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Abstract-We describe FAST TCP, a new TCP congestion 
control algorithm for high-speed long-latency networks, from 
design to imPlementati"n. we kblieht  the approach taken bY 
FAST TCP to address the four dimcnlties, at both packet and 
Bow levels, which the current TCP implementation hss at krge 
windows. We describe the architecture and characterize the 
eouilibrium and stabilitv oronerties of FAST TCP. We oresent 

In Section 111, we motivate delay-based approach. Delay- 
based congestion control has been proposed, e.g., in [191, [201, 

Speed, but decisive at high speed, as we will argue below. As 
pointed out in [211, delay can be a poor or untimely predictor 
of uacket loss. and therefore using a delav-based algorithm 

[SI, Its advantage over loss-based approach is small at low 

I. INTRODUCTION 
Congestion control is a distributed algorithm to share net- 

work resources among competing users. It is important in 
situations where the availability of resources and the set of 
competing users vary over time unpredictably, yet efficient 
sharing is desired. These constraints, unpredictable supply and 
demand and efficient operation, necessarily lead to feedback 
control as the preferred approach, where traffic sources dy- 
namically adapt their rates to congestion in their paths. On 
the Internet, this is performed by the Transmission Control 
Protocol (TCP) in source and destination computers involved 
in data transfers. 

The congestion control algorithm in the current TCP, which 
we refer to as Reno, was developed in 1988 111 and has gone 
through several enhancements since, e.g., [21, [31, [41. It has 
performed remarkably well and is generally believed to have 
prevented severe congestion as the Internet scaled up by six 
orders of magnitude in size, speed, load, and connectivity. It 
is also well-known, however, that as bandwidth-delay prod- 
uct continues to grow, TCP Reno will eventually become a 
performance bottleneck itself. The following four difficulties 
contribute to the poor performance of TCP Reno in networks 
with large bandwidth-delay products: 

1) At the packet level, linear increase by one packet per 
Round-Trip Tune (RTT) is too slow, and multiplicative 
decrease per loss event is too drastic. 

2) At the flow level, maintaining large average congestion 
windows requires an extremely small equilibrium loss 
probability. 

3) At the packet level, oscillation is unavoidable because 
TCP uses a binary congestion signal (packet loss). 

4) At the flow level, the dynamics is unstable, leading 
to severe oscillations that can only be reduced by the 
accurate estimation of packet loss probability and a 
stable design of the flow dynamics. 

We explain these difficulties in detail in Section 11. In [51, we 
described HSTCP [6j and STCP [7], two loss-based solutions 
to these problems. In this paper, we propose a delay-based 
solution. See [SI, [91, [lo], [ I l l ,  [121, U31, [141, U51, [W, 
[17], [18] for other proposals. 

this approach. Using queueing delay as the congestion measure 
bas two advantages. 

First, queueing delay can be more accurately estimated than 
loss probability both because packet losses in networks with 
large bandwidth-delay product are rare events (probability 
on the order lo-* or smaller), and because loss samples 
provide coarser information than queueing delay samples. 
Indeed, measurements of delay are noisy, just as those of 
loss probability. Each measurement of packet loss (whether 
a packet is lost) provides one bit of information for the 
filtering of noise, whereas each measurement of queueing 
delay provides multi-bit information. This makes it easier for 
an equation-based implementation to stabilize a network into a 
steady state with a target fairness and high utilization. Second, 
the dynamics of queueing delay seems to have the right scaling 
with respect to network capacity. This helps maintain stability 
as a network scales up in capacity [22], [23], [24]. In Section 
111, we explain how we exploit these advantages to address the 
four difficulties of TCP Reno. 

In Section TV, we lay out an architecture to implement our 
design. Even though the discussion is in the context of FAST 
TCP, the architecture can also serve as a general framework to 
guide the design of other congestion control mechanisms, not 
necessarily limited to TCP, for high-speed networks. The main 
components in the architecture can be designed separately 
and upgraded asynchronously. Unlike the conventional design, 
FAST TCP can use the same window and burstiness control 
algorithms regardless of whether a source is in the normal state 
or the loss recovery state. This leads to a clean separation of 
components in both functionality and code structure. We then 
present an overview of some of the algorithms implemented 
in our current prototype. 

In Section V, we present a mathematical model of 
the window control algorithm. We prove that FAST TCP 
bas the same equilibrium properties as TCP Vegas [251, 
[26]. In particular, it does not penalize flows with large 
propagation delays, and it achieves weighted proportional 
fairness [27]. For the special case of single bottleneck 
link with heterogeneous flows, we prove that the window 
control algorithm of FAST is globally stable, in the absence of 
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feedback delay. Moreover, starting from any initial state, a 
network converges exponentially to a unique equilibrium. 

In Section VI, we present preliminary experimental results 
to illustrate throughput, fairness, stability, and responsiveness 
of FAST TCP, in the presence of delay and in heterogeneous 
and dynamic environments where flows of different delays 
join and depart asynchronously. We compare the performance 
of FAST TCP with Reno, HSTCP (Highspeed TCP [61), 
and STCP (Scalable TCP [7]), using their default param- 
eters. In these experiments, FAST TCP achieved the best 
performance under each criterion, while HSTCP and STCP 
improved throughput and responsiveness over Reno at the cost 
of fairness and stability. We conclude in Section VII. ’ 

11. PROBLEMS AT LARGE WINDOWS 

A congestion control algorithm can he designed at two 
levels. The $ow-level (macroscopic) design aims to achieve 
high utilization, low queueing delay and loss, fairness, and 
stability. The packer-level design implements these flow-level 
goals within the constraints imposed by end-toend control. 
Historically for TCP Reno, packet-level implementation was 
introduced first. The resulting flow-level properties, such as 
fairness, stability, and the relationship between equilibrium 
window and loss probability, were then understood as an 
afterthought. In contrast, the packet-level designs of HSTCP 
[61, STCP [71, and FAST TCP are explicitly guided by flow- 
level goals. 

We elaborate in this section on the four difficulties of TCP 
Reno listed in Section I. It is important to distinguish between 
packet-level and flow-level difficulties because they must be 
addressed by different means. 

A. Packet and pow level modeling 
The congestion avoidance algorithm of TCP Reno and its 

variants have the form of AIMD [l]. The pseudo code for 
window adjustment is: 

1 - w + w  Ack: 

1 
w-2” Loss: w - 

This is a packet-level model, but it induces certain flow-level 
properties such as throughput, fairness, and stability. 

These properties can be understood with a flow-level model 
of the AIMD algorithm, e.g., 1281, [29l, [30]. The window 
wi(t) of source i increases by 1 packet per RTT,’ and 
decreases per unit time by 

1 4  
2 3  

zi(t)pi(t). - . -wi(t) packets 

where 

zi(t) := w,(t)/T,(t) pktskec 

T,(t) is the round-trip time, and pi(t) is the (delayed) end-to- 
end loss probability, in period t? Here, 4wi(t)/3 is the peak 

‘It should be (1  - pi(t)) packets, where p , ( t )  is the end-trrend loss 
prokabilily. This is roughly 1 when p i ( t )  is small. 

2This model assumes that window is halved on each packet loss. It can be 
modified to model the case, where window is halved at most once in each 
Rn. This d n s  not qualitatively change the following discussion. 

window size that gives the “average” window of wi(t). Hence, 
a flow-level model of AIMD is: 

Setting tiJi(t) = 0 in (1) yields the well-known 1/& formula 
for TCP Reno discovered in [311, [32], which relates loss 
probability to window size in equiIibrium: 

3 p,* = - 
2Wf2 

In summary, (1) and (2) describe the flow-level dynamics and 
the equilibrium, respectively, for TCP Reno. It turns out that 
different variants of TCP all have the same dynamic structure 
at the flow level (see [51, [33]). By defining 

ni(wi,T,) = - 1 and ui(wi,Z) = - 1.5 
Ti W,2 

and noting that wi = ziTi, we can express (1) as: 

where we have used the shorthand ni(t) = Ki(wi(t),Ti(t)) 
and w(t) = ui(wi(t),T,(t)). Equation 3 can be used to 
describe all known TCP variants, and different variants differ 
in their choices of the gain function ni and marginal utility 
function e+, and whether the congestion measure pi is loss 
probability or queueing delay. 

Next, we illustrate the equilibrium and dynamics problems 
of TCP Reno, at both the packet and flow levels, as bandwidth- 
delay product increases. 

E. Equilibrium pmblem 
The equilibrium problem at the flow level is expressed in 

(2): the end-toend loss probability must be exceedingly small 
to sustain a large window size, making the equilibrium difficult 
to maintain in practice, as bandwidth-delay product increases. 

Even though equilibrium is a flow-level notion, this problem 
manifests itself at the packet level, where a source increments 
its window too slowly and decrements it too drastically. 
When the peak window is 80,000-packet (corresponding to 
an “average” window of 60,000 packets), which is necessary 
to sustain 7.2Gbps using 1,500-byte packets with a R l T  of 
100ms. it takes 40,000 Rms ,  or almost 70 minutes, to recover 
from a single packet loss. This is illustrated in Figure la. 
where the size of window increment per R lT  and decrement 
per loss, 1 and 0.5w,, respectively, are plotted as functions 
of wi. The increment function for Reno (and for HSTCP) is 
almost indistinguishable from the z-axis. Moreover, the gap 
between the increment and decrement functions grows rapidly 
as wi increases. Since the average increment and decrement 
must be equal in equilibrium, the required loss probability can 
he exceedingly small at large wi. This picture is thus simply 
a visualization of (2). 

To address the difficulties of TCP Reno at large window 
sizes, HSTCP and STCP increase more aggressively and 
decrease more gently, as discussed in 151, 1331. 
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(a) Reno, HSTCP, and STCP @) FAST 

Fig. 1. 
for TCP Reno and HSTCP are almost identical at this scale. @) Window update as a function of dirrmce fmm equilibrium for FAST. 

Packet-level implementation: (a) Window increment per R l T  and decremnt per loss, as functions of the current window. The inaement funaioos 

C. Dynamic problems 

The causes of the oscillatory behavior of TCP Reno lie in 
its design at both the packet and flow levels. At the packet 
level, the choice of binary congestion signal necessarily leads 
to oscillation, and the parameter setting in Reno worsens the 
situation as bandwidth-delay product increases. At the flow 
level, the system dynamics given by (1) is unstable at large 
bandwidthdelay products [29], [30]. These must be addressed 
by different means, as we now elaborate. 

F i y e  2(a) illustrates the operating points chosen by vari- 
ous TCP congestion control algorithms, using the single-link 
single-flow scenario. It shows queueing delay as a function of 
window size. Queueing delay starts to build up after point C 
where window equals bandwidth-propagationdelay product, 
until point R where the queue overtlows. Since Reno oscillates 
around point R, the peak window size goes beyond point 
R. The minimum window in steady state is half of the peak 
window. This is the basis for the rule of thumb that bottleneck 
buffer should be at least one handwidth-delay product: the 
minimum window will then be above point C, and buffer will 
not empty in steady state operation, yielding full utilization. 

In the loss-based approach, full utilization, even if achiev- 
able, comes at the cost of severe oscillations and potentially 
large queueing delay. The DUAL scheme in [ZO] proposes 
to oscillate around point D, the mdpoint between C and 
R when the buffer is half-full. DUAL increases congestion 
window linearly by one packet per RlT, as long as queueing 
delay is less than half of the maximum value, and decreases 
multiplicatively by a factor of 1/8, when queueing delay 
exceeds half ofthe maximum value. The scheme CARD (Con- 
gestion Avoidance using Round-trip Delay) of [19] proposes 
to oscillate around point C through AIMD with the same 
parameter (1,1/8) as DUAL, based on the ratio of round- 
trip delay and delay gradient, to maximize power. In all these 
schemes, the congestion signal is used as a binary signal, and 
hence congestion window must oscillate. 

Congestion window can be stabilized only if multi-bit f e d -  
back is used. This is the approach taken by the equation-based 
algorithm in [MI, where congestion window is adjusted based 
on the estimated loss probability in an attempt to stabilize 
around a target value given by (2).  Its operating point is 
T in Figure 2(b), near the overflowing point. This approach 
eliminates the oscillation due to packet-level AlMD, but two 

difficulties remain at the flow level. 
First, equation-based control requires the explicit estimation 

of end-to-end loss probability. This is difficult when the loss 
probability is small. Second, even if loss probability can 
be perfectly estimated, Reno's flow dynamics, described by 
equation (1) leads to a feedback system that becomes unstable 
as feedback delay increases, and more strikingly, as network 
capacity increases [291, [301. The instability at the flow level 
can lead to severe oscillations that can be reduced only by 
stabilizing the flow-level dynamics. We will return to both 
points in Section 111. 

111. DELAY-BASED APPROACH 
In this section, we motivate delay-based approach to address 

the four difficulties at large window sizes. 
A. Motivation 

Although improved loss-based protocols such as HSTCP 
and STCP have been proposed as replacements to TCP Reno, 
we showed in [51 that they don't address all four problems 
(Section I) of TCP Reno. To illustrate this, we plot the 
increment and decrement functions of HSTCP and STCP in 
Figure l(a) alongside TCP Reno. Both protocols upper bound 
TCP Reno: each increases more aggressively and decreases 
less drastically, so that the gap between the increment and 
decrement functions is narrowed. This means, in equilibrium, 
both HSTCP and STCP can tolerate larger loss probabilities 
than TCP Reno, thus achieving larger equilibrium windows. 
However, neither solves the dynamics problems at both the 
packet and the flow levels. 

In 151, we show that the congestion windows in Reno, 
HSTCP and STCP all evolve according to: 

where n ( t )  := ni(w,(t),T,(t)) and ui(t) := u;(w;(t),T,(t)). 
Moreover, the dynamics of FAST TCP also takes the same 
form; see below. They differ only in the choice of the gain 
function ni(w;, Ti), the marginal utility function u,(w;,T,). 
and the end-to-end congestion measure pi. Hence, at the flow 
level, there are only three design decisions: . ni(wg,T,): the choice of the gain function ni determines 

the dynamic properties such as stability and responsive- 
ness; but does not affect the equilibrium properties. 
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Fig. 2. Operating pints  of TCP algorithms: R Reno Ill, HSTCP [SI, STCP [71; D: DUAL. [ZO]; c: CARD [19]; T: TFRC [34]; F: Vegas [SI, FAST. 

u;(w;,T;): the choice of the marginal utility function 
U; mainly determines equilibrium properties such as the 
equilibrium rate allocation and its fairness. . pi: in the absence of explicit feedback, the choice of 
congestion measure pi is limited to loss probability or 
queueing delay. The dynamics of pi@) is determined at 
links. 

‘Ike design choices in Reno, HSTCP, STCP and FAST are 
shown in Table I. 

1/Ti l .5 /wi  loss probability 

0.f18/w:-2a loss probability 
STCP p/wi loss probability 
FAST ai/zi queueing delay 

TABLE I 
COMMON DYNAMIC STRUCTURE: W i  IS SOURCE i’s WINDOW SIZE, Ti IS 

ITS ROUND-TRIP TIME, pi IS CONGESTION MEASURE, zi = W i / T i ;  

a, b(wi) ,  p. 7. a; ARE PROTOCOL PARAMETERS. 

These choices produce equilibrium characterizations shown 
in Table 11. 

11 HSTCP I ll 

estimated than loss probability both because packet losses 
in networks with large bandwidth-delay products are rare 
events (probability on the order IOW8 or smaller), and because 
loss samples provide coarser information than queueing delay 
samples. Indeed, each measurement of packet loss (whether 
a packet is lost) provides one bit of information for the 
filtering of noise, whereas each measurement of queueing 
delay provides multi-bit information. This allows an equation- 
based implementation to stabilize a network into a steady state 
with a target fairness and high utilization. 

At the flow level, the dynamics of the feedback system must 
be stable in the presence of delay, as the network capacity 
increases. Here, again, queueing delay has an advantage over 
loss probability as a congestion measure: the dynamics of 
queueing delay seems to have the right scaling with respect 
to network capacity. This helps maintain stability as network 
capacity grows [221, 1231, [241. 

B. Implementation strategy 
The delay-based approach, with proper flow and packet 

level designs, can address the four difficulties of Reno at 
large windows. First, by explicitly estimating how far the 
current state p,(t)/u;(t) is from the equilibrium value of 1, 
our scheme can drive the system rapidly, yet in a fair and 
stable manner, toward the equilibrium. The window adjustment 
is small when the current state is close to equilibrium and 
large otherwise, independent of where the equilibrium is, as 
illustrated in Figure l(b). This is in stark contrast to the 
approach taken by Reno, HSTCP, and STCP, where window 
adjustment depends on just the current window size and is 
independent of where the current state is with respect to the 
target (compare Figures l(a) and (b)). Like the equation-based 
scheme in [34], this approach avoids the problem of slow 
increase and drastic decrease in Reno, as the network scales 
UP. 

Second, by choosing a multi-hit congestion measure, this 
approach eliminates the packet-level oscillation due to binary 
feedback, avoiding Reno’s third problem. 

Third, using queueing delay as the congestion measure 
p,(t) allows the network to stabilize in the region below the 
overflowing point, around point F in Figure Z(b), when the 
buffer size is sufficiently large. Stabilization at this operating 
point eliminates large queueing delay and unnecessary packet 
loss. More importantly, it makes room for buffering “mice” 
traffic. To avoid the second problem in Reno, where the 
required equilibrium congestion measure (loss probability for 
Reno, and queueing delay here) is too small to practically 
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estimate, the algorithm must adapt its parameter a, with 
capacity to maintain small but sufficient queueing delay. 

Finally, to avoid the fourth problem of Reno, the window 
control algorithm must be stable, in addition to being fair and 
eficient, at the flow level. The use of qukneing delay as a 
congestion measure racilitates the design as queueing delay 
naturally scales with capacity [221, [231, [241. 

The design of TCP congestion control algorithm can thus 
be conceptually divided into two levels: 

At the flow level, the goal is to design a class of function 
pairs, ui(wi,Ti) and n(wi,Ti), so that the feedback 
system described by (4), together with link dynamics in 
p i ( t )  and the interconnection, has an equilibrium that is 
fair and efficient, and that the equilibrium is stable, in the 
presence of feedback delay. 
At the packet level, the design must deal with issues that 
are ignored by the flow-level model or modeling assump- 
tions that are violated in practice, in order to achieve these 
flow-level goals. These issues include burstiness control, 
loss recovery, and parameter estimation. 

The implementation then proceeds in three steps: 
I)  determine various system components: 
2)  translate the flow-level design into packet-level algo- 

3) implement the packet-level algorithms in a specific op- 

The actual process iterates intimately between flow and packet 
level designs, between theory, implementation, and experi- 
ments, and among the three implementation steps. 

The emerging theory of large-scale networks under end-to- 
end control, e.g., [271, [351, [361, P51, [371, t381, [261, [391, 
[221, [401, [411, [291, [301, [421, 1431, [241, [231, Cl51 (see also, 
e.g., [44], [45], [46] for recent surveys), forms the foundation 
of the flow-level design. The theory plays an important role by 
providing a framework to undentand issues, clarify ideas, and 
suggest directions, leading to a robust and high performance 
implementation. 

rithms: 

erating system. 

We lay out the architecture of FAST TCP next. 

We separate the congestion control mechanism of TCP 
into four components in Figure 3. These four components 
are functionally independent so that they can be designed 
separately and upgraded asynchronously. In this section, we 
focus on the two parts that we have implemented in the current 
prototype (see [331). 

Iv. ARCHITECTURE A N D  ALGORITHMS 

TCP Protocol Processing 

Fig. 3. FAST TCP architecture. 

In the following subsections, we provide an overview of es- 
timation and window control and the algorithms implemented 
in our current prototype. An initial prototype that included the 
features discussed here was demonstrated in November 2002 at 
the Supercomputing Conference, and the experimental results 
were reported in [47]. 

A. Esfimation 
This component provides estimations of various input pa- 

rameters to the other three decision-making components. It 
computes two pieces of feedback information for each data 
packet sent. When a positive acknowledgment is received, 
it calculates the RTT for the corresponding data packet and 
updates the average queueing delay and the minimum RlT. 
When a negative acknowledgment (signaled by three duplicate 
acknowledgments or timeout) is received, it generates a loss 
indication for this data packet to the other components. The 
estimation component generates both a multi-bit queueing 
delay sample and a one-bit loss-or-no-loss sample for each 
data packet. 

The queueing delay is smoothed by taking a moving average 
with the weight q( t )  := min{3/wi(t), 1/4} that depends on 
the window wi(t)  at time t ,  as follows. The k-th RTT sample 
Ti(k) updates the average R l T  Ti(k) according to: 

- 
Ti(k + 1) = (1 - ?(tk))Ti(k) +q(tdTdk) 

where t k  is the time at which the k-th RTT sample is received. 
Taking &(A) to be the minimum RTT observed so far, the 
average queueing delay is estimated as: 

&(k) = T,(k) - d , ( k )  

The weight q(t)  is usually much smaller than the weight (18) 
used in TCP Reno. The average RTI Ti(k) attempts to track 
the average over one congestion window. During each RTT, 
an entire window worth of RTT samples are received if every 
packet is acknowledged. Otherwise, if delayed ack is used, the 
number of queueing delay samples is reduced so q(t)  should 
be adjusted accordingly. 

B. window control 
The window control component determines congestion win- 

dow based on congestion information-queueing delay and 
packet loss, provided by the estimation component. A key 
decision in our design that departs from traditional TCP 
design is that the same algorithm is used for congestion 
window computation independent of the state of the sender. 
For example, in TCP Reno (without rate halving), congestion 
window is increased by one packet every R m  when there is 
no loss, and increased by one for each duplicate ack during 
loss recovery. In FAST TCP, we would like to use the same 
algorithm for window computation regardless of the sender 

the average R T I  adaverage queueing delay provided by the 
estimation comoonent. accordine to: -. 

baSeRTT 
The dura control component determines which packeu to 

transmit, and burstiness control determines when to transmit 
these packets. These decisions are made based on informa- 
tion provided by the estiwation component. Window control 
regulates packet transmission at the RTT timescale, while 
burstiness control works at a smaller timescale. 

transmit, window control determines how many packets to w - _in {SW,  (I ~ 7). + 7 ( ~ RTT .+a(". ¶delay) 

where y E (0,1], baseRTT is the minimum RTT observed so 
far, and qdelay is the end-to-end (average) queueing delay. 
In our current implementation, congestion window changes 
over two RTTs: it is updated in one R T I  and frozen in the 
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next. The update is spread out over the first R I T  in a way 
such that congestion window is no more than doubled in each 
RlT. 

In our current prototype, we choose the function 
a(w, qdelay) to be a constant at all times. This produces 
linear convergence when the qdelay is zero. Alternatively, 
we can use a constant a only when qdelay is nonzero 
and an a proportional to window, a(w, qdelay) = aw, 
when qdelay is zero. In this case, when qdelay is zero, 
FAST performs multiplicative increase and grows exponen- 
tially at rate a to a neighborhood of qdelay > 0. Then 
a(w, qdelay) switches to a constant a and, as we will 
see in Theorem 2 below, window converges exponentially to 
the equilibrium at a different rate that depends on qdelay. 
The constant U is the number of packets each flow attempts 
to maintain in the network buffer(s) at equilibrium, similar to 
TCP Vegas [8]! 

Although we would like to use the same congestion control 
function during loss recovery, we have currently disabled this 
feature because of ambiguities associated with retransmitted 
packets. Currently when a packet loss is detected, FAST halves 
its window and enters loss recovery. The goal is to back off 
packet transmission quickly when severe congestion occurs, 
in order to bring the system back to a regime where reliable 
R l T  measurements are again available for window adjustment 
(5) to work effective1 A source does not react to delay until 

C. Packet-level implementation 
It is important to maintain an abstraction of the imple- 

mentation as as the code evolves. This abstraction should 
describe the high-level operations each component performs 
based on external inputs, and can serve as a road map for future 
TCP implementations as well as improvements to the existing 
implementation. Whenever a non-trivial change is required, 
one should first update this abstraction to ensure that the 
overall packet-level code would be built on a sound underlying 
foundation. 

Since TCP is an event-based protocol, our control actions 
should be uiggered by the occurrence of various events. 
Hence, we need to translate our flow-level algorithms into 
event-based packet-level algorithms. There are four types of 
events that FAST TCP reacts to: on the reception of an 
acknowledgment, after the transmission of a packet, at the 
end of a RlT, and for each packet loss. 

For each acknowledgment received, the estimation compo- 
nent computes the average queueing delay, and the burstiness 
control component determines whether packets can be injected 
into the network. For each packet transmitted, the estimation 
component records a time-stamp, and the burstiness control 
component updates corresponding data structures for book- 
keeping. At a constant time interval, which we check on the 
arrival of each acknowledgment, window control calculates a 
new window size. At the end of each R n ,  burstiness reduction 
calculates the target throughput using the window and R T I  
measurements in the last RTT. Window pacing will then sched- 
ule to break up a large increment in congestion window into 

4All experiments in Section VI used linear increase, i.e., 
a ( w ,  qdelay) = a f a  all qdelay. 

'In the Linux TCP implementation, congestion window was frequently 
reduced lo one when there were heavy losses. In order to emure a reasonable 
recovery time, we impose a minimum wiodow of 16 packets during IDSS 
recovery for coooections that use large windows. This and &er iotenm 
measures will be impoved in future FAST TCP releases. 

it exits loss recovery. ? 

Fig. 4. From flow-level design to implementation. 

smaller increments over time. During loss recovery, congestion 
window should be continually updated based on congestion 
signals from the network. Upon the detection of a packet 
loss event, a sender determines whether to retransmit each 
unachowledged packet right away or hold off until a more 
appropriate time. 

Figure 4 presents an approach to turn the high-level design 
of a congestion control algorithm into an implementation. 
Fist, an algorithm is designed at the flow-level and analyzed 
to ensure that it meets the high-level objectives such as 
fairness and stability. Based on that, one can determine the 
components necessary to implement congestion control. The 
flow-level algorithm can then be translated into a packet-level 
algorithm that consists of a set of event-based tasks. The event- 
based tasks should be independent of any specific TCP or 
operating system implementation, but yet detailed enough so 
the understanding of these tasks enables one to implement 
FAST in any operating system or protocol stack. 
v. EOUIL~BRIUM AND STABILITY OF WINDOW CONTROL 

ALGORITHM 
In this section, we present a model of the window con- 

trol alnorithm. We show that. in euuilibrium. the vectors of 
sourcewindows and link queueini delays 'are the unique 
solutions of a pair of optimization problems (9HlO). This 
completely characterizes the network equilibrium properties 
such as throughput, fairness, and delay. We also analyze 
the stability of the window control algorithm. We prove in 
[331 that, for a single link with heterogeneous sources, the 
window control algorithm (5) is globally stable, assuming 
zero feedback delay, and converges exponentially to a unique 
equilibrium. Extensive experiments in Section VI illustrate its 
stability in the presence of feedback delay. 

Given a network that consists of a set of resources with finite 
capacities y, e.g., transmission links, processing units, mem- 
ory, etc., we refer to them in general as "links" in our model. 
The network is shared by a set of unicast flows, identified by 
their sources. Let d, denote the round-trip propagation delay of 
source i .  Let R be the routing matrix where R,, = 1 if source 
i uses link 1, and 0 otherwise. Let p l ( t )  denote the queueing 
delay at link 1 at timet. Let q i ( t )  = Rlip[( t )  be the round- 
trip queueing delay, or in vector notation, q( t )  = RTp( t ) .  Then 
the round trip time of source i is T,(t) := d, + q;( t ) .  

Each source i ad$pts wi(t) periodically according to: 

6Nole lhat (6) can be rewitten as (when ai(w;,yi) = ai, constant) 

W i ( t  + 1) = w d t )  + yi(ai - zi(t)qi(t)) 
From 1261, TCP Vegas updates ifs window according lo 

where s g o ( r )  = -1 if L < 0, 0 if z = 0, and 1 if z > 0. Hence FAST can 
k thought of as a high-speed version of Vegas. 
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where y E ( O , l ] ,  at time t ,  and at(wt,qi) is defined by: 

A key departure of our model from those in the literature 
is that we assume that a source's send rare, defined as 
z i ( t )  := w;(t) /T,( t ) ,  cannot exceed the thmughput it receives. 
This is justified because of self-clocking: one round-trip time 
after a congestion window is increased, packet transmission 
will be clocked at the same rate as the throughput the flow 
receives. See [481 for detailed justification and validation 
experiments. A consequence of this assumption is that the 
link queueing delay vector, p ( t ) ,  is determined implicitly 
by the instantaneous window size in a sfatic manner: given 
w;(t) = wi for all i, the link queueing delays p r ( t )  =PI 2 0 
for all 1 are given by: 

=cr i f p r > O  
5 CI if pi = 0 

Wi c 
i 

where again q, = Cl Rripr. 
The equilibrium values of windows w* and delays p' of the 

network defined by ( 6 H 8 )  can be characterized as follows. 
Consider the utility maximization problem 

and the following (dual) problem: 

Theorem 1: Suppose R has full row rank. .The unique 
equilibrium point (w',p*) of the network defined by (6)<8) 
exists and is such that z* = (zr := tut/(& + q;) ,V i )  is the 
unique maximizer of (9) and p* is the unique minimizer of 
(IO). This implies in particular that the equilibrium rate z* is 
a,-weighted proportionally fair. 

Theorem 1 implies that FAST TCP has the same equilibrium 
properties as TCP Vegas [251, 1261. Its throughput is given by 

In particular, it does not penalize sources with large prop- 
agation delays &. The relation (11) also implies that, in 
equilibrium, source i maintains a; packets in the buffers along 
its path [25], [26]. Hence, the total amount of buffering in the 
network must be at least xi a, packets in order to reach the 
equilibrium. 

We now turn to the stability of the algorithm. Global 
stability in a general network in the presence of feedback 
delay is an open problem (see 1491, 1501 for stability analysis 
for the single-link-single-source case). State-of-the-art results 
either prove global stability while ignoring feedback delay, or 
local stability in the presence of feedback delay. Our stability 
result is restricted to a single link in the absence of delay. 

Theorem 2: Suppose there is a single link with capacity c. 
Then the network defined by (6)<8) is globally stable. and 
converges geometrically to the unique equilibrium (w*,p*).  

The basic idea of the proof is to show that the iteration 
from w(t )  to w(t + 1)  defined by ( 6 H 8 )  is a contraction 
mapping. Hence ~ ( t )  converges geometrically to the unique 
equilibrium. 

Some properties follow from the proof of Theorem 2. 
Corollary 3: 1) Starting from any initial point 

(w(O),p(O)), the link is fully utilized, i.e., equality 
holds in (8). after a finite time. 

2) The queue length is lower and upper bounded after a 
finite amount of time. 

VI. PERFORMANCE 
We have conducted some preliminary experiments on our 

dummynet [511 testbed comparing performance of various new 
TCP algorithms as well as the Linux TCP implementation. It 
is important to evaluate them not only in static environments, 
but also dynamic environments where flows come and go; 
and not only in terms of end-toend throughput, but also 
queue behavior in the network. In this study, we compare 
performance among TCP connections of the same protocol 
sharing a single bottleneck link. In summary, 

I )  FAST TCP achieved the best overall performance in 
each of the four evaluation criteria: throughput, fairness, 
responsiveness, and stability. 

2) Both HSTCP and STCP improved throughput and re- 
sponsiveness of Linux TCP, although both showed fair- 
ness problems and oscillations with higher frequencies 
and larger magnitudes. 

In the following subsections, we will describe in detail our 
experimental setup, evaluation criteria, and results. 

A. Testbed and kernel instrumentation 
We constructed a testbed of a sender and a receiver both 

running Linux, and an emulated router running FreeBSD. Each 
testbed machine has dual Xeon 2.66 GHz, 2 GB of main 
memory, and dual on-board Intel PROllO00 Gigabit Ethernet 
interfaces. We have tested these machines to ensure each is 
able to achieve a peak throughput of 940 Mbps with the 
standard Linux TCP protocol using iper f .  

Sender sourer R e C s l Y B i  

Fig. 5. Testbed and the expedmental setup. 
Figure 5 shows the setup of the testbed. The testbed router 

supports paths of various delays and a single bottleneck 
capacity with a fixed buffer size. It has monitoring capability 
at the sender and the router. The receiver runs different TCP 
traffic sinks with different port numbers for connections with 
different RlTs. We set up and run different experiments from 
the sender using an automatic script generator to start multiple 
iperf sessions to emulate multiple TCP connections. 

Our testbed router ran dummynet [511 under FreeBSD. We 
configured dummynet to create paths or pipes of different 
delays, 50, 100, 150, and 20Oms, using different destination 
port numbers on the receiving machine. We then created 
another pipe to emulate a bottleneck capacity of 800 Mbps and 
a buffer size of 2,000 packets, shared by all the delay pipes. 
Due to our need to emulate a high-speed bottleneck capacity, 
we increased the scheduling granularity of dummynet events. 
We recompiled the FreeBSD kernel so the task scheduler ran 
every 1 ms. We also increased the size of the IP layer intermpt 
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queue ( i p i n t r q )  to 3000 to accommodate large bursts of 
packets. 

We instrumented both the sender and the dummynet router 
to capture relevant information for protocol evaluation. For 
each connection on the sending machine, the kernel monitor 
captured the congestion window, the observed baseRTI; and 
the observed queueing delay. On the dummynet router, the 
kernel monitor captured the throughput at the dummynet 
bottleneck, the number of lost packets, and the average queue 
size every two seconds. We retrieved the measurement data 
after the completion of each experiment in order to avoid disk 
VO that may have interfered with the experiment itself. 

We tested four TCP implementations: FAST, HSTCP, STCP, 
and Reno (Linux implementation). The FAST TCP is based on 
Linux 2.4.20 kernel, while the rest of the TCP protocols are 
based on Linux 2.4.19 kernel. We ran tests and did not observe 
any appreciable difference between the two plain Linux ker- 
nels, and the TCP source codes of the two kernels are nearly 
identical. Linux TCP implementation includes all of the latest 
RFCs such as New Reno, SACK, D-SACK, and TCP high 
performance extensions. There are two versions of HSTCP 
[521, [53]. We present the results of the implementation in 
[521, but our tests show that the implementation in [531 has 
comparable performance. 

In all of our experiments, the bottleneck capacity is 800 
h4bps-roughly 66 packetshs, and the maximum buffer size 
is 2000 packets. 

We now present our experimental results. We first look at 
three cases in detail, comparing not only the throughput behav- 
ior seen at the source, but also the queue behavior inside the 
network, by examining trajectories of throughputs, windows, 
instantaneous queue, cumulative losses, and link utilization. 
We then summarize the overall performance in a diverse set 
of experiments in terms of quantitative meuics, defined below, 
on throughput, fairness, stability, and responsiveness. 
B. Case study: static scenario 

We present experimental results on aggregate throughput 
in a simple static environment where, in each experiment, all 
TCP flows had the same propagation delay and started and 
terminated at the same times. This set of tests included 20 
experiments for different pairing of propagation delays, 50, 
100, 150, and Zooms, and the number of identical sources, 1, 
2. 4, 8, and 10. We ran this test suite under each of the four 
TCP protocols. We then constructed a 3-d plot, in Figure 6, 
for each protocol with the z-axis and y-axis being the number 
of sources and propagation delay, respectively. The z-axis is 
the aggregate throughput. 

All four protocols performed well when the number of 
flows was large or the propagation delay was small, i.e., 
when the window size was small. The performance of FAST 
TCP remained consistent when these parameters changed. TCP 
Reno, HSTCP, and STCP had varying degrees of performance 
degradation as the window size increased, with TCP Reno 
showing the most significant degradation. 

This set of experiments, involving a static environment 
and identical flows, does not test the fairness, stability and 
responsiveness of the protocols. We take a close look at 
these properties next in a dynamic scenario where network 
equilibrium changes as flows come and go. 
C. Case study: dynamic scenario I 

In the first dynamic test, the number of flows was small 
so that, throughput per flow, and hence the window size, was 

FAST 

Fig. 6. Static scenario: aggregate throughput 

large. There were three TCP flows, with propagation delays of 
100, 150, and Zooms, that started and terminated at different 
times, as illustrated in Figures 7(a). 

For each dynamic experiment, we generated two sets of 
figures, from the sender monitor and the queue monitor. From 
the sender monitor, we obtained the trajectories of individual 
connection throughput (in Kbps) and window size (in packets) 
over time. They are shown in Figure 8. 

As new flows joined or old flows left, FAST TCP converged 
to the new equilibrium rate allocation rapidly and stably. 
Reno’s throughput was also relatively smooth because of the 
slow (linear) increase before packet losses. The link utilization 
was low at the end of the experiment when it took 30 minutes 
for a flow to. reclaim the spare capacity due to the departure 
of another flow. HSTCP and STCP, in an attempt to respond 
more quickly, went into severe oscillation. 

From the queue monitor, we obtained three trajectories: the 
average queue size (packets), the number of cumulative packet 
losses (packets), and the utilization of the bottleneck link (in 
packetshs), shown in Figure 9 from top to bottom. ?he queue 
under FAST TCP was quite small throughout the experiment 
due to the small number of flows. HSTCP and STCP exhibited 
strong oscillations that filled the buffer. The link utilizations 
of FAST TCP and Reno were quite steady, whereas those of 
HSTCP and STCP showed fluctuations. 

From the throughput trajectories of each protocol, we cal- 
culate Jain’s fairness index (see Section VI-E for definition) 
for the rate allocations for each time interval that contains 
more than one flow (see Figure 7(a)). The fairness indices are 
shown in Table DI. FAST TCP obtained the best fairness, 

TABLE 111 
DYNAMIC SCENARIO I: INTRA-PROTOCOL FAIRNESS 

very close to 1, followed by HSTCP, Reno, and then STCP. It 
confirms that FAST TCP does not penalize against flows with 
large propagation delays. Even though HSTCP, STCP, and 
Reno all try to equalize congestion windows among competing 
connections instead of equalizing rates, this was not achieved 
as shown in Figure 8. The unfairness is especially severe in 
the case of STCP, likely due to MIMD as explained in [54]. 

For FAST TCP, each source tries to maintain the same 
number of packets in the queue in equilibrium, and thus, in 
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Fig. 9. Dynamic scenario I: dumyoet  quae sizes, losses, and li& utilization. 

theory, each competing source.should get an equal share of 
the bottleneck bandwidth. Even though FAST TCP achieved 
the best fairness index, we did not observe the expected 
equal sharing of bandwidth (see Figure 8). We found that 
connections with longer RlTs consistently observed higher 
queueing delays than those with shorter.RTR For example, 
the connection on the path of 100 ms saw an average queueing 
delay of 6 ms, while the connection on the path of 200 ms saw 
an average queueing delay of 9 ms. This caused the connection 
with longer RlTs to maintain fewer packets in the queue in 
equilibrium, thus getting a smaller share of the bandwidth. 
We have yet to uncover the source of this problem, but the 
early conjecture is that when congestion window size is large, 
it is much harder to break up bursts of packets. With bursty 
traffic arriving at a queue, each packet would see a delay that 
includes the transmission times of all preceding packets in 
the burst. However, if packets were spaced out smoothly, then 
each packet would have seen a smaller queueing delay at the 
queue. 

both congestion windows and queue size are more severe for 
all loss-base protocols. Packet loss is also more severe. The 
performance of FAST TCP did not degrade in any significant 
way. Connections sharing the link achieved very similar rates. 
There was a reasonably stable queue at all times, with little 
packet loss and high link utilization. Intra-protocol fairness is 
shown in Table IV, with little change for FAST TCP. 

D. Case study: dynamic scenario II 
This experiment was similar to dynamic scenario I, except 

that there were a larger number (8) of flows, with different 
propagation delays, which joined and departed according 
to the schedule in Figure 7(b). The qualitative behavior in 
throughput, fairness, stability, and responsiveness for each of 
the protocols is similar to. those in scenario I, and in fact is 
amplified as the number of flows increases. 

Specifically, as the number of competing sources increases 
in a network, stability becomes worse for the loss-based 
protocols. As shown in Figures 10 and 11, oscillations in 

TABLE IV 
FAIRNESS A M O N G  VARIOUS PROTOCOLS FOR EXPERIMENT 11. 

E. Overall evaluation 
We have conducted several other experiments, with different 

delays, number of flows, and their arrival and departure 
patterns. In all these experiments, the bottleneck link capacity 
was BOOMbps and buffer size 2000 packets. We present in this 
subsection a summary of protocol performance in terms of 
some quantitative measures on throughput, fairness, stability, 
and responsiveness. 
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We use the output of iperf  for our quantitative evaluation. 
Each iperf  session in our experiments produced five-second 
averages of its throughput. This is the data rate (i.e., goodput) 
applications such as iperf  receives, and is slightly less 
than the bottleneck bandwidth due to IP and Ethernet packet 
headers. 

Let x,(k) he the average throughput of flow i in the five- 
second period k. Most tests involved dynamic scenarios where 
flows joined and departed. For the definitions below, suppose 
the composition of flows changes in period k = 1, *mains 
fixed over period k = 1, . . . , rn, and changes again in period 
k = rn+ 1, so that [I, rn] is the maximum-length interval over 
which the same equilibrinm holds. Suppose there are rz active 
flows in this interval, indexed by i = 1, . . , n. Let 

l m  Zi := - X z a ( k )  
m 

k = l  

he the average throughput of flow i over this interval. We now 
define our performance metrics for this interval [ 1, m] using 
these throughput measurements. 

1) Throughput: The average a re ate throughput for the interval [1,m] is defined as: $g 

n 

E := XZ; 
i=l  

2) Intra-protocol fairness: Jain's fairness index for the 
interval [ l ,m]  is defined as [ S I :  

F E (0, I] and F = 1 is ideal (equal sharing). 
3) Stability: The stability index of flow i is the sample 

standard deviation normalized by the average through- 
put: 

'As  mentioned above, this is the throughput (or gmdplt) seen at the 
application layer. not TCP layer. 

The smaller the stability index, the less oscillation a 
source experiences. The stability index for interval [0, rn] 
is the average over the n active sources: 

s := -csi 1 "  
n .  ,=1 

4) Responsiveness: The responsiveness index measures 
the speed of convergence when network equilibrium 
changes at k = 1, i.e., when flows join or depan. Let 
jri(k) be the running average by period k I m: 

Then zi(rn) = 3; is the average over the entire interval 
L m l .  
Responsiveness index RI measures how fast the running 
average zi(k) of the slowest source converges to 4:' 

For each TCP prolocol, we obtain one set of computed 
values for each evaluation criterion for all of our experiments. 
We plot the CDF (cumulative distribution function) of each 
set of values. These are shown in Figures 12 - 15. 

From Figures 12-15, FAST has the best performance among 
all protocols under each evaluation criterion. More impor- 
tan(ly, the variation in each of the distributions is smaller 
under FAST than under the other protocols, suggesting that 
FAST had fairly consistent performance in our test scenarios. 
We also observe that both HSTCP and STCP achieved higher 
throughput and improved responsiveness compared with TCP 
Reno. STCP had worse intra-protocol fairness compared with 
TCP Reno, while HSTCP achieved comparable intra-protocol 
fairness IO Reno (see Figures 13, 8 and IO). Both HSTCP 
and STCP showed increased oscillations compared with Reno 

b e  natural definition of responsiveness index as the earliest pe&d after 
which the throughput z;(k) (as opposed to the mnolng average Z ; ( k )  of the 
throughput) slays within 1096 of ils equilibrium value is unsuitable for TCP 
prolocols that do not stabilk into an equilibrium value. Hence we define it io 
terms of Z;(k) which, by definition, always converges to Z; by the end of the 
interval k = n. This definition caplures the intuitive notion of responsiveness 
if zi(S) settles into a pericdic limit cycle. 
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Fig. 12. Overall evaluation: throughpt 

Fig. 14. Overall evaluation: stability 

(Figures 14, 8 and 9). and the oscillations became worse as 
the number of sources increased (Figures 10 and 11). 

From Figure 15, FAST TCP achieved a much better respon- 
siveness index RI (which is based on worst case individual 
throughput) than the other schemes. We caution however that 
it can be hard to quantify “responsiveness” for protocols that 
do not stabilize into an equilibrium point or a periodic limit 
cycle, and hence the unresponsiveness of Reno, HSTCP, and 
STCP, as measured by index R I ,  should be interpreted with 
care. 

VII. CONCLUSION 
We have described an alternative congestion control algo- 

rithm, FAST TCP, that addresses the four main problems of 
TCP Reno in networks with high capacities and large latencies. 
FAST TCP has a log utility function and achieves weighted 
proportional fairness. Its window adjustment is equation- 
based, under which the network moves rapidly toward equilib- 
rium when the current state is far away and slows down when it 
approaches the equilibrium. FAST TCP uses queueing delay, in 
addition to packet loss, as a congestion signal. Queueing delay 
provides a finer measure of congestion and scales naturally 
with network capacity. 

We have presented experimental results of our first Linux 
prototype and compared its performance with TCP Reno, 
HSTCP, and STCP We have evaluated these algorithms not 
only in static environments, but also dynamic environments 
where flows come and go, and not only in terms of end-to-end 
throughput, but also queue behavior in the network. In these 
experiments, HSTCP and STCP achieved better throughput 
and link utilization than Reno, but their congestion windows 
and network queue lengths had significant oscillations. TCP 
Reno produced less oscillation, but at the cost of lower link 
utilization when sources departed. FAST TCP, on the other 
hand, consistently outperforms these protocols in terms of 
throughput, fairness, stability, and responsiveness. 
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