The Design and Performance of a Real-time 1/0O Subsystem

Fred Kuhns, Douglas C. Schmidt, and David L. Levine
{fredk,schmidt,leving@cs.wustl.edu
Department of Computer Science, Washington University
St. Louis, MO 63130, USA

This paper appeared in the proceedings of the Real-Tim&he paper is organized as follows: Section 2 describes
Technology and Applications Symposium (RTAS), Vancohow the RIO subsystem enhances the Solaris 2.5.1 OS kernel
ver, British Columbia, Canada, June 2—4, 1999. to support end-to-end QoS for TAO applications; Section 3

presents empirical results from systematically benchmarking
the efficiency and predictability of TAO and RIO overan ATM
Abstract network; and Section 4 presents concluding remarks.

This paper describes the design and performance of a real-

time 1/0 (RIO) subsystem that supports real-time application The Design of TAO’s Real-time 1/O
running on off-the-shelf hardware and software. This paper

provides two contributions to the study of real-time 1/0 sub- Subsystem on Solaris over ATM
systems. First, it describes how RIO supports end-to-end,
prioritized traffic to bound the I/O utilization of each prior-Meeting the requirements of distributed real-time applications
ity class and eliminates the key sources of priority inversié@duires more than defining QoS interfaces with CORBA IDL
in 1/0 subsystems. Second, it illustrates how a real-time I@developing an ORB with real-time thread priorities. Instead,
subsystem can reduce latency bounds on end-to-end comnitifgguires the integration of the ORB and the I/O subsystem
cation between high-priority clients without unduly penalizir@ provide end-to-end real-time scheduling and real-time com-
low-priority and best-effort clients. munication to CORBA applications. This section describes
how we have developed a real-time 1/0 (RIO) subsystem for
TAO by customizing the Solaris 2.5.1 OS kernel to support
1 Introduction real-time network 1/0O over ATM/IP networks [2].
Enhancing a general-purpose OS like Solaris to support the

This paper focuses on the design and performance of a rga?—s requirements of a real-time ORB endsystem like TAO

time 1/O (RIO) subsystem that enhances the Solaris z'égﬂuires the resolution of the following design challenges:

kernel to enforce the QoS features of the The ACE ORB . . .
: 1. Creating an extensible and predictable I/O subsystem

(TAO) [1] endsystem. RIO provides QoS guarantees for ver- . . :
framework that can integrate seamlessly with a real-time

tically integrated ORB endsystems in order to (1) increase ORB
throughput, (2) decrease latency and (3) improve end-to-end '
predictability. RIO supports periodic protocol processing,2. Alleviating key sources of packet-based and thread-based
guarantees I/O resources to applications, and minimizes the priority inversion.

effect of flow control in aSTREAM. 3. Implementing an efficient and scalable packet classifier
A novel feature of the RIO subsystem is its integration of that performs early demultiplexing in the ATM driver.

real-time scheduling and protocol processing, which allows) .) ,

RIO to support guaranteed bandwidth and low-delay applica4' Supporting high-bandwidth network interfaces, such as

tions. To accomplish this, we extended the concurrency archi- the APIC [3].

tecture and thread priority mechanisms of TAO into the RIO5. Supporting the specification and enforcement of QoS re-

subsystem. This design minimizes sources of priority inver- quirements, such as latency bounds and network band-

sion that cause non-determinism. width.

“This work was supported in part by Boeing, NSF grant NCR-2ag3 6. Providing all these enhancements to applications via the
DARPA contract 9701516, and Sprint. standards TREAMS network programming APIs [4].

Real-time Dedicated STREAMS: This feature isolates request pack-
ORB Endsystem TSClass TS Class ets belonging to different priority groups to minimize FIFO
gueueing and shared resource locking overhead [10]. RIO’s

_ 3 3
luggable protoco ; ; ;
ramework design resolves resource conflicts that can otherwise cause

] Ty T y WBG& Eﬂm‘w‘ W thread-based and packet-based priority inversions.
RIO UDP/TCP UDP/TCP liazg g)P lilDP/TC)P , i
imers> oo wQ 1o eres Below, we explqre_ ea_ch of RIO S fea_ltures and explain how
S ¢ /r ¢ T \ \ / / they alleviate the limitations with Solaris’ I/O subsystem. Our
SRinSleep Queuts [wQ 1 W 1 wa e we discussion focuses on how we resolved the key design chal-
frweado] IP - Mod IP - Mod (ronno abies) lenges faced when building the RIO subsystem.
Thread3
other \L Ti rk}l \L /[\ i rkt2 \L i rkt3 .
Callout Queues A L R1To'&é0 y ! R;:_{lzo\’) \ SYS:61 - -
o, 0 g, SQZU\J Mq, so.0 ', 2.0.1 Early Demultiplexing
RIO Scheduler
o |l TXE Context: ATM is a connection-oriented network protocol
APIC p

that uses virtual circuits (VCs) to switch ATM cells at high
i speeds [2]. Each ATM connection is assigned a virtual circuit
Figure 1: Architecture of the RIO Subsystem and Its Relatioidentifier (VCI)! which is included as part of the cell header.

hip to TAO , .
ship to Problem: In Solaris STREAMS, packets received by the

ATM network interface driver are processed sequentially and

This section describes the RIO subsystem enhancem@agsed in FIFO order up to the IP multiplexor. Therefore, any
we applied to the Solaris 2.5.1 kernel to resolve these deformation containing the packets’ priority or specific con-
sign challenges. Our RIO subsystem enhancements proVigetion is lost.

a highly predictable OS run-time environment for TAO’s imeSqution:

ted real-time ORB endsvst hitect hich is sh The RIO subsystem uses a packet classifier [11] to
?nr?:iijurrsi- e endsystem architecture, which is s 0g%loit the early demultiplexing feature of ATM [3] by verti-

. . cally integrating its ORB endsystem architecture, as shown in
Our RIO subsystem enhances Solaris by providing Qg ure 2. Early demultiplexing uses the VCI field in a request

Specification and enforcement features that complem ket to determine its final destination thread efficiently.

;I-AOSS pfll_(;rlty-balst_ed conlctgrrergégnd dcon?ectlon tar_Ch'teC'Early demultiplexing helps alleviate packet-based priority
ure [5]. The resulting real-time endsystem contains Ugede sion because packets need not be queued in FIFO order.

threads and kernel threads that can be scheduled statically L :

. . , : : . 1 ?ead, RIO supporgsriority-based queueingvhere packets
described n [:_L]’ TAO's Stat'? scheduling service runs Oﬁ'“_n estined for high-priority applications are delivered ahead of
to map periodic thread requirements and task dependenmqg\;\?

. S S -priority packets. In contrast, the Solaris default network
;Z?tuosfergil:llri?w ee %I;/)Er?el tg(r)le;(ijsplgle?::glf.rlj-l;hgrsneepsr::?]rgtljisler% subsystem processes all packets at the same priority, re-
dispatch user and kernel threads on the CPU(s). glgrdless of the destination user thread.

To develop the RIO subsystem and integrate it with TADmplementing early demultiplexing in RIO: The RIO
we extended our prior work on ATM-based I/0 subsystemséadsystem can be configured so that protocol processing for
provide the following features: eachsTREAM is performed with appropriate thread priorities.
: . : . . This design alleviates priority inversion when user threads run-
Early demult|pl_ex_|r_1g. This featur_e_assouates pac_kets WltHing at different priorities perform network 1/O. In addition,
the correct priofities and a SpecifiETREAM early in the the RIO subsystem minimizes the amount of processing per-

FaCth .procgsswéglgos,eqéjer)ce,, n .th.e ATI:?} net(;/vgrk w:jter-_ formed at interrupt level. This is necessary because Solaris
face driver [3]. S desigh minimizes thread-based priofi, o5 1ot consider packet priority or real-time thread priority
ity inversion by vertically integrating packets received at tl

twork interf ith th dina thread oriorit hen invoking interrupt functions.
ne V\{OI‘ intertace wi € corresponaing thread priorilies I ot the jowest level of the RIO endsystem, the ATM driver
TAO's ORB Core.

distinguishes between packets based on their VClIs and stores
Schedule-driven protocol processing: This feature per- them in the appropriate RIO queu€)for receive queue and
forms all protocol processing in the context of kernel threa8Qfor send queue). Each RIO queue pair is associated with ex-
that are scheduled with the appropriate real-time priorities g;tly onesTREAM, but eachsTREAM can be associated with

7, 8, 9]. RIO’s design schedules network interface bandwidth
and CPU time to minimize priority inversion and decrease i,
terrupt overhead during protocol processing.

1A virtual path identifier is also assigned but for this work evéy consider
VCI

ORB Core user thread be assigned a period and computation fiteebound the total

»2 throughput allowed on the best-effort connections, as describe
in the following section.
’’’’’’’’’’’’’’’’’’’’’’’ 'ZPACKET The packet classifier in TAO'’s I/O subsystem can be con-
e S N A PR oG figured to consult its real-time scheduling service to determine
(RIO kthreads) where the packet should be placed. This is required when mul-

tiple applications use a single VC, as well as when the link
layer is not ATM. In these cases, it is necessary to identify
packets and associate them with rates/priorities on the basis of

\\ T higher-level protocol addresses like TCP port numbers. More-
A.(ENQUEUE over, the APIC device driver can be modified to search the
<7 TAO's run-time scheduler [1] in the ORB’s memory. TAO'’s
2. LOOK-UP run-time scheduler maps TCP port numbers to rate groups in
1 INTERRUPT Y constantD(1) time.
VCI Queuel D(ptr)
1 3232323
QUEVE 2 3435345 2.0.2 Schedule-driven Protocol Processing
4 3232355 Context: Many real-time applications require periodic 1/0

processing [12]. For example, avionics mission computers

must process sensor data periodically to maintain accurate sit-
uational awareness [13]. If the mission computing system fails

Figure 2: Early Demultiplexing in the RIO Subsystem unexpectedly, corrective action must occur immediately.

7777777777777 77 NETWORK

) . Problem: Protocol processing of input packets in Solaris
zero or more RIO queuesg, there is a many to one rela-grreams is demand-driverj4], i.e, when a packet arrives
tionship for the RIO queues. The RIO protocol processifge streams 1/O subsystem suspends all user-level process-
kthread associated with the RIO queue then delivers the pagland performs protocol processing on the incoming packet.
ets to TAO's ORB Core, as shown in Figure 1. Demand-driven I/O can incur priority inversion, such as when

Figure 1 also illustrates how all periodic connections are @fe incoming packet is destined for a thread with a priority
signed a dedicatesiTREAM, RIO queue pair, and RIO kthreadower than the currently executing thread. Thus, the ORB end-

for input protocol processing. RIO kthreads typically serviagstem may fail to meet the QoS requirements of the higher
their associated RIO queues at the periodic rate specified byasrity thread.

application. In addition, RIO can allocate kthreads to procesSynen sending packets to another host, protocol processing
the output RIO queue. is typically performed within the context of the user thread
For example, Figure 1 shows four active connections: oyt performed thew i t e operation. The resulting packet is
periodic with a 10 Hz period, one periodic with a 5 Hz perioghassed to the driver forimmediate transmission on the network
and two best-effort connections. Following the standard ra#gerface link. With ATM, a pacing value can be specified for
monotonic scheduling (RMS) model, the highest priority isach active VC, which allows simultaneous pacing of multiple
assigned to the connection with the highest rate (10 Hz). gackets out the network interface. However, pacing may not
this figure, all packets received for the 10Hz connection aig adequate in overload conditions because output buffers can
placed in RIO queueQ; . This queue is serviced periodicallypverflow, thereby losing or delaying high-priority packets.
by RIO kthread-kt;, which runs at real-time priority 110.
After it performs protocol processing, threaklt; delivers Solution: RIO’s solution is to performschedule-driven
the packet to TAO’s ORB Core where it is processed by a pather than demand—driven, protocol processing of network
riodic user thread with real-time priority 110. Likewise, thgO requests. We implemented this solution in RIO by
data packets received for the 5 Hz connection are procesggéing kernel threads that are-schedulediith real-time user
periodically by RIO kthreadtkt,, which performs the proto- threads in the TAO's ORB Core. This design vertically inte-
col processing and passes the packets up to the user threagrates TAO’s priority-based concurrency architecture through-
The remaining two connections handle best-effort netwaskit the ORB endsystem.

tr?-fﬁc- The b(_est_-effort RIO queue@?{) is Serv_iced by a rel' 2periodic threads must specify both a periBcaind a per period computa-
atively low-priority kthreadrkts. Typically, this thread will tion timeT".

Implementing Schedule-driven protocol processing in nections can be bounded by specifying an appropriate period
RIO: The RIO subsystem uses thread pool[14] con- and computationtime.

currency model to implement its schedule-driven kthreadsIn statically scheduled real-time systems, kthreads in the
Thread pools are appropriate for real-time ORB endsystepmol are associated with differerste groups This design
because they (1) amortize thread creation run-time overheachplements thBeact or -based thread-per-priority concur-
and (2) place an upper limit on the total percentage of CRP&hcy model described in Section 2.0.2. Each kthread corre-
time used by RIO kthreads [15]. sponds to a different rate of execution and hence runs at a dif-

Figure 3 illustrates the thread pool model used in RIO. THarent priority.

To minimize priority inversion throughout the ORB end-
system, RIO kthreads are co-scheduled with ORB Reactor
threads. Thus, a RIO kthread processes I/O requests in the
sTREAMSframework and its user thread equivalent processes
; client requests in the ORB. Figure 4 illustrates how thread-

3. The reactor thread consumg ORB Core
the data

user

kernel oo 9)
based priority inversion is minimized in TAO's ORB endsys-
. tem by (1) associating a one-to-one binding between TAO user

—— N « . P
2.RIO kihread § N threads andTREAMS protocol kthreads and (2) minimizing
executes the TCP/IP N .
code and delivers N the work done at interrupt context.
the packet to the TCP/IP N
ORB Core/Application | Code f s 3

INTR i % Interrupt thread (Pack%t Classification)

1. Interrupt thread consults the Pac j ¢ i reempt
Classifier to enqueue the packet in ; P N
the appropriate queue Demultiplexing X% ngh Priority /o B%lsggdtshg)e
P E 3 ATM Driver BT } RIO thread at same priori
o i R § Low-Priority CPU bound thread
Packet Classifier Sys
Figure 3: RIO Thread Pool Processing of TCP/IP with QoS > % STREAMS thread
Support
TS

pool of protocol processing kthreads (RIO kthreads), is created

at /0 subsystem initialization. Initially these threads are not

bound to any cor_mectlon and are |nact_|ve untl_l needed. Figure 4: Alleviating Priority Inversion in TAO’s ORB End-
Each kthread in RIO’s pool is associated with a queue. ng‘f'stem

gueue links the various protocol modules iISBREAM. Each

thread is assigned a particuleate, based on computations Both the ORB CoreReact or user thread and its associ-

from TAO's static scheduling service [1]. This rate COM&4ted RIO protocol kthread use Round-Robin scheduling. In

sponds to the frequency at which requests are specified (s scheme, after either thread has a chance to run, its associ-

rive from clients. Packets are placed in the queue by the @ps thread is scheduled. For instance, if the protocol kthread

plication (for cIi.ents) or by the interrupt handler (for serverspg, s packets for the application, tReact or's user thread
Protocol code is then executed by the thread to shepherd;thg o 5 rB core will consume the packets. Similarly if the

packet through the queue to the network interface card Orértpplication has consumed or generated packets, the protocol

tothe appl?cation.) o kthread will send or receive additional packets.
An additional benefit of RIO’s thread pool design is its abil-

ity to bound the network 1/0O resources consumed by best-
effort user threads. Consider the case of an endsystem thlt

supports both real-time and best-effort applications. Assu@gntext: The RIO subsystem is responsible for enforcing

the best-effort application is a file transfer utility like p. If QoS requirements for statically scheduled real-time applica-
an administrator downloads a large file to an endsystem, ajfhs with deterministic requirements.

no bounds are placed on the rate of input packet protocol pro-

cessing, the system may become overloaded. However, WifRPlem: Unbounded priority inversions can result when

RIO kthreads, the total throughput allowed for best-effort coR@ckets are processed asynchronously in the I/O subsystem
without respect to their priority.

3 DedicatedSTREAMS

4

Solution: The effects of priority inversion in the I/O subsys-

tem are minimized by isolating data paths throggiREAMS seliices
such that resource contention is minimized. This is done in

RIO by providing adedicatedsTREAM connection path that

(1) allocates separate buffers in the ATM driver and (2) asso- .

ciates kernel threads with the appropriate RIO scheduling pri- C(? ct en Object Adapter
ority for protocol processing. This design resolves resource | Client Server
conflicts that can otherwise cause thread-based and packet-

based priority inversions.

Implementing Dedicated STREAMS in RIO: Figure 1 de-
picts our implementation of DedicatesdREAMSin RIO. In-
coming packets are demultiplexed in the driver and passed to ~ Ultra
the appropriats TREAM. A map in the driver’s interrupt han-

dler determines (1) the type of connection and (2) whether the

packet should be placed on a queue or processed at interrupt
context. FORE ASX-1000

Typically, low-latency connections are processed in inter-
rupt context. All other connections have their packets placed
on the appropriate TREAM queue. Each queue has an associ-
ated protocol kthread that processes data throughtReam. 3.2 Measuring the End-to-end Real-time Per-
These threads may have different priorities assigned by TAO's formance of the RIO Subsystem
scheduling service.

Akey feature of RIO’s DedicatesirREAMSdesign is its use Below, we present results that quantify (1) the cost of us-
of multiple output queues in the client’s ATM driver. With thidnd kernel threads for protocol processing and (2) the benefits
implementation, each connection is assigned its own transr@idined in terms of bounded latency response times and peri-
sion queue in the driver. The driver services each transmissfShc processing guarantees. RIO uses a periodic processing
queue according to its associated priority. This design allofi®§del to provide bandwidth guarantees and to bound maxi-
RIO to associate low-latency connections with high-prioriflum throughput on each connection.
threads to assure that its packets are processed before all other
packets in the system. 3.2.1 Benchmarking Configuration

M) 155 Mbps 155 Mbps
SR Sparc 5

ATM Switch

Figure 5: ORB Endsystem Benchmarking Testbed

Our experiments were performed using the testbed configura-
tion shown in Figure 5. To measure round-trip latency we use
a client application that opens a TCP connection to an “echo

This section presents empirical results that show how the Rz(arver located on the SPARCS. The client sends a 64 byte

. f'ita block to the echo server, waits on the socket for data to
subsystem decreases the upper bound on round-trip delay ?r .
return from the echo server, and records the round-trip latency.

latency-sensitive applications and provides periodic process._—l_he client application performs 10,000 latency measure-
ing guarantees for bandwidth-sensitive applications. Other '

work [16] combines RIO and TAO to quantify the ability 0{nents, then calculates the mean latency, standard deviation,

: S . and standard error. Both the client and server run at the same
the resulting ORB endsystem to support applications with regl- S . : .

. : read priority in the Solaris real-time (RT) scheduling class.
time QoS requirements.

Bandwidth tests were conducted using a modified version
of ttcp [17] that sent 8 KB data blocks over a TCP con-
3.1 Hardware Configuration nection from the UltraSPARC?2 to the SPARCS5. Threads that
receive bandwidth reservations are run in the RT scheduling

Our experiments were conducted using a FORE Systefliss, whereas best-effort threads run in the TS scheduling
ASX-1000 ATM switch connected to two SPARCs: a uni|ass.

processor 300 MHz UltraSPARC?2 with 256 MB RAM and a
170 MHz SPARCS5 with 64 MB RAM. Both SPARCs ran So; : . :

laris 2.5.1 and were connected via a FORE Systems SBA—2802e'2 Measuring the Relative Cost of Using RIO kthreads
ATM interface to an OC3 155 Mbps port on the ASX-100Benchmark design: This set of experiments measures the
The testbed configuration is shown in Figure 5. relative cost of using RIO kthreads versus interrupt threads

3 Empirical Benchmarking Results

(the default Solaris behavior) to process network protocafss shown in this table, when the RIO kthreads were run in the
The results show that it is relatively efficient to perform protdRT scheduling class the average latency increased by 1.8% or
col processing using RIO kthreads in the RT scheduling cla$8us. The maximum latency value, which is a measure of the
The following three test scenarios, used to measure the tgper latency bound, increased by 2.1% opd.7 The jitter,
ative cost of RIO kthreads, are based on the latency test @bich represents the degree of variability, actually decreased

scribed in Section 3.2.1: by 4.1%. The key result is that jitter was not negatively af-
fected by using RIO kthreads.
1. The default Solaris network I/O subsystem. As expected, the mean latency and jitter increased more sig-

nificantly when the RIO kthreads ran in the system scheduling
ass. This increase is due to priority inversion between the
user and kernel threads, as well as competition for CPU time
3. RIO enabled with the RIO kthreads in the systewith other kernel threads running in the system scheduling
scheduling class with a global priority of 60 (system prizlass. For example, th&TREAMS background threads, call-
ority 0). out queue thread, and deferred bufcall processing all run with
a global priority of 60 in the system scheduling class.
In all three cases, 10,000 samples were collected with thd-igure 7 plots the distribution of the latency values for the
client and server user threads running in the real-time schedatency experiments. This figure shows the number of samples
ing class with a global priority of 100.

2. RIO enabled with the RIO kthreads in the real-ti
scheduling class with a global priority of 100.

0 Default Behavior, -

Benchmark results and analysis: In each test, we deter- 400 Ei _Real-Time Priority ==
. i System Priority (60) =
mined the mean, maximum, minimum, and jitter (standard de-

350 [l :

viation) for each set of samples. The benchmark configuration I
is shown in Figure 6 and the results are summarized in I-ﬁe 300 .-
€ P
@ [t
Ultra2 SPARC5 A
— g 200 i i 1
atenc R
S z R :
100 fofoidog -

\//N ! ¢ 50 i

! &
4 Q‘t"f [u]

TCP TCP 0 i e 4}535 DDDHHD D068 ng I=!
\l/ /r\ \1/ /P 600 650 700 750 800 850 900 950 1000 1050

micro seconds

IP P Figure 7: Latency Measurements versus Priority of kthreads

/r ¢ obtained at a given latency valde/—5 us. The distribution
INT/RIO INT/RIO of the default behavior and RIO with RT kthreads are virtually
identical, except for a shift o£12 us.

Our measurements reveal the effect of performing network
[ATM Driver ATM Driver protocol processing at interrupt context versus performing it

/ \ / in a RIO kthread. With the interrupt processing model, the
input packet is processed immediately up through the network
protocol stack. Conversely, with the RIO kthreads model, the
packet is placed in a RIO queue and the interrupt thread exits.
Figure 6: RIO kthread Test Configuration This causes a RIO kthread to wake up, dequeue the packet,
and perform protocol processing within its thread context.

A key feature of using RIO kthreads for protocol process-

table below:
ing is their ability to assign appropriate kthread priorities and
Mean | Max Min Jitter to defer protocol processing for lower priority connections.
Default behavior | 653us | 807us | 613us | 19.6 Thus, if a packet is received on a high-priority connection, the
RIO RT kthreads | 665us | 824us | 620us | 18.8 associated kthread will preempt lower priority kthreads to pro-
RIO SYS kthreads| 799us | 1014us | 729us | 38.0 cess the newly received data.

The results shown in Figure 7 illustrate that using RIO Ultra2 SPARCS

kthreads in the RT scheduling class results in a slight increase atenc
of 13-15us in the round-trip processing times. This latency TECP 3 TTCP
increase stems from RIO kthread dispatch latencies and queu- Q 5
ing delays. However, the significant result is that latency jitter N
decreases for real-time RIO kthreads. : =
TCP TCP TCP TCP
3.2.3 Measuring Low-latency Connections with Compet- ¢ \l/ /ﬁ $ ¢ $
ing Traffic IP IP 1P IP

Benchmark design: This experiment measures the deter- 4\ ﬂ\
minism of the RIO subsystem while performing prioritized
protocol processing on a heavily loaded server. The results L SYS0 RI'O
illustrate how RIO behaves when network I/O demands ex- 2
ceed the ability of the ORB endsystem to process all requests. ATM Driver ATM Driver
The SPARCS is used as the server in this test because it can \ // AN //
process only~75% of the full link speed on an OC3 ATM
interface using t cp with 8 KB packets. High Priority VCI = 130

Two different classes of data traffic are created for this test: Low Priority VCI = 100

(1) a low-delay, high-priority message stream and (2) a best-) i)
effort (low-priority) bulk data transfer stream. The message Fi9ure 8: RIO Low-latency Benchmark Configuration
stream is simulated using the latency application described

in Section 3.2.1. The best-effort, bandwidth intensive traﬁé?/erage latency by 12% (126), and jitter by 43% (215s).

s s_,imulated using a modified version. of thecp program, The distribution of samples are shown in Figure 9. This figure
which sends 8 KB packets from the client to the server.

The latency experiment was first run with competing traffic 80 —
using the default Solaris I/0 subsystem. Next, the RIO subsys- Default Behavior —-—
tem was enabled, RIO kthreads and priorities were assignedto ~ *° Using RIO s
each connection, and the experiment was repeated. The RIO ¢
kthreads used for processing the low-delay, high-priority mesé I
sages were assigned a real-time global priority of 100. Thé& 50 5
latency client and echo server were also assigned a real-tine 4o | ¢
global priority of 100. & |

The best-effort bulk data transfer application was run in theg
time-sharing class. The corresponding RIO kthreads ran if
the system scheduling class with a global priority of 60. In
general, all best effort connections use a RIO kthread in the
SYS scheduling class with a global priority of 60. Figure 8 RS

shows the configuration for the RIO latency benchmark. 0.5 1 15 2 25 3 35
milli seconds

Benchmark results and analysis: The results from collect-

. : ; .) , Figure 9: Latency with Competing Traffic
ing 1,000 samples in each configuration are summarized in the

table below: highlights how RIO lowers the upper bound of the round-trip
Mean Max Min Jitter latency values. .
Default | 1072us | 3158us | 594 us | 497 us These performance results are particularly relevant for real-
RIO 946us | 2038us | 616us | 282us time systems where ORB endsystem predictability is cru-

cial. The ability to specify and enforce end-to-end priorities
This table compares the behavior of the default Solaris If®er transport connections helps ensure that ORB endsystems
subsystem with RIO. It illustrates how RIO lowers the uppeachieve end-to-end determinism.

bound on latency for low-delay, high-priority messages in theAnother advantage of RIO’s ability to preserve end-to-end
presence of competing network traffic. In particular, RIO lovpriorities is that the overall system utilization can be increased.
ered the maximum round-trip latency by 35% (1,1%), the For instance, the experiment above illustrates how the up-

per bound on latency was reduced by using RIO to presebandwidth-guaranteed connection, a RIO kthread was allo-
end-to-end priorities. For example, system utilization maated in the real-time scheduling class and assigned appro-
be unable to exceed 50% while still achieving a 2 ms upp®tate periods and packet counitg,., computation time. The
bound for high-priority message traffic. However, higher sybest-effort connection was assigned the default RIO kthread,
tem utilization can be achieved when an ORB endsystem serich runs with a global priority of 60 in the system schedul-
ports real-time I/O. The results in this section demonstrate thigg class. Thus, there were four RIO kthreads, three in the
RIO achieved latencies no greater than 2.038 ms, even whead-time scheduling class and one in the system class. The
the ORB endsystem was heavily loaded with best-effort détdlowing table summarizes the RIO kthread parameters for
transfers. the bandwidth experiment.

Figure 10 shows the average bandwidth used by the mod-

ified t t cp applications during the experiment. The dip in| RIO Config | Period | Priority | Packets | Bandwidth
kthread 1 10ms | 110 8 6.4 MBps
13 Dot — kthread 2 10ms | 105 4 3.2 MBps
efault Behavior -<
P) . 5.2 RIOEnabled ;- kthread 3 10ms | 101 2 1.6 MBps
12 j.v"f (i Cfv\;af? eale O AT et kthread 4 | Async | 60 Available | Available
: i § (best-effort)
g My
g J The three user threads that received specific bandwidth
£ 10 guarantees were run with the same real-time global priorities
5 9 f as their associated RIO kthreads. These threads were assigned
§ | g priorities related to their guaranteed bandwidth requirements
K 8 L — the higher the bandwidth the higher the priority. Thecp
Y e application thread and associated RIO kthread with a guaran-
7 teed 6.4 MBps were assigned a real-time priority of 110. The
application and RIO kernel threads with a bandwidth of 3.2
6 MBps and 1.6 MBps were assigned real-time priorities of 105
0 10 ZOSample?’Rlumber“o 50 60 and 101, respectively.
)])) As described in Section 2.0.1, the RIO kthreads are awak-
Figure 10: Bandwidth of Competing Traffic ened at the beginning of each period. They first check their

assigned RIO queue for packets. After processing their as-

throughput between sample numbers 10 and 20 occurred WigRe 4 number of packets they sleep waiting for the start of
the high-priority latency test was run, which illustrates hoya next period.

RIO effectively reallocates resources when high-priority MES-The pest-effort user thread runs in the time sharing class. Its

sage traffic is presqnt. Thus, the. best-effort traffic 0bt"’“5§sociated RIO kthread, called the “best-effort” RIO kthread,
slightly lower bandwidth when RIO is used. is run in the system scheduling class with a global priority
of 60. The best-effort RIO kthread is not scheduled period-

3.2.4 Measuring Bandwidth Guarantees for Periodic jcally. Instead, it waits for the arrival of an eligible network
Processing I/O packet and processes it “on-demand.” End-to-end priority

Benchmark design: RIO can enforce bandwidth guaranteé§ maintained, however, because the best-effort RIO kthread

because itimplements the schedule-driven protocol proces a global priority lower tha_n e|thgr the user threads or RIO
model described in Section 2.0.2. In contrast. the default &gireads that handle connections with bandwidth guarantees.

laris I/O subsystem processes all input packets on-demanBenchmark results and analysis: In the experiment, the
interrupt contexti.e., with a priority higher than all other userbest-effort connection starts first, followed by the 6.4 MBps,
threads and non-interrupt kernel threads. 3.2 MBps, and 1.6 MBps guaranteed connections, respec-

The following experiment demonstrates the advantages andly. Figure 11 presents the results, showing the effect of
accuracy of RIO’s periodic protocol processing model. Thiee guaranteed connection on the best-effort connection.
experimentwas conducted using three threads that receive sp&his figure clearly shows that the guaranteed connections
cific periodic protocol processingge., bandwidth, guaranteesreceived their requested bandwidths. In contrast, the best-
from RIO. A fourth thread sends data using only best-effa@ffort connection loses bandwidth proportional to the band-
guarantees. width granted to guaranteed connections. The measuring in-

All four threads run the t cp program, which sends 8 KBterval was small enough for TCPs “slow start” algorithm [18]
data blocks from the UltraSPARC?2 to the SPARCS. For eaithbe observed.

14] 5. Supports best-effort traffic: RIO supports the four
Requested BW = 6.4 MBps -~ ; ; i
ok Requested BW = 3.2 MBps -+ | QoS fe_atures d(_a_scrlbed above Wlthput unduly penalizing best-
equeste =1, ps = effort, i.e,, traditional network traffic. oes not mo-
R ted BW = 1.6 MB ffort tradit | network traffi RIO d t
nopolize the system resources used by real-time applica-
tions. Moreover, because RIO does not use a fixed allocation

8 scheme, resources are available for use by best-effort applica-

10

§ tions when they are not in use by real-time applications.
= 6 bt
4 P 4 Concluding Remarks
2 ¢ POE099330504508850900000R00950 This paper focuses on the design and performance of a real-
0 time 1/0O (RIO) subsystem that enhances the Solaris 2.5.1 ker-
0 2 4 6 8 10 12 14 nel to enforce the QoS requirements of applications. RIO
sec supports a vertically integrated, high-performance endstation
Figure 11: Bandwidth Guarantees in RIO from the network interface through software protocol process-

ing to the user application threads. Three classes of I/O, best-
effort, periodic and low latency, are supported in RIO.

Periodic protocol processing is useful to guarantee bandA novel feature of the RIO subsystem is its integration of
width and bound the work performed for any particular comeal-time scheduling and protocol processing, which allows
nection. For example, we can specify that the best-effort c@®1O to support guaranteed bandwidth and low-delay applica-
nection in the experiment above receive no more than 40%iohs. To accomplish this, we extended the concurrency archi-
the available bandwidth on a given network interface. tecture and thread priority mechanisms of the TAO real-time

ORB into the RIO subsystem. This design minimizes sources
. of priority inversion that cause non-determinism.
3.3 Summary of Empirical Results RIO is designed to operate with high-performance inter-

. . : . ces such as the 1.2 Gbps ATM port interconnect controller
Our empirical results presented in Section 3 illustrate how R(év P P

provides the following benefits to real-time ORB endsysten} PIC) [3]. The APIC supports (1) shared memory pools be-

een user and kernel space, (2) per-VC pacing, (3) two lev-
els of priority queues, and (4) interrupt disabling on a per-VC

1. Reduced latency and jitter: RIO reduces round-trip la- X
i, ; ; . _hases. The current RIO prototype has been developed using a
tency and jitter for real-time network I/O, even during hig : . . i .

commercial Fore interface, as described in Section 3.

network utilization. RIO prioritizes network protocol process- | d the following | f he RIO proiect:
ing to ensure resources are available when needed by real-tim\éle earned the following lessons from the project:

applications. Vertical integration of endsystems is essential for end-to-

end priority preservation: Conventional operating systems

2. Enforced bandwidth guarantees: The RIO periodic pro- : :
cessing model provides network bandwidth guarantees. Rl Qs not provide adequate support for the QoS requirements

: . -~ ot distributed, real-time applications. By vertically integrat-
schedule-driven protocol processing enables an apphcatlorih the 1/O subsystem, the endsystem can reduce the dura-

'tspeufy p?nodmt\ll{lo Erk;)cedss[r(;?hrequwements which are USSh of priority inversions and maximize overall system uti-
0 guarantee hetwork bandwidin. lization. Consequently, effective throughput increases and up-
per bounds on latencies are reduced. Moreover, by combin-

3. Fine-grained resource control: RIO enables fine- ing RIO with the TAO rela-time ORB, QoS properties can be

grained _control of resource usageg, applications can Seté)reserved end-to-end in a distributed object, real-time environ-
the maximum throughput allowed on a per-connection ba 1St [19]
Likewise, applications can specify their priority and process- '
ing requirements on a per-connection basis. TAO also ug&equle-driven protocol processing reduces jitter signifi-
these specifications to create off-line schedules for statlcqgkynﬂy: After integrating RIO with TAO, we measured a sig-
configured real-time applications. nificant reduction in average latency and jitter. Moreover, the
o . latency and jitter of low-priority traffic were not affected ad-
4. End-to-end priority preservation: RIO preserves end-yqrqely - Our results illustrate how configuring asynchronous

to-end operation priorities by co-scheduling TAO's ORB Rejio16c0] processing [20] strategies in the Solaris kerel can
actor threads with RIO kthreads that perform I/O processing.

9

provide significant improvements in ORB endsystem beha] S. Rago, UNIX System V Network Programming Reading, MA:
ior, compared with the conventional Solaris /0O subsystem. Addison-Wesley, 1993.

. .] D.C. Schmidt, S. Mungee, S. Flores-Gaitan, and A. Gakh&oftware
As a result of our RIO enhancements to Solaris, TAO is th@ Architectures for Reducing Priority Inversion and Nonetetinism in

first ORB to support end-to-end QoS guarantees over ATM/IP Real-time g%bject Request Brokerslburnal of Real-time Systemnigo

networks [2] appear 1999.
. [6] C. Cranor and G. Parulkar, “Design of Universal ContinaoMedia

. . . I/0,” in Proceedings of the 5th International Workshop on Network
Input livelock is a dominant source of ORB endsystem and Operating Systems Support for Digital Audio and VideD FSDAV

non-determinism: During the developmentand experimen-_ '95). (Durham, New Hampshire), pp. 83-86, Apr. 1995. _
tation of RIO it became obvious that the dominant source ¢f! R. Gopalakrishnan and G. Parulkar, “Bringing Real-tieheduling

. . ;i N . Theory and Practice Closer for Multimedia Computing,”SIGMET-
non-determinism waseceive livelock Priority inversion re- RICS ConferencédPhiladelphia, PA), ACM, May 1996.

sulting from processing all input packets at interrupt contexg] P. Dkrusscgel éind C'EA- Br?tng?, “L?Zy SReceivg%sr Ptroces,;i_ng OLdRH_ \let-f

. worl upsystem Arcnitecture 1or server systems, Firoceeaings o

IS Unaccepta_ble for many real'“m_e apphcatlons. Using RIQ the 15t Symposium on Operating Systems Design and Implementation
kthreads for input packet processing yielded the largest gain USENIX Association, October 1996.

i i ili [9] J. C. Mogul and K. Ramakrishnan, “Eliminating Receiverdlock in
in overall system predlCtablhty' an Interrupt-driver Kernel,” ilProceedings of the USENIX 1996 Annual
. . L . Technical Conferencg€San Diego, CA), USENIX, Jan. 1996.

The TAO and RIO Integration focused |n|t|ally on Statl-lO] T. B. Vincent Roca and C. Diot, “Demultiplexed Architaces: A Solu-

cally scheduled applications with deterministic QoS require- " tion for Efficient STREAMS-Based Communication StackEEE Net-
ments. we have subsequently extended the TAO ORB end- Work Magazinevol. 7, July 1997.

: : P] M. L. Bailey, B. Gopal, P. Sarkar, M. A. Pagels, and L. let&son,
SYStem t(? ;upport dynam!c scheduling [21] and appllcatlo[ﬁ§ “Pathfinder: A pattern-based packet classifierPioceedings of thes?
with statistical QoS requirements. The C++ source code iympqstum%Opegatlnlgggxstem Design and Implementat®BNIX
for ACE, TAO, and our benchmarks is freely available 3 ssociation, November 1994. - _ ,

. 12] R. Gopalakrishnan and G. M. Parulkar, “Efficient Qualif Service
www. ¢s. wust | . edu/ ~schm dt/ TAO. ht 1l . The RIO Support in Multimedia Computer Operating Syste.msy". Tecepmzl.
subsystem is available to Solaris source licensees. et of Computer Science, Washington University inlSuis,

The RIQ research effort is cur_rently d_lr_ected toward |_nt?l-3] T. H. Harrison, D. L. Levine, and D. C. Schmidt, “The Dgsiand
gration with other platforms and in providing a standardized Performance of a Real-time CORBA Event Service Pimceedings of
API. We are developing a pluggable protocols [22] framework gogsgAh 9_7d(t'“f!2”ta;' Gt,A)' ’Zcﬂftoit"berflggl\;' ibadod CORBA

. . . C. Schmidt, valuating Architectures ror Mult e
for TAO that hides platform dependencies and extends RIGY Object Request BrokersCommunications of the ACM special issue on
functionality. TAO’s pluggable protocols framework supports CORBAvol. 41, Oct. 1998.
iti i i] D. C. Schmidt, S. Mungee, S. Flores-Gaitan, and A. GleklAlleviat-
th.e addition of new messaging fd”d transport prOtOCOIS'_WItMﬁ ing Priority Inversion and Non-determinism in Real-time RBA ORB
this framework are (1) connection concurrency strategies, (2) core Architectures,” irProceedings of thd* IEEE Real-Time Tech-
endsystem/network resource reservation protocols, (3) high- nology and Applications Symposiu(enver, CO), IEEE, June 1998.

performance techniques, such as zero-copy /0, shared mefi-F: Kuhns, D. C. Schmidt, and D. L. Levine, “The Design dvetfor-

ory pools, periodic I/O, and interface pooling, (4) enhance-
ment of underlying communications protocasg, provision
of a reliable byte-stream protocol over ATM, and (5) tight coﬁn
pling between the ORB and efficient user-space protocol i
plementations, such as Fast Messages [23] [19]

The TAO research effort has influenced the OMG Realtime
CORBA specification [24], which was recently adopted as a
CORBA standard. We continue to track the process of tl@s]
standard and to contribute to its evolution.

[21]
References

[1] D. C. Schmidt, D. L. Levine, and S. Mungee, “The Design &wifor-
mance of Real-Time Object Request Broke@gmputer Communica- [22]
tions vol. 21, pp. 294-324, Apr. 1998.

G. Parulkar, D. C. Schmidt, and J. S. Turner!tPm: a Strategy for In-
tegrating IP with ATM,” inProceedings of the Symposium on Comml[lzs]
nications Architectures and Protocols (SIGCOMMCM, September
1995.

[3] z.D. Dittia, G. M. Parulkar, and J. R. Cox, Jr., “The API(proach
to High Performance Network Interface Design: Protected/DéMhd
Other Techniques,” ifProceedings of INFOCOM '97(Kobe, Japan),
IEEE, April 1997.

(2]

[24]

10

mance of RIO — A Real-time 1/O Subsystem for ORB Endsysteins,”
Submitted to the International Symposium on Distributede€b and
Applications (DOA'99) (Edinburgh, Scotland), OMG, Sept. 1999.

USNA, TTCP: a test of TCP and UDP Performandzec 1984.

18] W. R. StevensTCP/IP lllustrated, Volume.1Reading, Massachusetts:

Addison Wesley, 1993.

I. Pyarali, C. O'Ryan, D. C. Schmidt, N. Wang, V. Kachroand
A. Gokhale, “Applying Optimization Patterns to the DesighReal-
time ORBs,” inProceedings of thé!” Conference on Object-Oriented
Technologies and SystengSan Diego, CA), USENIX, May 1999.

R. Gopalakrishnan and G. Parulkar, “A Real-time Updadkility for
Protocol Processing with QoS Guarantees, ! 5" Symposium on Op-
erating System Principles (poster sessjoj@opper Mountain Resort,
Boulder, CO), ACM, Dec. 1995.

C. D. Gill, D. L. Levine, and D. C. Schmidt, “The DesigncaRerfor-
mance of a Real-Time CORBA Scheduling Serviceje International
Journal of Time-Critical Computing Systems, special issuReal-Time
Middleware 1999, to appear.

F. Kuhns, C. O’'Ryan, D. C. Schmidt, and J. Parsons, “Tksign and
Performance of a Pluggable Protocols Framework for ObjemjuRst
Broker Middleware,” Department of Computer Science, TézhinRe-
port WUCS-99-12, Washington University, St. Louis, 1999.

M. Lauria, S. Pakin, and A. Chien, “Efficient Layeringrfeligh Speed
Communication: Fast Messages 2.x.,"Rmoceedings of the 7th High
Performance Distributed Computing (HPDC7) conferenf@hicago,
lllinois), July 1998.

Object Management GrougRealtime CORBA 1.0 Joint Submission
OMG Document orbos/98-12-05 ed., December 1998.

