
Basis PursuitShaobing Chen David Donohoschen@playfair.stanford.edu donoho@playfair.stanford.eduStatistics DepartmentStanford UniversityStanford, CA 94305AbstractThe Time-Frequency and Time-Scale communitieshave recently developed an enormous number of over-complete signal dictionaries { wavelets, wavelet pack-ets, cosine packets, wilson bases, chirplets, warpedbases, and hyperbolic cross bases being a few exam-ples. Basis Pursuit is a technique for decomposing asignal into an \optimal" superposition of dictionaryelements. The optimization criterion is the l1 normof coe�cients. The method has several advantagesover Matching Pursuit and Best Ortho Basis, includ-ing super-resolution and stability.1 IntroductionOver the last �ve years or so, there has been anexplosion of awareness of alternatives to traditionalsignal representations. Instead of just representingobjects as superpositions of sinusoids (the traditionalFourier representation) we now have available alter-nate dictionaries { signal representation schemes {of which the Wavelets dictionary is only the mostwell-known. Wavelet dictionaries, Gabor dictionar-ies, Multi-scale Gabor Dictionaries, Wavelet Packets,Cosine Packets, Chirplets, and a wide range of otherrepresentations are now available. Each such dictio-nary D is a collection of waveforms (�)2�, and weenvision a decomposition of a signal s ass =X2��� ; (1)or an approximate decompositions =X2��� + R; (2)where R is a residual. Depending on the dictio-nary, such a decomposition is a decomposition into

pure tones (Fourier dictionary), bumps (wavelet dic-tionary), chirps (chirplet dictionary), etc.A key point. The dictionaries we are interested inare all overcomplete, either because they start out thatway, or because we can merge complete dictionaries,obtaining a new mega-dictionary consisting of severaltypes of waveforms (e.g Fourier & Wavelets dictionar-ies along with Gabor). The decomposition (1) is thennonunique, because some elements in the dictionaryhave representations in terms of other elements. Weassume such nonuniqueness in what follows. It givesus the possibility of adaptation, i.e. of choosing amongmany representations one which is most suited to ourpurposes.2 Goals of Adaptive RepresentationWe are motivated by the aim of achieving simulat-neously the following goals.� Speed. It should be possible to obtain a represen-tation in order O(n) or O(n log(n)) time.� Sparsity. We should obtain the sparsest possiblerepresentation of the object { i.e. the one withthe fewest signi�cant coe�cients.� Perfect separation. When the signal is made up ofa superposition of a few very disparate phenom-ena (e.g. impulses and sinusoids), those shouldbe clearly separated and marked.� Superresolution. We should obtain a resolutionof sparse objects that is much higher-resolutionthan that possible with traditional non-adaptiveapproaches.� Stability. Small perturbations of s should not se-riously degrade the results.



3 Finding an Adaptive RepresentationWe briey mention a few methods that have beenproposed to �nd decompositions and then commenton how well they achieve those goals. In my talk, Iwill give examples of these methods in action.3.1 Method of FramesImagine that we write out all the vectors of thedictionary as columns of a matrix �, and we write outall the coe�cients (�) as a column vector. Then thedecomposition problem is that of �nding a solution�� = s. There are many solutions; the method ofFrames [4] picks one whose coe�cients have minimuml2 norm. mink�k2 subject to �� = s:This solution can often be computed in O(n log(n))time. The key problem: the solution is an average ofall possible solutions �� = s; so it is typically of verypoor sparsity, and also does not super-resolve.3.2 Best Ortho BasisCoifman and Meyer have invented some special dic-tionaries, wavelet packets and cosine packets, whichhave a very special structure. Certain structuredsubcollections of the elements amount to orthogonalbases; one gets in this way a wide range of orthonor-mal bases (in fact � 2n such orthogonal bases for sig-nals of length n). Coifman and Wickerhauser [1] haveproposed a method of adaptively picking from amongthese many bases, a single orthogonal basis which isthe best one. If (s[B]I ) denotes the vector of coef-�cients of s in orthogonal basis B, and if we de�nethe \entropy" E(s[B]) = PI e(s[B]I ), where e(s) is ascalar function of a scalar argument, they give a fastalgorithm for solvingminfE(s[B]) : B ortho basis � Dg:The algorithm is fast { it delivers a basis in ordern log(n) time { and in some cases delivers near-optimalsparsity respresentations. Possible problem: when thesignal is composed of a very few highly non-orthogonalcomponents, the method may not deliver sparse rep-resentations.3.3 Matching PursuitMallat and Zhang [5] have proposed the use of agreedy algorithm which builds up a sequence of sparse

approximations starting from s(0) = 0 and R(0) = s;adding to the approximation at stage k that multipleof that element of the dictionary which best correlateswith the residual, so that s(k) = s(k�1) + �k�k andR(k) = s � s(k). After N steps, one has a representa-tion of the form (2), with residual R = R(N).Possible problem: because the algorithm is greedy,when run for many iterations, it might spending mostof its time correcting for any mistakes made in the�rst few terms. One can give examples of dictionariesand signals where the method gives a solution whichis badly sub-optimal in terms of sparsity.3.4 Massive OptimizationTo avoid the limitations of greedy optimization,one might consider replacing matching pursuit by atrue global optimization employing exhaustive enu-meration. One would sift through all possible subsetsof size � n of the dictionary and �t each subset tothe signal by least squares. That subset optimizing atradeo� of complexity and lack-of-�t would be chosento generate the �t ŝ and residual. The key problem:sifting through � 2n least-squares �ts is not compu-tationally feasible.4 Basis PursuitChen and Donoho [2] have suggested a method ofdecomposition based on a true global optimizationwhich is at least theoretically feasible, due to recentadvances in linear programming. Among the manypossible solutions to �� = s, they pick one whosecoe�cients have minimum l1 norm.mink�k1 subject to �� = s: (3)For dealing with data at noise level � > 0, they pro-pose approximate decomposition as in (2), solvingmink��� sk22 + �nk�k1; (4)with �n = �p2 log(#D) depending on the number#D of distinct vectors in the dictionary.4.1 ComparisonsIn comparison to the method of frames, the l2 normis replaced by the l1 norm. Special properties of the l1norm force Basis Pursuit to be nonlinear and to there-fore exhibit potentially very di�erent behavior thanthe method of frames.



The comparison to the Best Ortho Basis method isinteresting in the case (4). When Best Ortho Basis isrun with the l1 norm as an entropy, the two methodscompare as follows: BOB �nds the orthogonal basiswhich optimizes the l1 norm, while BP �nds the op-timum l1 norm among all bases, not just orthogonalones.An understanding of this last comment comes fromnoting that problem (3) is equivalent to a linear pro-gramming problem. From the theory of linear pro-gramming, we know that a solution is obtained at abasis. We also know that linear programming solu-tions tend to be sparse, and this helps us understandwhy BP may tend to give sparse solutions.In comparison to Matching Pursuit, suppose wesolve the linear program underlying BP via the sim-plex method. Then MP works by starting with anempty model, building up a new model in greedy fash-ion term by term. BP starts from an initial basis (forexample, the Best Ortho Basis for l1-entropy) and it-eratively improves the basis by swapping atoms notin the basis for atoms in the basis. Both algorithmsare greedy, but the theory of linear programming saysthat simplex must converge to a global optimum; incontrast, global optimality of MP is not guaranteed.4.2 ComputationBP is only thinkable because of recent advances inlinear programming via \interior point" methods. In-deed, suppose we need to do BP on an 8192 point longsignal, and decompose the object in the Wavelet Pack-ets Dictionary. The dictionary will have n log2(n) =8192�13 = 106496 elements. The corresponding linearprogram has 8192 constraints and more than 212,992variables. Moreover the matrix of the linear programis not sparse.Until ten years ago, it was a major e�ort to solvea linear program with more than 1000 constraintsand 1000 variables. Today, problems with more than50,000 variables and constraints are being solved inpractical work.This increase in size of problems treated is in largepart due to the explosion of interest following Kar-markar's work on interior point methods. Moderninterior point methods have evolved far beyond Kar-markar's original proposal; we are using primal-duallog-barrier methods. The key point of such methodsis the solution of a system of equations ADAT = AT vabout ten or twenty times, where the diagonal matrixD changes from iteration to iteration, and A is thematrix in the de�nition of the linear program. Our ap-proach is oriented around the special properties of A

and AT in BP. We use pre-conditioned conjugate gra-dient solvers so that we never have to store the matrixA of the underlying linear program; we only have toknow how to apply A and AT rapidly. This is possiblesince our signal dictionaries possess fast transforms.4.3 ExampleFigure 1 shows the use of BP, Frames, and MP tosuper-resolve a superposition of two sinusoids with thetwo frequencies spaced closer than the Rayleigh dis-tance. The signal-to-noise ratio is 5/1. BP resolves thepresence of two speci�c frequencies; the other meth-ods do not. Figure 2 shows the use of BP and BOBto de-noise a signal at 1/1 signal/noise ratio. Bothmethods are working from the same dictionary. BOBis applied as in [3]. BP is evidently both accurateand stable. Figure 3 shows a phase plane obtainedby analyzing the signal \Greasy" [5] using BOB withl1 entropy and wavelet packet dictionary. Figure 4shows the phase palne from BP. Note the enhancedresolution.AcknowledgementsMichael Saunders, Department of Operations Re-search, Stanford University provided considerable ad-vice, software, and wisdom about large-scale optimiza-tion problems.This research was supported by NSF DMS-92-09130 and by the NASA Astrophysical Data Program.References[1] R. R. Coifman and M. V. Wickerhauser,\Entropy-based algorithms for best-basis selec-tion", IEEE Trans. Info. Theory 38 (1992) p.713-718.[2] S. Chen and D. Donoho. Basis Pursuit. TechnicalReport, Department of Statistics, Stanford Uni-versity.[3] D.L. Donoho and I.M. Johnstone, Ideal Time-Frequency Denoising. Technical Report, Depart-ment of Statistics, Stanford University.[4] I. Daubechies, Ten Lectures on Wavelets, SIAM,(1992).[5] S. Mallat and Z. Zhang. Matching Pursuit withTime Frequency Dictionaries. IEEE Trans. Sign.Proc. (1993).eject
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(a) x = cos(pi * w_1 * t) + cos(pi * w_2 * t)
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(b) The Noised, SNR = 5
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(c) Dct transform with 4 overcompleteness
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(d) Coefs from Frame
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(e) Coefs from MP

100 120 140 160
0

20

40
(f) Coefs from Basis Pursuit DenoisingFigure 1: Super-resolve Two Close Cosines
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Phase plane: From BB
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Figure 3: BOB on Greasy using Wavelet Packet
Phase plane: From BP

Time

F
re

qu
en

cy

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 4: BP on Greasy using Wavelet Packet


