
FAST TCP:
Motivation, Architecture, Algorithms, Performance

Cheng Jin David X. Wei Steven H. Low
Engineering & Applied Science, Caltech

http://netlab.caltech.edu

Abstract-We describe FAST TCP, a new TCP congestion
control algorithm for high-speed long-latency networks, from
design to imPlementati"n. we kblieht the approach taken bY
FAST TCP to address the four dimcnlties, at both packet and
Bow levels, which the current TCP implementation hss at krge
windows. We describe the architecture and characterize the
eouilibrium and stabilitv oronerties of FAST TCP. We oresent

In Section 111, we motivate delay-based approach. Delay-
based congestion control has been proposed, e.g., in [191, [201,

Speed, but decisive at high speed, as we will argue below. As
pointed out in [211, delay can be a poor or untimely predictor
of uacket loss. and therefore using a delav-based algorithm

[SI, Its advantage over loss-based approach is small at low

I. INTRODUCTION
Congestion control is a distributed algorithm to share net-

work resources among competing users. It is important in
situations where the availability of resources and the set of
competing users vary over time unpredictably, yet efficient
sharing is desired. These constraints, unpredictable supply and
demand and efficient operation, necessarily lead to feedback
control as the preferred approach, where traffic sources dy-
namically adapt their rates to congestion in their paths. On
the Internet, this is performed by the Transmission Control
Protocol (TCP) in source and destination computers involved
in data transfers.

The congestion control algorithm in the current TCP, which
we refer to as Reno, was developed in 1988 111 and has gone
through several enhancements since, e.g., [21, [31, [41. It has
performed remarkably well and is generally believed to have
prevented severe congestion as the Internet scaled up by six
orders of magnitude in size, speed, load, and connectivity. It
is also well-known, however, that as bandwidth-delay prod-
uct continues to grow, TCP Reno will eventually become a
performance bottleneck itself. The following four difficulties
contribute to the poor performance of TCP Reno in networks
with large bandwidth-delay products:

1) At the packet level, linear increase by one packet per
Round-Trip Tune (RTT) is too slow, and multiplicative
decrease per loss event is too drastic.

2) At the flow level, maintaining large average congestion
windows requires an extremely small equilibrium loss
probability.

3) At the packet level, oscillation is unavoidable because
TCP uses a binary congestion signal (packet loss).

4) At the flow level, the dynamics is unstable, leading
to severe oscillations that can only be reduced by the
accurate estimation of packet loss probability and a
stable design of the flow dynamics.

We explain these difficulties in detail in Section 11. In [51, we
described HSTCP [6j and STCP [7], two loss-based solutions
to these problems. In this paper, we propose a delay-based
solution. See [SI, [91, [lo], [I l l , [121, U31, [141, U51, [W,
[17], [18] for other proposals.

this approach. Using queueing delay as the congestion measure
bas two advantages.

First, queueing delay can be more accurately estimated than
loss probability both because packet losses in networks with
large bandwidth-delay product are rare events (probability
on the order lo-* or smaller), and because loss samples
provide coarser information than queueing delay samples.
Indeed, measurements of delay are noisy, just as those of
loss probability. Each measurement of packet loss (whether
a packet is lost) provides one bit of information for the
filtering of noise, whereas each measurement of queueing
delay provides multi-bit information. This makes it easier for
an equation-based implementation to stabilize a network into a
steady state with a target fairness and high utilization. Second,
the dynamics of queueing delay seems to have the right scaling
with respect to network capacity. This helps maintain stability
as a network scales up in capacity [22], [23], [24]. In Section
111, we explain how we exploit these advantages to address the
four difficulties of TCP Reno.

In Section TV, we lay out an architecture to implement our
design. Even though the discussion is in the context of FAST
TCP, the architecture can also serve as a general framework to
guide the design of other congestion control mechanisms, not
necessarily limited to TCP, for high-speed networks. The main
components in the architecture can be designed separately
and upgraded asynchronously. Unlike the conventional design,
FAST TCP can use the same window and burstiness control
algorithms regardless of whether a source is in the normal state
or the loss recovery state. This leads to a clean separation of
components in both functionality and code structure. We then
present an overview of some of the algorithms implemented
in our current prototype.

In Section V, we present a mathematical model of
the window control algorithm. We prove that FAST TCP
bas the same equilibrium properties as TCP Vegas [251,
[26]. In particular, it does not penalize flows with large
propagation delays, and it achieves weighted proportional
fairness [27]. For the special case of single bottleneck
link with heterogeneous flows, we prove that the window
control algorithm of FAST is globally stable, in the absence of

~7803%355-9/01Ps20.00 432001 IEEE. 2490

http://netlab.caltech.edu

feedback delay. Moreover, starting from any initial state, a
network converges exponentially to a unique equilibrium.

In Section VI, we present preliminary experimental results
to illustrate throughput, fairness, stability, and responsiveness
of FAST TCP, in the presence of delay and in heterogeneous
and dynamic environments where flows of different delays
join and depart asynchronously. We compare the performance
of FAST TCP with Reno, HSTCP (Highspeed TCP [61),
and STCP (Scalable TCP [7]), using their default param-
eters. In these experiments, FAST TCP achieved the best
performance under each criterion, while HSTCP and STCP
improved throughput and responsiveness over Reno at the cost
of fairness and stability. We conclude in Section VII. ’

11. PROBLEMS AT LARGE WINDOWS

A congestion control algorithm can he designed at two
levels. The $ow-level (macroscopic) design aims to achieve
high utilization, low queueing delay and loss, fairness, and
stability. The packer-level design implements these flow-level
goals within the constraints imposed by end-toend control.
Historically for TCP Reno, packet-level implementation was
introduced first. The resulting flow-level properties, such as
fairness, stability, and the relationship between equilibrium
window and loss probability, were then understood as an
afterthought. In contrast, the packet-level designs of HSTCP
[61, STCP [71, and FAST TCP are explicitly guided by flow-
level goals.

We elaborate in this section on the four difficulties of TCP
Reno listed in Section I. It is important to distinguish between
packet-level and flow-level difficulties because they must be
addressed by different means.

A. Packet and pow level modeling
The congestion avoidance algorithm of TCP Reno and its

variants have the form of AIMD [l]. The pseudo code for
window adjustment is:

1 - w + w Ack:

1
w-2” Loss: w -

This is a packet-level model, but it induces certain flow-level
properties such as throughput, fairness, and stability.

These properties can be understood with a flow-level model
of the AIMD algorithm, e.g., 1281, [29l, [30]. The window
wi(t) of source i increases by 1 packet per RTT,’ and
decreases per unit time by

1 4
2 3

zi(t)pi(t). - . -wi(t) packets

where

zi(t) := w,(t)/T,(t) pktskec

T,(t) is the round-trip time, and pi(t) is the (delayed) end-to-
end loss probability, in period t? Here, 4wi(t)/3 is the peak

‘It should be (1 - pi(t)) packets, where p , (t) is the end-trrend loss
prokabilily. This is roughly 1 when p i (t) is small.

2This model assumes that window is halved on each packet loss. It can be
modified to model the case, where window is halved at most once in each
Rn. This d n s not qualitatively change the following discussion.

window size that gives the “average” window of wi(t). Hence,
a flow-level model of AIMD is:

Setting tiJi(t) = 0 in (1) yields the well-known 1/& formula
for TCP Reno discovered in [311, [32], which relates loss
probability to window size in equiIibrium:

3 p,* = -
2Wf2

In summary, (1) and (2) describe the flow-level dynamics and
the equilibrium, respectively, for TCP Reno. It turns out that
different variants of TCP all have the same dynamic structure
at the flow level (see [51, [33]). By defining

ni(wi,T,) = - 1 and ui(wi,Z) = - 1.5
Ti W,2

and noting that wi = ziTi, we can express (1) as:

where we have used the shorthand ni(t) = Ki(wi(t),Ti(t))
and w(t) = ui(wi(t),T,(t)). Equation 3 can be used to
describe all known TCP variants, and different variants differ
in their choices of the gain function ni and marginal utility
function e+, and whether the congestion measure pi is loss
probability or queueing delay.

Next, we illustrate the equilibrium and dynamics problems
of TCP Reno, at both the packet and flow levels, as bandwidth-
delay product increases.

E. Equilibrium pmblem
The equilibrium problem at the flow level is expressed in

(2): the end-toend loss probability must be exceedingly small
to sustain a large window size, making the equilibrium difficult
to maintain in practice, as bandwidth-delay product increases.

Even though equilibrium is a flow-level notion, this problem
manifests itself at the packet level, where a source increments
its window too slowly and decrements it too drastically.
When the peak window is 80,000-packet (corresponding to
an “average” window of 60,000 packets), which is necessary
to sustain 7.2Gbps using 1,500-byte packets with a R l T of
100ms. it takes 40,000 Rms , or almost 70 minutes, to recover
from a single packet loss. This is illustrated in Figure la.
where the size of window increment per R lT and decrement
per loss, 1 and 0.5w,, respectively, are plotted as functions
of wi. The increment function for Reno (and for HSTCP) is
almost indistinguishable from the z-axis. Moreover, the gap
between the increment and decrement functions grows rapidly
as wi increases. Since the average increment and decrement
must be equal in equilibrium, the required loss probability can
he exceedingly small at large wi. This picture is thus simply
a visualization of (2).

To address the difficulties of TCP Reno at large window
sizes, HSTCP and STCP increase more aggressively and
decrease more gently, as discussed in 151, 1331.

~7803-8355-9/04/$20.00 02004 IEEE. 2491

(a) Reno, HSTCP, and STCP @) FAST

Fig. 1.
for TCP Reno and HSTCP are almost identical at this scale. @) Window update as a function of dirrmce fmm equilibrium for FAST.

Packet-level implementation: (a) Window increment per R l T and decremnt per loss, as functions of the current window. The inaement funaioos

C. Dynamic problems

The causes of the oscillatory behavior of TCP Reno lie in
its design at both the packet and flow levels. At the packet
level, the choice of binary congestion signal necessarily leads
to oscillation, and the parameter setting in Reno worsens the
situation as bandwidth-delay product increases. At the flow
level, the system dynamics given by (1) is unstable at large
bandwidthdelay products [29], [30]. These must be addressed
by different means, as we now elaborate.

F i y e 2(a) illustrates the operating points chosen by vari-
ous TCP congestion control algorithms, using the single-link
single-flow scenario. It shows queueing delay as a function of
window size. Queueing delay starts to build up after point C
where window equals bandwidth-propagationdelay product,
until point R where the queue overtlows. Since Reno oscillates
around point R, the peak window size goes beyond point
R. The minimum window in steady state is half of the peak
window. This is the basis for the rule of thumb that bottleneck
buffer should be at least one handwidth-delay product: the
minimum window will then be above point C, and buffer will
not empty in steady state operation, yielding full utilization.

In the loss-based approach, full utilization, even if achiev-
able, comes at the cost of severe oscillations and potentially
large queueing delay. The DUAL scheme in [ZO] proposes
to oscillate around point D, the mdpoint between C and
R when the buffer is half-full. DUAL increases congestion
window linearly by one packet per RlT, as long as queueing
delay is less than half of the maximum value, and decreases
multiplicatively by a factor of 1/8, when queueing delay
exceeds half ofthe maximum value. The scheme CARD (Con-
gestion Avoidance using Round-trip Delay) of [19] proposes
to oscillate around point C through AIMD with the same
parameter (1,1/8) as DUAL, based on the ratio of round-
trip delay and delay gradient, to maximize power. In all these
schemes, the congestion signal is used as a binary signal, and
hence congestion window must oscillate.

Congestion window can be stabilized only if multi-bit f e d -
back is used. This is the approach taken by the equation-based
algorithm in [MI, where congestion window is adjusted based
on the estimated loss probability in an attempt to stabilize
around a target value given by (2). Its operating point is
T in Figure 2(b), near the overflowing point. This approach
eliminates the oscillation due to packet-level AlMD, but two

difficulties remain at the flow level.
First, equation-based control requires the explicit estimation

of end-to-end loss probability. This is difficult when the loss
probability is small. Second, even if loss probability can
be perfectly estimated, Reno's flow dynamics, described by
equation (1) leads to a feedback system that becomes unstable
as feedback delay increases, and more strikingly, as network
capacity increases [291, [301. The instability at the flow level
can lead to severe oscillations that can be reduced only by
stabilizing the flow-level dynamics. We will return to both
points in Section 111.

111. DELAY-BASED APPROACH
In this section, we motivate delay-based approach to address

the four difficulties at large window sizes.
A. Motivation

Although improved loss-based protocols such as HSTCP
and STCP have been proposed as replacements to TCP Reno,
we showed in [51 that they don't address all four problems
(Section I) of TCP Reno. To illustrate this, we plot the
increment and decrement functions of HSTCP and STCP in
Figure l(a) alongside TCP Reno. Both protocols upper bound
TCP Reno: each increases more aggressively and decreases
less drastically, so that the gap between the increment and
decrement functions is narrowed. This means, in equilibrium,
both HSTCP and STCP can tolerate larger loss probabilities
than TCP Reno, thus achieving larger equilibrium windows.
However, neither solves the dynamics problems at both the
packet and the flow levels.

In 151, we show that the congestion windows in Reno,
HSTCP and STCP all evolve according to:

where n (t) := ni(w,(t),T,(t)) and ui(t) := u;(w;(t),T,(t)).
Moreover, the dynamics of FAST TCP also takes the same
form; see below. They differ only in the choice of the gain
function ni(w;, Ti), the marginal utility function u,(w;,T,).
and the end-to-end congestion measure pi. Hence, at the flow
level, there are only three design decisions: . ni(wg,T,): the choice of the gain function ni determines

the dynamic properties such as stability and responsive-
ness; but does not affect the equilibrium properties.

0-78034355-9/04/s20.00 0 2 m Em. 2492

cr. i
f
0,

Window - R - b

(a) Binay signal: oscillatory

STCP
FAST

loss

z.=+.$
- $

I -

Window P T
I I

(b) Multi-hi1 signal: stabilizable

Fig. 2. Operating pints of TCP algorithms: R Reno Ill, HSTCP [SI, STCP [71; D: DUAL. [ZO]; c: CARD [19]; T: TFRC [34]; F: Vegas [SI, FAST.

u;(w;,T;): the choice of the marginal utility function
U; mainly determines equilibrium properties such as the
equilibrium rate allocation and its fairness. . pi: in the absence of explicit feedback, the choice of
congestion measure pi is limited to loss probability or
queueing delay. The dynamics of pi@) is determined at
links.

‘Ike design choices in Reno, HSTCP, STCP and FAST are
shown in Table I.

1/Ti l .5 /wi loss probability

0.f18/w:-2a loss probability
STCP p/wi loss probability
FAST ai/zi queueing delay

TABLE I
COMMON DYNAMIC STRUCTURE: W i IS SOURCE i’s WINDOW SIZE, Ti IS

ITS ROUND-TRIP TIME, pi IS CONGESTION MEASURE, zi = W i / T i ;

a, b(wi) , p. 7. a; ARE PROTOCOL PARAMETERS.

These choices produce equilibrium characterizations shown
in Table 11.

11 HSTCP I ll

estimated than loss probability both because packet losses
in networks with large bandwidth-delay products are rare
events (probability on the order IOW8 or smaller), and because
loss samples provide coarser information than queueing delay
samples. Indeed, each measurement of packet loss (whether
a packet is lost) provides one bit of information for the
filtering of noise, whereas each measurement of queueing
delay provides multi-bit information. This allows an equation-
based implementation to stabilize a network into a steady state
with a target fairness and high utilization.

At the flow level, the dynamics of the feedback system must
be stable in the presence of delay, as the network capacity
increases. Here, again, queueing delay has an advantage over
loss probability as a congestion measure: the dynamics of
queueing delay seems to have the right scaling with respect
to network capacity. This helps maintain stability as network
capacity grows [221, 1231, [241.

B. Implementation strategy
The delay-based approach, with proper flow and packet

level designs, can address the four difficulties of Reno at
large windows. First, by explicitly estimating how far the
current state p,(t)/u;(t) is from the equilibrium value of 1,
our scheme can drive the system rapidly, yet in a fair and
stable manner, toward the equilibrium. The window adjustment
is small when the current state is close to equilibrium and
large otherwise, independent of where the equilibrium is, as
illustrated in Figure l(b). This is in stark contrast to the
approach taken by Reno, HSTCP, and STCP, where window
adjustment depends on just the current window size and is
independent of where the current state is with respect to the
target (compare Figures l(a) and (b)). Like the equation-based
scheme in [34], this approach avoids the problem of slow
increase and drastic decrease in Reno, as the network scales
UP.

Second, by choosing a multi-hit congestion measure, this
approach eliminates the packet-level oscillation due to binary
feedback, avoiding Reno’s third problem.

Third, using queueing delay as the congestion measure
p,(t) allows the network to stabilize in the region below the
overflowing point, around point F in Figure Z(b), when the
buffer size is sufficiently large. Stabilization at this operating
point eliminates large queueing delay and unnecessary packet
loss. More importantly, it makes room for buffering “mice”
traffic. To avoid the second problem in Reno, where the
required equilibrium congestion measure (loss probability for
Reno, and queueing delay here) is too small to practically

07803-8355-9/04/$u).OO 02004 EEE. 2493

estimate, the algorithm must adapt its parameter a, with
capacity to maintain small but sufficient queueing delay.

Finally, to avoid the fourth problem of Reno, the window
control algorithm must be stable, in addition to being fair and
eficient, at the flow level. The use of qukneing delay as a
congestion measure racilitates the design as queueing delay
naturally scales with capacity [221, [231, [241.

The design of TCP congestion control algorithm can thus
be conceptually divided into two levels:

At the flow level, the goal is to design a class of function
pairs, ui(wi,Ti) and n(wi,Ti), so that the feedback
system described by (4), together with link dynamics in
p i (t) and the interconnection, has an equilibrium that is
fair and efficient, and that the equilibrium is stable, in the
presence of feedback delay.
At the packet level, the design must deal with issues that
are ignored by the flow-level model or modeling assump-
tions that are violated in practice, in order to achieve these
flow-level goals. These issues include burstiness control,
loss recovery, and parameter estimation.

The implementation then proceeds in three steps:
I) determine various system components:
2) translate the flow-level design into packet-level algo-

3) implement the packet-level algorithms in a specific op-

The actual process iterates intimately between flow and packet
level designs, between theory, implementation, and experi-
ments, and among the three implementation steps.

The emerging theory of large-scale networks under end-to-
end control, e.g., [271, [351, [361, P51, [371, t381, [261, [391,
[221, [401, [411, [291, [301, [421, 1431, [241, [231, Cl51 (see also,
e.g., [44], [45], [46] for recent surveys), forms the foundation
of the flow-level design. The theory plays an important role by
providing a framework to undentand issues, clarify ideas, and
suggest directions, leading to a robust and high performance
implementation.

rithms:

erating system.

We lay out the architecture of FAST TCP next.

We separate the congestion control mechanism of TCP
into four components in Figure 3. These four components
are functionally independent so that they can be designed
separately and upgraded asynchronously. In this section, we
focus on the two parts that we have implemented in the current
prototype (see [331).

Iv. ARCHITECTURE A N D ALGORITHMS

TCP Protocol Processing

Fig. 3. FAST TCP architecture.

In the following subsections, we provide an overview of es-
timation and window control and the algorithms implemented
in our current prototype. An initial prototype that included the
features discussed here was demonstrated in November 2002 at
the Supercomputing Conference, and the experimental results
were reported in [47].

A. Esfimation
This component provides estimations of various input pa-

rameters to the other three decision-making components. It
computes two pieces of feedback information for each data
packet sent. When a positive acknowledgment is received,
it calculates the RTT for the corresponding data packet and
updates the average queueing delay and the minimum RlT.
When a negative acknowledgment (signaled by three duplicate
acknowledgments or timeout) is received, it generates a loss
indication for this data packet to the other components. The
estimation component generates both a multi-bit queueing
delay sample and a one-bit loss-or-no-loss sample for each
data packet.

The queueing delay is smoothed by taking a moving average
with the weight q(t) := min{3/wi(t), 1/4} that depends on
the window wi(t) at time t , as follows. The k-th RTT sample
Ti(k) updates the average R l T Ti(k) according to:

-
Ti(k + 1) = (1 - ?(tk))Ti(k) +q(tdTdk)

where t k is the time at which the k-th RTT sample is received.
Taking &(A) to be the minimum RTT observed so far, the
average queueing delay is estimated as:

&(k) = T,(k) - d , (k)

The weight q(t) is usually much smaller than the weight (18)
used in TCP Reno. The average RTI Ti(k) attempts to track
the average over one congestion window. During each RTT,
an entire window worth of RTT samples are received if every
packet is acknowledged. Otherwise, if delayed ack is used, the
number of queueing delay samples is reduced so q(t) should
be adjusted accordingly.

B. window control
The window control component determines congestion win-

dow based on congestion information-queueing delay and
packet loss, provided by the estimation component. A key
decision in our design that departs from traditional TCP
design is that the same algorithm is used for congestion
window computation independent of the state of the sender.
For example, in TCP Reno (without rate halving), congestion
window is increased by one packet every R m when there is
no loss, and increased by one for each duplicate ack during
loss recovery. In FAST TCP, we would like to use the same
algorithm for window computation regardless of the sender

the average R T I adaverage queueing delay provided by the
estimation comoonent. accordine to: -.

baSeRTT
The dura control component determines which packeu to

transmit, and burstiness control determines when to transmit
these packets. These decisions are made based on informa-
tion provided by the estiwation component. Window control
regulates packet transmission at the RTT timescale, while
burstiness control works at a smaller timescale.

transmit, window control determines how many packets to w - _in {SW, (I ~ 7). + 7 (~ RTT .+a(". ¶delay)

where y E (0,1], baseRTT is the minimum RTT observed so
far, and qdelay is the end-to-end (average) queueing delay.
In our current implementation, congestion window changes
over two RTTs: it is updated in one R T I and frozen in the

0-7803-8355-9/046u).OO 02004 IEEE. 2494

next. The update is spread out over the first R I T in a way
such that congestion window is no more than doubled in each
RlT.

In our current prototype, we choose the function
a(w, qdelay) to be a constant at all times. This produces
linear convergence when the qdelay is zero. Alternatively,
we can use a constant a only when qdelay is nonzero
and an a proportional to window, a(w, qdelay) = aw,
when qdelay is zero. In this case, when qdelay is zero,
FAST performs multiplicative increase and grows exponen-
tially at rate a to a neighborhood of qdelay > 0. Then
a(w, qdelay) switches to a constant a and, as we will
see in Theorem 2 below, window converges exponentially to
the equilibrium at a different rate that depends on qdelay.
The constant U is the number of packets each flow attempts
to maintain in the network buffer(s) at equilibrium, similar to
TCP Vegas [8]!

Although we would like to use the same congestion control
function during loss recovery, we have currently disabled this
feature because of ambiguities associated with retransmitted
packets. Currently when a packet loss is detected, FAST halves
its window and enters loss recovery. The goal is to back off
packet transmission quickly when severe congestion occurs,
in order to bring the system back to a regime where reliable
R l T measurements are again available for window adjustment
(5) to work effective1 A source does not react to delay until

C. Packet-level implementation
It is important to maintain an abstraction of the imple-

mentation as as the code evolves. This abstraction should
describe the high-level operations each component performs
based on external inputs, and can serve as a road map for future
TCP implementations as well as improvements to the existing
implementation. Whenever a non-trivial change is required,
one should first update this abstraction to ensure that the
overall packet-level code would be built on a sound underlying
foundation.

Since TCP is an event-based protocol, our control actions
should be uiggered by the occurrence of various events.
Hence, we need to translate our flow-level algorithms into
event-based packet-level algorithms. There are four types of
events that FAST TCP reacts to: on the reception of an
acknowledgment, after the transmission of a packet, at the
end of a RlT, and for each packet loss.

For each acknowledgment received, the estimation compo-
nent computes the average queueing delay, and the burstiness
control component determines whether packets can be injected
into the network. For each packet transmitted, the estimation
component records a time-stamp, and the burstiness control
component updates corresponding data structures for book-
keeping. At a constant time interval, which we check on the
arrival of each acknowledgment, window control calculates a
new window size. At the end of each R n , burstiness reduction
calculates the target throughput using the window and R T I
measurements in the last RTT. Window pacing will then sched-
ule to break up a large increment in congestion window into

4All experiments in Section VI used linear increase, i.e.,
a (w , qdelay) = a f a all qdelay.

'In the Linux TCP implementation, congestion window was frequently
reduced lo one when there were heavy losses. In order to emure a reasonable
recovery time, we impose a minimum wiodow of 16 packets during IDSS
recovery for coooections that use large windows. This and &er iotenm
measures will be impoved in future FAST TCP releases.

it exits loss recovery. ?

Fig. 4. From flow-level design to implementation.

smaller increments over time. During loss recovery, congestion
window should be continually updated based on congestion
signals from the network. Upon the detection of a packet
loss event, a sender determines whether to retransmit each
unachowledged packet right away or hold off until a more
appropriate time.

Figure 4 presents an approach to turn the high-level design
of a congestion control algorithm into an implementation.
Fist, an algorithm is designed at the flow-level and analyzed
to ensure that it meets the high-level objectives such as
fairness and stability. Based on that, one can determine the
components necessary to implement congestion control. The
flow-level algorithm can then be translated into a packet-level
algorithm that consists of a set of event-based tasks. The event-
based tasks should be independent of any specific TCP or
operating system implementation, but yet detailed enough so
the understanding of these tasks enables one to implement
FAST in any operating system or protocol stack.
v. EOUIL~BRIUM AND STABILITY OF WINDOW CONTROL

ALGORITHM
In this section, we present a model of the window con-

trol alnorithm. We show that. in euuilibrium. the vectors of
sourcewindows and link queueini delays 'are the unique
solutions of a pair of optimization problems (9HlO). This
completely characterizes the network equilibrium properties
such as throughput, fairness, and delay. We also analyze
the stability of the window control algorithm. We prove in
[331 that, for a single link with heterogeneous sources, the
window control algorithm (5) is globally stable, assuming
zero feedback delay, and converges exponentially to a unique
equilibrium. Extensive experiments in Section VI illustrate its
stability in the presence of feedback delay.

Given a network that consists of a set of resources with finite
capacities y, e.g., transmission links, processing units, mem-
ory, etc., we refer to them in general as "links" in our model.
The network is shared by a set of unicast flows, identified by
their sources. Let d, denote the round-trip propagation delay of
source i . Let R be the routing matrix where R,, = 1 if source
i uses link 1, and 0 otherwise. Let p l (t) denote the queueing
delay at link 1 at timet. Let q i (t) = Rlip[(t) be the round-
trip queueing delay, or in vector notation, q(t) = RTp(t) . Then
the round trip time of source i is T,(t) := d, + q;(t) .

Each source i ad$pts wi(t) periodically according to:

6Nole lhat (6) can be rewitten as (when ai(w;,yi) = ai, constant)

W i (t + 1) = w d t) + yi(ai - zi(t)qi(t))
From 1261, TCP Vegas updates ifs window according lo

where s g o (r) = -1 if L < 0, 0 if z = 0, and 1 if z > 0. Hence FAST can
k thought of as a high-speed version of Vegas.

07803-8355-9/04620,00 BuxL1 Em. 2495

where y E (O , l] , at time t , and at(wt,qi) is defined by:

A key departure of our model from those in the literature
is that we assume that a source's send rare, defined as
z i (t) := w;(t) /T,(t) , cannot exceed the thmughput it receives.
This is justified because of self-clocking: one round-trip time
after a congestion window is increased, packet transmission
will be clocked at the same rate as the throughput the flow
receives. See [481 for detailed justification and validation
experiments. A consequence of this assumption is that the
link queueing delay vector, p (t) , is determined implicitly
by the instantaneous window size in a sfatic manner: given
w;(t) = wi for all i, the link queueing delays p r (t) =PI 2 0
for all 1 are given by:

=cr i f p r > O
5 CI if pi = 0

Wi c
i

where again q, = Cl Rripr.
The equilibrium values of windows w* and delays p' of the

network defined by (6 H 8) can be characterized as follows.
Consider the utility maximization problem

and the following (dual) problem:

Theorem 1: Suppose R has full row rank. .The unique
equilibrium point (w',p*) of the network defined by (6)<8)
exists and is such that z* = (zr := tut/(& + q;) ,V i) is the
unique maximizer of (9) and p* is the unique minimizer of
(IO). This implies in particular that the equilibrium rate z* is
a,-weighted proportionally fair.

Theorem 1 implies that FAST TCP has the same equilibrium
properties as TCP Vegas [251, 1261. Its throughput is given by

In particular, it does not penalize sources with large prop-
agation delays &. The relation (11) also implies that, in
equilibrium, source i maintains a; packets in the buffers along
its path [25], [26]. Hence, the total amount of buffering in the
network must be at least xi a, packets in order to reach the
equilibrium.

We now turn to the stability of the algorithm. Global
stability in a general network in the presence of feedback
delay is an open problem (see 1491, 1501 for stability analysis
for the single-link-single-source case). State-of-the-art results
either prove global stability while ignoring feedback delay, or
local stability in the presence of feedback delay. Our stability
result is restricted to a single link in the absence of delay.

Theorem 2: Suppose there is a single link with capacity c.
Then the network defined by (6)<8) is globally stable. and
converges geometrically to the unique equilibrium (w*,p*).

The basic idea of the proof is to show that the iteration
from w(t) to w(t + 1) defined by (6 H 8) is a contraction
mapping. Hence ~ (t) converges geometrically to the unique
equilibrium.

Some properties follow from the proof of Theorem 2.
Corollary 3: 1) Starting from any initial point

(w(O),p(O)), the link is fully utilized, i.e., equality
holds in (8). after a finite time.

2) The queue length is lower and upper bounded after a
finite amount of time.

VI. PERFORMANCE
We have conducted some preliminary experiments on our

dummynet [511 testbed comparing performance of various new
TCP algorithms as well as the Linux TCP implementation. It
is important to evaluate them not only in static environments,
but also dynamic environments where flows come and go;
and not only in terms of end-toend throughput, but also
queue behavior in the network. In this study, we compare
performance among TCP connections of the same protocol
sharing a single bottleneck link. In summary,

I) FAST TCP achieved the best overall performance in
each of the four evaluation criteria: throughput, fairness,
responsiveness, and stability.

2) Both HSTCP and STCP improved throughput and re-
sponsiveness of Linux TCP, although both showed fair-
ness problems and oscillations with higher frequencies
and larger magnitudes.

In the following subsections, we will describe in detail our
experimental setup, evaluation criteria, and results.

A. Testbed and kernel instrumentation
We constructed a testbed of a sender and a receiver both

running Linux, and an emulated router running FreeBSD. Each
testbed machine has dual Xeon 2.66 GHz, 2 GB of main
memory, and dual on-board Intel PROllO00 Gigabit Ethernet
interfaces. We have tested these machines to ensure each is
able to achieve a peak throughput of 940 Mbps with the
standard Linux TCP protocol using iper f .

Sender sourer R e C s l Y B i

Fig. 5. Testbed and the expedmental setup.
Figure 5 shows the setup of the testbed. The testbed router

supports paths of various delays and a single bottleneck
capacity with a fixed buffer size. It has monitoring capability
at the sender and the router. The receiver runs different TCP
traffic sinks with different port numbers for connections with
different RlTs. We set up and run different experiments from
the sender using an automatic script generator to start multiple
iperf sessions to emulate multiple TCP connections.

Our testbed router ran dummynet [511 under FreeBSD. We
configured dummynet to create paths or pipes of different
delays, 50, 100, 150, and 20Oms, using different destination
port numbers on the receiving machine. We then created
another pipe to emulate a bottleneck capacity of 800 Mbps and
a buffer size of 2,000 packets, shared by all the delay pipes.
Due to our need to emulate a high-speed bottleneck capacity,
we increased the scheduling granularity of dummynet events.
We recompiled the FreeBSD kernel so the task scheduler ran
every 1 ms. We also increased the size of the IP layer intermpt

&7803-8355-9~20.@2 02001 BEE. 2496

queue (i p i n t r q) to 3000 to accommodate large bursts of
packets.

We instrumented both the sender and the dummynet router
to capture relevant information for protocol evaluation. For
each connection on the sending machine, the kernel monitor
captured the congestion window, the observed baseRTI; and
the observed queueing delay. On the dummynet router, the
kernel monitor captured the throughput at the dummynet
bottleneck, the number of lost packets, and the average queue
size every two seconds. We retrieved the measurement data
after the completion of each experiment in order to avoid disk
VO that may have interfered with the experiment itself.

We tested four TCP implementations: FAST, HSTCP, STCP,
and Reno (Linux implementation). The FAST TCP is based on
Linux 2.4.20 kernel, while the rest of the TCP protocols are
based on Linux 2.4.19 kernel. We ran tests and did not observe
any appreciable difference between the two plain Linux ker-
nels, and the TCP source codes of the two kernels are nearly
identical. Linux TCP implementation includes all of the latest
RFCs such as New Reno, SACK, D-SACK, and TCP high
performance extensions. There are two versions of HSTCP
[521, [53]. We present the results of the implementation in
[521, but our tests show that the implementation in [531 has
comparable performance.

In all of our experiments, the bottleneck capacity is 800
h4bps-roughly 66 packetshs, and the maximum buffer size
is 2000 packets.

We now present our experimental results. We first look at
three cases in detail, comparing not only the throughput behav-
ior seen at the source, but also the queue behavior inside the
network, by examining trajectories of throughputs, windows,
instantaneous queue, cumulative losses, and link utilization.
We then summarize the overall performance in a diverse set
of experiments in terms of quantitative meuics, defined below,
on throughput, fairness, stability, and responsiveness.
B. Case study: static scenario

We present experimental results on aggregate throughput
in a simple static environment where, in each experiment, all
TCP flows had the same propagation delay and started and
terminated at the same times. This set of tests included 20
experiments for different pairing of propagation delays, 50,
100, 150, and Zooms, and the number of identical sources, 1,
2. 4, 8, and 10. We ran this test suite under each of the four
TCP protocols. We then constructed a 3-d plot, in Figure 6,
for each protocol with the z-axis and y-axis being the number
of sources and propagation delay, respectively. The z-axis is
the aggregate throughput.

All four protocols performed well when the number of
flows was large or the propagation delay was small, i.e.,
when the window size was small. The performance of FAST
TCP remained consistent when these parameters changed. TCP
Reno, HSTCP, and STCP had varying degrees of performance
degradation as the window size increased, with TCP Reno
showing the most significant degradation.

This set of experiments, involving a static environment
and identical flows, does not test the fairness, stability and
responsiveness of the protocols. We take a close look at
these properties next in a dynamic scenario where network
equilibrium changes as flows come and go.
C. Case study: dynamic scenario I

In the first dynamic test, the number of flows was small
so that, throughput per flow, and hence the window size, was

FAST

Fig. 6. Static scenario: aggregate throughput

large. There were three TCP flows, with propagation delays of
100, 150, and Zooms, that started and terminated at different
times, as illustrated in Figures 7(a).

For each dynamic experiment, we generated two sets of
figures, from the sender monitor and the queue monitor. From
the sender monitor, we obtained the trajectories of individual
connection throughput (in Kbps) and window size (in packets)
over time. They are shown in Figure 8.

As new flows joined or old flows left, FAST TCP converged
to the new equilibrium rate allocation rapidly and stably.
Reno’s throughput was also relatively smooth because of the
slow (linear) increase before packet losses. The link utilization
was low at the end of the experiment when it took 30 minutes
for a flow to. reclaim the spare capacity due to the departure
of another flow. HSTCP and STCP, in an attempt to respond
more quickly, went into severe oscillation.

From the queue monitor, we obtained three trajectories: the
average queue size (packets), the number of cumulative packet
losses (packets), and the utilization of the bottleneck link (in
packetshs), shown in Figure 9 from top to bottom. ?he queue
under FAST TCP was quite small throughout the experiment
due to the small number of flows. HSTCP and STCP exhibited
strong oscillations that filled the buffer. The link utilizations
of FAST TCP and Reno were quite steady, whereas those of
HSTCP and STCP showed fluctuations.

From the throughput trajectories of each protocol, we cal-
culate Jain’s fairness index (see Section VI-E for definition)
for the rate allocations for each time interval that contains
more than one flow (see Figure 7(a)). The fairness indices are
shown in Table DI. FAST TCP obtained the best fairness,

TABLE 111
DYNAMIC SCENARIO I: INTRA-PROTOCOL FAIRNESS

very close to 1, followed by HSTCP, Reno, and then STCP. It
confirms that FAST TCP does not penalize against flows with
large propagation delays. Even though HSTCP, STCP, and
Reno all try to equalize congestion windows among competing
connections instead of equalizing rates, this was not achieved
as shown in Figure 8. The unfairness is especially severe in
the case of STCP, likely due to MIMD as explained in [54].

For FAST TCP, each source tries to maintain the same
number of packets in the queue in equilibrium, and thus, in

0-7803-8355-9/04/$20.M) 82004 IFEE. 2491

t

1600 SQ01)O 3 6 0 0 loa00 21600

(a) Dynamic scenario 1 (3 Rows) @) Dynamic scenario II I8 Rows)

Fig. 7.
represent the slaning and ending times. respectively, of the Row(s).

Dynamic sceoario: each colored block represene one or more connections of certain propagation delay. The left and ?he right edges of each block

I F A 9T I UPTCP I PTCP I I

Fig. 9. Dynamic scenario I: dumyoet quae sizes, losses, and li& utilization.

theory, each competing source.should get an equal share of
the bottleneck bandwidth. Even though FAST TCP achieved
the best fairness index, we did not observe the expected
equal sharing of bandwidth (see Figure 8). We found that
connections with longer RlTs consistently observed higher
queueing delays than those with shorter.RTR For example,
the connection on the path of 100 ms saw an average queueing
delay of 6 ms, while the connection on the path of 200 ms saw
an average queueing delay of 9 ms. This caused the connection
with longer RlTs to maintain fewer packets in the queue in
equilibrium, thus getting a smaller share of the bandwidth.
We have yet to uncover the source of this problem, but the
early conjecture is that when congestion window size is large,
it is much harder to break up bursts of packets. With bursty
traffic arriving at a queue, each packet would see a delay that
includes the transmission times of all preceding packets in
the burst. However, if packets were spaced out smoothly, then
each packet would have seen a smaller queueing delay at the
queue.

both congestion windows and queue size are more severe for
all loss-base protocols. Packet loss is also more severe. The
performance of FAST TCP did not degrade in any significant
way. Connections sharing the link achieved very similar rates.
There was a reasonably stable queue at all times, with little
packet loss and high link utilization. Intra-protocol fairness is
shown in Table IV, with little change for FAST TCP.

D. Case study: dynamic scenario II
This experiment was similar to dynamic scenario I, except

that there were a larger number (8) of flows, with different
propagation delays, which joined and departed according
to the schedule in Figure 7(b). The qualitative behavior in
throughput, fairness, stability, and responsiveness for each of
the protocols is similar to. those in scenario I, and in fact is
amplified as the number of flows increases.

Specifically, as the number of competing sources increases
in a network, stability becomes worse for the loss-based
protocols. As shown in Figures 10 and 11, oscillations in

TABLE IV
FAIRNESS A M O N G VARIOUS PROTOCOLS FOR EXPERIMENT 11.

E. Overall evaluation
We have conducted several other experiments, with different

delays, number of flows, and their arrival and departure
patterns. In all these experiments, the bottleneck link capacity
was BOOMbps and buffer size 2000 packets. We present in this
subsection a summary of protocol performance in terms of
some quantitative measures on throughput, fairness, stability,
and responsiveness.

07803-8355-9/wp$20.~ IEEB. 2498

FAST I HSTCP
I

.p , I ...

STCP I Reno

f I
, I .I- I

I'
1.

Fig. 10. Dynamic sceoario I t rhrowhput and cwnd vajectofies

I FAST I HSTCP I STCP I Reno I

/- i . i k . U ji! fl (. , 1
i t i ., i '7

.. 1 ; ' ._ ..
Fig. 11. Dynamic scenario II: dummynet queue si=, losses, and link utilization.

We use the output of iperf for our quantitative evaluation.
Each iperf session in our experiments produced five-second
averages of its throughput. This is the data rate (i.e., goodput)
applications such as iperf receives, and is slightly less
than the bottleneck bandwidth due to IP and Ethernet packet
headers.

Let x,(k) he the average throughput of flow i in the five-
second period k. Most tests involved dynamic scenarios where
flows joined and departed. For the definitions below, suppose
the composition of flows changes in period k = 1, *mains
fixed over period k = 1, . . . , rn, and changes again in period
k = rn+ 1, so that [I, rn] is the maximum-length interval over
which the same equilibrinm holds. Suppose there are rz active
flows in this interval, indexed by i = 1, . . , n. Let

l m Zi := - X z a (k)
m

k = l

he the average throughput of flow i over this interval. We now
define our performance metrics for this interval [1, m] using
these throughput measurements.

1) Throughput: The average a re ate throughput for the interval [1,m] is defined as: $g

n

E := XZ;
i=l

2) Intra-protocol fairness: Jain's fairness index for the
interval [l ,m] is defined as [S I :

F E (0, I] and F = 1 is ideal (equal sharing).
3) Stability: The stability index of flow i is the sample

standard deviation normalized by the average through-
put:

'As mentioned above, this is the throughput (or gmdplt) seen at the
application layer. not TCP layer.

The smaller the stability index, the less oscillation a
source experiences. The stability index for interval [0, rn]
is the average over the n active sources:

s := -csi 1 "
n . ,=1

4) Responsiveness: The responsiveness index measures
the speed of convergence when network equilibrium
changes at k = 1, i.e., when flows join or depan. Let
jri(k) be the running average by period k I m:

Then zi(rn) = 3; is the average over the entire interval
L m l .
Responsiveness index RI measures how fast the running
average zi(k) of the slowest source converges to 4:'

For each TCP prolocol, we obtain one set of computed
values for each evaluation criterion for all of our experiments.
We plot the CDF (cumulative distribution function) of each
set of values. These are shown in Figures 12 - 15.

From Figures 12-15, FAST has the best performance among
all protocols under each evaluation criterion. More impor-
tan(ly, the variation in each of the distributions is smaller
under FAST than under the other protocols, suggesting that
FAST had fairly consistent performance in our test scenarios.
We also observe that both HSTCP and STCP achieved higher
throughput and improved responsiveness compared with TCP
Reno. STCP had worse intra-protocol fairness compared with
TCP Reno, while HSTCP achieved comparable intra-protocol
fairness IO Reno (see Figures 13, 8 and IO). Both HSTCP
and STCP showed increased oscillations compared with Reno

b e natural definition of responsiveness index as the earliest pe&d after
which the throughput z;(k) (as opposed to the mnolng average Z ; (k) of the
throughput) slays within 1096 of ils equilibrium value is unsuitable for TCP
prolocols that do not stabilk into an equilibrium value. Hence we define it io
terms of Z;(k) which, by definition, always converges to Z; by the end of the
interval k = n. This definition caplures the intuitive notion of responsiveness
if zi(S) settles into a pericdic limit cycle.

0-7803-8355-9/04P$20.W OZIXJ4 DEE. 2499

Fig. 12. Overall evaluation: throughpt

Fig. 14. Overall evaluation: stability

(Figures 14, 8 and 9). and the oscillations became worse as
the number of sources increased (Figures 10 and 11).

From Figure 15, FAST TCP achieved a much better respon-
siveness index RI (which is based on worst case individual
throughput) than the other schemes. We caution however that
it can be hard to quantify “responsiveness” for protocols that
do not stabilize into an equilibrium point or a periodic limit
cycle, and hence the unresponsiveness of Reno, HSTCP, and
STCP, as measured by index R I , should be interpreted with
care.

VII. CONCLUSION
We have described an alternative congestion control algo-

rithm, FAST TCP, that addresses the four main problems of
TCP Reno in networks with high capacities and large latencies.
FAST TCP has a log utility function and achieves weighted
proportional fairness. Its window adjustment is equation-
based, under which the network moves rapidly toward equilib-
rium when the current state is far away and slows down when it
approaches the equilibrium. FAST TCP uses queueing delay, in
addition to packet loss, as a congestion signal. Queueing delay
provides a finer measure of congestion and scales naturally
with network capacity.

We have presented experimental results of our first Linux
prototype and compared its performance with TCP Reno,
HSTCP, and STCP We have evaluated these algorithms not
only in static environments, but also dynamic environments
where flows come and go, and not only in terms of end-to-end
throughput, but also queue behavior in the network. In these
experiments, HSTCP and STCP achieved better throughput
and link utilization than Reno, but their congestion windows
and network queue lengths had significant oscillations. TCP
Reno produced less oscillation, but at the cost of lower link
utilization when sources departed. FAST TCP, on the other
hand, consistently outperforms these protocols in terms of
throughput, fairness, stability, and responsiveness.

Acknowledgments: We gatefully acknowledge the conui-
butions of the FAST project team and our collaborators,

Fig. 13. Overall evaluation: fairness

Fig. 15. Overall evaluation: respomiveoess
index R I .

athttp://netlab.caltech.edu/FAST/, inparticular,
G . Almes, J. Bum, D. H. Choe, R. L. A. Cottrell, V. Do-
raiswami, J. c. Doyle, W. Feng, 0. Martin, H. Newman, E
Paganini, S . Ravot, S. Shalunov, S . Singh, J. Wang, 2. Wang,
S. Yip. This work is funded by NSF (grants ANI41 13425 and
AN-0230967). Caltech Lee Center for Advanced Networking,
ARO (grant DAADI9-02-1-0283), AFOSR (grant F49620-03-
1-0119). and Cisco.

REFERENCES
[I] V. lacohson, “Congestion avoidance and conuol:’ Pmeedings of

SIGCOMMEE, ACM, August 1988, An updated version is aMllaMe
ma ftp://ftp.ee.lbl.gov/papers/congavoid.ps.z.

[21 M. Malhis, I. Mahdavi, S. Floyd, and A. Romanow, “TCP Selec-
tive Aclmwledgment Opions:’ RFC 2018, ftp://ftp.isi.edu/
in-notes/rfc2018. txt, Onober 19%.

[3l V. Jacobsoa R Bradeo, and D. B o m o , ‘TCP extensions for
high performance,” RFC 1323, f tp : / / f tp . isi . edu/ in- no res/
xfc1323.txt, May 1992.

[41 Janey Hoe, “Improving the starmp behavim of a congestion conuol
scheme f a tcp:’ in ACMSigcomm’96, August 19%. http://www.
acm.org/sigcomm/sigcomm96/program.html.

[5] Cheng lin, David X. WW, and Steven H. Law, “The case for delay-
hssed congestion control,” in Pmc. of IEEE Computer C o m i c o r i o n
Workshop (CCW), October 2003.

[61 Sally Floyd, “HighSpeed TCP far large congestion windows:’ Internet
draft dr~n-floyd-tcphiph~ed-02.tx5 work in progress, ht tp : / /m.
icir.org/floyd/hstcp.html, February 2003.

[7] Tom Kelly, “Scalable TCP Improving performance in highspeed wide
area networlts:’ Submined fw publication, http: //ww- Ice .eng.
cam.ac.uk/^ctk2l/scalable/, December 2002.

[81 Lawrence S . Bralano and Larry L. Peterson, ‘TCP Vegas: end-to-end
mngestion avoidance on a global Internet:’ IEEE h u m 1 a Selected
Areas in Communicmim, vol. 13, no. 8. pp. 146540, O a k 1995,
http://cs.princeton.edu/nsg/papers/jsac-vegas.ps.

[91 E. Weigle and W. Feng, “A case for TCP Vegas i o high-performance
comptational gnds:’ in Proceedings of the 9th Intemofional Symposium
m High Perfonnrmce Distributed Computing (HPDC’OI), August 2001.

[IO] W. Feng and S. Vanichpun, “Enabling compatibility between TCP Reno
and TCP Vegas,” IEEE Symposium on Applicmiorw and the ImemeI
(SAlhT 2003), January 2003.

[I l l C. Case&, M. Gerla, S. Mascolo, M. Sansadid, and R. Wang, “TCP
Westwood. end-trrend congestion control for wiredlwirelesr neworb.”
wireless Nemorkr .looumol, vol. 8. pp. 4671179, 2002.

[I21 R. Waog, M. Valla, M. Sanadidi, B. Ng, and M. Gerla, “Using
adaptive rate estimation to provide enhanced and robust uansport over
heterogeneous networks:’ in P m . oflEEE ICNP, 2002.

07803-8355-9M20.00 02004 IEEE. 2500

ftp://ftp.ee.lbl.gov/papers/congavoid.ps.z
ftp://ftp.isi.edu
http://www
http://cs.princeton.edu/nsg/papers/jsac-vegas.ps

[I31 D. Katabi. M. Handley, and C. Rohrs, “Congestion control for high-
bandwidth delay p-oducl neouorks:’ in Pmc. ACM Sigcomm, August
m.

[I41 Shudoog JiQ Liang Guo, I W m Malta, and Azer Bestavros, “A
specvUm of TCP-friendly windaw-based congestion control algorithm,”
IEEUACM Tmactiom on Nerworking, vol. I I , no. 3, June 2003.

I151 R. Shonen, D. Leith, 1. Foy, and R. KilduE, “Analysis and design of
congestion control io syochrolused communication networks:’ in Pmc.
of l2rh Yole Worbhon on Adambe mrd Lenmina Svsrem. may 2003.
k. hamilton. ie/doug ieith. htm

I161 L. Xu, K. Harfoush. and I. &e, “Binary increase congestion comol
for fast long-d~stance oetworks:’ in Pmc. of lEEE Infocom 2004.

I171 A. Kuzmanovic and E. Knightly, “TCP-LP: a distributed algorilhm for
low priority data transfer,” in P m . of IEEE Infocom, 2003.

I181 H. Bullot and L. Cottrell, “Tcp stacks testbed:’ http : //m- iepm.

I201 2. Wang and J. Crowcrofi, “Eliminating pricdic packet losses in the
4.3-Tahoe BSD TCP congestion control algorithm,” ACM Computer
Comrmrnicnriom Review, April 1992.

[Z l l Jim Martin, Arne Nikson, and lnjong Rhee, ”Delay-based congestion
avoidance for TCP:’ IEEWACM Trm. on Networkinz. vol. 11. no. 3.

.
edu/-paganini.

[23] Hyojeong Chm and Steven H. Low. ‘“Stabilized Vegas:’ io Pmc. of
IEEE Infxorn, April 2003, http://netlab.caltech.edu.

I241 Fernando Paganini, Zhikui Wang, Steven H. Low, and John C. Doyle,
“A new TCPIAQM for stability and performance in fast networks:’ in
P m . oflEEE Infocorn, April 2003, http://~.ee.ucla.edu/
‘paganini.

I251 Jeonghoon MO and Jean Walrand, “Fair end-to-end wiodow-based
congestion contml:‘ IEEUACM Tmnrocrim on Nefworxing, vol. 8,
no. 5. pp. 556567, October 2wO.

I261 Steven H. Low, Larry Peterson. and Limin Wang, “Understanding Vegas:
a duality model:’ J. of ACM, vol. 49, no. 2, pp. 207-235, March 2002,

~~

http://netlab.caltech.edu.
1271 Frank I? Kelly, Aman Maulloo, and David Tan, “Rate control for

communication aetworks: Shadow prices, propaVonal fairness and
aabiliry:’ Journal 0,’ Opcmtionr Research Society, vol. 49, no. 3, pp.
237-252, March 1998.

[28l Frank P. Kelly, “Mathematical modelling of the Internet:’ in M a t k m t -
ics Unlimited - 2WI mrd Bevomi. B. Ensmist and W. Schmid. Eds.. m. . ..
6 8 ~ 7 0 2 . Springer-Verlag. der&, ZOOIT’

I291 C.V. Hollof, V. Misra, D. Towsley, and W.B. Gong, “ A o a l ~ i s and

Trmmriom on Automafic Contml. vol. 47. no. 6. m. 945-959. 2002.
design or mntroiier~ for AQM routect S U p p h n g TCP flows, IEEE

. , ~~ .L. ~~

S. H. Low, R Paganini, J. Wang, and I. C. Doyle, ’.Linear stability of
TCP/RED and B scalable control,” Computer NerWorkr Journal, vol. 43,
no. 5, pp. 633447, 2003, http://netlab.caltech.edu.
Matthew Mathis, Jeffrey Semke, Iamshid Mahevi, and Teunis On,
‘The m a m s c q i c behavia of the TCP congestion awidance alg-
“thm” ACM Compurer Communicaion Review, vol. 27, no. 3, July
1997, http://VIWW.psC.edu/networking/papers/model-
ccr97.p~.
T. V. Lakshman and Upamanyn Madhow, ”The performance of TCP/IP
f a networks with high handwidthdelay produce and random loss:’
IEEWACM TmmMm on Nerworking, vol. 5, no. 3, pp. 336350,
June 1997, http: / / w w w .ece.ucsb. edu/Faculty/Madhow/
Publications/ton97.ps.
C. Jin, D. Wei, and S . H. Law. “FAST T C P motivation, architeehxe,
algorithms, performance,” Tech. Rep. CaltechCSTR:2003.010, Caltech,
Pasadena CA, 2003, http : //netlab .caltech. edu/FAST.
S. Floyd, M. Handley, J. Padhye, and J. Widmer, “Equation-based con-
gestion mntrol far unicast applications:’ in Pmc. ACM SIGCOMMW,
Seofember 2wO.

[35l S t k n H. Low and David E. Lapsky, ‘“Optimization Row control,
I: basic algaithm and convergence:’ IEEUACM Trrmsoch’m on
Nerworking, vol. 7. no. 6, pp. 861-874. Deeemkr 1999, http:
//netlab.caltech.edu.

1361 S . K u n n i y u and R. Srikant, ‘.End-bend mngestion co11troI: &ity
functions, random losses and ECN marks: IEEUACM Trmmtiom on
Networking, 2003.

“Bandwidth sharing: cbjedves and
aleonthms.” IEEUACM TmnsacrionS on Nehuodin~. vol. IO. no. 3.

1371 L. Massoulie and J. Robem,

Steven H. Low, “A duality model of TCP and queue management
algorithm:’ IEEWACM Trm. on Neworking, vol. 1 I, no. 4, pp. 525-
536, August 2003, http : //netlab. caltech . edu.
Glenn VinOicombe;, :On the stability of oetwrrks operating TCP-like
congestion control, m Pm. oflFAC World Congress, 2002.
S. Kunniyu and R. Srikant, “A time-scale demmposition approach to
adaptive ECN mking:’ IEEE T r m m t i m on Auromic Conrml, June
2002.
S . Kvnniyu and R. Srikant, ‘“Designing AVQ pa rme te r~ for a eneral
topdopy networv in Pmceedings .f rhe A s h Conrml C o n q r m e ,
Sepemba 2002.
Glenn Vinaicomk, “Robusf coneestion control for the Internet:’
submitted for publication, 2002.
Steven H. Low, Fernando Paganini, and John C. Doyle, “Internet
congestion control,” IEEE Conrrol Systons Magazine, vol. 22, no. 1,
pp. 2843, February 2002.
S. H. Low and R. Srikant, “A mathematical framework for designing a
low-loss, low-delay internet:’ 2003.
Frank F! Kelly, “Fairness and stability of end-to-end congestion control,”
Europem Journal of Conrrol, vol. 9, pp. 159-176, 2003.
C. Jin, D. Wei, S. H. Low, G. Buhrmaster, I. Bum, D. H. Choe, R. L. A.
Cmrell, J. C. Doyle, H. Newman, F. Pagdn i , S. Ravot, and S. Singh,
“FAST Kernel: Backgmnd theay and experimental results:’ in First
InIemaIiaLol Workshop on Pmixolsfor Fan L o n g - D b m e Nehuorkr,
February 2003.
David X. Wei and Steven H. Low, “A model for TCP model with
turstiness effect:’ Submitted for publication, 2003.. ,

Zhikui Wang and Fernando Paganini, “Global stab~hty with time delay
in network congestion control:’ in Pmc of rhe IEEE Conference on
Decbion ami Conrml, December 2002.
S. Deb and R. Srikant, “Global stability of congestion controllers for
the Internet:’ IEEE Tmoctionr on Auromric Comml. vol. 48, no. 6,
pp. 1055-Io60, June 2003.
Lnigj Rizzo, “Dummynet:‘ http://http://irifo.iet .mipi.
it/-luigi/ip dummynet/.
Y. Li, ”ImplementTng highspeedtcp:’URL:http://www.hep.ucl.
ac.uk/”ytl/tcpip/hstcp/index.html.
T. Dunigan, “Floyd‘s tcp slow-sfan and iumd mods,” URL : http : / /
www.csm.ornl.gov/-dmigan/netlOO/floyd.html.
D. Chi” and R. lain, “Analysis of the increase and decrease algulthms
for mngestion avoidance io computer networks,” CompuVr N e w o r b ,
vol. 17, pp. 1-14, 1989.
R. lain, n e an of compurer sysrem pefloformrmce d y x b : techniques
for experimental d i g n . mosuremnt, simrrlaMn and d e l i n g . , John
Wiley and Sons, Inc.. 1991.

ppy 32&328, .lune 2002.
I381 H. Yaiche, R. R. Mazumdar, and C. Rosenkrg, “A game theoretic

framework for bandwidth allwtioa and pricing in broadband networks:’
IEEUACM Tmmacriom on Nehuorkinx, vol. 8, no. 5 , October 2000.

0-7803-8355-9/04/1E20.00 02004 EEE. 2501

http://netlab.caltech.edu
http://netlab.caltech.edu
http://netlab.caltech.edu
http://VIWW.psC.edu/networking/papers/model
http://netlab.caltech.edu
http://http://irifo.iet

