduces the, currently, five major initiatives
addressing the semantic-oriented handling of services: OWL-S [4], METEOR-S [5], WSMO
[6], IRS [14], and ASG [7].

Cabral et al. [13] provide an interesting overview and comparison of the approaches IRS-II,
OWL-S, and WSMF/WSMO. The article states that none of these approaches provides a
complete solution in this area. The approaches show complementary strengths. Particularly,
the task of selecting services available in registries still requires intervention by human users.
The article also highlights the similarity of the objectives in the face of a great diversity in
reasoning support based on different logic and ontology frameworks. Table 1 shows the
mapping of main concepts from the three approaches as presented in [13] enhanced with the
concepts from METEOR-S and ASG, which were not considered in the original article.
According to the article, three orthogonal characterization dimensions are distinguished,
which relate to the requirements for semantic web services at the business, physical, and
conceptual levels. The usage activities dimension defines a set of functional requirements for
a framework of semantic web services (i.e., automated publishing, discovery, selection,
composition, invocation, and deployment of services). The architecture dimension proposes a
list of needed components (i.e., register, decomposer, reasoner, invoker, and matchmaker).

FRCSS'06: Future Research Challenges for Software and Services

120

COMMUNICATIONS OF EASST

The service ontology dimension represents a minimal set of concepts needed for the semantic-
rich description of a service (i.e., input, output, pre-condition, post-condition, cost, atomic
service, composite-service, and category). Already available tools are also listed.

Table 1. Semantic Web Services comparison

Dimension IRS-11 OWL-S WSMF METEOR-S ASG
Composition,
Publishing, y Publication, Enactment, Fault-tolerant
- Composition . service execution, Re-
Usage Selection, Discove Discover Discovery, negotiation, Re-composition
Activities (Task i /ery, y Composition, Abstract go ! P '
. Invocation . Service level agreement,
Achievement) Process Creation - o
Negotiation, Monitoring and
profiling
Ontology and Service
Abstract Process Specification, Discovery
i . Designer, Semantic Database, Service Composer,
Server, \D/ﬁtl\Lfalf S girvilsie Publication and Service Creation, Mediated
Acrchitecture | Publisher, . gistry, Discovery Engine, Replanning, Negotiation
. Machine, Profile .
Client Constraint Analyzer, | Manager, SLA Management,
Matchmaker | Crawler - . L
Execution Service Profiling, Workflow
Environment Enactment, Deployment
Service, Invocation Service
Service Task/PSM | s |wsmo | wsDL-s ASG Ontology
Ontology Ontology
IRS Browser Prototypical implementations
Application | and Editor; WSDL2DA | Query Semantic Web Service yp P]
o - of the subsystems mentioned
Tools Publisher; Java | ML-S interface Developer / Annotator .
API under Architecture

Terziyan et al. [12] present another analysis of the state of the art in this field. The article
claims once again the need for extensible ontology framewaorks for bringing web services to
their full potential due to the semantic handling of services. According to [13], also [12]
argues that semantic web technologies are neither mature nor state of practice in the industry.
Table 1, for example, makes clear that even the formalisms applied for describing services in
a semantic-rich way, i.e., the service ontology, differs in all approaches presented.

As a consequence of the lack of mature solutions based on accepted standards, there is no
evidence for standardized processes aimed at engineering solutions based on semantic-rich
descriptions of services. Commented engineered solutions can be found in the literature (for
an example of semantic web services applied in a wireless environment, see [15]; for another
example concerned with automated selection of web services refer to [27]), from a process-
related point of view such examples deal with ad hoc, prototypical implementations
performed without the aid of a surrounding reference process. The ASG project address this
lack of methodology explicitly and a first attempt to analyze and formalize the engineering
processes in this field can be found in [28].

FRCSS'06: Future Research Challenges for Software and Services

121

COMMUNICATIONS OF EASST

5 Conclusions

According to [2], there is a wide spectrum of benefits to be gained from grid computing, but
there exists no “silver bullet” for achieving them. Each organization must build its own
solution, and special care must be taken if the final purpose is to exploit such benefits. One
possible strategy for establishing the foundations of a semantic grid solution can be to identify
similar resources from a business perspective, handle them in a semantic oriented way, and
then to virtualize them. In this context, virtualization means making information available
whenever, wherever it is needed [3], [26]. This way, more concrete steps can be performed
towards an intra- or inter-organizational grid solution.

Approaches that can be of help for identifying similar resources from a business perspective
can be found in the service-oriented domain as well as in related domains such as
telecommunications [8], [9], [10], [11]. These domains do not show substantial differences in
their processes when transforming a business idea into a service model. Both suggest
capturing the business idea through scenarios, then creating a conceptual service model that
reflects service concepts involved in the mentioned scenarios, followed by a refinement of the
service flow by defining operations, relationships to external services, and states of the
service, and finally, orchestrating the service by defining rules and interaction models.
Additionally, the actual tendency of major software vendors is to allow choreography of
business processes by integrating web services and process engines [20], [21], [25] (e.Q.,
Websphere Integration Server Foundation, Business Works, Oracle BPEL Process Manager).
This is realized on top of their web application servers, which in turn are being developed
compliant to OGSI (e.g., the IBM WebSphere Application Server - Express V5.0.2).
Concerning the engineering of solutions aimed at handling services in a semantic-oriented
way, five different approaches have been proposed: IRS, OWL-S, WSMF, METEOR-S, and
ASG. Although they address similar objectives, they also turn out to be different in terms of
reasoning support, mainly due to different underlying logic and ontology frameworks. The
approaches show complementary strengths and the importance of standardization was already
recognized. Cooperation between IRS and WSMO, on the one hand, and WSMO and ASG,
on the other, shows that the approaches are trying to converge. Currently, none of the
proposed frameworks can be seen as a reference capable of supporting standard processes for
the semantic annotation of services and the engineering of intelligent machines able to
autonomously apply and combine the annotated services for coming up with a solution to a
given problem. As a first consequence, the engineering processes applied in this area are still
ad hoc and unstable and their analysis and formalization is just beginning. As a further
consequence, since the engineered prototypes mostly serve as a proof of concept, it is difficult
to distinguish between the processes aimed at engineering such intelligent machines and those
processes aimed at engineering the needed (and currently only partially available) underlying
infrastructure.

FRCSS'06: Future Research Challenges for Software and Services

122

COMMUNICATIONS OF EASST

Standards for service-oriented architectures are leading, in the last few years, to standard
processes for engineering solutions based on Web services. In a similar way, we expect that
shared formalisms for semantic-rich service annotation, once established, will allow the
standardization of basic technologies, which is the basis for a comprehensive methodology
aimed at engineering semantic grid solutions systematically and rapidly.

Acknowledgments

This work has been funded by the European Commission in the context of the integrated
project Adaptive Service Grid (ASG) (FPS-IST 004617). We would also like to thank
Sonnhild Namingha from the Fraunhofer Institute for Experimental Software Engineering
(IESE) and Harald Mayer (Hasso-Plattner Institute at the University of Potsdam) from the
ASG consortium for reviewing an early version of the article. The buddy scenario we used in
section 3 was developed in the ASG consortium as an example for discussing principles,
techniques, methods, and tools among the project partners. We would like to thank all project
members who contributed to the buddy scenario, especially Dominik Kuropka (Hasso-
Plattner Institute at the University of Potsdam) for providing this example.

References

[1] Global Grid Forum: OGSA FAQ Sheet (http://www.gridforum.org/L_WG/News/OGSAFAQ_Handout.pdf) viewed 15
Feb 2005.

[2] Harris, C. (2004): Getting started with Grid. IBM Global Services, 2004.

[3] Palfreyman, J. (2004): Grid Explained. IBM Global Services, 2004.

[4] OWL Services Coalition (2003): OWL-S: Semantic Markup for Web Services, (http://www.daml.org/services/owl-
s/1.0/), viewed 15 Feb 2005.

[5] A. A. Patil, S. A. Oundhakar, A. P. Sheth, K. Verma: Semantic Web Services: Meteor-S Web Service annotation
framework, Proceedings of the 13th WWW conference, May 2004.

[6] D.Roman, H. Lausen, and U. Keller: Web Services Modeling Ontology Standard, WSMO Working Draft v02, 2004.

[7] Adaptive Service Grid (ASG) Project: Project Home Page (https://asg-platform.org/cqgi-
bin/twiki/viewauth/Internal/\WWebHome), last visited February 23, 2006

[8] D.X. Adamopolous, G. Haramis, C.A. Papandreou: Rapid prototyping of new telecommunications services: a procedural
approach, Computer Communications 21, pp. 211-219, 1998.

[9] D.X. Adamopoulus, C.A. Papandreou: An integrated object-oriented approach to telecommunications service
engineering, Proceedings of IFAC/IFOR/IMACS/IFIP LSS ’98, Rio, Greece, pp. 834-839, 1998.

[10] D.X. Adamopoulus, G. Pavlou, C.A. Papandreou: An integrated an systematic approach for the development of
telematic services in heterogeneous distributed platforms, Computer Communications 24, pp. 394-415, 2001.

[11] O. Zimmermann, P. Krogdahl, C. Gee: Elements of Service-oriented Analysis and Design: An interdisciplinary
approach for SOA projects, Available at http://www-106.ibm.com/developerworks/Webservices/library/ws-soadl/

[12] V. Terziyan, O. Kononenko: Semantic Web Enabled Web Services: State-of-Art and Industrial Challenges. ICWS-
Europe 2003, M. Jeckle and L.-J. Zhang (Eds.), LNCS 2853, pp. 183-197, Springer-Verlag Berlin Heidelberg 2003

FRCSS'06: Future Research Challenges for Software and Services

123

COMMUNICATIONS OF EASST

[13] L. Cabral, J. Dominguez, E. Motta, T. Payne, F. Hakimpour: Approaches to Semantic Web Services: An Overview and
Comparison. First European Semantic Web Symposium, ESWS 2004, Heraklion, Crete, Greece, May 10-12, 2004,
Proceedings, Available at http://kmi.open.ac.uk/projects/irs/cabralESWS04.pdf

[14] E. Motta, J. Dominguez, L. Cabral., M. Gaspari: IRS-11: A Framework and Infrastructure for Semantic Web Services.
In: Fensel, D., Sycara, K., Mylopoulos, J. (volume eds.): The SemanticWeb - ISWC 2003. Lecture Notes in Computer
Science, Vol. 2870. Springer-Verlag, Heidelberg (2003) 306-318

[15] F. Gandon, N. Sadeh: Semantic Web Technologies to Reconcile Privacy and Context Awareness, Web Semantics
Journal. Vol. 1, No. 3, 2004.

[16] A.E. Walsh: Building computational grids using the Globus Toolkit, Dr. Dobb’s Journal. September 2003.

[17] L.J. Zhang, Q. Zhou, J.Y. Chung: Introduction to a Grid Architecture and Toolkit for Building Grid Solutions, Available
at: http://www-106.ibm.com/developerworks/Grid/library/gr-grid2/

[18] G. Wasson, M. Humphrey: Attribute-Based Programming for Grid Services, Computer Science Department University
of Virginia, 2004, Available at http://www.cs.virginia.edu/~gsw2c/OGSldotNet/Grid_service_programming.GGF9.pdf

[19] The Globus Alliance: Java Programmer’s Guide Core Framework, 2003, Available at: http://www-
unix.globus.org/toolkit/3.0/ogsa/docs/java_programmers_guide.html.

[20] M. Reapple: 1T-Ballet. Vier Process Engines im Vergleich (Comparison of four process engines), iX- Magazin fur
Profesionelle Informationstechnik. 2004.

[21] W. Liu, G. Goldzmidt, J. Joseph: On demand business process life cycle, Part 5: Workflow development, deployment,
and testing, Available at: http://www-128.ibm.com/developerworks/library/ws-odbp5/?ca=dnt-64

[22] CERN: Grid-like projects http://gridcafe.web.cern.ch/gridcafe/Gridhistory/gridlike.html viewed 20 April 2005.

[23] M. Jeckle, R. Kowalczyk, P. Braun (Eds.): Grid Services Engineering and Management. Proceedings of the First
International Conference GSEM 2004, Erfurt, Germany, Springer-Verlag, 2004.

[24] L. Ferreira, A. Thakore, M. Brown, F. Lucchese, H. RuoBo, L. Lin, P. Manesco, J. Mausolf, N. Momtaheni, K.
Subbian, O. Hernandez: Grid Services Programming and Application Enablement. Available at:
http://www.redbooks.ibm.com/.

[25] M. Keen, J. Cavell, S. Hill, C. K. Kee, W. Neave, B. Rumph, H. Tran: BPEL4WS Business Processes with WebSphere
Business Integration: Understanding, Modeling, Migrating. Available at: : http://www.redbooks.ibm.com/

[26] 1. Foster, C. Kesselman, J. M. Nick, S. Tuecke: Grid Services for Distributed System Integration. IEEE Computer. June
2002 (Vol. 35, No. 6) pp. 37-46.

[27] Daniel Mandell, Sheila Mcllraith: Adapting BPELAWS for the Semantic Web: The Bottom-Up Approach to Web
Service Interoperation. Proceedings of the 2nd International Semantic Web Conference (ISWC2003), Springer Verlag,
2003

[28] Laures, G.; Meyer, H.; Breest, M.: An Engineering Method for Semantic Service Applications, in Proceedings of the
First International Workshop on Design of Service-Oriented Applications (WDSOA'05), ICSOC, Amsterdam, The
Netherlands, December 2005.

FRCSS'06: Future Research Challenges for Software and Services

124

COMMUNICATIONS OF EASST

Extended Service Binder: Dynamic Service
Availability Management in Ambient Intelligence

André Bottaro*, Anne Gérodolle*
*France Telecom R&D

Abstract. This paper explores Service Oriented Architecture in Ambient
Intelligence with focus on distribution and dynamic selection. We aim at building a
framework transparently handling these aspects.

Keywords: Service Oriented Architecture, Ambient Intelligence, OSGi.

1 Introduction

Ambient Intelligence vision assumes that the computers wailk finto the background. Building
consistent context-aware application inside and outside the homéet#ftogeneous devices which
spontaneously enter and quit the network is the objective of softwagnelesin the field.

This paper proposes a simple declarative model to automat@utual discovery and binding of
components running on distributed network nodes. The model and the assoctatede sotChitecture
above OSGi [14] andservice Binder [3] are described in details. Service Binder Model is now
integrated in OSGi R4 specification d3eclarative Services [13]. A middleware hiding the
multiplicity of service discovery and distant communicatiortgrols can be built above this model.
Many projects aim at defining such a pervasive middlewale[4], [15]. Current European IST
projects like Amigo, Daidalos and SeCSE tackle with sera@omposition in distributed networks.
This paper introduces a pluggable architecture addressing acgessr to interact with multiple
service discovery and distant communication protocols.

The implementation specification lies on several technological choice

- The core framework is Java-based and uses the OSGi stedR8apecification [14] and Service
Binder Model [3].

- Discovery technologies are well-known standards: UPNP/SBBP Jini [10], SLP [7], Web
Services [6], and CORBA [12].

Service Oriented approach supporting the needs of targetediperpglications. is described in Part

2. The implementation of the concepts is detailed in Part 18.4Pdescribes a scenario of use. A

conclusion is given in Part 5.

FRCSS'06: Future Research Challenges for Software and Services

125

COMMUNICATIONS OF EASST

2 A Service Oriented Framework

In smart environments, devices may randomly enter and quit th@nmketwsers come and quit the
environment with PDAs and mobile devices, install new devicegjalites are updated or replaced,
etc. Moreover, devices may deliver services with varyiras @Qnd properties. Some devices may
become useless while others may become relevant in distinetions. Simply identifying every
device in our application and being able to deal with the dynaraitahility and relevance of these
devices are important needs in pervasive computing.

Service oriented programming is an adequate paradigm dedtimghese needs. In Service Oriented

Architecture, software components register services wio@ated properties to be requested by
other components acting like service clients. Registration amekses are based on the use of a
service repository which can possibly be centralized, repticar distributed through the use of

multicast mechanisms.

Distributed Service Oriented Architecture. Numerous Service Oriented Architecture specifications
address the issue of Service Discovery and the issue ofnDi€@mmunication in distributed
environments. If most of the specifications address the samerig issues, they have distinct
objectives and are made efficient for distinct environmentg [ABnP specifies the use of several
web-oriented protocols in order to build an attractive solutasnsiall and dynamic networks. Jini
aims at specifying a Java middleware for distributed agfits on larger networks. SLP is also
meant for SOHO (Small Office, Home office) networks. The digation proposes an interesting way
to move from multicast discovery mechanisms to centralized oeb. S¢rvices may target SOHO
network with specifications like WS-Discovery (Web SeegicDynamic Discovery). Several
specifications make service discovery relevant on CORB#&nINg Service, Trading Service, Event
Service. CORBA specification is really large and is neant for a particular environment. Other
comparison details are found in [2].

However, those middlewares do not hide dynamic service avaiabilapplication developers. The
latter have to repeatedly write error-prone code to requesiable services and listen to service
arrival and departure. Distribution is a non-functional need whiehto be dealt by the underlying
framework.

Dynamic service availability is shown as a non-functional need in [3][8] which describe a model
named Service Binder automating service discovery and eehiitding in a dynamic service
environment. Service Binder model [16] is a simple servigentad model above OSGi Release 3
[14] enabling developers to encapsulate consistent code into comp@nevitting and requiring
services to each other. The provided and required servicesrgly declared by every component. A
centralized instance manager factory builds an instance maf@gevery instance of declared
components. This instance manager manages component life cgoteiag to the availability of
required services. The implementation of this model greatlpldies application programming. The
developer should only think about the granularity of his applinaih terms of components and
specify what generic services could be provided by componentatémnal or external application
purposes.

FRCSS'06: Future Research Challenges for Software and Services

126

COMMUNICATIONS OF EASST

However, Service Binder model shows some limitations in ordbetthe underlying framework of
our architecture. First, service properties declared by esarvice provider are statically written in an
XML file and could not be dynamically changed at runtime. Thigtédition is explained below.

Second, the automation of service discovery and service binsimyly performed on a single
platform. These limitations are overcome by the extensions proposed & part

3 Hiding distribution and managing dynamic serviceproperties

3.1 Hiding distribution mechanisms complexity.

The extension of service discovery and distant communicatiahistributed mechanisms has to be
transparently managed by the underlying framework. This sedésoribes how mechanisms are
extended over Service Binder Model in the proposed archigecthis extension is called Extended
Service Binder.

Extended Service Binder relies on “export and binding factoiie build and use remote object
references, and on “lookup services” to register referenthgpwoperties and find remote references
on the network. Bundles and services using Service Bindendedemechanisms interact with all
available OSGi services on the local platform and exported ameke network. Extended Service
Binder is a container managing non-functional aspects.

Remote binding relies on the export-binding pattern defined in ODRarjél] defines two Java
interfaces defining the concepts of export and binding factokiesSexport factory” is a service that
makes a Java object remotely available. The resuExpdrting a service” is a “binding description”
that can be serialized and published using a discovery protocol.

Symmetrically, a “binding factory” is used on the clierdesito bind to a given service, given a
“binding description”. A binding factory provides a “bind” methodtttakes a binding description as
parameter and returns an object called “proxy” or “stub’is Btub can then be used by the client to
communicate with the remote object.

Extended Service Binder relies on Lookup Services representimgieeor local non-OSGi service
registry on the platform. They implement the same serviterface enabling service providers to
register and deregister services, service clients to lgokservices and be notified by events
concerning filtered services.

Extended Service Binder transparently manages distribution. A simplebo@lkie in a metadata file
can be set by the developer to indicate that its service prevéide wished to be announced on the
network with one or every available discovery protocol (‘stegi'local, slp,upnp’ or "“registry="*""to
be seen in examples, part 4.3) or that its service clieaysbind remote providers (“local-only=false”
in service client XML description, part 4.3). Transparergydached with static or dynamic stub
generation. A proxy for every targeted technology has to beragedefor any used remote service
provider. Extended Service Binder structure is illustrated in Fig. 1.

FRCSS'06: Future Research Challenges for Software and Services

127

COMMUNICATIONS OF EASST

Lookup /(.—
& Register

Pervasive
Service
Binder

OSGI Framework

Fig. 1. Extended Service Binder

3.2 Extend the component XML metadata model to marge dynamic properties.

The service dependency management is a non-functional aspect which éael $eparately. Using
an external XML file is a natural way to make the separation clearer

On the one hand, a service requirement in Service Binder Model is ddsordoe XML reference to a
service interface with binding and unbinding methods and some deywgndeoperties: policy,
cardinality, filters (see example, part 4.3). In order to dyndiyiead selection mechanisms after
service filter at runtime, the declaration of a dynamic seleanethod could be added. It will be
called at service dependency instantiation time. A methoddcalart-method" is to be seen in the
example, section 4.3.

On the other hand, a provided service in Service Binder Modelgsilded in an XML reference to an
object class implementing the provided service interfacth wiatically defined properties (see
example, part 4.3). In order to dynamically modify the propertiea provided service, similar

extensions are to be held. The declaration of a method séytiagnic properties in provided service
declaration and a simple method calling Service Binder to modifyice registration through

Component Context object could be added. A method called "propethedi is to be seen in the
example, section 4.3.

4 An example of pervasive application: audio streamg follow-me

In “follow-me” applications [11] , a service follows the uses he/she moves by borrowing interfaces
from devices in the user’s vicinity. Following this concept, Batxl Service Binder has been applied
to build an “audio streaming follow-me” service. For the sakeimplicity, only a subset of the
involved components is detailed here.

FRCSS'06: Future Research Challenges for Software and Services

128

COMMUNICATIONS OF EASST

4.1 The service offered to the user

When the user moves inside the home, the audio stream “follimghier by using the best available

rendering resource in his/her vicinity, as illustrate#ig 2.

AA A B S
j Player 1 ﬁ Player 2
A S
@ @ @
PP -

Fig. 2. Follow—Me: When the user moves from a room to kegtthe player of the second room starts playidytae first
stops playing after a while.

4.2 Architecture

To offer this service, the following components avatentified. The links between these componemsllaistrated in
Fig. 3. The first four components provide services whose Java interfacestiea telow.
- A user localisation service based on several localization tposi
- Several audio renderers able to connect and render an available aado str
- One or several yellow pages servers able to give a list ohhiastations
- A *“control point” and “control point factory” whose role is detaileetain.
- A remote control enabling the user to select an audio content and centteting.

(2streaming source

N
.
N
N
AN

2 geolocalization / & player 3 f
3 el .2 control point /7= player2
2 Yellow pages P

It W pag T & player 1

2\ remote control

Fig. 3. Architecture of the follow-me application.

4.3 Bundles, components and algorithm details

Each of the main components is packaged in an OSGi bundle and is desctiteeBExtended Service
Binder model.

FRCSS'06: Future Research Challenges for Software and Services

129

COMMUNICATIONS OF EASST

The component providing the AudioRenderer interface is hosted by a lwimdle must be deployed
on every device with loudspeakers that may be used for audio rendering.

<bundle>
<component class="renderer.Audiorendererlmpl">
<onregister property-method="getDeviceProperty"/>

</component>
</bundle>

Before registering the AudioRenderer component, the Extended &eRiicder calls the
“getDeviceProperty” method. This method gives the location o§pleakers and the “quality” (built-
in loudspeakers, external loudspeakers, hi-fi, etc.) of theerang. The service is then registered with
these properties.

The control point bundle provides a factory of “control points”. A specific copbinit is dedicated to
any active user and ensures that the stream chosen by the regatered on the adequate platform.
To that purpose, it needs to access the localisation seawmitahe available audio renderers. The
control point bundle is typically deployed on an “always on, always connected’@&farm.

<bundle>

<component class="control.CPFactorylmpl">
<provides service="api.CPFactory" registry="*"/>
<instantiates class="pack3.ControlPointimpl">

<provides service="api.ControlPoint" registry="* ">
<requires
Service="api.LocalisationService”
cardinality="1..1" policy="dynamic" local-only="fa Ise"
bind-method="bindLocService" unbind-method="unbind LocService"/>
<requires

Service="api.AudioRenderer” local-only="false"
cardinality="0..1" sort-method="sortRenderers"
bind-method="bindRenderer" unbind-method="unbindRe nderer"/>
</instantiates>
</component>
</bundle>

The control point currently keeps: a current renderer, a foremgterer, and a current context (i.e. the
multimedia resource being currently played, the volume information andretidered properties).

The "sortRenderers" method chooses the available rendei@r ishn the same room as the users,
and (if several) the one with the best rendering quality. Tieihod is called by the Service Binder
when the current renderer quits the network, when a new audiaeemadders the network, when an
audio renderer modifies its registration, or when discoverskedito be refreshed by the control
point. This refreshment can be asked when the location of thehegges. According to the result of
sortRenderers, the method “bindRenderer” may be called by théc&@inder if another audio
renderer service must be bound. Whenever the user moves from aaamother, the Extended
Service Binder binds the control point to the best available audio rendere

The "bindRenderer" method sets the local “current renderer” fanchér renderer” information and
initializes the current renderer with the current playingtext. This method call is followed, after

FRCSS'06: Future Research Challenges for Software and Services

130

COMMUNICATIONS OF EASST

some delay, by the call to "unbindRenderer" method calling the "stefiiod of the former renderer.
Thanks to the delay between the calls to bindRenderer and unbindRetidereser can still listen to
the audio stream while the new renderer starts buffering the audio .stream

5 Conclusion and future work

We have presented a middleware architecture called ExtereteteSBinder, which facilitates the
building of pervasive applications. The following features areveleld: transparent access to remote
services available through any service discovery pratgetéction between services according to the
current context.

Thanks to this architecture, a real peer-to-peer dynamic cdiposccurs at runtime. Service
composition is spontaneously held by the different components on thbutiesl platforms. Service
binding is optimized: Two components running on a single platforndiaeetly bound in the local
virtual machine with direct method calls whereas a protocol distant communication is
automatically used if they run on distinct platforms.

The drawback of this approach is that Java interfaces bmustgreed in advance between service
providers and requesters. Future work will tackle the inteadyiéy between similar interfaces
defined through distinct syntactic languages. The definition ofubseftology is currently ongoing
with the use of OWL-S. The semantic Web services approackeyétages the use of formal and
machine-understandable descriptions to enable a flexible maticbitngen heterogeneous services.
We are currently investigating such an approach in a pervasive computiagtcont

6 Acknowledgments

We are particularly grateful to the RNRT (French Regeéletwork in Telecommunications) through
the PISE project, which offers us the opportunity of trying smrhe of our ideas presented in this
article in an industrial environment.

We would like to also thank IST, the European research progrhis work was partially founded by
IST through the Amigo project in Ambient Intelligence.

7 References

1 Anupriya Ankolekar, Mark Burstein, Jerry R. Hobl8ra Lassila, David L. Martin, Drew McDermott, SheA.
Mcllraith, Srini Narayanan, Massimo Paolucci, TeRyPayne, Katia Sycara, "DAML-S: Web Service Diggimm for the
Semantic Web", First International Semantic Webf€amce, Sardinia, Italy, June 2002

2 Christian Bettstetter, Christoph Renner, “A Congmn of Service Discovery Protocols and Implemgataof the
Service Location Protocol”, In Proc. EUNICE Opeamr@pean Summer School, Twente, Netherlands, Sep513000

3 Humberto Cervantes, Richard S. Hall, “Automat8egvice Dependency Management in a Service-OrieDtedponent
Model”, Proc. 6th Wksp, Component Based Engineefitay 2003

4 Caroline Funk, Christoph Kuhmuinch, Christoph Kiedeier, "A Model of Pervasive Services for Sen@memposition",
CAMSO05: OTM 2005 Workshop on Context-Aware Mobilst&ms, Agia Napa, Cyprus, October 2005

5 Paul Grace, Gordon S. Blair, Sam Samuel."ReMMG6E, Reflective Middleware to Support Mobile Client
Interoperability”, Proceedings of International $ewium on Distributed Objects and Applications (DP®Batania, Sicily,
Italy, November 2003

6 Steve Graham, Doug Davis, Simeon Simeonov, Glanidls, Peter Brittenham, Yuichi Nakamura, Paulnfenetle,
Dieter Koenig, Claudia Zentner, “Building Web Seas with Java”, Sams Publishing, Second Editio420

FRCSS'06: Future Research Challenges for Software and Services

131

COMMUNICATIONS OF EASST

7 Erik Guttman, Charles Perkins, John Veizadeshit Day, “Service Location Protocol, Version 2F® 2608, June
1999

8 Richard S. Hall, Humberto Cervantes, “ChallengesBuilding Service-Oriented Applications for OSGITEEE
Communications Magazine, May 2004

9 ITU-T & ISO/IEC, “ODP Reference Model: OvervieWpundations, Architecture”, Recommendations X.90202,
X903 & International Standards 10746-1, 10746-24833, 1995

10 Jini.org, “The Community Resource for Jini Tealogy”, http://www.jini.org

11 Robin Kirk and Jan Newmarch, "A Location-awaservice-based Audio System", IEEE Consumer Comnatinits
and Networking Conference, 2005

12 The Object Management Group, “Common Object iSesv Specification”,
http://www.omg.org/technology/documents/formal/asérvices.htm

13 OSGi Alliance, OSGi R4 Core Specification, OeoB005

14 OSGi Alliance, “OSGi Service Platform — Rele8seMarch 2003

15 Pierre-Guillaume Raverdy, Valérie Issarny, “Gomtaware Service Discovery in Heterogeneous Nédsipr
Proceedings of the IEEE International SymposiumadiVorld of Wireless, Mobile and Multimedia Networg¥oWMoM
2005), June 2005

16 Humberto Cervantes, Richard S. Hall, “Simplifyiapplication development on OSGi”, documentateghagource code,

http://gravity.sourceforge.net/servicebinder/
17 Sun Microsystems, “Java RMI”, http://java.suméproducts/jdk/rmi/
18 UPnP.org, “The UPnP Forum”, http://www.upnp.org

FRCSS'06: Future Research Challenges for Software and Services

132

Service-Oriented Development In a Unified framework
(SODIUM) - Future Research Challenges

A.-J. Berre, H. Hoff", David Skogan', A. Tsalgatidou ?, G. Athanasopoulos?®, M.
Pantazoglou®

LSINTEF Information and Communication Technology
P.0.Box 124 Blindern, N-0314 Oslo, Norway
{arne.j.berre, hjordis.hoff, david.skogan}@sintef.no
2 National & Kapodistrian University of Athens (NKUA),
Department of Informatics & Telecommunications, Athens 15784, Greece
{atsalga, gathanas, michaelp} @di.uoa.gr

Abstract. Technology trends in software development signify a move from
component-based to service-oriented development. E-Services are the building
blocks of service-oriented applications and are mainly instantiated by web, grid
and p2p services. The development of service-oriented applications requires
support for service discovery, composition and execution. However, the
discovery and composition of appropriate services is not an easy task, due to the
heterogeneity and incompatibility between the architectural models, protocols,
and standards employed by web, grid and p2p services for description,
discovery and composition. Therefore, there is a need for appropriate support to
discover and integrate heterogeneous services. In this paper we present future
research challenges, based on the results and experiences from the EU IST
project SODIUM. SODIUM comprises a generic service model called GeSMO,
a set of languages and tools based on GeSMO, as well as related middleware
and supporting methodology for the discovery and composition of
heterogeneous services in a unified way.

1 Introduction

Current trends in software engineering signify a move from component-based to
service-oriented development (SOD). SOD promises the development of
interoperable, loosely-coupled, distributed service-oriented applications. E-Services
are the building blocks of service-oriented applications and are mainly instantiated by
web, grid and p2p services. Thus, new service-oriented applications, rather than being
built from scratch, are being developed as service compositions by exploiting the
large number of available services. However, the discovery and composition of
appropriate services is not an easy task, due to the heterogeneity and incompatibility
between the architectural models, protocols, and standards employed by web, grid and
p2p services for description, discovery and composition. This paper briefly describes
an approach called SODIUM (Service-Oriented Development In a Unified
framework) which attempts to bridge this gap by offering a collection of models,
languages and open source corresponding middleware to support the discovery and

133

2 A.-J. Berre, H. Hoff, D. Skogan, A. Tsalgatidou, G. Athanasopoulos, M. Pantazoglou

composition of heterogeneous (web, p2p, and grid) services, in an open and unified
manner.

The use of the various SODIUM components is envisaged as follows. When a
developer starts the design of a service composition, s/he first needs to specify the
various composition tasks and the control flow between them. These tasks can be
executed by various types of services (rather than being programmed from scratch).
These services may not be known initially. Therefore, by following a top-down
approach for developing a service composition, there is a need to model requirements
for appropriate services which satisfy specific composition tasks. SODIUM provides
a Visual Composition Language (VSCL) and an associated VSCL Editor (described
in section 2.2) which support this modeling task. The next step is to search for
appropriate services which can satisfy the requirements of each task in the service
composition. There exist a large number of heterogeneous web, p2p and grid services
with incompatible protocols and standards which makes their discovery a
cumbersome task. SODIUM provides a Unified Service Query Language (USQL) and
an associated query engine (described in section 2.3) that support the discovery of
heterogeneous services in a unified way. Both semantic and Quality-of-Service (QoS)
information are utilized to improve the discovery. Selected services substitute the
requirements in each composition task resulting in a concrete service composition
model. Next, VSCL graphs are mapped to USCL (Unified Service Composition
Language) descriptions which are executed by the SODIUM execution engine,
described in section 2.4. The main purpose of the latter is to provide an efficient,
reliable and scalable platform for executing compositions of heterogeneous services.

In order to support the discovery and composition of heterogeneous services,
SODIUM provides a Generic Service Model (GeSMO), described in section 2.1,
which constitutes the common basis for the development of SODIUM languages and
tools.

In the next section (section 2), we present the overall architecture of the SODIUM
platform and its constituent components. Section 3 presents future research challenges
with respect to each of the SODIUM platform tool and finally Section 4 illustrates our
concluding remarks.

2 The SODIUM Approach

This section provides an overview of the SODIUM platform. As we can see in Fig.
1, SODIUM introduces a set of languages, tools and associated middleware as well as
a conceptual model - called GeSMO (which provides the basis for all SODIUM
languages) and a methodology (which provides guidance to a developer in the
composition process). The languages introduced by the SODIUM platform are:
e A Visual Service Composition Language (VSCL) for designing service
compositions at multiple levels of details.
¢ A Unified Service Composition Language (USCL) to facilitate the construction of
executable compositions of heterogeneous services.
e A Unified Service Query Language (USQL) to cater for the open and unified
discovery of heterogeneous services enabling the preservation of the autonomy of
service registries.

134

Service-Oriented Development In a Unified framework (SODIUM) — Future Research
Challenges 3

With respect to tools and middleware, the SODIUM platform provides the
following:
e A Visual Service Composition Suite comprising:
— A Visual Editor enabling the construction and analysis of VSCL Graphs.
— A Translation mechanism enabling the transformation of the VSCL graphs into
USCL.
e A Run Time Environment comprising components necessary for the execution of
the composite services:
— A search engine, namely USQL Engine, which submits queries to heterogeneous
service registries, utilizing USQL.
— A Workflow Execution Engine which executes workflows written in USCL. The
workflow engine invokes the different types of services and/or submits USQL
queries to the USQL Engine a

Composition Suite

VSCL Editor

Service search
I VsCL (uUsaL) &
model import
VSCL 2 USCL

Transiator Pﬁ'}m?ggam-s . P2P Networks
1 usaL - =3
= E Engine By
5 =
Aﬂ.
Workilows

Execution Invoke
Engine

| Services "3
s I ::___‘ PP, Web, Cy
e o

Runtime Environment

Fig. 1. SODIUM Platform overview architecture

In the following, we describe the Generic Service Model (GeSMO) and the three
main components of the SODIUM platform along with the respective languages, i.e.
the Visual Editor, the USQL Engine and the Execution Engine.

2.1 Generic Service Model

An important asset of SODIUM is the Generic Service Model (GeSMO) which
provides: 1) a set of concepts common in all service types and 2) extensions to these
common concepts which describe the distinct characteristics of the various
heterogeneous service types. In this way, GeSMO constitutes the underlying basis for
the development of languages and tools which enable a developer to discover, invoke
and compose heterogeneous services in a unified way.

As expected, the fundamental element in GeSMO is the notion of service. From a
semantic and quality point of view Fig. 2 illustrates the parts of a service that can be
semantically annotated, as well as which of them can be quantified and thus have
specific QoS properties.

135

4 A.-J. Berre, H. Hoff, D. Skogan, A. Tsalgatidou, G. Athanasopoulos, M. Pantazoglou

Although GeSMO currently provides for the technologies of web, p2p, and grid
services, it can be extended so as to support other types of services in a seamless
manner. More information on the GeSMO model is provided in [5].

%

1.*

Semantics N

1..*
exchanges

*

Message

Fig. 2. Semantic and QoS point of view for a service

2.2 Visual Editor — Service Composition

The Visual Editor is the tool for modeling service compositions as VSCL graphs.
The VSCL language is based on the Unified Modeling Language (UML) [3] and
incorporates the necessary extensions to handle web services, p2p services, grid
services, semantics, QoS chacteristics. The semantic modeling of services is an
extension to UML provided by the SODIUM project. For the QoS notation VSCL is
based on the use of the OMG’s UML profile for modeling QoS and Fault Tolerance
[2].

The first step in constructing VSCL graphs is to break down the composition into
tasks, which can interoperate in order to finally achieve the overall goal. This
composition of tasks is called an abstract model since there are no selected concrete
services identified in this phase. This abstract model is used to search for appropriate
candidate services to realize each of the abstract tasks. When services are selected for
each abstract task, the result is a concrete model.

The concrete model can then be automatically translated into the lexical USCL
language which can be executed by the SODIUM execution engine [4]. The next
section explains how the USQL engine is used to discover appropriate services to
register in the concrete model.

2.3 USQL and its associated Engine

The USQL Engine is used for the discovery of heterogeneous services (i.e. web,
p2p, and grid services) over heterogeneous registries and networks, in a unified
manner. As its name implies, the engine utilizes USQL (Unified Service Query
Language), which is the SODIUM language for service discovery. USQL is XML-
based that provides appropriate structures and elements to facilitate requesters in fully
expressing their service requirements in a rich manner and, moreover, to cater for the
formulation of the resulting service discovery responses. To accomplish this, the

136

Service-Oriented Development In a Unified framework (SODIUM) — Future Research
Challenges 5

language goes beyond the traditional syntax-based service requests and allows for the
incorporation of semantics and QoS search criteria as well. It may occur, that service
requests with so much information could potentially become rather vague, resulting in
scrappy responses; to overcome such undesirable situations, USQL is equipped with a
set of operators, which are categorized according to the type of requirement they
apply to (i.e. syntactic, semantic, or QoS). These operators provide the means for
effectively handling complex requests and capturing real-world requirements with
accuracy and consistency.

The USQL Engine is a crucial component within the context of a service-oriented
framework, facilitating the discovery of heterogeneous services that are used for
solving an application-specific problem. Service discovery results are used to
transform abstract workflow graphs conveying orchestrated tasks and their respective
requirements into concrete service compositions that are then executed by the
SODIUM execution engine. Alternatively, the USQL Engine may be used at run-time
for the discovery of appropriate services to fulfill specific tasks within the service
composition.

2.4 SODIUM Execution Engine

The SODIUM execution engine receives USCL documents containing the
definitions of the service compositions and exposes an API for initiating, monitoring,
and managing their execution. Service compaositions can be exposed as web services
[1]; hence, it is possible to access them from client applications through standard
interfaces. For the invocation of constituent services the execution engine takes
advantage of a set of plug-ins which cater for the invocation of web, grid and p2p
services.

In the following we summarize research future challenges based on a general
analysis and our experiences with the SODIUM platform.

3 Future research challenges

The following sub-sections present the research challenges that have been identified
with respect to each of the SODIUM platform tools presented above. These
challenges illustrate possible extensions that could be addressed in future version of
the SODIUM platform.

3.2 Generic Service Model

Emerging trends in Software and Service Engineering as have been perceived by
roadmap projects like the MAS Research Roadmap project [7] or NESSI (Networked
European Software & Services Initiative) are pointing to a semantically enabled,
ubiquitous and pervasive computing paradigm. Within this context, the Generic
Service Model needs to be extended so as to anticipate the integration of additional
types of services and concepts which support this emerging computing paradigm.
Sensor and/or Actuator services are among the prominent types of services that need
to be tackled, so as to leverage the interaction of service-oriented information systems

137

6 A.-J. Berre, H. Hoff, D. Skogan, A. Tsalgatidou, G. Athanasopoulos, M. Pantazoglou

with their physical environment. In addition, the incorporation of agent services that
are provided by software agents (mobile or not) or agent platforms will further
leverage the convergence of the agent and the service oriented computing paradigms.

3.2 Service Composition

Although the Visual editor and VSCL language provide for the composition of
heterogeneous services there are additional research challenges that need to be
investigated. Some of these are the lack of support for interoperation (data
transformations) and automatic composition.

The interoperation problem occurs when the developer in a composition wants to
map the output from one service operation to the input of another service operation.
Today, the developer must write such data transformations by hand. The lack of
semantic annotation on existing services and their parameters make this work
difficult. If, however, a set of mediation operations or agents were available, together
with semantic annotated services, an inference engine could propose such data
transformations.

Service composition requires carefully selection and structuring of service
invocations in a particular order that solves a problem at a higher abstraction level.
Eventually we would like to have the system itself proposing a composition for a
particular problem. To facilitate automatic composition we need to increase the
semantic descriptions of existing services and develop goal seeking inference engines.

Other areas which will benefit from more research are methods and techniques for
modifying, verifying and monitoring execution of compositions taking into account
quality of service parameters, run-time information, and service evolution.

3.3 USQL and its associated Engine

Within the context of the SODIUM project, both USQL and the USQL Engine
have managed, more or less, to address some of the topics identified by NESSI. Yet,
we plan to extend our current work to provide full support to most of the defined
objectives.

As it has been also identified for the generic service model the USQL language as
well as the USQL Engine will have to be extended so as to support the emerging
device and sensor services. Sensor services impose a set of unique requirements due
to their volatile nature and need to be further investigated so as to be supported by our
approach.

USQL and the USQL Engine, besides integrating heterogeneous types of services
enable requesters to enhance their queries with semantics. Given its abstract nature,
the language supported semantic search criteria can be matched against any of the
emerging standards (e.g. WSMO, OWL-S, WSDL-S). Thus, semantic interoperability
is partially achieved in the course of service discovery. Yet, the lack of standard
solutions for the semantic description of domains, and the existence of many
overlapping ontologies and vocabularies for the same application domain render full
semantic interoperability not feasible.

Other important issues which have an impact on the USQL engine and the USQL
language are trust, security as well as QoS. Organizations and businesses need to be
confident that the services they use are trustworthy as well as their quality properties

138

Service-Oriented Development In a Unified framework (SODIUM) — Future Research
Challenges 7

are within an agreed range. Thus, selected services should meet both functionality and
security requirements, along with other QoS criteria, such as reliability. Although
USQL provides a set of predefined QoS criteria and placeholders (i.e. extension
points) for incorporating security requirements these issues in general remain open for
future research in service discovery.

3.4 Execution Language

USCL along with its enacting USQL engine provide for the integration of web,
grid and p2p services. Nonetheless, the range of services that are currently supported
by the USCL language needs to be extended so as to address other types of services
such as sensor or agent-based services.

Apart from supporting the integration of additional types of services, a research
challenge where considerable research effort has been invested is the support for the
development of dynamic and adaptable systems. Semantics as well as other existing
approaches vie to facilitate the development of such systems, but up to now there
haven’t been any major advances. Another emerging approach that might be applied
for the provision of such systems as well is DDDAS (Dynamic Data Driven
Application Systems) [6] which is currently gaining momentum.

Composition languages have also received considerable criticism regarding the
incorporation of Quality of Service properties (QOS) and requirements during the
design as well as the execution of composite services [8]. Emerging systems need to
be able to retain a level of QoS by selecting and composing constituent services with
specific quality properties and by claiming appropriate systems resources according to
the end users’ needs.

Last but not least, some other important issues that need to be addressed by the
existing orchestration languages include the handling of data and persistence [8]. The
composition of heterogeneous services such as grid services or sensor services needs
to be supported by appropriate constructs that will be able to facilitate the exchange of
high volumes of data that are produced or consumed by such services. Hence,
composition languages as well as their supporting execution engines need to be
extended so as to accommodate advanced data handling constructs.

4 Concluding Summary

Service oriented development (SOD) is a new trend in software engineering. SOD is
already affecting the development of business oriented systems turning them into
service compositions. However, the heterogeneity in protocols and standards of
existing service types is a major obstacle for the discovery of services and their
integration in service compositions.

In this paper we briefly described a platform called SODIUM which provides
tools, languages and related middleware for supporting the whole lifecycle of service-
oriented applications (i.e. from requirements modeling to their execution) composed
of heterogeneous services. Specifically, SODIUM supports abstract as well as
concrete modeling of service compositions (by providing the VSCL language and

139

8 A.-J. Berre, H. Hoff, D. Skogan, A. Tsalgatidou, G. Athanasopoulos, M. Pantazoglou

editor), unified discovery of constituent heterogeneous services (through USQL and
the query engine) and execution of service compositions (through the USCL Engine).
The open and extendable architecture of SODIUM doesn’t alter the underlying
protocols and infrastructure used by the various services, but rather hides the specific
details from service composition developers. Furthermore, besides the service types
currently supported, i.e. web, grid and p2p, SODIUM provides for the easy
integration of any other service type. We consider the SODIUM platform to be a
suitable basis for addressing a number of future research challenges described in
section 3.
Acknowledgement. This work has been partially supported by the European
Commission under the contract IST-FP6-004559 (project SODIUM: Service Oriented
Development in a Unified fraMework).

8 References

1. T. Heinis, et.al, Publishing Persistent Grid Computations as WS Resources, In:
Procs. of the 1st IEEE International Conference on e-Science and Grid Computing,
Melbourne, Australia, December 2005.

2. OMG, UML Profile for Modeling Quality of Service and Fault Tolerance
Characteristics and Mechanisms, OMG Final Adopted Specification, ptc/04-09-01

3. OMG, “Unified Modeling Language: Superstructure, version 2.0”, OMG Final
Adopted Specification, ptc/04-10-02

4. David Skogan, etal “D9-Detailed Specification of the SODIUM Service
Composition Suite””, SODIUM (IST-FP6-004559) project’s deliverable, June 2005

5. A. Tsalgatidou, et.al. “D4-Generic Service Model Specification”, SODIUM (IST-
FP6-004559) project’s deliverable, June 2005

6. Frederica Darema, “Data Driven Applications Systems: New Capabilities for
Applicaiton Simulations and Measurements”, In Procs. of ICCS 2005, Atlanta,
Georgia, USA, May 22-25, 2005

7. Michael N. Huhns, etal. “Research Directions for Multi Service-Oriented
Multiagent Systems”, IEEE Internet Computing, Nov.-Dec. 2005, pp 65-70

8. Aleksander Slominski “On Using BPEL Extensibility to Implement OGSI and
WSRF Grid Workflows”, Presented in Workflow in Grid Systems workshop in
GGF-10, March 9th 2004, Berlin, Germany

140

THE EASST NEWSLETTER

Research Challengesin Mobile and Context-Aware Service
Development

Julien Pauty, Davy Preuveneers, Peter Rigole, Yolande Berbers*
*Department of Computer Science, K. U. Leuven
B-3001 Leuven
Belgium

Abstract. In this paper we present several major research challengandbile and context-
aware service development. We present how we tackle thederdes through two of our
research projects: CoDAMoS (Context-Driven AdaptatioMobile Services) and CROSLOCIS
(Creation of Smart Local City Services). We contribute t® tbllowing five challenges: (1)
context-aware adaptation of mobile services; (2) servadeaation; (3) service description and
discovery; (4) security in service architectures; (5) mgement of context data.

Keywords: Context-aware services, context-aware middleware

1 Introduction

With the need for more flexibility and adaptability the IT imlry is shifting from making products to
providing services. A service typically involves two paipiants: the service provider and the service
consumer. A service is provided upon the request of the enesu

The advantages of the service approach include:

e Services can be requested by an external entity, providddtk service interface is public. For
example, Amazon [Ama] and Google [Goo] already provideises/to external entities.

e Service composition: several services can be composeddmtiyto provide an enhanced service
to other entities.

A software architecture which relies on the service apgrdaccommonly called a service oriented
architecture (SOA). SOAs comprise loosely coupled, hightgroperable application services . These
services interoperate based on a formal definition indegr@naf the underlying platform and program-
ming language. A SOA is independent of development teclyydlsuch as Java and .NET). The software
components become very reusable because the interfacnisddm a standards-compliant manner. In
this way, for example, a C++ service could be used by a Javaappn. L.

! Definition of SOA taken from Wikipedia : http://en.wikipedorg/

FRCSS’'06: ITURE RESEARCHCHALLENGES FORSOFTWARE AND SERVICES

141

THE EASST NEWSLETTER

The service industry is currently facing several challengM], such as:

e How to develop new services? This challenge includes tliltimaal problems of software engi-
neering. More specific to the service industry, it also idels:

1. Service description: how to describe the service fronséreice developer point of view and
from the service consumer point of view?

2. Service discovery: how to discover new services, matgthie users needs.

3. Service monitoring: how to monitor service behavior, ey to ensure that it matches
service specification?

4. Service composition: how to compose a new service on tsie baseveral existing services
in order to create a new service?

e How to provide services that leave the user in control? Thidlenge addresses the compromise
between automatic and user controlled service provision.

e How can different kinds of services inter-operate with eattter and on different kinds of net-
works?

In this paper, we focus on mobile and context-aware servicetheir simplest form, mobile services
are traditional services delivered via mobile deviceshagmobile phones or PDAS.

Mobile services can also be specifically tailored to the sa#dnobile users. A context-aware mobile
service is adapted to the current situation of the user. Da¢af a context-aware service is to support
the user by providing him with the right service at the righanrent. If the user context changes, the
context-aware service should self-adapt or be adaptedcetodiv context. A context-aware service is
autonomous and tries to support the user without too muehaations with a computing device.

The creation of mobile and context-aware services raiseg@search challenges, including:

e Service adaptation: mobile and context-aware services bmuprovided on several kinds of de-
vices, ranging from wall displays to mobile phones. Thesacegs have different resources, such
as screen size or memory, so services must be adapted toattebbs/resources on the running
host.

e Context-awareness: the services must be aware of the tometext of the user and self-adapt to
user context changes.

In this paper, we present several major research challesfgesbile and context-aware service devel-
opment. We present how we address part of these researdbngfes in our current research projects.
Our research projects are mostly dedicated to the creatimethodologies, middlewares and infrastruc-
tures to develop and execute mobile and context-awarecsstvi

Section 2 presents the CoDAMOoS projects and the associasshnch challenges. We continue in
section 3 with the presentation of the CROSLOCIS projecfofgeconcluding, we present in section 4
two related research projects.

FRCSS’'06: ITURE RESEARCHCHALLENGES FORSOFTWARE AND SERVICES

142

THE EASST NEWSLETTER

Component-based Applications and Services

Draco Component Distribution Module

\\ |
{ Context-Awareness Layer ‘
\\ |
‘ Draco Core Component Middleware ‘

Personal Basis | |&
Profile j ey

— =
Personal Profile || & < |&

J1eOl|le B

20| (>

o8 =

(0]]

G

- J2SE 5.0
Foundation Profile l

= Yo

J2ME CDC 1.0 J

Figure 1: Overall structure of our context-aware middlexvar

2 CoDAMOoS: context driven adaptation of mobile services

In CoDAMoS [Cod], we work on innovative and generic softwanethodologies and techniques to
support the context-driven adaptation of mobile serviddse developed system enables any service to
detect changes in the user context and to dynamically adesetrvices to this new context.

In this section we first describe our context-aware middtewgollowing sections describe the research
challenges addressed by this middleware : (1) service igésor and service discovery; (2) service
adaptation; (3) service relocation; (4) context aware tedim.

2.1 Context-aware middleware

Our context-aware middleware [PVRBO05] includes: a contaxareness layer, a distribution module

and Draco [VRUBO3], which is our component oriented middiesv(see 1). Draco is based on Java
and available on devices running J2ME and J2SE. Draco enti#eservice developer to create services
by connecting several component together. The distributiodule enables transparent relocation of the
whole service or a component of the service on a remote deviwcontext-awareness layer enables the
service to detect changes in the context of the user andttaténservice relocation on nearby devices.

The context-awareness layer can also dynamically replangonents with lighter versions to save

resources.

2.2 Servicedescription and service discovery

Service description and service discovery are two linkeallehges: the description of a service is used
during service discovery. These research challenges aspacific to context-aware mobile services.

In the context of ambient intelligence service discovergil#es us to discover services that match the
user needs. A service can be found in the vicinity of the usehe nearby devices or on a distant host.
In CoDAMoS we focus on service located on the nearby devices.

In CoDAMOS, services are described using an ontology wtsamiextension of the OWL-s ontology

FRCSS’'06: ITURE RESEARCHCHALLENGES FORSOFTWARE AND SERVICES

143

THE EASST NEWSLETTER

[PdBW'04]. This ontology enables the service developer to define:
o the required resources by the services;
e contracts, which provide guarantees on the service behavio

e runtime adaptation, by defining for each component altema&bmponents or whether this com-
ponent is optional.

Service discovery is done by matching a service requestthwitiservice description.

2.3 Service adaptation

In CoDAMOS, we are targeting ambient intelligence servidgsbient intelligence implies that the user
is surrounded with different kinds of devices, ranging frorobile phones to desktop computers. Ambi-
ent intelligence implies that services must be able to ruthese different target devices. However, these
devices have different resources limitations and inptpatucapabilities, so services must be adapted to
these device-specific constraints.

To reduce the costs of service development, we rely on a coempdased methodology. With this
methodology, a service is composed of several connectegauents. A component is a software black
box that performs a specific function. Components are coathbg means of their interfaces: they can
provide interfaces to and require interfaces from otherpmaments. Component interfaces are reified
into ports. Two components can be connected through pbtte corresponding interfaces match. We
can consider that a component can provide and requestegthimugh its ports.

Component-oriented design is usually seen as a solutiomde ceuse. In the context of ambient
intelligence, component-oriented design offers a simplkelegant way to develop services that can be
quickly adapted to several kinds of devices. With our methagly, the service developer specifies for
each components if it is optional or mandatory for the sexvikhe developer can also specify alternative
versions of the same component, each version using a diffaraount of resources. For example, on
a resource constrained device, optional components malyendéployed, or a down-sized version of a
component may be used to save resources. Thus, it is possiatiapt the service to different devices,
while keeping the same global software structure for theicer

To support the development and deployment of componenitedeservices we have developed Draco,
which runs both on mobile devices and desktop computers.

2.4 Servicerelocation

In the preceding section we have seen that using a componentenl methodology it is possible to
develop several versions of the same service, each verttiog fiith the available resources of different
devices.

In the context of ambient intelligence the user is alwaysmurded with different computing resources.
To give the best quality of service, it may be needed to rédotlae service to another device. For
example, when the user leaves his office, its current agigités relocated on his mobile device. In this
case, the mobile device has different capabilities contptoéhis desktop computer. Therefore, while

FRCSS’'06: ITURE RESEARCHCHALLENGES FORSOFTWARE AND SERVICES

144

THE EASST NEWSLETTER

relocating the application on the mobile device, it is neaegto adapt it to the capabilities of this device.
In this case we perform a runtime adaptation.

To support runtime adaptation of services, Draco enableimme component update and service relo-
cation. In this way, it is possible to disconnect optionahpmnents or replace one or more components
with alternative components, while the service is relotate another host.

Draco also enables the relocation of only one or more compyeren another host. For example, if
the user is close to a free wall display, the display compboéthe service he is currently using can
be relocated on the wall display to improve his experiencem@onent relocation is performed by the
distribution module [RVL05].

2.5 Context-aware adaptation of services

Once services are developed and ready to be adapted tcedifferget devices we need a mechanism
to detect when service migration is needed and how it mustobe.dThis is the role of our context-
awareness layer.

We have developed a context-awareness layer to enableieestnself-adapt to changes in the users
context. The users context is modeled using an ontology $DP¥RB05]. Relying on this ontology,
applications can define adaptation rules. For examplejderthe rule: if the battery level is below 20%
and if the user is close to a desktop computer then the sanwise be moved to this computer. Using the
facts corresponding to the user location and the batteg},ldvs rule enables the service to determine if
it must move to another host or not.

Using this ontology the service developer can create ruleishwspecify when the service must be
adapted. It is also possible to instantiate rules at runtiff@ example, the user might specify in his
preferences that he never wants to move the service, oritbadrvice must always try to move to a
nearby desktop computer.

The context-awareness layer is itself built up of composenhus, services can get context-awareness
capabilities by simply connecting their components to thi&ext components.

3 Crolocis

CROSLOCIS [Cro] is a new basic research project dedicatdtigareation of a service architecture
where new innovative local mobile services can easily batetk deployed and consumed by mobile
users. The overall goal of this architecture is to lower tireghold for SME to set up their own mobile
services and allow charging from the content or service igeal/in business-to-consumer or business-
to-business scenarios.

The CROSLOCIS project is complementary to CoDAMOS, in thassethat its focus is broader, i.e.
mobile services, and not just ambient intelligence envirents. The focus of CROSLOCIS also dif-
fers from the focus of CoDAMo0S: where CoDAMOS is looking atthwlologies and techniques for
adaptation, CROSLOCIS is focusing on architecture.

In the CROSLOCIS project, the Distrinet group will addregs tnain research challenges:

1. Security: in a service platform, security is needed thenticate the user when he requests a

FRCSS’'06: ITURE RESEARCHCHALLENGES FORSOFTWARE AND SERVICES

145

THE EASST NEWSLETTER

service, and to ensure the non-repudiation of the chargingract between the user and the service
provider.

2. Collection and distribution of context data: contextadaill enable service providers to tailor
their services to the customer needs and preferences. ldowteé data is privacy sensitive, so the
service platform must have mechanisms that enable thecegpvoviders to access context data
while preserving the privacy of users.

In this section we present each of the two aforementioneliectuges.

3.1 Security architecture

The main objective of the security architecture is to prevash access control and non-repudiation solu-
tion for the service architecture. This security architeetshould rely on the Belgian electronic identity

card (e-id). Currently, the e-id has a classical bankcamth&b and contains two public private key pairs

and the corresponding certificates, one for authenticaigmature, and one for non repudiation. These
certificates and the PKI back-end infrastructure are nog ased by the government, but can also be
used by commercial parties.

Work on the security architecture will start by studying lingtations of the existing PKI infrastructure
used in e-id. One of the possible evolution of the e-id colddextend its scope and use it in private
PKI infrastructures such as banking applications, ATM antdrhet e-commerce.

Extending the scope of the e-id raise several challenges.obihe challenges comes from the physical
form of the e-id. Indeed, in the envisioned city serviceg ¢hID card will be physically needed for
multiple devices at the same time. For example, if you neeccénd to logon to your PC, you need to
take it out to make a phone call with a dedicated mobile deviterefore, we will have to investigate
possible ways to split the physical authentication functddthe card on various devices, and the impact
of this splitting on the overall security.

3.2 Collection and distribution of context data

In CoDAMOS context was used as a tool to trigger adaptaticseofices. In CROSLOCIS, context will
be used to provide enhanced services, typically servicesdan the user location and preferences.

Collection of context consists in capturing, storing aresning on the user context. In CROSLOCIS,
we will use all the available sources of context informatida capture the user context, we will particu-
larly rely on the information provided by the user termiralt also on information provided by the user
profile and the network, such as the cell-id. The user comékbe modeled with an ontology. This
ontology must encompass all the envisioned city servicdsr@amain open for future services. Using a
reasoning system and this ontology we will be able to infer gentext.

In CROSLOCIS, context distribution means that the serviegfgrm will enable third-party service
providers to create enhanced services by allowing themdesaocontext data. However, context data is
privacy sensitive and several service providers may adeefisis data through the service platform.
Therefore, to address context distribution, we will havedevelop mechanisms that enable service

FRCSS’'06: ITURE RESEARCHCHALLENGES FORSOFTWARE AND SERVICES

146

THE EASST NEWSLETTER

providers to access context data without breaking usevaqyi These mechanisms will have to pre-
vent several service providers to enlarge their view on geuprofile by sharing and aggregating their
respective knowledge on the users. The mechanisms willlege to prevent unwanted propagation
of context-data among service providers, typically wheress services are chained among different
service providers.

4 Related projects

In this section, we briefly present two related researcheptsiL that are also investigating the research
challenges of mobile services.

The Amigo [Ami] project is dedicated to ambient intelligenfor networked home environment. Home
networks start to emerge, but the lack of interoperabilégween devices, the complexity of config-
uration and the absence of compelling services preventriédlly change people’s live. To improve
the usability and attractiveness of home networking forehd-user, Amigos main objective is to re-
search and develop open, standardized, interoperabldewiaid and intelligent user services for the
networked home environment, which offer users intuitiverspnalized and unobtrusive interaction by
providing seamless interoperability of services and apfitbtns. Amigo clearly addresses the service
creation challenge, with a strong focus on context-awandcss. The Amigo middleware also enforces
security and privacy policies.

The MADAM [Mad] project is strongly related to CoDAMoS. Theerall objective of MADAM is to
provide software engineers with modeling language extessitools and middleware to create mobile
and adaptive applications. The MADAM middleware relies wo main technical elements: (1) com-
ponents to monitor context and take decision about adaptafP) dynamic reconfiguration based on
component architecture and reflection. Based on thesedbgfies the middleware is able to select the
service that best fit the user requirements and currentxtonte

5 Conclusion

In this paper we have presented several research challehgesbile and context-aware service develop-
ment, through the research projects we are participating/eare contributing to the following research
challenges:

e Context-aware adaptation of services: the CoDAMoS middievenables services to self-adapt
when the user context change.

e Service relocation: the CoDAMoS enables a service to megrata nearby host when the available
resources drop, to provide the best user experience.

e Service description and discovery: the CoDAMoS middlewalies on an extension of the OWL-
s language to describe services. Services are discoverathtohing a service request with its
description.

FRCSS’'06: ITURE RESEARCHCHALLENGES FORSOFTWARE AND SERVICES

147

THE EASST NEWSLETTER

e Security architecture: in CROSLOCIS we will develop a ségarchitecture for user authentica-
tion and non repudiation of charging contracts betweenceproviders and users.

e Management of context data: in CROSLOCIS we will develop maeisms to enable service
providers to access context data while preserving the psizecy.

References
[Ama] The Amazon Web Services. http//www.amazon.comigp/landing.html.
[Ami] The Amigo project: Ambient intelligence for the netw@d home environment.

http://www.hitech-projects.com/euprojects/amigo/.

[Cod] The CoDAMOS project. http://www.cs.kuleuven.begtdnet/projects/CoDAMOS/.
[Cro] The Crolocis project. http://www.ibbt.be/site/ex php?id=160&L=1.
[D. 05] D. Preuveneers and Y. Berbers. Adaptive context mament using a component-based

approach. Innternational Conference on Distributed Applications dntkroperable Sys-
tems (DAIS 2005)June 2005.

[Goo] The Google API. http://www.google.com/apis/.
[Mad] The MADAM project. http://www.ist-madam.org/.

[PdBWT04] D. Preuveneers, J. V. den Bergh, D. Wagelaar, A. GeorBesRigole, T. Clerckx,
Y. Berbers, K. Coninx, V. Jonckers, and K. De Bosschere. Tdwvan Extensible Con-
text Ontology for Ambient Intelligence. IBuropean Symposium on Ambient Intelligence
(EUSAI 2004)2004.

[PVRBO0O5] D. Preuveneers, Y. Vandewoude, P. Rigole, and Yb&s. Middleware Support for
Component-Based Ubiquitous and Mobile Computing Applicet. Ininternational Mid-
dleware Conference (Middleware 2005) (demiz)05.

[RVLT05] P.Rigole, C. Vandervelpen, K. Luyten, Y. VandewoudeKn&€oninx, and Y. Berbers. A
Component-based infrastructure for Pervasive User Ictiera InWorkshop on Software
Technigues for Embedded and Pervasive Systems (Perv@§isendrkshop)2005.

[SM] A-M. Sassen and C. Macmillan. The Service EngineerimgaA an Overview of it Current
State and a Vision of its Future. http://www.cordislutBerveng.htm.

[VRUBO3] Y. Vandewoude, P. Rigole, D. Urting, and Y. BerhersDraco : An adaptive Runtime
Environment for Components. Technical Report CW 372, DepComputer Science,
K.U. Leuven, 2003.

FRCSS’'06: ITURE RESEARCHCHALLENGES FORSOFTWARE AND SERVICES

148

COMMUNICATIONS OF EASST

Context Management and Semantic Modelling
for Ambient Intelligence

Fano Ramparany*, Jérbme Euzenat**,
Tom Broens***, Jéréme Pierson*,
André Bottaro*, Remco Poortinga ****
* France Telecom R&D
** INRIA Rhoéne Alpes
*** Centre for Telematics and Information Technology
**x Telematica Instituut

Abstract. Ambient Intelligence aims at pushing forward a user centric vision of
Pervasive Computing, where the environment better serves our need. This paper describes
our current work on modelling and managing context information for smart environments.

Keywords: Context-Awareness, Management, Modelling, OWL

1 Introduction

Ambient Intelligence (Aml) builds upon concepts from the Pervasivengiiting (PC)
paradigm. PC aims at flooding our daily physical environment in conguénd
communication in such a way that the environment can act as aactitercollection of
interconnected network of ‘daily things’. Aml aims at pushing forwaandsion where this
environment also proactively serves our needs by understandingtodties, anticipating
our needs and collaborating with us in achieving our daily tasks. To tigkeigzion come
true, the Aml environment needs to be aware of any informatiormsthatpful for identifying
user’s activities, needs and tasks. This information is to be fouhe jphysical environment
as well as from the users themselves or from the computemsyshey use. We call such
kind of information ‘contextual information’.

In this paper, we introduce an infrastructure for managing comémation that we are
developing in the Amigbproject. We state the main problems we are addressing while
designing this infrastructure. We illustrate its role througimceete scenarios. We then
introduce our architecture for the Context Management infrastrucféieethen present the
current state and preliminary results of our on-going work. Wadlyimiscuss how a service-
oriented approach could exploit the context management infrastractgree rise to context
aware services and conclude.

! The authors would like to thank the CEC for partially supportingvibréx reported here, in
the framework of the IST-Amigo collaborative project.

FRCSS'06: Future Research Challenges for Software and Services

149

COMMUNICATIONS OF EASST

2 Problem Statement

The term 'context’' is overloaded with a wide variety of meanirgserling on application
purposes and on the research community standpoint ([1]). Severatheseamunities like
Information bases, Artificial Intelligence, Human Computer Intgwac and Ubiquitous
Computing have proposed ‘context’ definitions. We adopt the general defiptoposed by
Dey ([2]): "...Context is any information that can be used to cheniaetthe situation of an
entity. An entity is a person, place, or object that is considerledant to the interaction
between a user and an application, including the user and application themselves..."

In ambient intelligence, we can distinguish three categories of ¢df@§x
- Device context like memory, computation power, networks (and their quabtigcs, etc.

- User context divided into personal (health, mood, activity, etc.),cappke (emails, visited
websites, preferences, etc.) and social (relatives, employment, rac&¥cs) contexts.

- Physical context: contextual information related to the phlysiearonment of an entity
(device, room, building, and user). Examples are location, time, weather, altiginde, i

To be able to use contextual information in an Aml environment, we oeeel ianagement
functionalities. Context management is responsible for propagatingxtamtormation from
sensors to the application, storing it, controlling various manipulatamsit (e.g.,
aggregation), and providing access control to the context information.

2.1 GONTEXT AWARENESS

Context awareness denotes the use of contextual information in comgygtem
functionality. According to Dey ([2]), "Context-awareness is thepprty for a system of
using context to provide relevant information and/or services to the whkere relevancy
depends on the user’s task".

2.2 GONTEXT AWARENESSSCENARIOS
In this section, we introduce 3 simple scenarios, which illesttaé concept of context
awareness applied to ubiquitous computing services. Context awareresselaas that the

primary function of the service adapts to the current context gptilgsical object, i.e. the
context that holds while invoking the service.

Figure 1: Printer location scenario.

FRCSS'06: Future Research Challenges for Software and Services

150

COMMUNICATIONS OF EASST

In the printer location scenario, the user (precisely the prinéngcg) benefits from the
printers' physical location information and his/her own location infaomaThe service
offers printing facilities minimizing the moves throughout the building.

You've got :
message

Figure 2: Profile aware notification scenario.

In the recipient's profile aware notification scenario, a highl lsgesice aims at notifying a

user that "he/she has just received a mail". The service ttadgeersonal context of the user
(e.g. accessibility profile — deaf/blind/) into account to saleetmost appropriate notification
modality (voice/sound notification service/device or text/screen notditaervice/device).

& ~g
-— - - :
7’) "

Figure 3: Energy-preserving bulb scenario

In the energy preserving bulb simple scenario, the context awadbe adjusts the light
intensity to the environmental context (e.g. darkness/sunshine) or user cogtextt(eity).

3 Approach

Scenarios described above quite naturally suggest the use ofra centext management
service, designed to supply end user services, applications, aeslewvith the context
information they need. The main advantage of this approach is t@rgetmtextual
information at a single place, making it easier to find atdeve context information. The
main drawback of a central context management services isdahtralized approach; which
could even be inconsistent with the very notion of context, as it sets context aseaskiires
(as perceived by client services). On the opposite, a puregnttalized management fails in
federating resources and tends to overload sensor devices.

Our solution is to define services in such a way that they becapable of managing their
own context, and let some of them supply other devices and servidescontext
information. This last configuration makes it possible to aggregatgext information.
Instead of implementing context management as a mere central servimefevao distribute
it over devices and application services, as software components. fillthneng sections,

FRCSS'06: Future Research Challenges for Software and Services

151

COMMUNICATIONS OF EASST

we introduce the architecture of the context management infraswnd focus on one of its
main components: Context information modeling.

3.1 GONTEXT MANAGEMENT INFRASTRUCTURE

Context information is managed in a distributed way so thatsh#@ed among interested
entities. Devices (e.g. sensor devices) provide low-level comtxination. Context-aware
services consume information coming from devices and other senvioeder to build their
own high level context information which they may in turn offeiother services. None of
these entities holds a complete global view of context informakdaure 4 displays how
services and devices exchange context information.

Service 2

Service 1 Context Manager

Context Manager

Senvice 3

Context Manager

Device 1

Device 3
/77 Context Manager
\ Davice 2
Context Manager

Figure 4: Context information flow.

Every entity (i.e. device or service) contains parts of thetiwmality of the whole context
management infrastructure, denoted as ‘Context Manager’ blodikgune 4. The different
functionalities that can be part of these blocks are:

- Context Sources providing context information to any interestety. péwo types of
Context Sources can be distinguished:

- Context Wrappers adapting raw data coming from sensors into the context model
- Context Reasoners interpreting context queries and aligning hatexmg models.
- Context Brokers keeping track of the different context sources and their itiftorma

- Context Stores storing information used to satisfy incoming egieEach entity holds its
own context model according to a specific ontology.

Context Management Infrastructure

Context Wrapper I

Context Store

Context
Reasoner

o—

Data
Sensor

[
]

Context
Ontology

i

Figure 5: Context Management Infrastructure fumaicelements.

FRCSS'06: Future Research Challenges for Software and Services

152

COMMUNICATIONS OF EASST

There are three complementary ways to restore interoperabilitydretwologies:

- Standardizing the required ontologies a priori.

- Recording correspondences as soon as ontologies are made availableby parti
- Dynamically matching ontologies.

In every case, the infrastructure must be able to provide thepbssible use of available
context information. To this purpose, we use and adapt technologies devatopieel
framework of the Semantic Web [4].

3.2 GONTEXT INFORMATION MODELING

Developing context-aware services requires an appropriate Wwagpeoesenting context
information, building it incrementally, maintaining/updating it ovendj and being able to
retrieve it dynamically. We address the representation issue in thsect

Based on the analysis of previous work ([5]), we base our model ofxtanfigrmation on
anontology of physical context. The latter defines concepts, i.etypes of the relevant
objects in the studied context. For instance, temperature, waightistance are concepts of
the context ontology. Every concept is defined in terms of attripategoute constraints or
restrictions, and relations with other concepts. For exampleethperature concept has a
numerical attribute "value" which is restricted to be highant-273.15°C and it shares the
relation "characterizes" with the concept "place"”. The comeidlogy could be viewed as an
abstract model. Context information is then modeled as instances of this ontology.

Primary types are modeled in the first version of the itrinagire. They include low level
concepts such as discrete, scalar, continuous, array data (FigHigh®r level concepts and
relations which form the context ontology will be integrated ubsgquent versions. Such
incremental approach via composing, completing and consolidating ima&lymmodels suit

well the process of building ontologies.

PhysicalProperty Sensor PhysicalEntity
Y
isa isa isa isa isa

‘ PhysicalObject

ScalarPhysicalProperty Thermometer

/:a N

NumericalPhysicalPropery

VectorialPhysicalProperty

‘ PhysicalPlace

‘ SymbolicPhysicalProperty ‘

isa mis;l isa

DiscretePhysicalProperty

ContinuousPhysicalProperty BinaryPhysicalProperty

Figure 6: Physical Context model excerpt.

Sensor and PhysicalEntity class hierarchies attach contexmiation to physical places or
objects, and relate context information to its source (Figure 7)egoinformation is made

FRCSS'06: Future Research Challenges for Software and Services

153

COMMUNICATIONS OF EASST

of instances of PhysicalProperty's terminal subclasses. Fopéxaf a Thermometer named
Thermometer_1 provides a temperature measurement of 25.0°C, ancensbf
ContinuousPhysicalProperty class called Temp_measurement_atsdcithe number 25.0 is
assigned to the slot "Value" and a relation "measured_by"ablessted between this instance
and the sensor (Figure 7). Generic data properties like precisi@bility, timestamp and
resolution are defined at the topmost level of the Physical properties hyerarch

Sensor

measured_by*

PhysicalProperty

PhysicalEntity
i isa

isa s

Thermometer

as_property™®

ScalarPhysicalProperty

sa

NumericalPhysicalPropery

‘ PhysicalPlace ‘ PhysicalObject

ContinuousPhysicalProperty

io isa

float_value Float

‘ ContinuousPhysicalProperty

O

Temp_measurement_1

float_value = ‘ 25.0

measured_by

Thermometer_ 1

Figure 7: Instance of context representation.

3.3 CONTEXT QUERYING AND REASONING

Context information inference makes it possible to derive imptmitext information from

explicit one which is present in the context store. For examplerder to know whether a
room is lightened although there is not any sensor assessirentrisnmental property, we
might derive this information from the time of the day and theustatf the shutters
(open/closed). The reasoner provides support to context information irgef@ac reasoner
is built upon the Jena2 system ([6]). Jena2 includes a generic ra@ed Ipdsrence engine
together with configured rule sets for RDFS and for OWL languages.

measured_by = | Thermometer_|

SemanticProperty = ‘ temperature

4 Discussion

The presented work is still in progress. So far, we found it eerwenient to rely on
foundation technologies of the Semantic Web and Web Services. The main advargages

- Flexibility: we have redesigned the abstract model of cénteformation (context
ontologies) many times. These changes induced insignificant icaigihs on the

FRCSS'06: Future Research Challenges for Software and Services

154

COMMUNICATIONS OF EASST

implementation of application services and sensor wrappers. Onlyotimeilation of
context information queries is impacted.

- Sharing and Reusability: some ontologies of context informatienagailable "off the
shelf" (e.g. location context). Current project is developing Spemiftologies on time and
geographical information. Such ontologies could be easily reused or adapted to fecur ne

- Openness: adopting Semantic Web will foster the accessibitjlocal”, "physical"
services in pervasive computing from "virtual", "disembodied” \8ekvices, and vice-
versa.

In the very short term, we will come up with an operational version of a ceaiexe service
infrastructure which will exhibit the following features:

- Context aware service lookup. Context information is used to comepleservice requests
at the client side (e.g. use the location of a user to find theesterestaurant), or at the
server side (e.g. use the current date to filter out closed restaurants).

- Proactive services: Context information will be used to triggeecific services as
predefined context information configurations occur.

- Context dependent services: This is the "conventional” use ofxtowteere services adapt
their behaviour by posting context queries and adjusting their compubsgad on the
replies they receive to their queries.

With respect to existing work, as other research teams ([7],w8]aim at developing a
generic context management environment suitable to the ubiquitous coratians world.

However we have departed from a centralized solution which wevbelails in capturing
dependency of context on the task to achieve or on the service it will alter.

Adopting a decentralized solution where context description is to bedst@nong its
consumers (services) and its producers (services or sensorsgsesjgsemantic modeling of
context information. Such semantic modeling is necessary to copdahsi heterogeneity of
the resulting partial models. Some work such as the CoBra s{{@prhas already addressed
this issue, however with the limitations incurred by a centralized approach.

We interestingly pursued a path similar to Crowley et al. {[40pith the concept of
"contextors". We adopted the Semantic Web ontology language OWinottel context
information. We believe this will facilitate interoperability with the M\&ervices world.

5 Conclusions

In this article we have described our approach for modeling raadaging context
information in a service oriented framework for Ambient Intelligerenvironments. This
work is conducted within the IST-Amigo project ([11]). So far, our ¢fférave focused on
context modeling and reasoning and our results reveal promising.

FRCSS'06: Future Research Challenges for Software and Services

155

COMMUNICATIONS OF EASST

We still have to tackle the integration of our work into a compéetevice infrastructure
which is developed in parallel within the Amigo project, and theessssent of the
infrastructure in several real world applications.

We also plan to conduct additional work on context management, dealing with the:

- Merging and aggregating contextual information

- Learning of context and context descriptions

- Interoperability mechanisms with external context informatioarees, such as legacy
mobile location servers

References

[1] Theodorakis, M., Analyti, A., Constantopoulos, P. and Spyratos, N. (1998)x€onte
information bases, in Intelligent agents, in the proceedings of tltklBCIS Conference on
Cooperative Information Systems (CooplS'98), New Yorks.

[2] Dey, A., Salber, D. and Abowd, G. (2001) A conceptual framework aodlkit for
supporting the rapid prototyping of context-aware applications. in Hu@oamputer
Interaction vol. 16. p. 97-166.

[3] Schilit, B, Adams, N. and Want, R. (1994), Context-Aware Computing iéqipns
IEEE Workshop on Mobile Computing Systems and Applications, Santa Califpria,
USA, 1994.

[4] Euzenat, J. (2004) An API for ontology alignment. Proc. 3rd ISWi@&sHima (JP),
LNCS 3298:698-712.

[5] Flury, T., Privat, G., and Ramparany, F. (2004) OWL-Based location ogytdbr
context-aware services in Proceeding of the worshop on Aatiflotelligence in Mobile
Systems. Bristol - UK. p. 52-58.

[6] www.hpl.hp.com/semweb/jena2.htm.
[7] Gray, P and Salber, D. (2001) Modelling and using sensed context atfonnin the

design of interactive applications, in Proceedings of the 8th WdFing conference on
engineering for human-computer interaction (EHCI'01), Toronto, Canada, May 2001.

[8] Dey, A. (2000), Providing Architectural Support for Building Contextake
Applications PhD Thesis, College of Computing, Georgia Institute of Techndagy,2000

[9] Chen, H., Finin, T. and Joshi, A., 2003, The Role of the Semantic Web irsperva
Context-Aware Systems, Proceedings of ISWC 2003

[10] Crowley, J.L., Coutaz, J., Rey, G., and Reignier, P. (2002) Peatemmponents for
context aware computing. in International Conference on Ubiquitous CompG@Giiteborg,
Sweden. p. 117-134

[11] http://www.hitech-projects.com/euprojects/amigo/.

FRCSS'06: Future Research Challenges for Software and Services

156

