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Summary
Netrins are secreted proteins that were first identified as
guidance cues, directing cell and axon migration during neural
development. Subsequent findings have demonstrated that
netrins can influence the formation of multiple tissues,
including the vasculature, lung, pancreas, muscle and
mammary gland, by mediating cell migration, cell-cell
interactions and cell-extracellular matrix adhesion. Recent
evidence also implicates the ongoing expression of netrins and
netrin receptors in the maintenance of cell-cell organisation in
mature tissues. Here, we review the mechanisms involved in
netrin signalling in vertebrate and invertebrate systems and
discuss the functions of netrin signalling during the
development of neural and non-neural tissues.
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Introduction
Netrins are a family of extracellular, laminin-related (see Glossary,
Box 1) proteins that function as chemotropic guidance cues for
migrating cells and axons during neural development. They act as
chemoattractants for some cell types and chemorepellents for
others. Loss-of-function mutations in netrin 1 or in certain netrin
receptors are lethal in mice, highlighting the importance of netrin
signalling during development. Insights into the functions of netrins
have arisen from studies across a wide range of animal species,
including invertebrates such as the nematode worm Caenorhabditis
elegans and the fruit fly Drosophila melanogaster, non-mammalian
vertebrates such as the frog Xenopus laevis, and mammals
including rats, mice and humans.

Since its discovery in the early 1990s, it is now becoming clear
that the netrin gene family exhibits a rich biology, with significance
beyond neural development, and contributes to the organisation of
multiple tissues. Along with a number of other identified axon
guidance cues (Hinck, 2004), secreted netrins influence
organogenesis outside the central nervous system (CNS), directing
cell migration and mediating cell-cell adhesion in the lung,
pancreas, mammary gland, vasculature and muscle (Kang et al.,
2004; Lejmi et al., 2008; Liu et al., 2004; Lu et al., 2004;
Srinivasan et al., 2003; Yebra et al., 2003). Here, we discuss the cell
biology of netrin and netrin receptor functions and review the
downstream signal transduction mechanisms that they activate. We
also provide an overview of netrin function during development,
both within the nervous system and within other developing organs
and tissues.

Netrin family members
The first reported member of the netrin family, uncoordinated-6
(UNC-6), was identified in a search for gene products that regulate
neural development in C. elegans (Ishii et al., 1992). Netrins have
since been identified and studied in multiple vertebrate and
invertebrate species (Table 1), including X. laevis (de la Torre et al.,
1997), D. melanogaster (Harris et al., 1996; Mitchell et al., 1996)
and the sea anemone Nematostella vectensis (Matus et al., 2006),
an animal that exhibits early hallmarks of the origins of bilateral
symmetry. In mammals, three secreted netrins, netrin 1, 3 and 4,
and two membrane-tethered glycophosphatidylinositol (GPI)-
linked (see Glossary, Box 1) netrins, netrin G1 and G2, have been
identified (Table 1). Orthologues of netrin 1, which have been
identified in all bilaterally symmetrical animals studied so far, play
a highly conserved role directing cell and axon migration in the
embryonic nervous system. Among the secreted netrins, netrin 1
expression and function have been best characterised. Netrin 1 is
expressed in regions of both the developing and adult nervous
systems, including the optic disc, forebrain, cerebellum and spinal
cord (Deiner et al., 1997; Hamasaki et al., 2001; Kennedy et al.,
1994; Livesey and Hunt, 1997). Netrin 1 is also highly expressed
in various tissues outside of the nervous system, including the
developing heart, lung, pancreas, intestine and mammary gland
(Liu et al., 2004; Shin et al., 2007; Srinivasan et al., 2003; Yebra et
al., 2003; Zhang and Cai, 2010).

All netrins are composed of ~600 amino acids and belong to the
superfamily of laminin-related proteins (Yurchenco and
Wadsworth, 2004). N-terminal netrin sequences are homologous to
domains VI and V found at the N-termini of laminins; the N-
terminal domains of netrin 1 and netrin 3 show most similarity to
the laminin 1 chain (Serafini et al., 1994; Wang et al., 1999), and
those of netrins 4, G1 and G2 are most similar to the laminin 1
chain (Nakashiba et al., 2000; Nakashiba et al., 2002; Yin et al.,
2000) (Fig. 1A). In secreted netrins, these domains (VI and V) are
linked to a C-terminal domain termed ‘domain C’ or the netrin-like
(NTR) module. This module is not homologous to any laminin
domain (Serafini et al., 1994) but exhibits sequence similarity to
the tissue inhibitor of metalloproteinases (TIMPs) (Banyai and
Patthy, 1999), is rich in basic amino acid residues and can bind
heparin (see Glossary, Box 1) (Kappler et al., 2000). Although all
netrins include laminin-like domains, a clear functional distinction
can be made between the secreted netrins and the GPI-linked netrin
G proteins due to the engagement of different sets of receptor
proteins.

Netrin receptors
In mammals, receptors for the secreted netrins include deleted in
colorectal cancer (DCC), the DCC paralogue neogenin, the UNC-
5 homologues UNC5A-D, and Down syndrome cell adhesion
molecule (DSCAM) (Table 1). The GPI-linked netrins, by contrast,
function by binding to the netrin G ligands (NGLs) NGL-1 and
NGL-2 (also known as LRRC4C and LRRC4, respectively), which
belong to a family of transmembrane proteins that are structurally
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and functionally distinct from the secreted netrin receptors. All
netrin receptors identified thus far are single-pass type I
transmembrane proteins and are members of the immunoglobulin
(Ig) superfamily (see Glossary, Box 1) (Fig. 1B).

DCC receptor family
DCC was originally identified in humans as a candidate tumour
suppressor associated with an allelic deletion of chromosome 18q21
in colon cancer (Fearon et al., 1990; Vogelstein et al., 1988). The
most commonly studied members of the DCC family include DCC
and neogenin in mammals (Cho et al., 1994; Vielmetter et al., 1994),
UNC-40 in C. elegans (Chan et al., 1996) and Frazzled in D.
melanogaster (Kolodziej et al., 1996) (Table 1). Extracellularly, all
members of the DCC family are composed of four Ig domains (see
Glossary, Box 1) and six fibronectin type III domains (FNIII, see
Glossary, Box 1; Fig. 1B), with evidence to suggest that netrin 1
binds to the fourth and fifth FNIII repeats (Geisbrecht et al., 2003;
Kruger et al., 2004). Intracellularly, DCC does not encode any
obvious catalytic domain but contains three highly conserved
sequences termed the P1-3 motifs (Keino-Masu et al., 1996). DCC
mediates chemoattractant responses to netrin 1-4, and also
contributes to chemorepellent signalling (Colavita and Culotti, 1998;
Hong et al., 1999; Jarjour et al., 2003; Kennedy et al., 1994; Qin et
al., 2007; Wang et al., 1999). Neogenin, another member of the DCC
family, shares ~50% amino acid identity with DCC (Vielmetter et al.,
1994). Although less well studied than DCC, recent reports have
provided insight into neogenin function and signalling (De Vries and
Cooper, 2008). Interestingly, neogenin appears to act as an attractive
axon guidance receptor in response to netrin 1, but also as a repellent
receptor when bound to repulsive guidance molecule (RGMa), an
alternative ligand that does not belong to the netrin family
(Rajagopalan et al., 2004; Wilson and Key, 2006). In addition to their
roles in axon guidance, both DCC and neogenin regulate cell-cell
adhesion and tissue organisation through interactions with the
secreted netrins (Jarjour et al., 2008; Kang et al., 2004; Krauss, 2010;
Lejmi et al., 2008; Park et al., 2004; Srinivasan et al., 2003).

The UNC5 receptor family
Four orthologues of C. elegans UNC-5, UNC5A-D, have been
characterised in vertebrates (Table 1). Extracellularly, they are
composed of two Ig domains and two thrombospondin type I (TSP-
1) domains (see Glossary, Box 1; Fig. 1B), with the Ig repeats
required for netrin 1 binding (Geisbrecht et al., 2003; Krauss, 2010;
Leonardo et al., 1997). The UNC5 intracellular domain encodes a
ZU-5 domain (see Glossary, Box 1) (Leonardo et al., 1997), a
DCC-binding (DB) motif, and a death domain (DD, see Glossary,
Box 1) (Hofmann and Tschopp, 1995).

Netrin 1 and 3 are chemorepellents for axons of Xenopus spinal
neurons and rodent trochlear motoneurons (see Glossary, Box 1),
which express UNC5 homologues (Colamarino and Tessier-
Lavigne, 1995; Hong et al., 1999; Wang et al., 1999). Although
these chemorepellent responses require expression of an UNC5
protein, in some cases this response also depends upon the co-
expression of DCC with UNC5 (Colavita and Culotti, 1998; Hong
et al., 1999). In fact, many neurons in vertebrates and invertebrates
express both UNC5 homologues and DCC. However, in contrast
to DCC-dependent chemorepulsion, genetic analyses in C. elegans
and D. melanogaster have provided examples of UNC-5-dependent
repellent responses that occur in the absence of the DCC
homologues UNC-40 and Frazzled (Keleman and Dickson, 2001;
Merz et al., 2001).
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Box 1. Glossary
Amphetamine. Stimulant drugs that modulate neurotransmitter
levels in the brain and are used to treat narcolepsy and attention
deficit disorders.
Autaptic synapse. A synapse made by a neuron onto itself.
Axon turning assay. Typically, an in vitro assay to examine the
capacity of a factor to turn an extending axon.
Death domain. A protein-protein interaction domain consisting of
six alpha-helices that is associated with apoptotic signalling.
Dopaminergic (DA) neurons. Neurons that use dopamine as a
neurotransmitter and function in controlling voluntary movements,
mood and behaviour.
Fibronectin type III domain (FNIII). A protein module that is similar
to a domain in the ECM protein fibronectin.
Filopodia. Dynamic finger-like actin-rich protrusions that extend from
the motile edges of cells.
Floor plate. A cluster of highly secretory cells located at the ventral
midline of the embryonic spinal cord.
Glycophosphatidylinositol (GPI). Glycolipid that anchors proteins
to the plasma membrane.
Growth cone. The enlarged motile tip of an extending axon.
Heparan sulphate proteoglycans (HSPGs). Complex high-
molecular-weight transmembrane and secreted extracellular
glycoproteins with attached glycosaminoglycan (GAG) chains.
Heparin. Highly glycosylated carbohydrate that functions as an anti-
coagulant.
Ig domain. A protein structural domain first identified in
immunoglobulins, characterised by its -sheet folds.
Immunoglobulin (Ig) superfamily. A large family of secreted and
transmembrane proteins that contain regions homologous to
immunoglobulins.
Lamellipodia. Ruffling sheet-like extensions of the plasma
membrane that contain filamentous actin networks extending from
the leading edge.
Laminins. A family of ECM glycoproteins found in basal lamina.
Leucine-rich repeat (LRR). A protein structural domain that contains
a high frequency of leucine residues.
Nodes of Ranvier. The uninsulated portions of an axon between
myelin internodes where action potentials are regenerated.
Nucleokinesis. The movement of a nucleus within a cell during cell
migration.
Oligodendrocyte. Glial cell in the CNS that produces the myelin
wrap that insulates axons.
Optic tectum. A structure in the dorsal part of the midbrain of non-
mammalian vertebrates that is innervated by retinal ganglion cells.
Homologous to the superior colliculus in mammals.
Paranode. Specialised adhesive junction between an oligodendrocyte
and an axon that flanks the node of Ranvier.
Pontine nuclei. A region of the pons that relays information
between the cerebral cortex and cerebellum.
Retinal ganglion cells (RGCs). The output neurons of the retina
that project an axon along the optic nerve.
Rho GTPase. A family of GTP-hydrolyzing proteins that regulate actin
cytoskeletal dynamics and cell adhesion.
Rhombic lip. Proliferative region of the dorsal hindbrain.
Spinal commissural neurons. Neurons that project their axons to
the contralateral side of the spinal cord to innervate targets on the
other side of the nervous system.
Thrombospondin type I (TSP-1) domain. A protein domain
homologous to a sequence first identified in thrombospondin 1
(THBS1).
Trochlear motoneurons. Motoneurons that project an axon dorsally
away from the ventral midline to innervate the extraocular muscles
of the eye.
ZU-5 domain. A protein structural domain with homology to
sequence of the tight junction protein zona occludens 1 (also known
as TJP1). D
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The extracellular and intracellular domains of DCC and UNC5
exhibit a remarkable modularity of function. For example,
expression in cultured Xenopus spinal neurons of a chimeric
receptor composed of the extracellular domain of rat DCC fused to
the intracellular domain of an UNC5 homologue is sufficient to

elicit an axonal chemorepellent response to netrin 1 that is similar
to that of full-length UNC5 (Hong et al., 1999). Conversely, a
chimera composed of the intracellular domain of DCC with an
UNC5 extracellular domain signals chemoattraction (Hong et al.,
1999; Keleman and Dickson, 2001). An important generalisation

Table 1. Netrin and netrin receptor homologues
Netrin receptor

Species Latin name Netrin DCC family UNC5 family

Human Homo sapiens Netrin 1 Neogenin UNC5A
Netrin 3 (netrin 2-like) DCC UNC5B

Netrin 4 UNC5C
Netrin G1 UNC5D
Netrin G2

Mouse Mus musculus Netrin 1 Neogenin UNC5A
Netrin 3 DCC UNC5B
Netrin 4 UNC5C

Netrin G1 UNC5D
Netrin G2

Rat Rattus norvegicus Netrin 1 Neogenin UNC5A
Netrin 3 DCC UNC5B
Netrin 4 UNC5C

Netrin G1* UNC5D
Netrin G2

Chicken Gallus gallus Netrin 1 Neogenin UNC5A*
Netrin 2 DCC UNC5B
Netrin 4* UNC5C

Netrin G1* UNC5D*
Netrin G2*

Zebrafish Danio rerio Netrin 1a Neogenin Unc5a*
Netrin 1b Dcc Unc5b
Netrin 2 Unc5c*
Netrin 4 Unc5d*

Netrin G1*

Clawed frog Xenopus laevis Netrin 1 DCC UNC5

Fruit fly Drosophila melanogaster Netrin-A Frazzled UNC-5
Netrin-B

Nematode Caenorhabditis elegans UNC-6 UNC-40 UNC-5
Lamprey Petromyzon marinus Netrin Neogenin UNC-5
Medicinal leech Hirudo medicinalis Netrin – –
Amphioxus Branchiostoma floridae AmphiNetrin – –
Sea squirt Ciona intestinalis Ci-netrin – –
Sea urchin Hemicentrotus pulcherrimus HpNetrin – –
Sea anemone Nematostella vectensis Netrin – –

The four vertebrate UNC-5 homologues UNC5A-D are sometimes described as UNC5H1-4. To date, receptors have not been identified for the medicinal leech, amphioxus,
sea squirt, sea urchin or sea anemone.
*Sequences identified in GenBank but not published in the literature.
Human: netrin 1 (Meyerhardt et al., 1999), netrin 3 (netrin 2-like) (Van Raay et al., 1997), netrin 4 (Koch et al., 2000), netrin G1 (Nakashiba et al., 2000), netrin G2 (Nakashiba
et al., 2002), neogenin (Meyerhardt et al., 1997), DCC (Fearon et al., 1990), UNC5A (Tanikawa et al., 2003; Thiebault et al., 2003), UNC5B (Komatsuzaki et al., 2002;
Tanikawa et al., 2003), UNC5C (Ackerman and Knowles, 1998), UNC5D (Wang, H. et al., 2008).
Mouse: netrin 1 (Serafini et al., 1996), netrin 3 (Wang et al., 1999), netrin 4 (Koch et al., 2000; Yin et al., 2000), netrin G1 (Nakashiba et al., 2000), netrin G2 (Nakashiba et
al., 2002), neogenin (Keeling et al., 1997), DCC (Cooper et al., 1995), UNC5A (Engelkamp, 2002; Leonardo et al., 1997), UNC5B (Engelkamp, 2002; Leonardo et al., 1997),
UNC5C (Ackerman et al., 1997), UNC5D (Engelkamp, 2002).
Rat: netrin 1 (Manitt et al., 2001), netrin 3 (Manitt et al., 2001), netrin 4 (Zhang et al., 2004), netrin G2 (Pan et al., 2010), neogenin (Keino-Masu et al., 1996), DCC (Fearon
et al., 1990; Keino-Masu et al., 1996), UNC5A (Leonardo et al., 1997), UNC5B (Leonardo et al., 1997), UNC5C (Kuramoto et al., 2004), UNC5D (Zhong et al., 2004).
Chicken: netrin 1 (Serafini et al., 1994), netrin 2 (Serafini et al., 1994), neogenin (Vielmetter et al., 1994), DCC (Chuong et al., 1994), UNC5B (Bouvree et al., 2008), UNC5C
(Guan and Condic, 2003).
Zebrafish: Netrin 1a (Lauderdale et al., 1997), Netrin 1b (Strahle et al., 1997), Netrin 2 (Park et al., 2005), Netrin 4 (Park et al., 2005), Neogenin (Shen et al., 2002), Dcc
(Hjorth et al., 2001), Unc5b (Kaur et al., 2007; Lu et al., 2004).
Frog: netrin 1 (de la Torre et al., 1997), DCC (Pierceall et al., 1994), UNC5b (Anderson and Holt, 2002; Karaulanov et al., 2009).
Fruit fly: Netrin-A (Harris et al., 1996; Mitchell et al., 1996), Netrin-B (Harris et al., 1996; Mitchell et al., 1996), Frazzled (Kolodziej et al., 1996), UNC-5 (Keleman and Dickson,
2001).
Nematode: UNC-6 (Ishii et al., 1992), UNC-40 (Chan et al., 1996), UNC-5 (Leung-Hagesteijn et al., 1992).
Lamprey: netrin (Shifman and Selzer, 2000b), neogenin (Shifman et al., 2009), UNC-5 (Shifman and Selzer, 2000a).
Leech: netrin (Gan et al., 1999).
Amphioxus: AmphiNetrin (Shimeld, 2000).
Sea squirt: Ci-netrin (Hotta et al., 2000).
Sea urchin: HpNetrin (Katow, 2008).
Sea anemone: netrin (Matus et al., 2006).
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drawn from these studies is that the intracellular domain of netrin
receptors is crucial for their ability to mediate attractant or repellent
responses to netrin.

DSCAM
DSCAM was originally identified as a gene that is duplicated in
Down syndrome (Yamakawa et al., 1998) and was recently
reported to function as a netrin receptor (Andrews et al., 2008; Liu
et al., 2009; Ly et al., 2008). DSCAM is expressed by embryonic
spinal commissural neurons (see Glossary, Box 1) in mammals and
contributes to guiding these axons to the floor plate (see Glossary,
Box 1) of the developing spinal cord (Liu et al., 2009; Ly et al.,
2008). In Drosophila, DSCAM and DSCAM3 similarly promote
midline crossing by axons in response to Netrin-A and -B
(Andrews et al., 2008). The DSCAM extracellular domain is
composed of ten Ig domains and six FNIII repeats (Yamakawa et
al., 1998) (Fig. 1B), with netrin 1 proposed to bind to the Ig loops
(Ly et al., 2008). Current findings suggest that DSCAM evokes
chemoattractant responses to netrin 1 independently of DCC (Ly et
al., 2008).

Netrin G ligands
NGL-1 and NGL-2 bind to netrin G1 and netrin G2, respectively,
and are thus considered to be receptors for the netrin G proteins
(Kim et al., 2006; Lin et al., 2003; Nakashiba et al., 2002). The
NGL transmembrane proteins are composed of leucine-rich repeats
(LRRs, see Glossary, Box 1) and Ig domains (Kim et al., 2006; Lin
et al., 2003) (Fig. 1B). NGL receptors and the netrin G proteins are
enriched at synapses and regulate glutamatergic synaptogenesis
(Woo et al., 2009b). Notably, NGL-2 also interacts with the post-
synaptic intracellular scaffolding protein PSD95 (DLG4) (Kim et
al., 2006). A third member of the NGL family, NGL-3 (LRRC4B),
does not bind to netrin G1 or netrin G2, but contributes to the
regulation of glutamatergic synaptogenesis through interactions
with the transmembrane receptor tyrosine phosphatases LAR
(PTPRF), protein-tyrosine phosphatase  (PTP) and PTP (Kwon
et al., 2010; Woo et al., 2009a).

Other netrin receptors and binding proteins
Secreted netrins and DCC also interact with heparin (Bennett et al.,
1997; Serafini et al., 1994; Shipp and Hsieh-Wilson, 2007),
suggesting that they bind heparan sulphate proteoglycans (HSPGs,
see Glossary, Box 1). The positively charged C domain of secreted
netrins interacts tightly with heparan sulphate, perhaps localising
and multimerising netrin in the extracellular matrix (ECM)
(Geisbrecht et al., 2003; Kappler et al., 2000; Shipp and Hsieh-
Wilson, 2007). The conditional ablation of the mouse exostosin 1
(Ext1) gene, which encodes an enzyme required for heparan
sulphate synthesis, has revealed a cell-autonomous function for
heparan sulphate in embryonic spinal commissural neurons
(Matsumoto et al., 2007). EXT1 is required for axonal
chemoattraction to netrin 1, providing evidence for a functional
interaction between HSPGs and at least one netrin receptor.

Netrins can also bind to integrins, a large family of
transmembrane receptors that link the actin cytoskeleton to ECM
proteins (Nikolopoulos and Giancotti, 2005). Netrin 1 binds to
64 and 31 integrins, and this is suggested to regulate
epithelial cell adhesion and migration (Yebra et al., 2003).
Although netrin domains VI and V are homologous to laminins,
and certain integrins function as laminin receptors, 64 and 31
integrins do not bind to these domains in netrins. Instead, they bind
a sequence of positively charged amino acids found at the C-
terminus of netrin 1 (Yebra et al., 2003). Interestingly, however, the
C-terminal domain does not appear to be required for axon
chemoattraction, as a VI-V-Fc chimeric protein that lacks domain
C is sufficient to promote outgrowth from rat embryonic spinal
commissural axons in vitro (Keino-Masu et al., 1996). Although
this suggests that 64 and 31 integrins are not essential for
chemotropic responses to netrins, it does not rule out the possibility
that integrins might functionally interact with netrins in other
contexts.

Laminins are known to multimerise through their VI domains
(Yurchenco and Wadsworth, 2004). Netrin 4, but not netrin 1, 3,
G1 or G2, can be incorporated into basement membranes of
various tissues through the interaction of its domain VI with
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(A)Netrins are members of the laminin superfamily. N-
terminal netrin sequences encode domains VI and V
(green), which are homologous to the N-terminal
domains VI and V of laminins (brown). These domains
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G proteins. (B)The netrin receptors illustrated are all
single-pass transmembrane proteins and members of
the Ig superfamily. They include deleted in colorectal
cancer (DCC), the DCC paralogue neogenin found in
vertebrates, members of the UNC5 homologue family,
DSCAM and the netrin G ligands (NGLs). CT, C-terminal
cysteine-rich capping structure; DB, DCC-binding
domain; DD, death domain; FNIII, fibronectin type III
domain; Ig, immunoglobulin domain; LRR, leucine-rich
repeat; NT, N-terminal cysteine-rich capping structure;
P1, P2 and P3, conserved regions in the cytoplasmic
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domain; ZU5, zona occludens 5 (ZU-5) domain, with
homology to zona occludens 1.
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domain VI of laminin (Schneiders et al., 2007). Netrin 4 thereby
inhibits basement membrane assembly by interfering with laminin
multimerisation, and also inhibits branching morphogenesis in the
developing lung and salivary gland (Koch et al., 2000; Liu et al.,
2004; Schneiders et al., 2007). As such, netrin 4 may directly
influence organogenesis by signalling to cells from the basement
membrane or by modifying the structure of the basement
membrane itself.

Netrin function in the nervous system
The development of a functional nervous system depends on the
establishment of precise connections between neurons. This
requires the migration of neural precursors to appropriately position
cell bodies, and the projection of axons to synaptic targets. Studies
of knockout mice have provided substantial insight into netrin and
netrin receptor function in the nervous system (see Box 2). These
studies, together with studies of netrin function in other model
species, have revealed that netrins direct cell and axon migration
and subsequently influence axon arborisation and synapse
formation during neural development. In the mature CNS, recent
findings provide evidence that netrins also regulate cell-cell
interactions, including maintaining the organisation of
oligodendroglial paranodal junctions (Jarjour et al., 2008).
Furthermore, recent studies have suggested that netrin-related
changes can influence human neural circuitry and the progression
of neurodegenerative diseases (see Box 3).

Neuronal precursor cell migration
Netrin function has been extensively studied during cerebellar
development. Netrin 1 attracts migrating progenitor cells that
originate from the lower rhombic lip (see Glossary, Box 1) towards
the ventral midline to form the pontine nuclei (see Glossary, Box
1) in the hindbrain (Alcantara et al., 2000). This process depends
on the expression of netrin 1 by midline cells and on DCC
expression by migrating progenitors. Netrin 1 promotes
precerebellar neuron migration in mice, which is disrupted by
inhibiting RHOA-dependent nucleokinesis (see Glossary, Box 1)
(Causeret et al., 2004). Netrin 1-directed migration and subsequent
axon outgrowth by precerebellar neurons require phosphorylation
of the microtubule-associated protein MAP1B (MTAP1B) through
the activation of the serine/threonine kinases cyclin-dependent
kinase 5 (CDK5) and glycogen synthase kinase 3 (GSK3) (Del Rio
et al., 2004). Consistent with this, MAP1B-deficient mice exhibit
defects in the pontine nuclei and in several forebrain axon tracts,
similar to the phenotypes of netrin 1 or Dcc mutants (Bloch-
Gallego et al., 1999; Del Rio et al., 2004). Interestingly, during
post-natal maturation, netrin 1 repels migrating cerebellar granule
cell precursors, which upregulate UNC5 expression (Alcantara et
al., 2000). Netrin 1 has also been implicated as a chemorepellent
for migrating adult neural stem cells at sites of injury in the mature
nervous system (Petit et al., 2007), highlighting similar functions
for netrin in directing cell migration during development and in
adulthood.

Axon guidance
Although netrins are widely expressed in a range of tissues, they
have largely been studied for their role as axon guidance cues
during neural development. Substantial evidence supports the
notion that netrins function as long-range chemotropic guidance
cues in the embryonic vertebrate CNS. Floor plate cells express the
netrin 1 gene, and a gradient of netrin 1 protein is present in the
embryonic spinal cord as commissural axons extend to the ventral

midline (Kennedy et al., 1994; Kennedy et al., 2006; Placzek et al.,
1990; Serafini et al., 1996; Tessier-Lavigne et al., 1988) (Fig. 2A).
In vitro axon turning assays (see Glossary, Box 1) have
demonstrated that recombinant netrin 1 mimics the capacity of the
floor plate to promote commissural axon outgrowth from explants
of dorsal neural epithelium (Serafini et al., 1994). Similarly, a
cellular source of netrin 1 attracts extending commissural axons,
deflecting them from their dorsoventral trajectory in the embryonic
neural tube (Kennedy et al., 1994). In this axon turning assay,
growth cones (see Glossary, Box 1) turned up to 250 m away
from the floor plate, revealing the capacity of netrin 1 protein to
diffuse at least this distance through the embryonic neural
epithelium (Kennedy et al., 1994; Placzek et al., 1990). In a further
reduced axon turning assay that utilised Xenopus retinal ganglion
cells (RGCs, see Glossary, Box 1) in dispersed culture, axonal
growth cones could be attracted up a gradient of netrin 1 ejected
from a pipette (de la Torre et al., 1997). In addition to
chemoattraction, netrin 1 functions as a repellent for other cell
types, such as the trochlear motoneurons and oligodendrocyte
precursor cells (OPCs) (Colamarino and Tessier-Lavigne, 1995;
Jarjour et al., 2003) (Fig. 2A). Subsequent studies have
demonstrated that secreted netrins direct axon extension in many
different parts of the developing nervous system.

Axon branching, innervation and synaptogenesis
Once an axon has reached its target, appropriate innervation often
involves axon branching. Secreted netrins regulate branching and,
similar to their roles in axon guidance, this contribution of netrins
to neural development is evolutionarily conserved. For example,
increased expression of the DCC homologue UNC-40 (Gitai et al.,
2003), or the misexpression of the N-terminal domain of the netrin
homologue UNC-6 (Lim et al., 1999), increases axon branching by
motoneurons in C. elegans (Wang and Wadsworth, 2002). UNC-
40 promotion of axon branching in C. elegans requires MADD-2,
a tripartite motif protein that recruits the actin regulatory protein
MIG-10, the homologue of lamellipodin (RAPH1) in vertebrates
(Hao et al., 2010). Studies using mammalian neocortical neurons
in vitro have demonstrated that local application of netrin 1

Box 2. Netrins and netrin receptors: insights from knockout
mice
Mice lacking netrin 1 exhibit severe neurodevelopmental defects
and die within a few hours of birth (Serafini et al., 1996),
highlighting the importance of netrin signalling during
development. Deficits in these mice include the disruption of
multiple CNS commissures, including the ventral spinal commissure,
the corpus callosum and the anterior and hippocampal
commissures (Serafini et al., 1996). Mice lacking DCC phenocopy
the netrin 1 null mice remarkably closely (Fazeli et al., 1997),
highlighting the role of DCC as a key netrin 1 receptor. Unc5a null
mice are viable and live to adulthood, but exhibit reduced neuronal
apoptosis (Williams et al., 2006). Unc5b knockout mice die during
embryogenesis due to heart failure and substantial disruption of
their vasculature (Lu et al., 2004). Unc5c null mice survive to
adulthood, but are ataxic and exhibit cell migration defects in the
cerebellum (Ackerman et al., 1997; Goldowitz et al., 2000). The
ventral-dorsal trajectories of axons that normally project away from
netrin 1 expressed at the ventral midline are also disrupted in Unc5
nulls, including the axons of trochlear motoneurons (Burgess et al.,
2006) and of hindbrain cerebellar, inferior olivary and pontine axons
(Kim and Ackerman, 2011). These findings provide evidence that
UNC5 homologues direct axon extension in the mammalian CNS.
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promotes de novo axon branch formation by rapidly inducing Ca2+

transients, polymerisation of F-actin, and the formation of
filopodial protrusions that may become a branch point (Dent et al.,
2004). The induced increase in intracellular Ca2+ appears to be
crucial because inhibiting the netrin 1-mediated Ca2+ signalling
pathway disrupts axon branch formation induced by netrin 1 (Tang
and Kalil, 2005).

Initial evidence in support of a role for netrins in
synaptogenesis came from genetic analyses of Drosophila
motoneurons, which form glutamatergic synapses on body wall
muscles. Upregulating the expression of Netrin by muscle cells
results in the increased formation of synaptic connections,
whereas fewer synapses are established in the absence of
Frazzled expression by the motoneuron (Kolodziej et al., 1996;
Mitchell et al., 1996; Winberg et al., 1998). Interestingly, the
axon guidance cue Semaphorin was found to have an opposite
effect to Netrin at this synapse (Winberg et al., 1998). When the
expression of Netrin and Semaphorin was either simultaneously
upregulated or absent, synaptic innervation was normal,
suggesting that these factors are not required for the axon to find
the muscle but rather that they modulate the number of
connections that are made between motoneurons and muscles. In
C. elegans, UNC-6 regulates synaptogenesis by organising the
subcellular distribution of presynaptic proteins (Colon-Ramos et
al., 2007; Poon et al., 2008). These findings have also been
extended to vertebrates; perfusion of netrin 1 into the Xenopus
optic tectum (see Glossary, Box 1) during development results
in a DCC-dependent increase in RGC axon branching and the
formation of additional presynaptic puncta (Manitt et al., 2009).

These data support a role for netrin during the early stages of
synaptogenesis, but also raise the possibility that netrin 1 and DCC
influence synapse structure and function in the mature nervous
system. DCC is highly expressed, particularly by dopaminergic
(DA) neurons (see Glossary, Box 1), during development and in
adulthood (Livesey and Hunt, 1997; Volenec et al., 1998). Mice
heterozygous for loss of Dcc function are viable but express

reduced levels of DCC protein (Fazeli et al., 1997). Intriguingly,
adult Dcc heterozygous mice exhibit a blunted response to
amphetamine (see Glossary, Box 1) and do not develop behavioural
sensitisation to repeated doses of this drug (Flores et al., 2005). A
recent examination of newborn Dcc heterozygous and null mice
revealed defects in DA precursor cell migration, axon guidance and
terminal arborisation (Xu et al., 2010). In particular, increased DA
innervation was present in the medial prefrontal cortex of Dcc
heterozygotes (Xu et al., 2010), a brain region that is associated
with drug addiction (Steketee, 2003). Although increased
innervation was detected in adult Dcc heterozygotes, newborns
were indistinguishable from wild-type littermates (Xu et al., 2010).
This indicates that the increase in DA axon arborisation occurs
during post-natal development and is consistent with findings
demonstrating that the response of Dcc heterozygotes to
amphetamine changes during maturation (Grant et al., 2009).
Further in vitro studies demonstrated that loss of DCC function
inhibits netrin 1-induced DA axon branching and results in fewer
autaptic synaptic (see Glossary, Box 1) connections per cell (Xu et
al., 2010). These findings support the conclusion that DCC
expression regulates the extent of axonal and terminal arborisations
in the mammalian brain.

Oligodendroglial development and maturation
Netrin 1 makes key contributions to several stages of the
maturation of oligodendrocytes (see Glossary, Box 1). In the
embryonic spinal cord, OPCs, which express DCC and UNC5A,
are repelled by the gradient of netrin 1 that emanates from the floor
plate (Jarjour et al., 2003; Tsai et al., 2006; Tsai et al., 2009; Tsai
et al., 2003) (Fig. 2A). This directs OPCs away from the ventricular
zone where they were born and towards axons at the edge of the
neural tube (Jarjour et al., 2003; Tsai et al., 2006). Upon reaching
the nascent white matter, post-mitotic oligodendrocytes elaborate
highly branched processes that then extend in search of axons
(Haber et al., 2009; Kirby et al., 2006) (Fig. 2B). At this point in
their differentiation, oligodendrocytes express netrin 1, and both
autocrine and paracrine sources promote process branching and the
elaboration of myelin-like membrane sheets (Rajasekharan et al.,
2009). Through DCC, netrin 1 activates the Src family kinase
(SFK) member FYN in differentiating oligodendrocytes, an event
confirmed by the fact that netrin 1 does not induce process
branching in oligodendrocytes derived from Fyn knockout mice
(Rajasekharan et al., 2009). In migrating OPCs, netrin 1 activates
the Rho GTPase RHOA and requires DCC and the RHOA effector
ROCK to mediate chemorepulsion (Rajasekharan et al., 2010). By
contrast, netrin 1 inhibits RHOA in differentiating post-mitotic
oligodendrocytes and this is required for netrin 1-dependent
oligodendroglial process branching (Rajasekharan et al., 2010).
These findings indicate that differential regulation of RHOA
contributes to the distinct responses made by OPCs and post-
mitotic oligodendrocytes to netrin 1.

In the mature CNS, myelinating oligodendrocytes continue to
express netrin 1, DCC and UNC5 homologues (Manitt et al.,
2001; Manitt et al., 2004). Netrin 1 and DCC are particularly
enriched at oligodendroglial paranodal junctions (Jarjour et al.,
2008) (Fig. 2B). Paranodes (see Glossary, Box 1) become
disorganised in the absence of DCC or netrin 1, which results in
the disruption of the nodes of Ranvier (see Glossary, Box 1)
(Jarjour et al., 2008). DCC localised to the oligodendroglial
membrane loops is thought to bind netrin 1 on the axon surface
to mediate oligo-axonal adhesion and organise the cytoskeleton
within the oligodendrocyte (Jarjour et al., 2008). Together, these

REVIEW Development 138 (11)

Box 3. Neural circuitry and neurodegenerative diseases
A recent study has identified functional DCC heterozygosity in
humans as an underlying cause of congenital mirror movements
(Srour et al., 2010), which are involuntary contralateral movements
that mirror unilateral voluntary movements. These findings suggest
that a reduction in DCC gene dosage during human development
sufficiently disrupts neural circuitry to result in mirror movements.
Another series of human genetic studies reported that single
nucleotide polymorphisms found in the human genes encoding
netrin 1 and DCC correlate with the susceptibility to develop
Parkinson’s disease and amyotrophic lateral sclerosis (ALS) (Lesnick
et al., 2007; Lesnick et al., 2008; Lin et al., 2009). These findings
are particularly intriguing in light of studies that implicate the
secreted netrins and DCC in synapse formation, and lead to the
hypothesis that netrin-related changes in synapse function might
influence the development and progression of certain forms of
human neurodegenerative diseases. The recent identification of
netrin 1 as a ligand for DSCAM, a gene implicated in Down
syndrome, suggests that some of the deficits associated with this
disorder might result from altered netrin signalling (Liu et al., 2009;
Ly et al., 2008). Netrin G proteins have also emerged as important
regulators of glutamatergic synaptogenesis, and mutations in the
human gene for netrin G1 are associated with an atypical form of
Rett syndrome, a neurological disorder (Archer et al., 2006; Borg et
al., 2005; Nectoux et al., 2007).
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findings identify three distinct roles for netrin 1 at various points
during development of the oligodendrocyte lineage: repelling
precursor cell migration, promoting process elaboration during
differentiation, and maintaining specialised cell-cell junctions in
the mature cell. Although implicated at each stage of
differentiation, how netrin 1 and DCC fulfil these different roles,
and the unique signalling mechanisms involved in these events,
are not well understood.

Netrin function outside the nervous system
Netrins and netrin receptors are also expressed in a number of
tissues outside of the nervous system and play key roles during
development by regulating cell adhesion and tissue morphogenesis
(Fig. 3). In the developing mammary gland, terminal end buds are
the growing tips of the ductal network and consist of two layers:
the luminal epithelial cells and the cap cells. Netrin 1 secreted by
the luminal cells binds to the DCC homologue neogenin, which is
expressed by the adjacent cap cells. This mediates adhesion
between the two cell layers, an event required for proper terminal
end bud formation (Srinivasan et al., 2003) (Fig. 3A). Another
example of a non-neuronal role for netrins occurs during branching
morphogenesis of the embryonic lung, where netrin 1 and 4 are
expressed by epithelial stalk cells and inserted into the basement
membrane surrounding the developing endoderm buds. This sheath
of netrin around the developing bud functions to constrain DCC-
and UNC5B-expressing distal tip cells, thereby preventing
excessive branching and ectopic bud formation (Liu et al., 2004)
(Fig. 3B). Pancreatic development also requires netrin 1, which is
produced by epithelial ductal cells and associates with collagen IV
and fibronectin in the local ECM (Yebra et al., 2003). In this
context, interactions between netrin 1 and the 64 and 31
integrins are thought to contribute to epithelial cell-matrix adhesion
(Yebra et al., 2003).

Netrins also contribute to the elaboration of vascular networks
(Fig. 3C). Vascular endothelial tip cells exhibit highly motile
protrusions that are reminiscent of axonal growth cones. These
cells express UNC5B and their motility is inhibited by netrin 1,
thereby limiting endothelial cell migration and blood vessel
branching (Larrivee et al., 2007; Lejmi et al., 2008; Lu et al., 2004).
Controversy exists, however, with regard to the precise role of
netrins during vascular development, as other studies have reported
that netrin promotes angiogenesis (Epting et al., 2010; Park et al.,
2004; Wilson et al., 2006), perhaps reflecting differences in the
populations of endothelial cells examined or experimental
conditions employed. A recent study describes a role for netrin 4
in the development of the lymphatic vascular system
(lymphangiogenesis) and implicates netrin 4 activation of ERK,
AKT and S6 kinase in vessel formation (Larrieu-Lahargue et al.,
2010). Notably, these findings provide multiple examples of netrins
directing the formation of branched networks by promoting or
constraining elongation and branching in different contexts. Netrin
1 can also inhibit leukocyte migration (Ly et al., 2005), and recent
findings provide intriguing evidence that upregulation of netrin
expression provides protection against the deleterious effects of
inflammation in several tissues (Mirakaj et al., 2010; Rosenberger
et al., 2009; Tadagavadi et al., 2010; Wang, W. et al., 2008).

Netrin signalling mechanisms
Studies investigating the signal transduction mechanisms engaged
by secreted netrins have focused largely on netrin 1, and relatively
little is known about the specific signalling mechanisms activated
by other netrin family members. Functions described for netrin 1
include the regulation of cell migration, axon extension and
guidance, cell-cell and cell-substrate adhesion, cell survival and
cellular differentiation. As we discuss below, recent studies have
identified a number of molecular signalling components that

DCC/Neogenin        

Netrin

Secreted netrin 
bound to 
surrounding ECM

Commissural 
neurons

Oligodendrocyte 
precursor cells

A  Axon guidance B  Oligodendrocyte differentiation                   

1

4

2 3

Trochlear 
motoneuron

Key

Fig. 2. Netrin function in the nervous system. (A)Within the developing spinal cord, netrin 1 (green) secreted by floor plate cells forms a
gradient emanating from the ventral midline. The netrin 1 gradient is bifunctional, attracting the migration of some cells, such as spinal
commissural axons (purple), and repelling others, such as migrating oligodendrocyte precursor cells (OPCs) in the spinal cord (orange) and the axons
of trochlear motoneurons in the brainstem (red). (B)Netrin 1 influences oligodendrocytes at several stages of their differentiation: bipolar migrating
OPCs (1) express DCC and UNC5A and are repelled by a gradient of netrin 1. Multipolar post-mitotic differentiating oligodendrocytes (2) express
netrin 1, DCC and UNC5 homologues. Netrin 1 protein, from autocrine and paracrine sources, promotes process branching and myelin-like
membrane sheet formation (3). Netrin 1 and DCC expressed by mature myelinating oligodendrocytes (4) are enriched at paranodal junctions, which
are specialised junctions formed between non-compacted oligodendroglial membranes and the axon. The paranode flanks the node of Ranvier.
Netrin 1 and DCC are required to maintain the organisation of paranodal junctions.
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function downstream of netrin 1, although the molecular details of
how these elements interact to generate specific cellular responses
are not well understood.

Chemoattractant signal transduction cascades
In vertebrate species, studies of the axonal projections made by
embryonic spinal commissural neurons and RGCs have been
particularly useful for investigating the mechanisms that underlie
netrin 1-mediated axon chemoattraction. The growth cone, which
is found at the tip of an extending axon, projects filopodia (see
Glossary, Box 1) and lamellipodia (see Glossary, Box 1) that probe
the extracellular environment for guidance cues. Cytoplasmic
signal transduction molecules in the growth cone link the activation
of axon guidance receptors to the reorganisation of the actin
cytoskeleton (Huber et al., 2003). For example, growth-promoting
extracellular guidance cues induce the formation of adhesive
complexes that then enhance membrane extension on one side of
the growth cone by locally restricting the retrograde flow of F-
actin, resulting in directional extension (Dickson, 2002; Huber et
al., 2003). Recent studies have shown that netrin 1 can activate
multiple downstream signal transduction molecules that regulate
cytoskeletal dynamics and process extension, including SFKs and
members of the Rho GTPase family (see Glossary, Box 1) (Huber
et al., 2003).

In neurons that respond to netrin 1 as a chemoattractant, the
intracellular domain of DCC is constitutively bound to the adaptor
protein NCK1 and to focal adhesion kinase (FAK; PTK2) (Li et al.,
2004; Li et al., 2002a; Ren et al., 2004). The binding of netrin 1 to
DCC triggers the dimerisation of DCC via its P3 intracellular
domain (Stein et al., 2001), as well as FAK autophosphorylation
and tyrosine phosphorylation of the DCC intracellular domain (Ren
et al., 2004). This initiates the recruitment of several intracellular
signalling components to the DCC-NCK1-FAK complex (Fig. 4A),
which subsequently act to regulate SFK signalling, Rho GTPase
activation, the release of Ca2+ stores, protein translation and
rearrangements of the cytoskeleton.

Netrin 1 induces the recruitment and activation of FYN, which
binds to DCC between P2 and P3 (Li et al., 2004; Meriane et al.,
2004). FYN is thought to then regulate the activity of Rho
GTPases: RAC1 and CDC42 become activated (Li et al., 2002b;

Shekarabi and Kennedy, 2002; Shekarabi et al., 2005), whereas
RHOA is inhibited (Moore et al., 2008) (Fig. 4A). Consistent with
these findings, which were obtained using mammalian neurons, the
Rac-like GTPase in C. elegans, CED-10, was shown to be required
for netrin-dependent axon guidance in this organism (Gitai et al.,
2003). Two guanine nucleotide exchange factors (GEFs) for RAC1,
TRIO and DOCK180 (DOCK1), have since been reported to
function downstream of DCC in vertebrate neurons (Briancon-
Marjollet et al., 2008; Li et al., 2008). These GEFs regulate the
activation of Rho GTPases by promoting the exchange of GDP for
GTP. Genetic analysis in Drosophila has also identified a role for
TRIO in netrin signalling (Forsthoefel et al., 2005), whereas in C.
elegans the Trio homologue UNC-73 is required for appropriate
localisation of UNC-40 to the cell surface (Watari-Goshima et al.,
2007). However, the mechanisms responsible for regulating
CDC42 and RHOA downstream of DCC in neurons remain
unclear. Neither Trio nor Dock180 knockout mice (Briancon-
Marjollet et al., 2008; Laurin et al., 2008) phenocopy the severity
of the neural developmental defects found in Dcc or netrin 1
knockouts (Fazeli et al., 1997; Serafini et al., 1996), indicating that
additional mechanisms must contribute to DCC signalling during
chemotropic axon guidance.

Netrin 1 also activates the serine/threonine kinase PAK1 and, in
embryonic rat spinal commissural neurons, promotes its
recruitment into a complex with DCC (Shekarabi et al., 2005) (Fig.
4A). PAK1 is a downstream effector of CDC42 and RAC1 and
functions as an adaptor that links NCK1 to CDC42 or RAC1
(Bagrodia and Cerione, 1999). Disruption of PAK1 binding to
NCK1 blocks netrin 1-induced recruitment of PAK1 to DCC and
inhibits netrin 1-induced growth cone expansion (Shekarabi et al.,
2005). Additional downstream effectors of CDC42 that are
activated by DCC include the actin-binding proteins
Enabled/vasodilator-stimulated phosphoprotein (ENA/VASP) and
neuronal Wiskott-Aldrich syndrome protein (N-WASP), which are
both modulators of actin polymerisation (Lebrand et al., 2004;
Shekarabi et al., 2005).

DCC-dependent commissural axon chemoattraction also involves
the activation of the mitogen-activated protein kinase (MAPK)
cascade (Campbell and Holt, 2003; Forcet et al., 2002; Ma et al.,
2010). The extracellular signal-regulated kinases 1 and 2 [ERK1

REVIEW Development 138 (11)

Cap cell

Luminal cell

Somite

Somite

Endothelial 
   tip cell

C  AngiogenesisB  Lung morphogenesisA  Mammary gland development

Fig. 3. Netrin function in other developing organs and tissues. (A)In mammary gland morphogenesis, the terminal end buds of ductal
branches consist of two layers of cells – cap cells and luminal cells. The luminal cells express netrin 1 (green), which binds neogenin (orange)
expressed by the cap cells and provides a stable adhesive interaction between the two layers. (B)During lung morphogenesis and the development
of the bronchial tree, epithelial stalk cells secrete netrin 1 and netrin 4 into the surrounding basal lamina to inhibit inappropriate proximal branching
and bud formation. (C)Endothelial tip cells that pioneer vascular formation are highly motile protrusive cells, similar to axonal growth cones. During
angiogenesis, somites secrete netrin (green) that inhibits vascular branching via a mechanism that is dependent on UNC5B expression by
endothelial tip cells.
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(MAPK3) and ERK2 (MAPK1)] are phosphorylated following
netrin receptor activation, which results in the activation of specific
transcription factors such as ELK1 (Forcet et al., 2002), implicating
a role for netrin 1 upstream of transcriptional activation. The binding
of netrin 1 to DCC also promotes the synthesis of the
phosphoinositide phosphatidylinositol (4,5) bisphosphate (PIP2) (Xie
et al., 2005), which is phosphorylated by phosphatidylinositol-3
kinase (PI3K) and results in phosphatidylinositol (3,4,5)
trisphosphate (PIP3) production. Notably, PIP3 facilitates the binding
of GTPases to their effectors, thereby enhancing signalling (Di Paolo
and De Camilli, 2006). Netrin 1 also induces PIP2 hydrolysis by
phospholipase C (PLC) to generate diacylglycerol (DAG) and
inositol 1,4,5-triphosphate (IP3), which in turn activate protein kinase

C (PKC) and stimulate the release of Ca2+ from intracellular stores,
respectively (Ming et al., 1999; Xie et al., 2006). PKC additionally
mediates cytoskeletal rearrangements and translational control
(Larsson, 2006), whereas increased levels of intracellular Ca2+ are
required for the axons of Xenopus spinal neurons to turn towards a
source of netrin 1 (Hong et al., 2000). In addition to the release of
Ca2+ from intracellular stores, netrin 1 also activates transient
receptor potential (TRP) channels to trigger a Ca2+ influx across the
plasma membrane of Xenopus spinal neurons, which is required for
axon chemoattraction to netrin 1 (Wang and Poo, 2005).

In contrast to the signal transduction cascades activated
downstream of DCC, little is known regarding signal transduction
downstream of DSCAM in vertebrate species. It is known from in
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heterodimers, which are thought to facilitate long-range responses by increasing the sensitivity to relatively low netrin concentrations, or through
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phosphorylated mitogen-activated protein kinase kinase 1/2; PAK1, p21-activating kinase 1; PI3K, phosphatidylinositol-3 kinase; PIP,
phosphatidylinositol phosphate; PIP2, phosphatidylinositol (4,5) bisphosphate; PIP3, phosphatidylinositol (3,4,5) trisphosphate; PKC, protein kinase
C; PLC, phospholipase C; RAC1, ras-related C3 botulinum toxin substrate 1; RHOA, Ras homologue gene family member A; ROCK, RhoA kinase;
SHP2, Src homology region 2 domain-containing phosphatase 2; SRC, tyrosine kinase sarcoma.
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vitro studies that the intracellular domain of human DSCAM
interacts with PAK1 (Li and Guan, 2004), and netrin 1 binding
triggers the activation of PAK1 and FYN (Liu et al., 2009), which
are downstream signalling molecules shared with DCC (Meriane
et al., 2004; Shekarabi et al., 2005). In Drosophila, DSCAM binds
DOCK, a homologue of NCK1 in mammals, and activates PAK1
(Schmucker et al., 2000), which is reminiscent of DCC signalling
in mammalian neurons (Li et al., 2002a; Shekarabi et al., 2005).
Curiously, the extracellular domains of mammalian and Drosophila
DSCAM are well conserved, but their intracellular domains are not
(Schmucker et al., 2000).

Chemorepellent signal transduction cascades
The signalling mechanisms that underlie netrin 1-induced
chemorepulsion are considerably less well understood than those
underlying chemoattraction, although they appear to be mediated
primarily by UNC5 and UNC5-DCC signalling. Studies carried out
in Drosophila in vivo and in mammalian cell lines in vitro support
the conclusion that expression of an UNC5 homologue in the
absence of DCC mediates short-range repulsion in response to
netrin, whereas long-range netrin-induced repulsion requires
multimerisation of UNC5 with DCC, mediated by interaction
between the DB domain of UNC5 and the P1 domain of DCC
(Hong et al., 1999; Keleman and Dickson, 2001) (Fig. 4B).
Interestingly, studies in Drosophila indicate that the DB domain of
UNC-5 is also required for short-range repulsion, which does not
require the DCC orthologue Frazzled (Keleman and Dickson,
2001), perhaps revealing the contribution of an alternative UNC5
co-receptor. In C. elegans, neurons that express both UNC-5 and
UNC-40 are repelled by the netrin homologue UNC-6 (Hedgecock
et al., 1990) (Table 1). Initial evidence for UNC-40-dependent and
-independent functions of UNC-5 in C. elegans came from studies
demonstrating that, in unc-5 null worms, defects in neuronal
migration away from an UNC-6 source are almost as severe as
those observed in unc-6 nulls, whereas the deficits in
chemorepulsion that are present in unc-40 nulls are not as severe
(Hedgecock et al., 1990). This indicates that UNC-40 is not
essential for UNC-5 function in all cells. Subsequent studies in C.
elegans demonstrated that ectopic expression of UNC-5 in neurons
that normally project ventrally is sufficient to direct their axons
dorsally, away from the UNC-6 source in vivo, and that this
response requires UNC-40 function, supporting a role for both
UNC-5 and UNC-40 in chemorepulsion in response to UNC-6
(Colavita and Culotti, 1998; Hamelin et al., 1993). This conclusion
is also consistent with studies of cell and axon migration in
vertebrates, which have demonstrated that the genetic ablation of
Dcc or disruption of DCC function compromises the repellent
responses of neurons to netrin 1 (Hong et al., 1999; Jarjour et al.,
2003).

UNC5 function is absolutely dependent on its cytoplasmic
domain (Hong et al., 1999; Keleman and Dickson, 2001; Killeen
et al., 2002). Remarkably, expression of the UNC5B cytoplasmic
domain alone is sufficient to trigger repulsion in Xenopus spinal
neurons through its association with the intracellular domain of
DCC (Hong et al., 1999). Deletion analyses of UNC5 revealed a
functional contribution of the cytoplasmic juxtamembrane domain
to axon guidance in C. elegans, whereas deletion of the
cytoplasmic ZU-5 domain disrupted function in both Drosophila
and C. elegans (Keleman and Dickson, 2001; Killeen et al., 2002),
confirming that the cytoplasmic domain of UNC5 is crucial for its
function. Both long- and short-range repellent responses of axons
to netrin secreted from the Drosophila embryo midline require an

intact DD (Keleman and Dickson, 2001). By contrast, the DD was
found to be dispensable in Xenopus for chemorepellent axon
turning to netrin 1 (Hong et al., 1999), perhaps owing to a species
difference or to the reduced complexity of the in vitro assay
employed.

Studies of the signal transduction pathway downstream of UNC5
have identified a limited number of components. Netrin 1 induces
phosphorylation of UNC5 (on Y482) in a DCC-dependent manner,
through the actions of SRC and FAK (Killeen et al., 2002; Li et al.,
2006). This leads to the binding of the tyrosine phosphatase SHP2
(PTPN11) to UNC5 (Fig. 4B) (Tong et al., 2001). Studies in C.
elegans have also identified roles for the PAK family member
MAX-2 and the adaptor protein MAX-1 as modulators of UNC-5-
mediated axon repulsion (Huang et al., 2002; Lucanic et al., 2006).

Cell adhesion pathway signalling
When DCC binds to immobilised netrin 1 in vitro, it mediates cell-
substrate adhesion (Moore et al., 2008; Shekarabi et al., 2005). The
importance of this has been highlighted in a recent study showing
that axon chemoattraction requires that DCC adheres to
immobilised netrin 1 so as to transduce force across the plasma
membrane (Moore et al., 2009). These findings support the idea
that, during netrin-induced chemoattraction, DCC has two
simultaneous functions: as a transmembrane bridge that links
extracellular netrin 1 to the actin cytoskeleton, and as the core of a
protein complex that directs the reorganisation of F-actin. In further
support of this mechanism of action, it has been shown that netrin
1 and DCC, when expressed by mature myelinating rodent
oligodendrocytes, are both required to maintain axo-
oligodendroglial paranodal junctions (Jarjour et al., 2008).

Outside of the nervous system, netrin 1, netrin 3, netrin 4, DCC
and neogenin have been shown to regulate epithelial
morphogenesis in the mammary gland, pancreas, lung and
lymphatic vasculature, in part by influencing cell-cell adhesion
(Hebrok and Reichardt, 2004; Larrieu-Lahargue et al., 2010; Liu et
al., 2004; Slorach and Werb, 2003; Srinivasan et al., 2003; Yebra
et al., 2003). Furthermore, during muscle development, myoblasts
express neogenin and netrin 3, and myoblast fusion to produce
myotubes requires neogenin and is enhanced by the addition of
netrin (Kang et al., 2004). The intracellular domain of DCC also
contains a proposed ezrin/radixin/moesin and merlin (ERM-M)-
binding domain to which the ERM proteins ezrin and merlin
(neurofibromin 2) can bind (Martin et al., 2006). ERM proteins are
ubiquitous cytoplasmic adaptors that function as links between
transmembrane adhesion proteins and the actin cytoskeleton, and
influence protein trafficking and signal transduction to regulate
tissue organisation (Tepass, 2009). Interestingly, ectopic expression
of DCC in a colon cancer cell line increased cell-cell adhesion
while reducing cell-matrix adhesion, increasing the number of
desmosomes between cells and reducing focal adhesions that link
cells to the substrate (Martin et al., 2006). Overall, these findings
suggest a role for netrins and their receptors in modulating cell-cell
and cell-matrix adhesion; however, the details of these interactions
and their full functional significance remain to be investigated.

Modulation of netrin signalling by cAMP, receptor
trafficking and calcium
Cyclic adenosine monophosphate (cAMP) is a well-characterised
second messenger that exerts a profound influence on axon guidance
and axon regeneration. Increasing cAMP activates protein kinase A
(PKA), which in turn regulates Rho GTPase activation (Lang et al.,
1996) and ENA/VASP function (Gertler et al., 1996; Krause et al.,

REVIEW Development 138 (11)

D
E
V
E
LO

P
M
E
N
T



2163REVIEWDevelopment 138 (11)

2003), both of which signal downstream of netrin 1 to direct
cytoskeletal rearrangements (Gitai et al., 2003; Lebrand et al., 2004;
Moore et al., 2008; Shekarabi and Kennedy, 2002). Importantly, it
has been shown that, in response to PKA inhibition, the axons of
Xenopus spinal neurons can shift their response to a netrin 1 gradient
from attraction to repulsion (Ming et al., 1997). These findings led
to the hypothesis that PKA activation regulates the direction of axon
turning by altering signal transduction pathways downstream of
netrin 1. More recently, it was demonstrated that PKA activation in
embryonic rat spinal commissural neurons or neocortical neurons
causes the relocation of DCC from an intracellular vesicular pool to
the plasma membrane of the growth cone (Bouchard et al., 2008;
Bouchard et al., 2004). This increased DCC presented by growth
cones enhances axon outgrowth and the turning responses of these
axons to netrin 1 (Bouchard et al., 2008; Bouchard et al., 2004;
Moore and Kennedy, 2006). The inhibition of RHOA, which is a
downstream consequence of PKA activation, also causes DCC to be
recruited to the plasma membrane and promotes commissural axon
outgrowth in response to netrin 1 (Moore et al., 2008). Interestingly,
PKA inhibition did not result in embryonic rat spinal commissural
axons switching their response to repulsion, but instead reduced the

extent of their attraction to a gradient of netrin 1 (Moore and
Kennedy, 2006). These findings indicate that PKA regulates the
sensitivity of embryonic spinal commissural neurons to a gradient of
netrin 1 by modulating the trafficking of DCC (Fig. 5A). Membrane
extension is thus hypothesised to be driven by the insertion of DCC
at the leading edge of growth cones, the stabilisation of DCC in the
plasma membrane, the linking of DCC to actin filaments, and by
signalling mechanisms that are activated by DCC to promote actin
polymerisation (Fig. 5B). This mechanism combines the substrate-
cytoskeletal coupling model that describes the action of adhesion
molecules, such as L1CAM (Suter and Forscher, 2000), with the
localised activation of signalling that directs cytoskeletal
reorganisation (Hall and Lalli, 2010).

Conversely, the activation of PKC triggers the endocytosis of
UNC5 homologues (Fig. 5A), resulting in cultured cerebellar
granule cell neurons switching from repellent to attractant
responses to netrin 1 (Bartoe et al., 2006). In rat hippocampal
neurons, activating PKC recruits the adaptor protein interacting
with C kinase 1 (PICK1) to the UNC5A intracellular domain,
triggering internalisation of UNC5A but not DCC, consequently
switching the response of these cells to netrin 1-mediated attraction
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Fig. 5. Regulation of netrin receptor trafficking and membrane recruitment. (A)In axonal growth cones, the activation of protein kinase A
(PKA) recruits DCC from an intracellular pool of vesicles to the plasma membrane, which enhances the axon outgrowth evoked by netrin 1.
Activation of protein kinase C (PKC) activates endocytosis of UNC5A, causing neurons to switch from chemorepellent to chemoattractant responses
to netrin 1. (B)DCC is proposed to function in axonal growth cones simultaneously as a transmembrane bridge that links extracellular netrin to the
F-actin cytoskeleton and as the core of a protein complex that directs the reorganisation of F-actin. Membrane extension is hypothesised to be
driven by the insertion of DCC at the leading edge of the growth cone, DCC stabilisation in the plasma membrane through binding to immobilised
matrix-associated netrin, and linkage of DCC to polymerising filaments of F-actin. AC, adenylate cyclase; cAMP, cyclic adenosine monophosphate.
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(Williams et al., 2003). Together, these findings identify the
regulation of netrin receptor trafficking as a key determinant of the
migratory response made by axonal growth cones.

Decreasing cytoplasmic Ca2+ levels, by blocking Ca2+ release
from intracellular stores or by inhibiting its influx through Ca2+

channels, can also convert Xenopus spinal neuron responses to
netrin 1 from attraction to repulsion (Hong et al., 2000). This
requires calcium-calmodulin-dependent protein kinase II (CaMKII)
and calcineurin (CaN) phosphatase, with high local Ca2+

concentrations favouring CaMKII-induced attraction and moderate
levels of Ca2+ activating CaN to mediate repulsion (Wen et al.,
2004). Cyclic guanosine monophosphate (cGMP) signalling also
influences the response to netrin 1: a high intracellular ratio of
cAMP to cGMP promotes the attraction of Xenopus spinal neuron
growth cones to netrin 1 by activating Ca2+ entry through L-type
calcium channels (LCCs), whereas a low ratio results in decreased
Ca2+ influx and netrin 1-mediated repulsion (Nishiyama et al.,
2003).

Effects of netrin signalling on localised protein translation
Extending axons contain a subpopulation of transported mRNAs
and the machinery for local protein translation, providing the
growth cone with a substantial level of functional autonomy from
the cell body during embryogenesis (Lin and Holt, 2008). Recent
studies suggest that localised binding of netrin to its receptors can
activate translation and can function to restrict new protein
synthesis to specific subdomains of a cell or growth cone, thereby

influencing axon growth. In Xenopus RGCs, for example, the
application of netrin 1 rapidly activates translation initiation factors
and increases the local synthesis of proteins such as -actin (Leung
et al., 2006). Importantly, activation of translation is required for
the netrin-mediated growth cone turning of Xenopus RGCs
(Campbell and Holt, 2001) and is regulated by the ERK and p38
MAPK (MAPK14) pathways (Campbell and Holt, 2003). Finally,
a recent study provides evidence that DCC binds directly to large
and small ribosomal subunits, eukaryotic initiation factors and
monosomes (Tcherkezian et al., 2010), suggesting that DCC can
act to anchor the translation machinery to the plasma membrane
and spatially restrict protein synthesis.

Conclusions
Netrins are essential chemotropic cues for migrating cells and
axons during neural development. Although the majority of studies
thus far have focused on this guidance role in the embryonic
nervous system, it is now apparent that netrin family members and
their receptors participate in a range of functions in several tissues,
both throughout development and in adulthood. Tremendous
advances have been made in identifying the signal transduction
components required for netrin function. Determining how netrin
receptors and signal transduction proteins function as an ensemble
in the axonal growth cone to regulate motility remains a major
challenge for current studies. Netrins and netrin receptors have now
also been demonstrated to regulate adhesion in several cellular
contexts; however, how the signalling mechanisms that direct
motility during development subsequently switch during
maturation to regulate cell-cell interactions and adhesion remains
to be determined. In mature tissues, exciting recent findings
implicate netrins in the regulation of adult stem cell migration, in
tumour cell survival (see Box 4) and as modulators of
inflammation, suggesting potentially novel means of promoting
recovery from injury or disease. In this regard, netrins, netrin
receptors and the downstream signalling mechanisms involved are
promising targets for the development of treatments for
neurodegenerative disease, vascular disease and cancer.
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