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Abstract

The paper is a theoretical study of a generalization of tkiedgraphic rule for combining ordering relations. We

define the concept of priority operatoa priority operator maps a family of relations to a single relation which

represents their lexicographic combination according to a certain priority on the family of relations. We present four

kinds of results.

¢ We show that the lexicographic rule is the only way of camriy preference relations which satisfies natural
conditions (similar to those proposed by Arrow).

o \We show in what circumstances the lexicographic ru@pgates various conditions preference relations, thus
extending Grosof’s results.

¢ We give necessary and sufficient conditions on the jyioelation to determine various relationships between
combinations of preferences.

o \We give an algebraic treatment of this form of geatieed prioritization. Two operators, callduit andon the
other hand are sufficient to express any prioritization. We jresa complete equational axiomatization of these
two operators.

These results can be applied in the theory of sodialee (a branch of economics), in non-monotonic reasoning (a

branch of artificial intelligence), and more generally wherever relations have to be combined.

Keywords Preference relations, priority relations, defag@asoning, lexicographic cdsmation, Arrows theorem,
social choice.

1 Introduction

The lexicographic combination of orderings constructs a single ordering from several indi-
vidual ones. Traditionally, thendividual orderings will oder words according to theith

letter using alphabetical ordering, and the combination will then be the usual ordering of dic-
tionaries. This combination thus says that a letter on the left is more important than any letter
on its right, thereby giving ariority between letter indices. If the first letter of the first word

is strictly before the first letter of the second word, this first word will indeed appear first in
the dictionary. In case of ties, the second ordering will be used, and so on.
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In this paper we study a generalization of this combination of relations, in which the pri-
ority ordering on the indices may be an arbitrary order instead of a finite linear one, and the
relations themselves need not be orders.

Applications of this work potentially include any application of the lexicographic rule in
computer science and artificial intelligence, and are therefore varied and widespread. We
mention some of them here:

Artificial intelligence. Default logics have been used in Al for twenty years[13, 5]. The
lexicographic rule was first proposed for gritized defaults by Lifschitz [19, 20] in the
setting of circumscription. Later, Grosof4JLrecognized its applicability to any preferen-
tial logic, and dubbed igeneralized prioritization The lexicographic rule has also been
used for preferential logics in Ryan [25] and Schobbens [30]. In this context, a priority
operator is a policy for controlling which defaults represent exceptions for which other
defaults. In the specific case of circumscription, a priority operator is a circumscription
policy. The lexicographic rule has also been used in belief revision [28].

Requirements specification. The requirements that users may specify are often soft, and as
such express a preference over a set of possible implementations rather than a hard set of
implementations. Inconsistencies easily arise if the requirements are interpreted as hard,
whereas resolving a set of soft requirements involves finding a compromise between the
preferences each requirement denotes. Priority operators in this setting represent a policy
for putting together the requirements.

Concretely, the use of default constraints in specifications has been proposed for mod-

elling requirements [4, 30, 26, 27, 15]. The priority operator used to put together the

preferences on models these defaults express may be derived from the structure of the
specification [26], the use of a logical connective ‘but’ expressing exceptions [30], or an

explicit hierarchy [9].

Economics. Preferences originate from economics, and naturally our work can also be used
there. Two subdomains are more particularly concerned:

Sacial choice. The study of combinations of preferences for social choice was initiated by
Condorcet [7]. Here, each input relation represents the preferences of a member of the
group, and the output represents the preferences of the group. This domain has yielded
mostly negative results, the best known being Arrow’s impossibility of combining lin-
ear orders under very natural conditions [1] recalled in section 3. In this paper, we
show that, surprisingly, when working in the slightly more general settings of relations,
or even pre-orders, we obtain, on the contrary, a possibility theorem, yielding our lex-
icographic combinations as the only solution. Various extensions of the lexicographic
combination were also studied in [11, 12, 3, 17, 18].

Multi-criteria decision. Currently these results are more used in a different branch of
economics, multi-criteria decision. Arrow haswréten his results wittihis application
in mind in [2]. Here, the input relations peesent rankings according to the various
relevant criteria, and the single output represents their combination, on which the final
choice will be based.

This section intuitively introduces the problems and the solutions considered in this pa-
per. We use an example from Economics, since such examples are readily explained from
common sense.

ExAmpPLE 1.1
Claire and Bob have to replace their old car. A®aftthey have different criteria for selecting
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the new car, although some of them are common, but ranked differently.
The preference of Claire is guided by the following criteria (in increasing order of impor-
tance):

e the maximum speed (M);

¢ the elegance of the design (D);

e the ease with which it can be driven in town (E);
e the price (P).

The criteria for Bob are ranked differently:

e the ease with which the car can be driven in town (E);
e the maximum speed (M);
e the price (P).

Some of these criteria are simple, and can be directly computed from the technical data of
the car. Others can be decomposed, shg:ease with which the car can be driven in town
(E) is an aggregation of:

o the length of the car (L);

e its weight (W);

e its turning circle diameter (C);

e the presence of automatic transmission (A).

Let us say the last one is the most important, the other ones are equally important, but are
clearly expressed in incomparable units, so that, for instance, adding them makes no sense.
The final choice should at least be Pareto-optimal: no other car will be better for both Claire
and Bob than the one selected.

Now, these criteria must be applicable to apgafic market. In this paper, we do not work
directly with numerical criteria like the ones above. We consider the markebntaining
economic alternatives, in this case the various cars that are available; sayt, h,r,m,n}.

The numerical criteria are converted into a prehce ordering. For instance, if the actual
characteristics of the cars are as in Table 1, we forget the numeric values to remember only

TABLE 1. Car characteristics
t h r m n

length L| 35 35 73 50 37

weight W| 0.7 09 35 15 0.7

turning circle diameter C| 3.2 34 64 34 3.2
automatic transmission A N Y Y N N

maximal speed M| 110 130 180 250 120

price P| 10 10 100 20 11

their ordering. For example, for the turning circle diameter (C), we remember only ihat
equivalent tor (in the notation of the main part of this paperRz n), while n is strictly
preferred toh (writtenn RS h), and so on: in summaryRznRShREmRSr. In some

cases, no meaningful comparison can be established, so that both incomparable alternatives
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should be kept in the final choice. For instance a shoe cannot be compared to a car, say. We
write thiss R# c.

In the example, all preferences are transitive, and this is usually considered as a condition
for them to be rational. However, many empirical studies have shown that intransitive pref-
erences are the norm rather than the exception for human decision makers. Therefore, this
study does not assume transitivity, but intends to preserve it when it exists. That is to say,
when the underlying preferences are transitive, so should be their combination. We shall use
(T) to refer to preservation of transitivity. We assume several other properties of the com-
bination. It should not advantage any alternative except from the selected criteria (B), and
should respect the criteria when they are unanimous (U). Finally, alternatives that are not
involved in a comparison should not influence the result (1): for instanee,i# preferred to
n, this should not depend on whethieiis present in the market/ or not, but only on the
performance ofn, n for the selected criteria.

If we accept these natural rationality postulates (IBUT), we demonstrate below that the
problem can be expressed by priority graphs, or by algebraic expressions. For instance, the
algebraic expressions for the example above are:

Claire = M/D/E/P
Bob = E/M/P
where E = (L||W|C)/A
Result = Bob||Claire

where/ expresses priority of the second term, whjlputs both sides on equal priority. In

this example, our theory shows how to simplify the computations: it is useless to repeat the
computation ofE for Bob, of M for Claire, since anyway these criteria will be better taken
into account by the other person. So Ressl{M||(D/E))/P gives the same result more
efficiently. It is also clear from this expression thais to be chosen in the example, without
even looking at criterid, W, C, D.

Our principal definition is that opriority operator. A priority operator specifies a way
of putting together a family of relations to make a single relation. We call these relations
preference relationsthe idea is that they relate elementsidf (interpretations, economic
alternatives, etc.) according to some preference criterion.

We present results of four kinds.

1. We show that priority operators are canonical: they are the only way of combining pref-
erence relations with different priorities vahi satisfies the very natural conditions above,
inspired by Arrow [1, 2].

2. Next, we define several natural properties of preference relations: transitivity, reflexivity,
irreflexivity, and well-foundedness. We show in what circumstances these properties are
propagatecby priority operators. This generalizes a result by Grosof [14].

3. We give necessary and sufficient conditions on the priority relation to determine whether
the result of a priority operator is alwayscludedin the result of another combination.
This also extends a result of Grosof [14]. We also give necessary and sufficient condi-
tions for other relationships between the results of priority operators, swedfuasityand
preferential entailment

4. We give an algebraic treatment of generalized prioritization. We formally define two
binary priority operators, calldoutandon the other handand show them to be sufficient
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to express any priority operator. We present a complete equational axiomatization of these
two operators.

The structure of the paper is as follows. The next section presents basic definitions. Sec-
tion 3 presents the results which show that the lexicographic rule is the only way of combining
preference relations that satisfies the natural generalization of Arrow’s conditions. Propaga-
tion of properties of preference relations by the rule is summarized in Section 4, Table 3.
Section 5 develops proof rules for priority graphs, and 6 explores composition of priority op-
erators. Section 7 summarizes our algebraic treatment of priority operators, and conclusions
are drawn in Section 8.

There is a long appendix to this paper, which covers the mathematical details and proofs
which have been omitted from the text in order not to interrupt the flow. The structure of the
appendix mirrors that of the paper.

2 Priority operators

Let M be a set containing at leastd elements. The elements &f are the subject of the
preferences: in the example above, it was #teo$ cars which were available on the market.
From the point of view of our application to default reasonimfjs the set of interpretation
structures of the logic. Default rules or formulas express preferencég.omhe results
presented in the paper work for any applications of prioritized preference, such as default
reasoning, social choice or multi-criteria decisid. is simply the set of objects which are
ordered by preference, which in economics are called economic alternatives. (Of course there
must be at least two of them, otherwise there is nothing to choose.)

DEFINITION 2.1
A preference relatiofsometimes just called@referencgis any binary relation od/. Pref-
erence relations will be writteR, Ry, Rs,...,0rR',R" .. ..

For intuition, the reader will be helped by readifyas meaning ‘better than, or indif-
ferent’ or ‘as preferred as’. We do not assume tRais transitive and reflexive, since our
mathematical results do not depend on these properties.

In the non-monotonic applicatn, each default formula denotagpreference relation on
M which orders interpretations according to hoearly they satisfy theafault information.

As usual in the literature, interpretations ‘lower’ in the relation are those which are closer to
satisfying the default. Fan,n € M, the expressiom R n means thatn is as preferred as
n.

DEFINITION 2.2
Given a preference relatia, we define the derived relations

m Rn iff notmRn. ‘not better (nor indifferent)’
m R<n iff mRnandnotmRm. ‘strictly better’
m R=n iff mRnandnRm. ‘indifferent’

m R#* n iff neithermRn nornRm. ‘incomparable’

We also usé” to denote the full relatiod/ x M, and( to denote the empty relation. Thus,
F=F<=F#=0<=0==0andF==0# =) = F.

Now suppose we have a family of preference relatigRig).cy, all on the same set/.
This can come about because we have sevefalults, each of them deting a preference
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relation among interpretations of a non-monotdagic, or because we have several deciders,
each having its own preference among the economic alternatives. Also, the preferences can
originate from different criteria that we wigo combine according to their importance. We
want to combine these relations into a single relation on the sam¥ séthe next step is
usually to pick the minimal (or preferred) imgretations (or alternates) according to it.

DEFINITION 2.3
A V-ary operatoris any map taking some preference relatiof?,),cy and returning a
single preference relationV(may be infinite.)

Of particular interest are operators whiamabine preference relations according to some
priority, which is a strict partial order oW.

The lexicographic combination @2, ).cv (V' # 0) according to priority< on V' is the
relationR given by

mRn <= Vz € V. (mR,nV Iy € V. (y <z AmR;n)). (%)

This generalizes the familiar rule used for the alphabetic ordering of words in a dictionary,
by allowing the priority< (position of letter in word) to be an arbitrary partial order, and by
allowing the preference relations (ordering of letters in alphabet) to be an arbitrary relation.
Intuitively, the lexicographic rule says that is preferred ton overall if it is preferred at
each index, except possibly those for which there is an index of greater priority at mhich
is strictly preferred to:. To understand how this reducestbe familiar alphabetic ordering
when < is a finite total order (among positions in the word), observe that it says: in order
that wordm comes before (or equal) word we must have that for any, thezth letter ofm
precedes or equals theh letter ofn, unless there was a smallgsuch that theth letter of
m strictly precedes thgth letter ofn.

A number of definitions of the lexicographic ordering, which are all equivalent when used
with a finite linear piority, can be found in the literature:

1.aR<biff 3z : aRSbandVz < z,aR=b [23, p.49];

2.aR<biff D = {x|aR=b} is not empty and. RS b, wherez is the <-minimum element of
D [12, p.1442];

3. aRbiff Vz(Vy < zal;b) = aR,b[14]"
When we generalize togartially ordered priority:

o Definition 1 may yield botm R<b andbR<a, and is thus not useful in this context.

¢ Definition 2 needs to be generalized, sidgeavill not have a single minimum but a set of
minimals. So we could require tha$ b for all these minimals.

¢ Definition 3 is directly usable.

Definition 3, and our generalization of Definition 2, are each equivalent to our definition in
equation £) under the assumption that is well-founded (see Theorem 2.11). This is an
assumption we will make frequently in the paper; it is generally valid for applications.

The formulation(x) of the lexicographic combination is not as general as we would like,
however, because it forbids frem replicating an argumetit, several times in the prioriti-
zation. We can generalize it by considering the following notion of priority graph.
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DEFINITION 2.4

A priority graphis a tuple(V, <, v) whereN is a set (of ‘nodes’)< is a strict partial order
on N (the ‘priority relation’) andv is a function fromN to a set of variablesN may be
infinite.

This definition and the following one are the stidundamental in the paper; everything
else depends on them. So, what is a priority graph? It is just an ordering of variables, but
crucially it allows some variables to be represented several times in the ordering, simply by
repeating the variable in the priority graph. (A priority graph essentially represents a policy
for prioritizing certain things represented by the variables, and the ability to allow repetition
of the variables greatly increases the expressive power of the representation. We will prove
this later.)

A priority graph denotes an operator on prefererelations. The operator it denotes com-
bines its arguments according to the given priority, using the lexicographic rule.

DEFINITION 2.5
TheV-ary operatob denoted by the priority graptiV, <, v) is given by

m o((Rg)zev) n <= Vi € N. (mR,3ynV3j € N.(j <iA me(j)n))

wherel” = v[N], the variables that occur in the graph.

This says that the variables in the priority graph are instantiated to be the argument prefer-
ence relations. The operator returns the preference relation, which is their prioritized combi-
nation according tec, using the lexicographic rule.

The difference between Definition 2.5 and equatiienis that the elements oV are or-
dered, rather than the elementsiofdirectly. The onus is on us to show that this added
complication is really useful. It turns out tme useful because the ability to duplicate one
of the argument#, in the ordering increases the expressive power we are giving to priority
operators. This is shown by Example 2.8 below.

Our notion of priority operator can now be seen to generalize the notion of circumscription
policy [20] in three ways.

o it works for arbitrary preferential logics;
o it allows the priority to be partial;

o it allows repetition of the prioritized criteria in the ordering; and this increases the expres-
sive power (Example 2.8 below).

EXAMPLE 2.6

Consider the priority grapyy = (N, <,v) givenbyN = {1,2,3} with1 < 2andl < 3 and
v(1l) = y,v(2) = xz andv(3) = y. Priority graphs will normally be written using a graphical
notation in which we leave out the names of element&’pghowing the base of the partial
order< on the variables given by (this is usually called the Hasse diagram of the priority).
Recall that elements with the highest prioritgasurprisingly perhaps, written at the bottom
of our diagrams. The priority graph is:

m\y/y
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This denotes a binary operator since there are only two distinct variables in the graph. It takes
two preference relations, sdyandsS, and returns a preferencdagon which represents the
combination ofR and S with the priority which represent® once andS twice. One of the
representations & has priority over the other and ovBr Thus, ifo, is the operator denoted

by the graph, then; (R, S) is the following prioritized combination ak andsS:

R S

N

S

Applying the definition of the lexicographical rule (and simplifying), we obtain that
01(R,S) = (RN S)U S<. We may also writes; = Az,y.(z Ny) U y<, although we
will generally leave ouis and details of variable binding, and write= (z N y) U y<.

There may be several graphical representations of the same operator. As a trivial example,
any priority graph whose nodes are all labelled by the same variaténotes the identity
operator, which is the only unary priority operator.

DEFINITION 2.7
Priority graphsg;, g» are said to beequivalent written g; = g¢-, if they denote the same
operator on preference relations.

The graphy, in the preceding example is equivalent to the grgph

T

Y

(which does not have any repetition of variables), in the sense that the two graphs denote the
same operatar, = (x Ny) Uy=<.

EXAMPLE 2.8
The priority graphys

8
8

) z

denotes the operatos = [z U (y< N 2<)] Ny N z, and isnotequivalent to any graph which
does not repeat the variabie(this will be proved later, in Example 5.7). In particular, it is

not equivalent to
T
Y z

which denotesz U (y N 2)<] Ny N z. To see that these expressions may be different, try
M=A{1,2},z=0,y=MxM,z=1{(1,1),(1,2),(2,2)}. Then the first expression yields
0, while the second one yield$1,2)}.



Operators and Laws for Combining Preference Relatid2s
EXAMPLE 2.9
The graphs
T ] T Y

w N

z z z

denote the same operator, namghN y N z) U z<.

The lexicographic rule applied to graphs is not the only way of defining operators on rela-
tions, but is an important one.

DEFINITION 2.10
A priority operatoris an operator which is denoted by some priority graph.

By convention, we extend the usual properties of posets to priority graphs and thence to
operators in the obvious way: for instance, we say that a priority operateglifsounded
iff there is a graph( IV, <,v) denoting it such that/V, <) is well-founded, (i.e. there is no
infinite descending sequenge> iy > iz > ---, i, € N). A V-ary operator idinitary if V'
is finite.

Notice that the identity of nodes (elements/g) in a priority graph is irrelevant. For
this reason we can think of priority graphs as partially ordered multipetngetg24]) of
variables.

The following theorem is useful in two respects. First, it should help the reader build up
intuitions for the behaviour of the lexicogrhaic rule coded into Ddifition 2.5. Secondly, it
will be used for proving most results in all later sections, e.g. Theorems 3.2 and 4.1.

THEOREM2.11
Supposé N, <) is well-founded, and leR = o((R;)zcv ). Then
1.mRniff Vi e N. (Vj < i. me(j)n) impliesm R, ;n.
2. mRn iff Vi € N. (mR,;nor(3j <i.mR, \n andvj’ < j. mR7; n)).

v(j
3. mR<niff mRn and3di € N. ij(i)n.
4. mR=niff Vi € N. me(i)n.

3 Canonicity of the lexicographicrule

We have defined priority operators, which tad®arguments some preference relations and
combine them according to some priority, usthg lexicographic ruleArrow [1, 2] has stud-
ied operators taking sets of preference relations to preference relations, and proposed natural
conditions that they should satisfy. Our aim in this section is to show that priority operators
can be defined by a variant of Arrow’s conditions, which is also very natural. Historically, we
arrived at these conditions when looking for further preferential operators, mainly a counter-
part for disjunction, only to discover that there are no further operators.

Let o be an operator takingR. )..cv and returningR? = o((R.).cv). To be natural, the
operatorn should:

I. beindependentf irrelevant alternatives: the resulting preference on elements ohe-
pends only on the argument preferences on these elements. That is,

VM' C M, o((Ry)eev)|mr = o((Re|mr)zev)-
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This is condition 2 in [1] and [2];

B. be basedon preferences onlys is a function of theR,’s only, and may not take into
account the identity of any element df. That is, if there is an isomorphisihbetween
M and M’ (i.e. a bijectionf such thatvz € V,Va,b € M,aR,b iff f(a)R.f(b))
then the results are the sameRb iff f(a)R'f(b). This condition is called permutation
invariance in algebraic logic. It was not usedAxyow, but by algebraists, order theorists,
and economists [12, p. 1448] and seems very natural;

U. beunanimous with abstention$or intuition, we use here analogies from the theory of
social choice. Let us consider that eaBh represents the preference-or-indifference
relation of the person callegd member of a group” of voters. To establish the preference
of the group, each pair of alternativesh will be presented in a vote, where the members
can vote on whetheris preferable td. For a given pair, each memhehas four possible
votes, corresponding to the cases of Definition 2.2: vote fa?b); vote forb (bR a);

a, b are considered incomparablel{* b); or indifferent (also called equivaleny) R b).
In this last case, we say thatabstaingn the vote ofa against. Incomparability, on the

contrary, is a strong opinion here: it means that the two alternatives cannot compete, and

this vote will override decided votes of the same priority. In the first two cases, we say
thatz is decided

If all the R, s determine a certain vote betweemandb (which could bea R b, aR¥ b,
bR a, or aR;b) apart from those which abstainRzb), then the condition of unanim-
ity states thatR also determines the same vote betweesndb. That is, for allx €
{<,>,=,#}if V' C Vsuchthal! # pandvy € V', aR;b, andVz € V-V’ aRZD,
thenaR*b.

Respecting unanimity is the motivation for condition 4 of [1], but after motivating this
condition, [1] writes a much weaker mathematical condition;

T. preserve transitivity if all the argument preferenceés?,).cy are transitive, then the
resulting preference® is also transitive. This condition is not stated in [1] but is implicitly
used,;

N. benon-dictatorial it does not simply return a fixed one of its arguments without regard
to the others. We formulate this technically as followg¥if > 1 then thereisne € V
such thatR = R, for all possible values of the othdt,s. This definition comes from

[2].

In the case of total pre-orders, Arrow’s well-known theorem shows that the property of
non-dictatoriality is incompatile with the other conditions. In our case of arbitrary relations
in which we have generalized his conditions, it is easy to show an opposite result.

THEOREM3.1
Every operator satisfying unanimity with abstentions is non-dictatorial. More generally, the
result of such an operator cannot be independent of any of its arguments.

PROOF Assume is dictatorial inz; thusV \ {z} is not empty. Take some non-full relation
S and defineR, = F andR, = S for all otherz. By U, o((R;)zev) = S # R.. [ |

Thus non-dictatorial is not only compatible with IBUT, but implied by U. There are two
explanations for this inversion, depending on the version ([1] or [2]) to which we compatre:

1. Unanimity with abstentions is a powerful and natural condition, for pre-orders. The proof
of [2] relies strongly on linear orders, where abstentions are impossible.
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2. The definition of dictatoriality [2] we use is natural but restrictive: some of our operators
would be dictatorial under the wider defion of [1]. Arrow (in both versions) uses a
supplementary unstated condition: the presgown of totality. As shown in Theorem 4.1
below, this amounts to requiring a linear (total) priority. In this case, the relation with
highest priority is a dictator in the sense of [1], but not of [2].

So, of course, there is no mathematical contrin between Arrow’s results and ours. But
curiously, all informal explanations of [1] could be retained to justify the conditions of our
inverse result—just draw opposite extra-mathematical generalizations.

The main result of this section shows that only lexicographic combinations of preferences
satisfy conditions IBUT (or equivalently IBUTN). We may state it as follows.

THEOREM 3.2
A finitary operator satisfies conditions IBUT iff it is a priority operator.

The proof, found in Section A.3 in the Appendix, works by performing ‘tests’ on the
operator in order to find a priority graph which denotes it.

It is not obvious that the conditions IBUT are all we should require; we could also think
that a natural operator should:

1. preserve reflexivityusually, one conventionally considers that preferences are reflexive.
This convention should be preserved by the operator;

2. preserve irreflexivityif we take the opposite convention, it should also be preserved;

3. preserve antisymmetrypften preferences are taken to be antisymmetric; then the result
should also be;

4. preserve well-foundednegbe goal of preferences is to find minima, and to ensure their
existence we must forbid infinite regression. It is clearly important that this property is
preserved;

5. allow majority extensiomr respond positively2]: Given a situation where the result is
some vote (for instance, thatandb are indifferent), then anyitsiation identical except
that more individual preferences giveattvote, should have the same resulting vote;

6. be justified if the result is to prefer one of the interpretations, then at least one default
(called theustification) must prefer this interpretation;

7. obeyPareto ruleor bebenevolentif one criteria strictly prefers an alternative, and the
other ones prefer it, it should be strictly preferred globatlya R,.b A HyaR;b = aR<b.

Fortunately, all these conditions can be derived from the four basic ones (at least for fini-
tary operators). The preservation propertiesA) are theorems of the next section. Properties
(5-6) are proved in Lemmas A.11 and A.9, respectively, of Appendix A.3. The Pareto rule is
a special case of U. There is, however, one condition (proposed by [10]) that we cannot add,
namelydecidednesghat the global preference is decided (prefers one of the two interpreta-
tions to be compared) as soon as one of the individual preferences is decided. Intuitively, this
condition seems rather strong: for instance, dperator cannot decide that two interpreta-
tions are incomparable, even if a vast majority of defaults share this opinion or if two equally
important sets of defaults hold opposite opinions. If we add decidedness, no combination
operator can be found, since we fall back oa tonditions of the original Arrow theorem:
the operator will preserve totality.
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TABLE 2. Properties of a relatioR and their closures

Property Definition ‘Closure(s)’
Reflexive Ym € M.mRm mRSniff mRnorm =n
Irreflexive Vm € M.mRm mR7niff mRnandm # n
Symmetric VYm,n € M. (mRn = nRm) mRYn iff mRn ornRm

mR=n iff mRn andnRm
mR#n iff mRn andnRm.
Antisymmetric Vm,n € M. (mRn AnRm = m = mR<n iff mRn andnRm

n)
Transitive VYmy, ma,m3 € M. (m; Rma A mRTn iff In. mR™y
moRmg = mi Rms)
Total VYm,n € M. (mRnV nRm)
Empty Vm,n € M. mRn 0 (the empty relation)
Full VYm,n € M. mRn F (the full relation)
Well-founded transitive, and there is no

R<-sequence
M3 R< mo R< miy

JZorn R transitive, and each chain (totally
R-ordered subset) id/ has a lower
bound.

4 Propagation of propertiesviapriority operators

Grosof [14] has shown that a lexicographic combination of transitive preferences is transitive,
provided the set of nodes is well-founded. A more systematic treatment of such properties
is summarized in Table 3, for the classical properties described in Table 2. For example,
Grosof’s result is represented as line 5 of Table 3. This says that for any priority operator
o and non-empty family{ R, ).cy of arguments, the resultant relatidh= o((R.).cv) IS
transitive if each of the argument relatioRs is transitive, and also the prioritg on IV is
well-founded.

Other conditions, such as reflexivity, irreflexivity and symmetry, propagate more simply,
without extra conditions on the priority relation.

THEOREM4.1
Table 3 holds; i.e. the properties are propgagaby the lexicographic combination in the
manner shown in the table.

In preferential logics, we are interested in finding the minimals of preference relations.
A strong property guaranteeing the existence of minimals is well-foundedness. Assuming
that the relationR is transitive, well-foundedness is equivalent to saying fRaestricted
to any non-empty subsét/’ of M has minimals, i.e. Mig(M') # . Table 3 shows that
well-foundedness is propagated by the legiaphic rule under simple assumptions.



Operators and Laws for Combining Preference Relatid2s

TABLE 3. How the properties propagate through priority operators

Let (N, <,v) be a priority graph denotinthe priority operatop.
Theresultob is. .. if.... argument is, and also . ..
1. reflexive each
2. irreflexive some
3. symmetric each
4.  antisymmetric some there is no infinitechain below it.
5. transitive each the priority is well-founded.
6. total each  the priority is total.
7.  empty some its node is minimal {iV, <).
8. full each
Now supposeV is finite, and eacl®, ;) is transitive.
9. well-founded each
10.  |Zorn each  foreacl’ C N the relation ;¢ x R, ;) is {Zorn.

However, well-foundedness may be ratheosger than we actually need. This is because
we do not require the existence of minimalsimynon-empty sefi/’ C M, but only in those
sets which are denoted by a theory in the logic. This is the motivation behind the condition
of stopperedness [21] (aka smboéss [16]) in the literature.

To study the propagation of stopperedness(ldie the set of subsets @ff which are
closed, i.e. which are the denotation of a theory. TakeMrye C. We say thatk has the
lZorn property (pronounced downwards-Zorn) with respedtftaf each R chain inM' has
alower bound inV/’. That is the condition that is required in order to apply Zorn’s lemma to
find minimals inM'. Thus, to study the propagation of stopperedness it is sufficient to study
the propagation ofZorn in each of the sets i@. The propagation ofZorn in any set is
described in Table 3.

THEOREM4.2
Well-foundedness anfZorn are related as follows. L& be a transitive relation of/. R is
well-founded iff (for all N C M R|y is {Zorn).

Line 10 of Table 3 is considerably harder to prove than the others, and requires several
lemmas. The proofs are in the Appendix, Section A.4.

5 Proof rulesfor priority graphs
5.1 Refinement and equivalence

Checking equivalence between priority graphs by applying the lexicographic rule to convert
them into priority operators is a time-consuming and error-prone process. Fortunately, there
are some syntactical rules which can help us. We consider only well-founded priority graphs
with finitely many variables. As well as checking equivalence, we develop proof rules for
checkingrefinemenbetween priority operators.

DEFINITION 5.1
We say thab, refineso, and writeo; C o- if, for all argument tuple$R,).cv, we have
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01((Rz)zev) C 02((R:)zev) as relations. This notion is lifted naturally to priority graphs:
g1 C g0 if g1, go denote operators , oo ando; C o,.

If (N, <,v) is a priority graph and € N, we write i for the set{j € N | j < i} and
v[N'] for {v(j) | 7 € N'} forany N' C N. Thusv[li] = {v(j) | < i} is the set of
variables occurring below the node

THEOREMb.2
g1 C go iff for eachj € N,, thereisa € Ny:
e vy (i) = v2(j); and
o v1[}14] C va[lsj]-
COROLLARY 5.3
(Cf. Grosof [14], Theorem 3) IfV; = N, andv; = v, and<; C <5 theng; C gs.

COROLLARY 5.4
If g1 E g2, then’ljg[Ng] g V1 [Nl]

The theorem is easily extended to a simple and effective test for equivalence between prior-
ity graphs (recall that two graphs are said odguivalent if they denote the same operator):

COROLLARY 5.5

g1 = g2 |ﬁ
o for eachi € Ny, there is g € N, such that; (i) = v2(j) andwz[l,j] C v1[}44], and
e for eachj € N», thereis an € N; such thaw; (i) = v2(j) andvy [{,7] C v2[l,]].

ProOF Simply apply Theorem 5.2 to the refinememts_ g, andgs C g;. [ |

EXAMPLE 5.6
Some refinement and equivalence relationships between priority graphs, which are easily
checkable using the rules expressed by these theorems:

xr z xr
‘ C T Yy C ‘ C y
Yy Yy

N
/
/
N

L —n—8
N
Il
|_|
M
N— S — 8
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EXAMPLE 5.7
The priority graphy;

) z

was presented in example 2.8, and it was stated that it could not be written with just one
occurrence of the variable. Corollary 5.5 can be used to prove this. Supp@séas just

a single occurrence aof, say at nodé € N,, andg; = g». Then by the first part of 5.5,
v2[l,7] must be a subset dfy} and of{z}, hence (since, z are distinct variables) it must

be empty. By the second part, eithigr} C va[l,i] or {z} C wva[l,i], SOv2[l,i] cannot be
empty. Contradiction.

COROLLARY 5.8
If g1 = g2, thenm [Nl] = ’IJQ[NQ].

We are interested in simplifying priority graphs without changing the operator they denote.
To this end, we define the notion of a priority graph normal form; the normal form of a graph
is the ‘simplest’ graph which is equivalent to it. (Here ‘simplest’ means with a minimal
number of nodes, but surprisingly, with a maximal number of links.)

DEFINITION 5.9
Letg = (N, <,v). Anodei € N is critical if for all ¥ € N with v(i) = v(k), we have

v[Lk] & wl}d].

That is to say, a nodgis critical if the set of variables beneath it{i]) is minimal com-
pared with other nodéslabelled by the same variable. The importance of critical nodes can
be seen in Definition 2.5: thé& need only range over critical nodes, becausgésiihot critical
then the existence of an approprigtbeneath it is guaranteed by its existence for a critical
node.

DEFINITION 5.10
Thenormal formof a priority graphy = (N, <, v) is the grapi(N’, <’,v") where
N’ {(v(%), v[}i]) | ¢ critical in g}
(w(5), v[]) <’ (v(@), v[d]) v[L]U{v(5)} € v[l]
o' ((v(2), v[d4])) v().

(We will soon justify the term ‘normal form’ by giving rewrite rules for priority graphs.)

g

THEOREMS5.11
1. Any priority graph is equivalent to its normal form.

2. Two priority graphs are equivalent iff their normal form is the same.

COROLLARY 5.12
The normal form operator is idempotent.

We now give rewrite rules for transforming a finite graph into its normal form, up to renaming
of the nodes.

DEFINITION 5.13
The rewrite rules for priority graphs are
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(link) Link j belows: if this does not change the down-setiof

More formally:g 22 ¢’ if: there arei, j € N withi £ j, v[}5]U{v(j)} C v[}i]u{v(i)},

and<'is the transitive closure of U {(j,7)}.
(del) Delete a node if:
e it is not critical or there is an equivalent node, and
e deleting it does not change the down-setstbier nodes. Note that this last condition
will eventually be obtained by applitan of (link), so that only one copy of each
critical node will be kept.
More formally: g ==& ¢/ if: there are distinct, j € N with v[lj] € v[li] U {v(é)} and
v(i) = v(j) = x for somez, and for all;’ > i there exists"” < i’ with v(:"") = z, and
N'"= N —{i}, and<’ = <|n (the restriction ok to N'), andv' = v|n-.
EXAMPLE 5.14

y =Yz = y oz

z Y z Y z Yy
z x
z Y z Yy

THEOREMS5.15

By applying rules (link) and (del) repeatedly in any order until none applies, any finite priority
graph is brought into a form which is equal to its normal form, up to renaming of elements of
N.

COROLLARY 5.16

Any priority graph in which each variable occurs at most once is in normal form.

Of course, there are priority graphs with several occurrences of a variable which are in
normal form, such as the one corresponding to the teffg)||(z/z) (Example 5.7).

5.2 Preferential entailment and preferential equivalence

In the setting of preferential logics, the models of interest are the minimal models according
to the preference (sometimes callgeferred models

Min(R) = {m € M| Zn € M.nR<m}.

Let us define the relation gireferential entailmenbetween operators as inclusion of pre-
ferred models.
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DEFINITION 5.17

o1 preferentially entailso,, written o, | o2 iff for any arguments(R,).cy, we have
Min(o1 ((Rz)zev)) € Min(o2((R:)zev)). As for refinement, this notion naturally extends
to priority graphs.

Note that prefereial entailment f) is distinct from refinementX). Analogously to
refinement, however, we canatk preferential entailmentybmeans of a simple syntactic
characterization on graphs denoting the operators.

THEOREMS.18
g1 I~ g2 iff v2[ N3] C v1[N1] and for each nodgée N, eitherv[N,] C v;[},i], or thereis a
J € Ny such thaw(i) = v(j) andv[lj] C v[l].

COROLLARY 5.19
If g1 }‘V g2, then’l)z[Nz] g V1 [Nl]

DEFINITION 5.20
o1, 00 arepreferentially equivalenif o, |~ o2 andos |~ o;. Again, this extends naturally to
graphs.

Although preferential entailment and refinement are distinct, it turns out rather surprisingly
that preferential equivalence and equivalence are the same.

PROPOSITIONS.21
Two priority graphs are preferentially equivalent iff they are equivalent.

PROOF =-. Suppose without loss of generality that the graphs are in normal form. 1t is
impossible thab; [1,i] D v[N2] (= v[N1] by Corollary 5.19) becausevouldn’t be critical.

So we have the other case, which is just the abtrization of inclusion (Theorem 5.2) in
each direction, yieling equivalence«<. Obvious.

So the computation of the normal form can also be used for preferential equivalence. When
constants for given relations are introduced, this property may fail.

The results of this section are directly operational, and yield algorithms for deciding equal-
ity, refinement, preferential entailment, peedntial equivalence and computation of the nor-
mal form.

6 Composing priority graphs
6.1 Composition vs graphical insertion

Since an operatar maps some preferenceR, ).cv to a preference((R.).cv ), operators

can be composed with each other to give further operators. Therefore, priority operators can
be composed, but are their compositions also priority operators? In certain circumstances the
answer is yes; indeed, we can compose priority operators simply by manipulations on the

graphs that denote them.

DEFINITION 6.1

Letg = (N, <,v) having variabled” = v[N], and for each: € V letg, = (N, <z, )

be a priority graph. The graphical insertigh= g[(g.).cv] of the priority graphg,. in the

priority graphg is (N', <, v") where

.NI:{(17])|16N7]6N0(2)}'
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o (i1, 51) <' (iz,42) iff (i1 <i2) or (iy =iz andjy <y(;) Jj2),
b U((Zaj)) = Uy(i) (])

EXAMPLE 6.2
If g, g1, g> are respectively the priority graphs

T T2 Y
\ / u v
T

theng’ = g[g1, g=] is the priority graph

y

For well-founded priority operators, graphical insertion is the syntactical counterpart of
semantical composition of priority operators.

THEOREM6.3
Let g be a well-founded graph denoting operatavith variables). Let(g..).cv be a family
of well-founded graphs denoting operatdss ),y with variables(V,.).cyv. Letg' be the
graphical insertion ofg, )<y in g, and leto’ be the operator denoted b

Theno' is the composition 06 with (0, ).cv, i.€.

o ((Ry)yeU{vm \zeV}) = 0((0w((Ry)erm))zev)-

COROLLARY 6.4
Well-founded priority operators are closed under composition.

6.2 The binary priority operators
There are essentially only two binary priority operators; they are denoted by the graphs
T
and T Yy

y

Strictly speaking, there is also a third one, which is like the first one butméthdy swapped
around. All other binary priority graphs (i.graphs having possibly more than two nodes but
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precisely two variables) are equivalent to one of these three. Since the third one is essentially
the same as the first, we focus just on the first two.

The two binary priority operators are of great importance for the remainder of the paper.
We will write them respectively ag/y andz||y, and call/ ‘but’ and || ‘on the other hand'.
The reason for these names is the following. From the point of view of default reasoning, the
‘but’ operator combines two defaults by putting the second in a position of greater priority
than the first. Thusy/y means ‘apply the criteria andy, and where they conflict we apply
y’. This is like the natural language connective ‘but’. The operdibcombines two defaults
by putting them at incomparable priority. The expression ‘on the other hand’ does the same
job in natural language.

Applying the lexicographic rule, we can see that

PROPOSITIONG.5

1.2/y = (x Uy<) Ny, which is also equal tez N y) U y<.

2.z |ly=2xNy.
PrROOF Immediate from the definitions. i

The importance of these two operators is that any finitary priority operator can be written
in terms of these two, using graphical insertion, as we now explain.

The operatord, || apply to other operators in the standard compositional way'o,
and o]jo; are defined by(o1/02)((Rz)zev) = 01((Rg)zev)/02((Re)zev), and
(01]]02)((Rz)zev) = 01((Rz)zev)||o2((Rs)zev). According to Theorem 6.3, the opera-
tors / and|| can equivalently be applied at the level of priority graphs, in which case they
correspond respectively to the graphical operatiormetr sumanddisjoint union[6].

THEOREM6.6

Any finitary priority operator is denoted by a term built frofyl| and the variables that occur

in the priority graph for the operator.

EXAMPLE 6.7

The 12 priority graphs in Example 5.6 are respectively equivalent to the following terms:
zl|(z/y), zlly, x/y, y, (&/y/2)(x/2/y), =/ (yll2), (zlly) /2, (@/2)|I(y/2), (x/z/y)l|(x]2),
(@/2)ly, (zlly)/z, andz/y/z.

Notice how the/, || term can be obtained from the shape of the priority graph. When two
equivalent priority graphs are given, we obtained the term using the second one. Extracting
the term from the first graph in the first example, we obftaify/2)||(xz/z/y), which can be
shown to be equal to/(y||z).

EXAMPLE 6.8
We cannot graphically obtain a term from the ‘N’ shaped graph

T z

N

w Y

SN\

However, it is equivalent to
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and so it denotes the operatat/ (w||y))||(z/y)-

COROLLARY 6.9
Any finitary operator satisfying conditions IBUT is equivalent to a term built frar and
the variables.

ProoF Follows from Theorems 3.1 and 6.6. [ |

The notions of refinement, equivalence, preftial entailment and preferential equiva-
lence of the last section all extend naturally to terms.

EXAMPLE 6.10
(z|ly)/z = (xz/2)||(y/z); however(z/y)||(z/z) C z/(y||z) but not conversely.

EXAMPLE 6.11

zlyby, z/ybzlly, z/y/zbyll 2

We note in passing that, for any relati@(and whereF is the full relationM x M and(
the empty relation):

R/F = R
F/R = R R|F = F|R = R
R/ = 0 RO = QR = 0.
0/R = R<

7 Algebraic treatment

Now that we have terms for describing priority operators, we can study their algebraic prop-
erties. Consider a set of relations #&fiwhich is closed under the binary operatgrand||,
defined as before by
zly = (zNy)Uys
zlly = zNny.

We call such aralgebraa preferential algebra or PA. Preferential algebras are a special
case of algebras of binary relations, a survey on which can be foun@rnehl T22] and
Schein [29].

Terms in the language of PAs are made from variables and the binary opéidtots V'
is the set of variables occurring in a terimthenr denotes thé -ary priority operator which
evaluates the term after substituting its arguments in place of the variables. The following
theorem rephrases Theorend & algebraic terminology.

THEOREM7.1

For any finitaryV -ary priority operatow there is a termr of the language of preferential
algebras such that fong preferential algebral and relationg R,.).cv in A we have that
o((Rz)zev) = 7((Rz)zev).

As usual with relational algebras, we may identify certain equalities which hold between
terms, however their variables are substituted. For example, it was seen in Example 6.10 that
(lv)/z = @/w/=. | -

The following theorem gives a finite axiomatization of all the equations (equalities between
terms) true in preferential algebras.
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THEOREM7.2
An equation is true in all preferential algebras iff it is derivable from the following seven
axioms:

1. z||lz==2 (|| 'dempotent)

2. z||(yll2) = (=(ly)ll= (|| Associative)

3. zlly=yllz (| Commutative)

4. (z/z) =z (/ Idempotent)

5. z/(y/2) = (z/y)/z (/ Associative)

6. (zlly)/z = (z/2)|(y/2) (/ Distributes ovet])
7. (z/y)llz = =lly (Absorption)

Some subsets of these axioms are interesting on their own:

e Two terms yield the same priority graph by graphical insertion iff they can be proved
equal by the axioms 2, 3, 5.

e We can define théorest formof a term, as the term obtained by normalizing it using the
axiom 6 from left to right.

e Therules 1, 2, 3 form a complete axiomatization offireduct (a trivial class of algebras,
isomorphic to sets with intersection).

e In contrast, the rules 4, 5 do not axiomatize fheeduct: we have to add/y/z = y/z

(Example 7.3(3) below). This subclass is again rather trivial, since the free algebras are
isomorphic to strings of w@ables without repetition.

EXAMPLE 7.3
Some interesting derived equations.

1 @/ylly = ((/y)/y)ll(x/y) absorption
= (z/y)||(z/y) / associative, idempotent
= xz/y || idempotent

2. e/ (yllz) = (z/(yllx))l|(y||=) 1)
= ((=/Wllx)l2)ly || associative, commutative
= (ll2)ll=)lly absorption
= x|y || idempotent

3. zly/z= (z/y/=)|(y/x) (1) wherey = y/z
= (z/y/o)|(y/z/y/x) / idempotent
= ylzly/z (1) wherey = z/y/x
= y/x / idempotent

4. 2/ (=llyDlly = [/ llw)lI(=[[y)]lly (1) wherey = ||y
= [(z/(|ly)|(z|ly)] || associative, idempotent
= (2/(=lly)) 1)

5. y/((z/y)llz) = (y/((=/y)l|2)(z/y) (4)
= /((z/nl2)Il(z/y)lly )
= ((/v)l2)lyll(x/y) absorption
= (z/y)llz 1)
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6. z/((z/y)ll2) = =/y/((z/y)]?) (5)
= (z/y)llz ©)
7. yllzll(y/2) = yllzlly absorption
= yll» idempotence

These axioms are also complete for inclusion, siR¢eC R; iff (R1||R2) = Ro. Itis also
possible to construct a (uningsting) proof system for inclusion without resorting to equality

Preferential algebras have turned out to be an interesting case of relational algebras. We
gave in theorem 7.2 a finite set of axioms from which all equations true of PAs may be proved.
There are many other issues in relational algebra which can be discussed. For example, is
PA axiomatizable in the following stronger sense: is there a finite set of equations which are
true of all andonly all algebras in PA? If so, PA is\ariety. The answer is no; this is proved
in the appendix. However, PA is a quasi-variety (also proved in the appendix), which means
that it can be axiomatized (in this strong sense) by conditional equations.

The following theorem gives a derivation system for preferential entailments true in pref-
erential algebras.

THEOREM7.4
A preferential entailment |~ o holds in all preferential algebras iff it is derivable from the
equality axioms 1-7, together with the following:

8. Ifzpythenz/zpy (C1)
9. Ify/z==zxandz ||y =ythenz |~y (S1)

8 Conclusion

The paper develops the theory of generalized prioritization begun by Grosof [14]. It in-
troduces priority operators, an analog of circumscription policies applicable in preferential
logics. Furthermore:

o It shows that priority operators are canonical with respect to a generalization of Arrow’s
conditions;

e It gives criteria for deciding: refinement, equality and preferential entailment of priority
operators;

e It shows that the two binary operators can express any priority operator, and hence any
operator satisfying generalized Arrow’s conditions;

e It gives a complete axiomatization of the operators and their relationships.

Topics for further study include investigating the supplementary laws that can be estab-
lished for specific preferential logics, and for their combinations. We would also like to relax
the requirement that operators be finitary, andigta logic for expressing infinitary operators.
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Appendix
A Mathematical details
A.1 Introduction

This Appendix covers many mathematical details (inalgdproofs of theorems stated in the text). lts structure
mirrors the structure of the main part of the paper. Nefirdgtions and lemmas are given new numbers, but theorems
which are stated in the text and proved here retain their old numbers.

A.2 Priority operators
Letg = (N, <,v) be a priority graph denoting the operator

THEOREM2.11

Suppos€ N, <) is well-founded, and leR = o((Rz)zev ). Then

1. mRniff Vi € N. (Vj < i. me(j)n) impliesm R, ;yn.

2. mRniff Vi € N. (mR,;yn or (35 < i. ij(j)n andVj' < j. mRZ,\n)).

3. mR<n iff mRn and3i € N. ij(i)

n.

4. mR=niff Vi € N. me(i)n.

PROOF 1. (=) Suppose is such that'j < i, mRZ ..n. We require to show that R, ;yn. Suppose not; then

v(5)
35 < iij(j)n, a contradiction.
(<) Suppose is such thamﬁv(i>n. We require to findj < ¢ such thabnRj(j)n. By hypothesis3ji < ¢
mR,(j,yn of nR,(; ym. If mR,(; yn, thennR,;,ym SOme(h)n, so we setj = j;. Otherwise, again
using the hypothesisljz < j1 MR, (j,)n OF nR,(;,ym. Again, we setj = j, or we findjz with the same
property. This procedure must terminate, fdnetvise we have an infinite descending sequence j2 > -- -,
contradicting thavell-foundedness ofN, <).

2. (&) immediate. £-) Similarly to part 1, findj minimal with me(j)n.

3. (=) Supposen o((Rz)zey)< n. Thenm o((Rz)zcv) n is immediate. Alsomn o (Ry)zev)< n implies
n o((Rz)zev) m, s03i. nR,;ym. Sincem o((Rz)zev) n, eithermR,;yn, in which casenR<n as

required; odj < i. ij(j)n, also proving the result.
(<) Let i be minimal in the sefi | me(i)n}. ThennR,;ym andVj < i. nﬁf@m, son o((Rz)wev) m
4. Similar ideas.
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A.3 Canonicity of the lexicographic rule

Our aim in this section is to prove Theorem 3.2. This will involve inventing a new view of priority operators in terms
of what we callvotes We do this in a sequence of lemmas. The first simaws that an operator that is independent,
unanimous, and based on preferencassfiort: IBU) is determined by its responses to all possible relations on a
fixed two-point domain.

LEMMA A1
Let Mo = {m,n} C M, m # n, ando1, 02 be two IBU operators. If for all families of relatior{sRs),cv we
haveoi ((Rz)zev)l{m,n} = 02((Rz)zev)|{m.n} then, forall(Rz)sev, 01((Re)zev) = 02((Rz)zev)-

PROOF. Take anyc,d € M. We showe 01 ((Rz)zev) diff ¢ 02((Rz)zev) d.

o If ¢ = d, we haveeR=d or cR¥ dfor all z. Then by U, we haveitherc o1 ((Rz)gev )* dandc oo ((Re)eey )
d, or c 01((Rz)zev)= dande o2((Re)zcv)= d, depending on whetherR¥ d for somez or not. In any
casep1, 02 agree at, d.

o If ¢ # d: define the family(R,,).cv in terms of(R:)zcv as follows: R, = R, except at{m,n), where
mRin < cRyd. Then

co1((Rz)zev)l{c,ayd co1((Ral{c,a))zev) d by |
mol((R,a:‘{m,n})z€V) n byB

m 02((Ry|{m,n})zev) n by hypothesis

(
(

trree

c02((Rzlic,ay)zev)d  byB
co2((Re)zev)lfc,ay d by I.

DEFINITION A.2
A voteis an element ob = {#, <,>,=}.

DEFINITIONA.3
A vector of| V| votes, one per variable 6f, is called arentry.

Lemma A.1 tells us that & -ary IBU operatoro determines a unique function!V! — v, and conversely. The
function takes as argument the vote edeh gives on the two-point domaif/, (i.e. an entry), and returns as
result the vote that((R:).cv ) gives onM». Such functions can be represented finitely byparator table For
instance, the operator ‘but’ defined in Section 6.2 is described by Table 4:

TABLE 4. Table of ‘but’ (/)

R,
R,
R |

FH|FH H*
NN F=
VIV 3k
F| 1 F
F|FHF A
A VAYAN
VIV A
ATHEA
FF*|F* V
NNV
VIV V
ViV
F=|F=
NN N
VIVl
Il

Each column above the line is an entry, and the element in the same column below the line is the corresponding
result. For an entry and votev, e? is the subset of variables that gives veteln particular, Thevinnerse”™ of an
entrye is the subset oF that gives the same vote as the resylihe abstainerse= is the subset oF’ that abstains,
i.e., votes=; the rest is called thepposition which is divided in two subgroups, since four votes are possible. A
vote isdecidedif itis < or >.

DEFINITIONA.4
Theconverseof a vote is defined by the table:
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LEMMA A.5
If an IBU operator gives a resuttfor entrye = (e;);cv then it givesr—! for entrye 1.

PROOF. By B. |
Note that any table with this property will give us an IB operator.

COROLLARY A.6
There are24” —3=(2" ~1)=1 ,_ary IBU operators.

PROOF The possible tables ars™ . Symmetry (Lemma A.5) reduces this 28", which is thus the number of

IB operators. The cases eliminated by unanimity, avergby choosing a non-empty unanimous subset (there are
2™ — 1), choosing its vote (three possibilities: either > or #), setting the rest te=. Plus one for the case where
all votes are= and the result is.

We will illustrate proofs of the next few lemmas in tabular form, which should be understood as a schematic
excerpt from an operator table such as Table 4. The leftmost column indicates subsets of the Vdrigbseh

column will represent a possible combination of votes éatry) and the result computed by the operator. New

columns can be deduced from preceding columns, according to the following rules of inference, derived from the

respective conditions on the operators.

S. Symmetry: from an entry of the table with a given result, we deduce the converse entry with the converse result
(Lemma A.5). In our tabular proofs, we will omit the enbn which it is applied whert bperates on the previous
column of the proof table.

U. Unanimity: any unanimous column must have the result of the unanimous subset (unless it is empty). This rule
operates on the current column.

T. Transitivity: in Table 5, we compute the admissible coniigmss of votes for transitivity. The vertical dimension

TABLE 5. Table of compatible compositions

# < > =
v {<#) {>#) {#
{<#} <) v {<}
{>#y Vv >} {>}
{#} {<} >} {=}

v A | °

indicates the relation betweanandy, the horizontal dimension the relation betweeandz. The corresponding

cell shows the implied relation betweerandz. For instance, the first cell states thatiR#y andy R# z, then

no restriction onc Rz can be deduced. The cell diagonally below states thaRif y andy R< z, thenz R< z. If

two columns are known, and we build a third entry which is compatible for transitivity with these two columns,

then the result of this entry must also be compatibletfansitivity with the results of the two known columns.

For otherwise we would have built a counterexample to preservation of transitivity, by using a damair}

where preferences betwegn, y) are given by the first column, betweém, z) by the second, and betweén, z)

by the third. For instance, if we compose two entries with resaltgt respectively, we see in the table that the

result of the composition must be or # for any entry which is compatible with the first two. dfis the only

variable and the vote a®, was< in the first entry and> in the second entry, then any value®f must yield<

or #. During a proof we will usually try to constrain the result while letting the entry vary as widely as possible

to get stronger results. By default, T uses the two previous columns of the proof table.
These table excerpts will be schematic: usually, thegiedion on the left will not be single variables, but sets of
variables, indicating that the line has to be replicated as many times as they are variables in the set (sometimes 0).
Also, the content of the cell can be a set. We will sometimes omit the set braces, for compactness. In the result, the
comma (e.g. i<, #) thus means ‘or’. We convene thet is the name of the first entry (the second column), and
e; is the name of théth entry (the; + 1th column). The justification will be indicated below each entry. It will be
one of the basic rules (S,U,T) or the number of a lemmather examples are provided in the proofs below.

For the rest of this section, we will omit the reference to the (fixed) IBUT operator. For instance, whenever we
speak of ‘the result of an entry’, it means the resulapplying the currently considered IBUT operator.
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LEMMA A.7
The result ofe is = iff all arguments are=.

PrROOEF ‘If": by U.

‘Only if:

el ex €3 eq
e= | = = = =
e< < > < <
e | > < < <
et | # # < <
r = = = <
by S Tx Ux

Read this table as follows. Suppose we supply a certain entryhich of course is divided ieg, <, >, # votes.
The result (by hypothesis) is. Construct the converse enigy = el’l; by S, the result is alse=. Now consider
the argument votess of the 4th column. Since they are compatible for transitivity with ez, the resultrs
should also be compatible (justification: T). But that means it mustb&low consider the argument votes of
the last columney; by U, the result should be. The last two columns contradict, as indicated>byunless the
subsetg<, e>, e# of V are all empty, so that U cannot be appliedean

Hence the only way of making the resaitis by havinge<, e>, e# empty, i.e. all votes foe.

The sequence of lemmas that followsyes that IBUT operators have many o firoperties of priority operators.
For example, the next lemma says that if a definite resalbiained from a given entry, then the same result will be
obtaineda fortiori if some abstainers join the winners, whatever the opposition does.

LEMMA A.8
If an entrye yields <, then any entry with some argumentset, e> replaced by any vote, and/or someeif
replaced by, will also yield <.

PROOF. Let C be the names of the votes changing frento <, and letv, w be any tuple of votes.

<

e < < < <
e> > < w v
et # < # w
eEncC | = < < <
eENC | = = = =
r < < < <
by U T T(ei,es)
|
LEMMA A.9
If the result ofe is <, then some argument must ke
PROOF. Assumee< empty. Then:
e | > = =
et | # = =
e= | = = =
r < < =
by A8x Ux
|

The next lemma is very similar to Lemma A.8: It says that if an incomparability result is obtained from a given
entry, then the same result will be obtaireetbrtiori if some abstainers or opposition join the winners. But here, the
opposition could change the result by making a coalition.

LEMMA A.10
If an entry yields#, then the entry where some elements have been replacgdatso yields#.
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PROOF. Assume not: it cannot yieleE by Lemma A.7, so it yields< (or symmetrically>) as shown ire>. Then

e | = = =
= # =
e< | < < <
< # <
e” | > > >
> # >
e# | # # O #
r # < <
by | x A.8%

LEMMA A.11
If some elements are replaced by the result (in other words, if the winners are extended), then the result remains the
same.

PROOF If the result is:

e #£, the proof follows by Lemma A.10;

e <, >:bylLemmaA.s;

e =: by LemmaA.7¢= = V and thus cannot be extended.

DEFINITIONA.12
We say an operatqropagatesa property of relations, if its result bahe property as soon as one of its arguments
relation has it.

An operatompreserves property of relations, if its result has theoperty when all its argument relations have it.

Clearly, propagation implies preservation unlésgs empty.

COROLLARY A.13
Any IBU operator preserves reflexivityrgpagates irreflexivity; preservesmsynetry. Any IBUT operator propagates
antisymmetry.

PROOF. By U and Lemma A.7. [ |

(These facts are recalled in Theorem 4. 1tf@r narrower class of priority operators.)

DEFINITION A.14
LetS, X C V suchthatS is disjoint fromX . S showsX iff the entry where all arguments i# are=, all arguments
in X are>, all other ones are, yields either> or #. This result is called thehow-result

LEMMA A.15
If S C W, W disjoint from X, S showsX, thenW showsX.

PROOF Suppose that’ does not showX, as indicated ire; below. LetH = V ~~ W ~ X be the rest of the
variables.

X > >
S = =
WS | = <
H < <
r < <
by A8
The second entry contradicts the hypothesis thahowsX . |

LEMMA A.16
If X CY,Y disjoint fromS, S showsX, thenS showsY'.
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PROOF Suppose tha$ does not show’, asine;. Let H = V . Y ~. S be the rest of the variables.

X > >
Y~NX | > <
S = =
H < <
< <
by A.8
Again, es contradicts the hypothesis théitshowsX . |
LEMMA A.17
If A#0,V . AshowsA.
PROOF. By U. |

LEMMA A.18
If X is finite and disjoint fromA, A showsX iff for somez; € X, A shows{z;}.

PrRoOOF For the implication: We treat the case &f= {x1,z2,x3} for notational convenience, but the induction
will work for any finite set. Letd = V . A . X. Assume (H1)A showsX and for allz; € X, (H2.i) A doesn't
show{z;}.

A = = = = = =
T < > < > < <
T2 > < < > < <
T3 > > > < < <
H > > > > > >
> > > > > < #
by | H2.1 H22 T H23 Tx HI1x
The other direction is just Lemma A.16. [ |

LEMMA A.19
If A shows disjointX, Y, then both show-results agg.

PROOF Since,a priori, there two possibilities for both show-results, we have to exclude three cases, but two are

symmetric. LetH =V . X \ Y \ A be the rest.

1. Both show-results are.
A
X
Y
H

TAV VA
SAV AV
SV
§|V VAR

by
2. One show-result (sa)) is <, the other is#.
A

X
Y

VoI e

>, =
U x

S o

g |=
T AV VA
D3|V A VI
X

The lemmas above demonstrate that ‘shows’ is completely determined by the sentences of thesfaws{x }’
whereS is minimal. We will now prove that these sentences lsarencoded in a priority graph, and finally, that this
graph can reconstruct the operator, which closes thee@mtl proves the equivalence of all these representations
(for V finite).
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DEFINITIONA.20
Thepriority graph of an IBUT operatois defined by:
e N = {(z,S) | Sisaminimal subset of showing{z}}.
o (21,51) < (x2,52) iff ({1} U S1) C Sa.
e v((z,S)) ==x.
Note that the node ordering is irreflexive and transitive and thus acyclic.
LEMMA A.21
If (z,S) € N, thenforanyz € S, S ~\ {2z} shows{z}.

PROOF (H1)S shows{z}. SinceS is a minimal showing set, (HZ \ {z} does not showWz}. Now assume (H3)
S N\ {z} shows{z} is false:

T < < > <
z = > < =
S~ {z} = = = =
Rest > > > >
<, # > > >
Hlx H2 H3 Tx

COROLLARY A.22
If V is finite, then for any(z, S) € N, S = {2z | 35 (2, S:) < (z,5)}.

ProOOF. Clearly{z | (z,S.) < (z,S)} C S by the definition of the order. Conversely, take= S. By Lemma
A.21, S ~ {z} showsz. SinceS is finite, it is Zorn, and so there is®. C S minimal such thafS, showsz, and
(2,52) < (x,S). |
LEMMA A.23

AssumeV is finite. A shows{z} iff z is minimalinV \ A,i.e.3i € N (v(i) = A A’ v(@') € AN <3).

PROOF By contraposition, assumé doesn’t show{z}. SinceV ~ {z} shows{z} by Lemma A.17, there must
be a minimalM such thatM D A, M shows{z}. SinceM # A, we can pick some € M ~ A. We have
(z,M) € N,and(z,S;) € N for someS. By Corollary A.22,(z,S.) < (x, M), contradicting the minimality
ofzinV < A.

Conversely, ifz is minimal, all nodes below = (z, S) are inA. By Lemma A.22, they fornf, so.S shows
{z},S C A,z ¢ A. By Lemma A.16,4 shows{z}.
THEOREM3.2
A finitary operator satisfies conditions IBUT iff it is a priority operator.

PROOFR We show that the priority operator denoted by the priority graph defined for it in Definition A.20, is identical
to the given operator. By Lemma A.1, it is sufficient to shihis for relations on a universe of two elements (i.e.
votes), that is, for any entry. The priority graph is well-founded, so that we can use Theorem 2.11. Look at the
non-abstainersd = {z € V | e, # =} and take its minimals for priorith/ = Min<(A) = {z € A | Ji €
N.v(i) =z AP’ € N.7/ < i,v(i’) € A}. We note that the priority result (the result given by the priority graph)
iS M, car €vs by Theorem 2.11, and that’ = {z|A shows{z}}, by Lemma A.23. Consider the possible priority
results:
o The priority result is=: iff all arguments are= by Theorem 2.11.4; iff the IBUT result is by Lemma A.7.
e The priority result is<: iff M # () and all arguments id/ are < by Theorem 2.11(3)A showsM by Lemma
A.16. By Lemma A.8, the IBUT result is alsg.
e The priority result is>: symmetrically.
e The priority result is#: iff one of the two following cases arises, by theorem 2.11:
— some argument in M is #. Ad absurdumassume that the result isg. It can’'t be= either, by Lemma A.7.
Say (H) itis>. (< is solved symmetrically.) then by Lemma A.8,doesn’t show{z}, contradicting Lemma
A.23. Tabularly:

A =€ = =
e< < >
e> > >
T # <
et {z} | # >
> >
by H A8
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—some argument € M is <, anothery € M is >. Then letX = e<,Y = e in Lemma A.19. By
Lemma A.10, the IBUT result igt. Tabularly:

A=e= = =
X =e< < <
Y =e> > >
R =e# > #

# #
by A19 A.10

A.4 Propagation of properties via priority operators
We prove the theorems implied by Table 3.

THEOREM4.1
Items 1-8 of Table 3 hold; i.e. the properties reflexivity, irreflexivity, symmetry, antisymmetry, transitivity, totality,
empty and full are propagated by the lexicqggra combination in the manner shown in the table.

PROOF Letg = (N, <,v) be a priority graph denoting the operatgrand letV = v[N].

1. Suppose for eache N, R, ;) is reflexive. We want to show tha{(R:).cv ) is reflexive. Take anyn € M.
Sincevi € N. mR,,;ym, it follows by Definition 2.5 thain o((Rz)zev) m.

2.m o((Rz)zev) m iff Vi € N. mR,;ym by Definition 2.5, sinceij(j)m is always false. Bu¥i €
N. mR,;ym is false if there there is an irreflexive preference.

3.m o((Rz)zev) n implies Yi. mR,;yn since eachR, ;) is symmetric. Thereforefi. nR,;ym, so
n o((Rz)zev) m.

4. Leti be such that?, ;) is symmetric and there is no infinite-chain below it in the priority graph. Assume
m o((Rz)zev) n andn o((Re)zev) m andm # n. We will derive a contradiction. IR, ;) nR,;ym
then by symmetry of2,, ;) we havem = n, a contradiction. Suppose ithout loss of generality) thah R, ;yn.
Then there’s somg < i such thaij(j)n. ThereforenR,(jym, so there is somk < j such thalnRj(k)m.
Therefore,mﬁv(k)n, and by continuing in this way an infinite chain of nodes belawproduced—a contradic-
tion.

5. Supposeni o((Rz)zev) m2 o((Rz)zev) ms; we will showm; o((Rz)zev) ms. Leti € N; we show
m1 R, (;ym3 OF my Rj(j)mg for somej < i.

Supposeni R, ;ymz. If maR,;yms thenmi R, ;yms. Otherwise,mzﬁv(i)mg, so leti’ < ¢ be such that
mzRf(i,)mg, and let;’ be minimal with this property, that is, we hawe; Ry (irryms for i'" < 4'; here we make
use of the fact that is well-founded. Ifmy R, (;/ym2, then letj < i’ be such thatanj(].)mz. Thenj < i
andm Rj(j)mg follows from my Rj(j)mz andma R, (jyms. If miR,;ymz, letj = 4. Thenj < ¢, and
my Rj(j)mg follows fromm R, (;ym2 andms Rj(j)mg.

On the other hand, suppose; R, ;ym2 and leti’ < ¢ be minimal such thamle(i,)m2 (so again we have

m1 R, nyms for all i/ < i'). Again, consider separately the two casesR,(;ym3 and MQEU(i/)mg.

If m2R,ryms, setj = i'; thenj < i, andmlRf(j)mg follows from mlRf(]-)mz andma R, (;yms.
Otherwise,mz R,,(;ym3 so letj < i’ be such thamsz(].)mg; thenj < i, andm; Rj(j)mg follows from
mle(j)mz andmsz(].)mg.

6. Supposer o((Rz)zcv) m. We show thatm o((Rz)zecv) n. Sincen o((Rz)zev) m, there isi such that
nRy;ym andvj < i. nR,;ym. Butsince these are total orders, this impbinRj(i)n andvyj < i. mRy;yn.
But < is also total, so this proves that o((Rz)zev ) n.

7. Leti be the minimal node such thd, ;) is empty. Supposer o((Rz)zev) n. Then eithermR,;)n, or

37 < i---, both alternatives coradicting our hypothesis.
8. Letm,n € M. Since eaclR, ;) is full, m R, ;yn. Thus, by definition 2.5n o((Rz )zev) n.
9,10. The last two cases are treated separately below due to their length. |
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LEMMA A.24

Item 9 of Table 3 holds; i.e. itV is finite, and eachR, ;) is transitive and well-founded, thes((Rz)zev) is
well-founded.

PROOF. Suppose not, i.e. suppose-ms  o((Rz)eev)S ma2 o((Rz)wev)S m1is ano((Ry)eev)<-
sequence. Each, 11 o((Rz)zev)< ma gives us an, (by Theorem 2.11(3)) such thﬂtn+1Rv<(in>mn- Let
Ni ={i € N | {n|i =i} isinfinite}. SinceN is finite, Ny # 0. Let No C N; be the<-minimal points
of Ni; alsoNy # (0. Leti € Na,ng be the lastw wherei,, ¢ N1. We havevn. > noMmn+1 Ry ;ymn and for
infinitely manyn, m, 41 Rj@mn. SinceR, ;) is transitive, it is easy to pick a sequence showing Bat;) is not
well-founded, contradiing the hypothesis. |

THEOREM4.2

Well-foundedness angZorn are related as follows. Lét be a transitive relation oi/. R is well-founded iff (for
all P C M R|pis|Zorn).

PROOF. (=-.) Let P C M, and letC be anR chain inP. SinceC' C M and R is well-founded,C has a minimal
element, say. We now show that is a lower bound folC. Letm € C. We must show that Rm. SinceC'is a
chain, eithern Rc or cRm. If mRc thencRm. But also, ifm Re, thencRm, otherwise we would contradiets
minimality.

(«=.) Suppose not; leP be an infinite descending sequence. AR is transitive, it is anR| p-chain, but has no
R|p-lower bound, s@?|p is not}Zorn. |

Theorem A.30 requires several lemmas. Fix a finite gdph<, v) denoting operatos. Let us writeR; instead
of R, (;y and R instead ofo(( Rz )zcv ), in order to keep the notation lighter.

DEFINITION A.25 L
Letm,n € M. Them, n-frontier, written fr(m, n), is the set ok -minimal elements of the s¢i € N | mR:n}.
Note that if{i € N | mR=n} = 0 then fi(m,n) = 0.
LEMMA A.26
SupposenRn. Theni € fr(m,n) iff mRSn andVj < i. mR=n.
PROOF. (If) Immediate. (Only if) LetmRn andi € fr(m,n). (1) We provemR;n; for if not, by definition,
35 < i. ij<n, i.e.mR5n, contradictings's minimality. (2) Sincei € fr(m, n), mR7n. ThusmR;n.
Now supposg < . Sincei is minimal in{i € N' | mR;n}, we havemRZ n. |

DEFINITION A.27
Let K C N. WewritemmRgn if Vj € K. mR;jn. We also write} K for {i € N | 3j € K. i < j}.

Now, and for the remainder of this subsection, supp®sés transitive for eaci € N and N is finite.

LEMMA A.28

Let P C M be aR-chain with no minimal element. Then there exisfsC N anda € P such that

1.Vj € K. Vi € N. Vm,n € P. (nRmRa andi < j) implies nR;m — thatis,{n € P | nRa} forms a
Ry i -chain.

2.Vj € K.Ym € P. mRa implies3p € P. (pR<m andpR].< m) — that is, the same set also form&a--chain
with no minimal element.

3.Vi € N.Vm,n € P.nRmRa implies(nR;m or3j5 € K. j < 7).

PROOF. The idea of the proof is the following. First, we obtain a 88t C N which contains those which
participate in frontiers all the way down the chdi Then find an element of P below whichall the frontiers
are inN'. K is defined as the minimal elements&f. Then it is possible to proveroperty 1. Property 2 follows
because we have stipulated ti”ahave no minimal element; that is, for eache P there is an’ € P with n’ R<n.
Property 3 follows becausk is the set of minimal elements of’.
Let N’ ={ie N |Vm € P.3n,p € P.pR<nRm andi € fr(n,p)}.
o If N’ = N then leta be an arbitrary element df.
¢ Otherwise, for eacth € N — N’ letm; € P be such tha¥n,p € P, if pR<nRm; theni & fr(n,p), and let
a = ming{m,; | « € N — N'}. That eachn; can be found follows from the definition df’, and that their
minimum can be found is guaranteed by the facts tha a chain andV is finite.
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Now we show thatV’ is non-empty. Letn,n € P be such thak R< m Ra. The fact tha” has no minimal element

guarantees that these can be found. SinB& m, fr(m, n) # §, and sincen, n Ra, we have ftm,n) C N’.

1. Letj € K,i € N andm,n € P be suchthat < j andnRmRa. If i € fr(m,n) thennR<m (Lemma A.26);
otherwise, ifi € fr(m,n) andnR;m then3j’ < i. nRj<, m, contradicting the minimality of in K.

2. Letj € K andm € P with mRa. Sincej € N', we can pickn,p € P with pR<nRm andj € fr(n,p). By
part 1,pR;nR;m; and sincej € fr(n, p) we havepRj<n. By transitivity,prm.

3. If nR;m then3j’ € fr(m,n) C N’. j' < i (Theorem 2.11(2)), and sind€ consists of the minimal elements
of N’ (and, sinceN is finite, < is well-founded),3j € K. j < j'.
|

Now we show, subject to a certain condition, that it is possible to find a lower bound foRahain. The
condition says that lower bounds can be found fbelisections (i.e. conjunctions) of ti&g relations.

LEMMA A.29
Suppose for everf C N, every R -chain has a lower bound. Then eveRychain has a lower bound.

PROOF Let P be aR-chain. If P has a minimal element, then that serves as its lower bound. Suppose, then, that
P has no minimal element. L&t C N anda € P be as defined in Lemma A.28. L&t = KU {j' € N |
Vj € K. j £ j'}. We now show that the s¢im € P | mRa} forms aRy; chain. Without loss of generality,
letm,n € P be such thah RmRa, andi € N andj’ € U be such thai < j’. We need to show thatR;m. If
j' € K thennR;m by Lemma A.28(1). Otherwis&/j € K. j £ j' (definition of U). Therefore;j £ i. Suppose
nR;m. Then by Lemma A.28(35; € K. j < 4, a contradiction. Sa R;m.

Now letb be aR;; lower bound for{m € P | mRa}. We show that it is also & lower bound for that set,
and hence foP. Letm € P with mRa; we show thabRm, using the lexicographic rule.

First note that (iy € U impliesbR;m (by definition ofb). Also, (ii) j € K implieSij< b. To see this, take
n such thatnRj<m by Lemma A.28(2); but thebR;n, soij< m.

Now leti € N. We show that eithebR;m or 35 < i. ij<m. Ifi € U,bR;mby (i). If 1 ¢l U, theni ¢ U.

By definition of U, 3j € K. j < i; by (i), bR m. |

Hence we have:

LEMMA A.30
Item 10 of Table 3 holds; i.e. iV is finite, and eacl®, ;) is transitive and for eack’ C N the relation); ¢ r Ry (i)
is |Zorn, thenR is | Zorn.

A.5 Proof rules for priority graphs

THEOREMS5.2
g1 C g2 iff foreachj € N, thereis & € Ni:
. Ul(i) = Uz(j); and

o v1[}1i] Cvallag]

PROOF Leto;, 02 be the operators denoted by, g2.
= Suppose not, i.e. suppose there’sjan N> s.t. for everyi in Ny with v1(2) = v2(j) = zthereisak < ¢

in Ny with v(k) =y s.t.y € v[lj].

e Either there is no suct then let us seR, = F forall z € V exceptz, andR. = 0. S001((Rz)zev) =
F (sincez doesn't occur in it), ands((Rz)zev) = 0 (sincez does occur in it): but clearlyy" Z 0, so
contradiction.

e Or, if somes exists, eachi might give us a differeny. Let R, = 0; for each of thosess, letR, = R for some
relation R s.t. R< # () (such a relation exists sinde contains two elements); and B, = F, the full relation,
for every other variable.

Theno: ((Rz)zev ) is just the relation?<. That is because, graphically, it has a collectiorFsf (s andRs (the
last two occurring at least once), but there isfabelow each); so we just use Definition 2.5. On the other hand,
in the graph fow ((Rz ). ey ) we have arf) with only F' occurring below it, and by Definition 2.5 the resulflis
Therefore o2 (( Rz )zev )= 0, so the inclusion fails; contradiction.
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<: Supposen 01((Rz)zev) n. We showm o02((Rz)zcv) n. Suppose for some nodein N> we have
mR,,yn. By the hypothesis3i € Ni. mR,, ;n, and sincem o1((Rz)zcv) n, there is ak <; i S.t.
ijl(k)n. But v1[{,i] C va[lyj], O there is &' € N» with va(k') = v1(k) and thereforemR

Thereforemm o2((Re)zev) n

(k)"

Normal forms

In the main text, a canonical form of priority graphs wadided. An important property of this definition is that the
variables below a critical node in a graph are the santb@se below the corresponding node in the normal form.
This lemma will be used in the proof of the theorem that follows.

LEMMA A.31
Letg’ = (N',<’,v") be the normal form of = (N, <,v). If i € N is critical, themv[}i] = v'[}/ (v(3), v[{4])]-

PROOF. Suppose that € v[]i]. Then there’s a node € N with k¥ < ¢ andv(k) = z. k need not be critical,
but we know that there is 4 € N critical with v[]j] C v[lk], andv(j) = v(k). Thereforeu(j) € v[li] and
v[lg] C o], sox € {v(5) | v[g] U {v(5)} C v[lal} =o' [/ (v(@), v[{a])].

Conversely, ifz € v'[|/(v(i), v[l4])] then there’s g € N with v(j) = z andv[lj] U {v(4)} C v[li], so
x € v[ld].

THEOREM5.11
1. Any priority graph is equivalent to its normal form.
2. Two priority graphs are equivalent iff their normal form is the same.

PROOF 1. We apply Corollary 5.5. Suppogé = (N’, <’,v’) is the normal form ofy = (N, <,v), as given in

Definition 5.10.

g C ¢’ If (v(i),v[}4]) is a node inN' then we pick the critical nodeéin N. We must show (i) that' (v(z),

v[4]) = v(i), which is immediate, and (ii) that[|i] C v'[{'(v(4), v[{4])], which follows from the Lemma
A.31.

g’ C g: If i is a node inN, we must find a node itN’ with the relevant properties. First, ifis not critical in
N, then pick a critical nodé€ such that(i) = v(i’) andv[li'] C v[]4]. Now take(v(:'), v[]4']) € N'. We
must show (i) that (i) = v'(v(3'), v[{4']), which is immediate, and (i) that [}’ (v(i'), v[{i'])] C v[}4]. For
that, it is sufficient to show that'[|’ (v(i'), v[{i'])] C v[{4’], which follows from the Lemma A.31.

2. = Let g1, 92 be two equivalent graphg!, g5 their normal forms. By 1., the normal forms are equivalent,
so by Corollary 5.5, we have two functions, sgy: N — Nj andg : Nj — Nj, that respect labels
(v(é) = v(f(¢))) and decrease down-sews[{f(i)] C v[li]). Letk = g¢(f(¢)); v[{k] C v[li]. But
v[lk] C w[li] is impossible, for theri would not be critical. Sw[lk] = v[li]. Thusv[]f(z)] = v[ld];
symmetricallyv[lg(j)] = v[lj]. Using the definition of normal form, we g¢(i) = ¢ andg(j) = j. Thus
g =95

<« from 1.

LEMMA A.32

1 1Ifg link g’ by linking j below some;, thenv[}i] C v'[{i] C v[li] U {v(3)}; and, for all for allk € N with

k # i, v[lk] = v'[JK].

2.1f g 22 ¢ then, for allk € N, v[Jk] = o' [{/K].

PROOF 1. In the case of, v'[{/i] = v[}4] U v[{4] U {v(45)} C v[{i] U {v(i)}. Inthe case of otheks, the only
non-trivial case is wherk > 7. But then, the fact that[|i] U {v(¢)} hasn't changed guarantees thafk] hasn't
either.

2. The only non-trivialks are those above the deletedve must show that(i) € [ } for those. But that is what
is guaranteed by the condition that for &ll> ¢ there exists’" < i’ with v(3")

|
THEOREM5.15
By applying rules (link) and (del) repeatedly in any ordetil none applies, any finite farity graph is brought into
a form which is equal to its normal form, up to renaming of element¥ of
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PROOF First we show that (link) and (del) are sound. This can be done using Corollary 5.5. Syppugies to

!

g
by (link). Corollary 5.5 requires us to find a correspondendihfor each node iV, and vice versa. Lemma A.32
tells us that usually’[}'s] = w[}i] for all i € N, and hence the correspondent of a node can be the node
itself. The only exception occurs in the case that in the linl§ delow ¢, we hadv(i) = wv(j). In that case,
v'[}/4] = v[{i] U v(i), and the correspondent £ N should be chosen to hec N'.
by (del). Again, we must show how to pick the correspondents for Corollary 5.5. For each nddetimer than the
deleted node, pick the same nodeNi. For the deleted node, pick the nodelH referred to ag in the (del)
rule. For each node iV’ pick the same node itV. Lemma A.32 ensures that 8ecorrespondents have the right
properties.
To show that the order of application does not matter, we must also show that the term-rewriting system consisting
of the set ofV-ary finite priority graphs with the rules (link) and (del)terminatingandconfluent8].
Terminating. Since the graphs are finite, and (link) adds edge and (del) removes one node, the number of
rewrites is bounded by? + n, wheren = |N|.
Confluent.We show that a rule applies unlegss a renaming of the normal form, so that we cannot terminate
elsewhere. This implies confluence. lgebe distinct from its normal form.
e Either a node of ¢ is not critical: (for instance, the nodeat mid-height in Example 5.14.1) then by Definition
5.9 of critical, there is & that either can be linked beloiMin Example 5.14.1, the low), or is already below,
and theri can be deleted.

e Or, severat, j are mapped to the same node of the normal form: (for instance, the twomngdEsample 5.14.1)
if they are not linked, any of them can be linked below the other; else the top one can be deleted.

e Or, all nodes are critical and correspond to a single nodeeohtitmal form, but some links are different: In this
case, the links of are a subset of those of the normal form. Then we can add a missing link.
In all three cases, an application of link or del was possible. |

A.5.1 Preferential entailment

THEOREM5.18

g1 v g2 iff v2[N2] C v1[N1] and for each nodé € N, eitherv[N2] C vi[l,¢], or there is g € N2 such that
v(i) = v(7) andv[}5] C v[i].

PROOF Letoj, 02 be the operators denoted by, go.
=-. Choose some relatiafi such that Mirg (M) # M. (This is possible; as there are at least two elemenis

in M, we could takenSn iff m = a An = b.) Suppose the RHS is false, i.e. either

e u2[Na] N\ v1[N1] # 0. Choosez in this difference, and s&k. = S, R, = F for any otherz;

e there isi € Ni such thatva[N2] € wv1[l,4] and for allj € N2 such thatvy (i) = wv2(j), there is az; €
v2[l27] — vi[lyd]. If there is such g, setR,, ;) = 0; for eachj setR,; = S;andR, = F for all other
variablesz. Else, picky € v2[Na] \ v1[l,1i], setR, = S, setagaink,, ;) = 0, and set everything else 0.

In either case, by an argument similar to that in the proof of Theorem 5.2, we h@¥®:).cv )= 0 and

02((Rz)zev )= S. But Min(o1 ((Rz)zev)) = M Zo2((Rz)zev ), SO the LHS is false.
<. Suppose RHS and € Min(o1((Rz)zev)). We show thate € Min(o2((Rz)zev)). Suppose not, i.e.

there is anm such thatm o02((Rz)zev)< n, i.e.m 02((Rz)zey) nand3dj € No. mR§2(j)n. We'll show

m 01((Rz)zev)< n,ie. (@m o1((Rz)zev) nand (b)3j’ € Ny. ijl(].,)n.

(a) SupposenR,, ;yn; then by hypothesis, eithan[Na2] C v1[,i], S0Fj1 <1 i.ij1 (1) OF there is a

j € N2 such that; (i) = va(j) andva[lyj] C vi[l,i]; SOMR,,(jyn 03k <2 j with mRS . n, but using

va (k)
va[}ad] C v1[l,i] we have thaBk’ <; 4 with ijl(k,)n.

(b) Either case of the hypothesis again provigles N> such thaimRv<2 n andvz [Na2] C v [N1]. |

()

A.6 Composing priority graphs

THEOREM®6.3

Let g be a well-founded graph denoting operatowith variablesV. Let (gz).ev be a family of well-founded
graphs denoting operatofs; ), cy with variables(V.).cy. Letg’ be the graphical insertion ¢z )zcv in g,
and leto’ be the operator denoted lgy.
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Theno' is the composition 0 with (0z)zcv, i.€.

o ((Ry)yeu{vm \zGV}) = o((om((Ry)yEVm))mev).

PROOF First observe thatif, g1, - . ., gn are well-founded, then so ig. This enables us to use Theorem 2.11. Let
us writeg = (N, <,v) andgy = (Nz, <z,vs) foreachz € V.= {1,...,n}. Now,

m o' ((Re)zev) n
<= Vi€ N.Vi' € Nyy. (mva(i) @Hm"
V)" € Nygiy(4' <vii) & AmRS, ) (iHn)

vIje N e Nv(j)-(j <iA mR,fv(J_) (j/)n)) .

We simplify notation for this proof, by writingV; and<; in place of N, ;) and<,;), and by writingRi;’ instead
of mva(i) (iHn (m,n are fixed). We will consistently use unprimedriables for the ‘outer’ level indices, and
primed variables for the ‘inner’ ones. Thus

m o' ((Rz)eev) n

<=Vie N.Vi' € Ni.(Rii’ (1a)
v 35 € N;.(§' <; i A R<ij") (1b)

v3j e N3 € N;.(j <i/\R<jj’)) (1c)
<=Vie N.Vi' € Ni.(Rii’ (2a)
v 35 € N;.(§' <; i’ A R<ij") (2b)

v3j € N.3j" € N;.(j <iAR<jj' (2c)

AVk € N.(k<j—Vi € Nk.Rki’))>, (2d)

version (2) following from version (1) by Theorem 2.11(2). But now,

0(01((Rz)zev)s - »0n((Re)zev)) n
<= Vp € N. (M 0y(p)((Re)zev) nV 3q € N.(¢ <pAM (0y(g)((Rz)eev))< 1))

<= VpeEN. ((Vp’ € Np.(Rpp' vV 3¢' € Np.(¢' <p p' N R<pq'))) (3a)
Vg € N. (q < pAVp € Ny. (qu’ (3b)

V3¢ € Ng.(¢' <qp' ARS qq’)) (3¢

N3¢ € Ng.R< qq’)). (3d)

3b-d comes from the expansionwaf (0, () ((Rx)zcv'))< n using Theorem 2.11(3).

That (3) implies (1) is easy: if 1a and 1b are not satisfied; setq in 3b andj’ = ¢’ in 3d to satisfy 1c. So all
that remains is to show that (2) implies (3).

Suppose we have, p’ which do not satisfy the disjuncts in 3a. We need to find an appropyieettingg = j
from 2c might work; if it does, we are home. If it doesn’t, we have a troublesgfmee N, for which not Rgp’ and
there is no appropriatg .

Use (2) again with = ¢ andi’ = p’, to obtain & < g andj’ € N;, which we will callr < ¢, ' € N,.. Since
r < ¢, we have by 2d/s’ € N,.Rrs’; and by transitivity we have < p, sor satisfies the conditions farin 3b.
Moreover,R<rr’ (from 2c) guarantees 3d. |

The extraction of terms from priority graphs was given by example in the main text. Here, we give formal
definitions in order to prove Theorem 6.6.

DEFINITION A.33
To eliminate such shapes as the N shape in Example 6.8, we defifteetbeformg’ = F(g) of g as:
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e N’ is the the set of maximal up-branchesin Formally:

N' ={(i1,...,in) | n > 0,VI < n(i; <ij41 A
B e N.(iy < j<ip1) ABj € No(in <)}

e <’ is the suffix ordering. Formally <’  iff there is a non-empty sequence of nodesuch thatr = ;7.
e v’ takes the label where the branch starts, i.e. i (i1, ...,,) thenv' (o) = v(i1).

Actually this definition simply removes any V' shafiem the graph by replicating the node at the bottom of
the 'V’ that becomes ‘II'. In particular, we replace any ‘N’ shape by\al* shape. This is not always necessary, for
instance in Example 5.6 the V-shaped example could be expressed diretljyagz.

PROPOSITIONA.34
9= F(g).

PrROOF All down-sets are preserved, so we can use Corollary 5.5. |

DEFINITION A.35

Termifying a finite priority graphy to T'(¢g) is done as follows:

e if g is made of a single node labelled bysetT'(g)x;

e if g is made of disjoint components, ..., g», then we sef'(g) = T'(g1)|| - .. [|T(gn);

e else, find a\/ C N such thatvm € M, n € N ~ M we haven < m, as follows: Start by setting/ to the
maximal nodes ofV; and while there is a node which is not below all elementa/gfadd it toA/. This algorithm
may stop withM = N, in which case it signals failure; else, we $&tg) = T(M)/T(N ~ M).

We see that the algorithm succeeds exactly whirthe graphical insertion of some term (equivalently, wheino
shape is included ip); this term is unique up to associativity pfand||, and commutativity of|. (T'(g) will have /
associated to the left, since we started from the top.)

THEOREMG6.6
Any finitary priority operator is denoted by a term built frofn|| and the variables that occur in the priority graph
for the operator.

PrROOF. Take any finitaryV -ary operatorn. Let g be a graph denoting. Let ¢’ be the forest form of. It is easy
to check that we can always termify a forest form: The last step succeeds immediately, emtains the single
maximum element (the root of the tree). &oan be expressed y(g’).

A.7 Algebraic treatment

DEFINITION A.36
F denotes equational derivation from axioms 1-7. Theans that a proof can use axioms 1-7, and the classical
rules of equality:

Reflexivity Fr=r

Symmetry T=0okFo=1T

Transitivity p=oc,0=7TkFp=1

Congruence 7 =o¢ t plz := 7] = p[z := 0]

In order to prove the soundness and completeness of the axioms of Theorem 7.2, we need a lemma.

LEMMA A.37
Fo/r =1, ifv(o) Co(r).

ProOF (Note that this is obviously valid semtcally, since all occurrences in tlepart of o/ are non-critical.)
We first induce on the structure of
1. if o is the variabler: we proceed by induction on the structure of the term
(a) T is a variable; since € v(7), T is the variabler, so use idempotence ¢f
(b) 7 = (pl||o): Thenz € v(p) orz € v(o). Without loss of generality, assumec v(p). Thent p = z/p by
the inductive hypothesis, and thuse /7 = z/((z/p)||o).
Butt z/((z/y)||z) = (z/y)||z is derivable (Example 7.3(6)), thtsz/((z/p)||o) = (x/p)||loc = pllo = 7.
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()T =p/o.
e z € v(o). Then
z/T = x/plo def. 7
= z/p/x/o ind.hyp.
= p/z/o example 7.3(3)

= plo ind. hyp.
= 7T def. 7.
e z € v(p). Then
z/T = z/p/oc defr
= plo ind. hyp.
= 7 def. 7.

2. 0 = (01/02): we use associativity of to obtaino; /(o2/7), and first eliminater; inductively, thenos.
3. 0 = (o1||o2): we use distributivity to obtaitio1 /7)||(o2/7), and process inductively each part. |

THEOREM7.2
An equation is true in all preferential algebras iff it is derivable from the following seven axioms:

1L gllz=x (I] 'dempotent)

2. af|(yllz) = (zlly)ll (Il Associative)

3. zlly=yllz (I| Commutative)

4. (z/z)==2 (/ Idempotent)

5 z/(y/z) = (z/y)/= (/ Associative)

6. (zlly)/z = (z/2)||(y/?) (/ Distributes ovet[)
7. (z/y)llz = zlly (Absorption)

PROOF The soundness of the axioms is obvious. (For exapgmply Corollary 5.5 to the graph forms of each side
of the axioms.)

Completeness: lét 7 C § abbreviate- 7|6 = 7 (indeed, this use o matches that in the semantics). We
need only prove statements of the formr C 4, since to prove- 7 = § we just prove- 7 C ¢ and- 6 C T,
which expands te- = 7|6 = 4.

Supposer C § semantically. We prove 7 C § by induction ong.

1. § is the variabler. We perform induction orr.
(a) T is avariable. Since C §, 7 must also be: (by Theorem 5.2). Idempotence finishes the proof.
(b) 7 = 71 /72. By Theorem 5.2 we know: /72 C z iff 7» C z, and by inductive hypothesis 72 C z. We
provet 71 /72 C x as follows:

(r1/m)||lx = (11/7m)||m2]|lx Example 7.3(1)
= (11/m2)||m2 since 72 C
= T1/T2 Example 7.3(1)

(¢) 7 = 71]||r2. By Theorem 5.2 we know||72 C z iff 71 C = or 72 C z. Without loss of generality we
suppose it ig, and by inductive hypothesis we haver; C z. NowtF 7 ||m2||z = (71]||z)||m2 = 71]|72, SO
7|2 C .

2. § = v||o. By the semantics we know thatC (v||o) is valid iff 7 C v and7 C o, so by inductive hypothesis
we prove- 7 C y and- 7 C ¢, which expand tar||y = 7 and7||o = 7, from which we prover = 7|(v[|o)
using associativity, commutativity and idempotence.

3. § = /0. By induction onyy. -y can be:

(@) v1||v2: then we use distribution.

(b) y1/v2: then we use associativity to obtain= 1 /(y2/0).

(c) A variablex. If x occurs ino, we suppress it using Lemma A.37. The remaining case is to prove inequalities
of form 7 C z /o, wherez is a variable not occurring in. By Theorem 5.2, an inequation of this form is valid
iff 7 C o and in the graph of there is a node labelled hysuch thaw[|z] C v[s]. We can assume without
loss of generality that is in forest form, since we just have to apply distribution repeatedly to obtain this form.
Letn denote the subterm belawin the forest formt = ... /(...]|(z/n))). By convention, we treat the case
wheren is empty uniformly.

i. We prover- 7 C z/n by induction onr. Since it is in forest formr can be:



Operators and Laws for Combining Preference Relatidsts

A. y/m2: If y = z andm> = 7 we are done.
Otherwise we rewriter to (y/72)||m2 using Example 7.3(1) backwards, and we proceed on thisriast
which must have an occurrence ®fn sincey # z. Then Theorem 5.2 gives, C xz/n, which by
inductive hypothesis gives 72 C x /7, thust (y/72)||72 C x/n using associativity off.

B. 71||m2: We knowz /n must occur inr; or 2 (or both); we proceed inductively on that part, say Again
79 C x/nimpliest 7 C x/n using by Theorem 5.2, inductive hypothesis, and associativitly of

ii. Let's put this together:

FrCax/n just proved
FrCo by inductive hypothesis
F 7 C (z/n)|lc asincase?2
FrCax/n/o by 7.3(7)
FrCz/o=¢§ bylLemmaA.37

EXAMPLE A.38
We apply the algorithm of the proof of Theorem 7.2 to construct a proaf/¢§||z) = (z/y/2)||(z/z/y):

z/(yllz) = (z/(ll2)llyll= 7.3(1)
= (=/ll2)lyllzll(z/y) 7.3(7)
= (z/(ll2)I(2/y) 7.3(1)
= (=/WllNN((=/(yl12))/(2/y)) axiom 7
= (z/Wll2)I(z/2/y) A.37
= (=/WllNyll=ll(z/2/y) 7.3(1)
= (=/Wll2)yllzll(y/2)||(z/2/y) 7.3(7)
= (=/Wll)/2)(z/2/y) 7.3(1)
= (&/WllNDN=/Wll2)/w/))(x/z/y)  7-3(1)
= (=/Wll)(z/y/2)|(z/2/y) A37
= ((z/2/v)/Wll)(z/y/)|I(z/2/y) A37
= (z/y/)l=l(=/2/y)lly axiom 7
= (@/y/2)l|(z/z/y)lly 7.3(1)
= (z/y/2)||(z/=/y) 7.3(1)

This identity is the basis of th&uscan form given a term, rewrite it first using distributivity, and then this
identity. By this process, any term is brought in a form wh¢mrere outside and inside. We can use 3, 4, 1 and
7 to eliminate some duplicates, but this will not yield some unique normal form. For instaptg|/z)/w =
z/((y/w)ll(z/w)) = (z/y/w/z/w)|l(z/z/w/y/w) = (x/y/z/w)ll(z/z/y/w) = (z/y/z/w)l|(y/w) =

(z/w)||(z/z/y/w); the last four are Tuscan forms, the last two are simplified.

The equations 1-7 given in Theorem 7.2 are not compheteever, with respect to conditional equations (impli-
cations between equations).

THEOREMA.39
There is a conditional equation true ifi preferential algebras which is not a consequence of 1-7; for example,
z/y/z = z/y/x b x/z = z/x is such a conditional equation.

PROOF The conditional equation is true in all PAgxpand/, || using the equations in Proposition 6.5; now, we
want to prove thafzNyNz) U(y< N2z)Uz< = (zNyNz)U(y< Nz)Uz< implies(zN2)Uz< = (zNz)Uz<.
Suppose the premiss and that((z N z) U 2<) n. Then either (z N 2) n, som ((z N z) U <) n, and we are
done; orm z< mandm (z N z) n. m 2< nimpliesm (z Ny Nz) U (y< Nz)U2z< n,since the last disjunct
istrue.m (z N z) n meansm T n orm z n. Sincez< C z, the second half is impossible and we hanet n.
Using the premissp (z Ny N 2) U (y< Nx) U z< n, som z n, a contradiction.

The conditional equation cannot be derived from the axioms ir-axioms 1-7, and here in the antecedents,
the same variables occur in the left- and right-hand side. By examining the rules for deriving equations (Definition
A.36), we notice that no rule can eliminate a variable from the antecedent; thus the conclusion mustGbtttain
proof uses the antecedent. On the other hand, the proof must use the antecedent, since the consequent is not valid
and thus not a consequence of axioms 1-7. [ |

This means that the clag3A of all isomorphic copies of preferential &lgras is not axiomatizable by equations,
but we now show thaP A can be axiomatized by conditional equations.
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THEOREMA.40
P A is a quasi-variety.

PROOF We use standard techniques [22] of algebraeetations, namely, we prove that the claksof algebras

isomorphic to a preferential algebra is closed undentakubalgebras, direct products, and ultraproducts.

e K is closed under taking subalgebras, by definition.

e K is closed under taking direct products: Iee a set and for eache I let (A;,N, /) be a preferential algebra.
That is, A; is a set of binary relations on somg closed under intersection ancieographic combination. We
may assume that thg;s are pairwise disjoint. L’ be the union of thes#;s. For any tupler = (a; : i € I)
of elements of the product{ € A;), let f(a) be the union ofi;s, which is indeed a binary relation @h Let A
be the set of the all thes&a)s. ThenA is closed under:

— intersection:(J; a;) N (U; b;) = U, (a; N b;), since thelJ; are disjoint. Now since eachH; is closed,A is;

— lexicographic combination{J; a;)/(U; b:) = U;(ai/b;), for it m(lJ; b;)=n, it means thain,n € U; for
some uniqué, and thugnb; n.

The functionf is an isomorphism from the direct product of the algeb#ago the algebrg A, U, /): its inverse

is just the tuple of projections on ttigs.

e K is closed under taking ultraproducts: The operation&'dadre definable ilBBRA, the class of binary relation
algebras (i.e.K is a generalized reduct d@RA). It is known thatBRA is closed under taking ultraproducts
(claim 1.1 of [22]). HenceK is closed under taking ultraproducts.

The axioms presented in Theorem 7.2 are also complete for inclusion,Bin€e R» iff (R1||R2) = R». ltis
also possible to construct a proof system for inclusion without resorting to equality:

1. zCz (reflexivity)

2. zCy,yLC zimpliesz C z (transitivity)

3. z Cyimpliesz||z C y||z (monotonicity/||)

4. z Cyimpliesz/z Cy/z (monotonicity /a)

5. zCy,yCzimpliesz/z C z/y (monotonicity /b)

6. zCal (|| Idempotent)

7. z[|(yllz) C (z[ly)ll= (I| Associative)

8 zllyCyl (|| Commutative)

9. zLC (z/x) (/ ldempotent)

10. =/(y/2) E (z/y)/2 (/ Associative)

11. (z/y)/z E z/(y/=) (/ Associative)

12. (zlly)/z C (z/2)ll(y/2) (/ Distributes ovet])
13. (z/2)ll(y/2) E (zlly)/= (/ Distributes ovet|)
14. x|ly C (z/y)||= (Absorption)

15. z/yCy (/-refinement)

THEOREM7.4

A preferential entailment |~ o holds in all preferential algebras iff i derivable from the equality axioms 1-7,

together with the following:

16. Ifz ~ythenz/z vy

17. fy/x ==z andz ||y =y thenz |~y

(Cy
(S1)

PROOF. <. We check the soundness of the two new rules.

CL. If Min (M) C Miny (M), then indeed Mig,, (M) C Miny (M), since the minimals of /x are among the
minimals ofz.

Sl. z || y = y means thay C z. y/z = = means thatnz=n = my=n. So if m’y<m, then alsan'z<m, for
all three other possibilities are excluded. Senfis not minimal fory, it means thaim'.m/y<m, thusm’z<m,
andm is neither minimal forc.
= . We want to prove, say; |~ o. Let g1, g2 be their graphs. We use Theorem 5.18. Firsflet {i | v[]i] D

v(N2)}. I is upward-closed. If = 0, let > be a term representing Otherwise we construet as follows:
Forallk ¢ I,if i < k theni ¢ I, so that by Theorem 5.18(¢) = v(j) for somej € N»; therefore we have

v[{k] C v(N2) C v(i), foranyi € I, so that we link any nodg ¢ I below each minimal € I using rule (link).

Therefore, the graph is now of the forgi /g> whereg; contains all nodes of and g» the rest. We find terms

T1, T2 €Xpressingi, g2 by Theorem 6.6. Since is equivalent tor; /72 by their construction, this is provable by

completeness (Theorem 7.2).
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SinceTs only contains nodes outside by Theorem 5.18y(72) C v(o). Also, by Theorem 5.23 C 2. By
completenessy:||o = o is provable. By Corollary 5.4y(m2) D v(o) and thusv(72) = v(s). Soing/72, all
occurrences i are non-critical, implying thatr/7o = 75 is valid, and thus provable by completeness. Thus, we
can use rule S1to prove (~ o, and then rule C1 to prove /72 |~ o.
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