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GRAPHICAL MODELS FOR CAUSATION,
AND THE IDENTIFICATION PROBLEM

DAVID A. FREEDMAN
University of California, Berkeley

This article (which is mainly expository) sets up graphical models for causation, having a bit less
than the usual complement of hypothetical counterfactuals. Assuming the invariance of error
distributions may be essential for causal inference, but the errors themselves need not be invari-
ant. Graphs can be interpreted using conditional distributions, so that we can better address con-
nections between the mathematical framework and causality in the world. The identification
problem is posed in terms of conditionals. As will be seen, causal relationships cannot be
inferred from a data set by running regressions unless there is substantial prior knowledge about
the mechanisms that generated the data. There are few successful applications of graphical mod-
els, mainly because few causal pathways can be excluded on a priori grounds. The invariance
conditions themselves remain to be assessed.
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In this article, I review the logical basis for inferring causation from
regression equations, proceeding by example. The starting point is a simple
regression; next is a path model, and then simultaneous equations (for supply
and demand). After that come nonlinear graphical models. The key to mak-
ing a causal inference from nonexperimental data by regression is some kind
of invariance, exogeneity being a further issue. Parameters need to be invari-
ant to interventions: This well-known condition will be stated here with a lit-
tle more precision than is customary. Invariance is also needed for (a) errors
or (b) error distributions, a topic that has attracted less attention. Invariance
for distributions is a weaker assumption than invariance for errors. I will
focus on invariance of error distributions in stochastic models for individual
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behavior, eliminating the need to assume sampling from an ill-defined
superpopulation.

With graphical models, the essential mathematical features can be formu-
lated in terms of conditional distributions (“Markov kernels”). To make
causal inferences from nonexperimental data using such techniques, the ker-
nels need to be invariant to intervention. The number of plausible examples is
at best quite limited, in part because of sampling error, in part because of
measurement error, but more fundamentally because few causal pathways
can be excluded on a priori grounds. The invariance condition itself remains
to be assessed.

Many readers will “know” that causal mechanisms can be inferred from
nonexperimental data by running regressions. I ask from such readers an
unusual boon—the suspension of belief. (Suspension of disbelief is all too
readily at hand, but that is another topic.) There is a complex chain of
assumptions and reasoning that leads from the data via regression to causa-
tion. One objective in the present article to is explicate this logic. Please bear
with me: What seems obvious at first may become less obvious on closer con-
sideration, and properly so.

1. A FIRST EXAMPLE: SIMPLE REGRESSION

Figure 1 is the easiest place to start. In order to make causal inferences
from simple regression, it is now conventional (at least for a small group of
mathematical modelers) to assume something like the setup in equation (1)
below. I will try to explain the key features in the formalism, and then offer an
alternative. As will become clear, the equation makes very strong invariance
assumptions, which cannot be tested from data on X and Y.

Yi,x = a + bx + δi. (1)

The subscript i indexes the individuals in a study, or the occasions in a
repeated-measures design, and so forth. A treatment may be applied at vari-
ous levels x. The expected response is a + bx. By assumption, this is linear in
x, with intercept a and slope b. The parameters a and b are the same, again by
assumption, for all subjects and all levels of treatment. When treatment at
level x is applied to subject i, the response Yi,x deviates from the expected by a
“random error” or “disturbance” δi. This presumably reflects the impact of
chance. For some readers, it may be more natural to think of a + δi in (1) as a
random intercept. Others may classify Yi,x as a “potential outcome”: more
about that later.
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In this article, as is commonplace in statistics, random variables like δi are
functions on a probability space Ω. Informally, chance comes in when Nature
chooses a point at random from Ω, which fixes the value of δi. The choice is
made once and once only: Nature does not rerandomize if x is changed in (1).
More technically, Yi,x is a function of x and δi, but δi does not vary with x. (The
formalism is compact, which has certain advantages; on the other hand, it is
easy to lose track of the ideas.)

The δi are assumed to be independent and identically distributed. The
common “error distribution” is unknown, but its mean is assumed to be 0.
Nothing in the equation is observable. To generate the data, Nature is
assumed to choose {Xi: i = 1, . . . , n} independently of {δi: i = 1, . . . , n}, show-
ing us

(Xi, Yi),

where

Yi = Yi Xi, = a + bXi + δi

for i = 1, . . . , n.
Notice that x in (1) could have been anything: The model features multiple

parallel universes, all of which remain counterfactual hypotheticals—
because, of course, we did no intervening at all. Instead, we passively
observed Xi and Yi. (If we had done the experiment, none of these interesting
issues would be worth discussing.) Nature obligingly randomizes for us.
She chooses Xi at random from some distribution, independently of δi, and
sets Yi = a + bXi + δi as required by (1).

“Exogeneity” is the assumed independence between the Xi and the errors
δi. Almost as a bookkeeping matter, your response Yi is computed from your
Xi and error term δi. Nobody else’s X and δ get into the act, precluding interac-
tions across subjects. According to the model, δi exists—incorruptible and
unchanging—in all the multiple unrealized counterfactual hypothetical uni-
verses, as well as in the one real factual observed universe. This is a remark-
ably strong assumption. All is flux, except a, b and δi.
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 at PENNSYLVANIA STATE UNIV on May 17, 2016erx.sagepub.comDownloaded from 

http://erx.sagepub.com/


An alternative setup will be presented next, more like standard regression,
to weaken the invariance assumption. We start with unknown parameters a, b
and an error distribution . The last is unknown, but has mean 0. Nature
chooses {Xi: i = 1, . . . , n} at random from some n-dimensional distribution.
Given the Xs, the Ys are assumed to be conditionally independent, and the
random errors

Yi – a – bXi

are assumed have common distribution . In other words, the Ys are built up
from the Xs as follows. Nature computes the linear function a + bXi, then adds
some noise drawn at random from to get Yi. We get to see the pairs (Xi, Yi)
for i = 1, . . . , n.

In this alternative formulation, there is a fixed error distribution but
there are no context-free random errors. Indeed, errors may be functions of
treatment levels among other things. The alternative has both a causal and an
associational interpretation. (a) Assuming invariance of error distributions to
interventions leads to the causal interpretation. (b) Mere insensitivity to x
when we condition on Xi = x gives the associational interpretation—the prob-
ability distribution of Yi – a – bXi given Xi = x is the same for all x. This can at
least in principle be tested against the data. Invariance to interventions can-
not, unless interventions are part of the design.

The key difference between equation (1) and the alternative is this. In (1),
the errors themselves are invariant. In the alternative formulation, only the
error distribution is invariant. In (1), inference is to the numerical value that
Yi would have had, if Xi had been set to x. In the alternative formulation,
causal inference can only be to the probability distribution that Yi would have
had. With either setup, the inference is about specific individuals, indexed by
i. Inference at the level of individuals is possible because—by assumption—
parameters a, b are the same for all individuals. The two formulations of
invariance, with the restrictions on the Xs, express different ideas of
exogeneity. The second set of assumptions is weaker than the first and seems
generally more plausible.

An example to consider is Hooke’s law. The stretch of a spring is propor-
tional to the load: a is length under no load and b is stretchiness. The distur-
bance term would represent measurement error. We could run an experiment
to determine a and b. Or, we could passively observe the behavior of springs
and weights. If heavier weights are attracted to bigger errors, there are prob-
lems. Otherwise, passive observation might give the right answer. Moreover,
we can with more or less power test the hypothesis that the random errors Yi –
a – bXi are independent and identically distributed. By contrast, consider the
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hypothesis that Yi – a – bXi itself would have been the same if Xi had been 7
rather than 3. Even in an experiment, testing that seems distinctly
unpromising.

What happens without invariance? The answer will be obvious. If inter-
vention changes the intercept a, the slope b, or the mean of the error distribu-
tion, the impact of the intervention becomes difficult to determine. If the vari-
ance of the error term is changed, the usual confidence intervals lose their
meaning.

How would any of this be possible? Suppose, for instance, that—unbe-
knownst to the statistician—X and Y are both the effects of a common cause
operating through linear statistical laws like (1). Suppose errors are inde-
pendent and normal, whereas Nature randomizes the common cause to have
a normal distribution. The scatter diagram will look lovely, a regression line
is easily fitted, and the straightforward causal interpretation will be wrong.

2. CONDITIONALS

Let us assume (informally) that the regression in Figure 1 is causal. What
the Yis would have been if we had intervened and set Xi to xi—this too isn’t
quite mathematics but does correspond to either of two formal systems. One
set of objects is generated by equation (1): the random variables Yi = a + bxi +
δi for i = 1, . . . , n. The second set of objects is this: n independent Ys, the ith
being distributed as a + bxi plus a random draw from the error distribution .
One system is defined in terms of random variables; the other, in terms of
conditional distributions. There is a similar choice for the examples pre-
sented below.

So far, I have been discussing linear statistical laws. In Figure 1, for exam-
ple, suppose we set X = x. Conditionally, Y will be distributed like a + bx plus
random noise with distribution . Call this conditional distribution Kx(dy).
On the one hand, Kx may just represent the conditional distribution of Y given
X = x, a rather dry statistical idea. On the other hand, Kx may represent the
result of a hypothetical intervention: the distribution that Y would have had, if
only we had intervened and set X to x. This is the more exciting causal inter-
pretation. Data analysis on X and Y cannot decide whether the causal inter-
pretation is viable. Instead, to make causal inferences from a system of
regression equations, causation is assumed from the beginning. As Cart-
wright (1989) said, “No causes in, no causes out.” This view contrasts rather
sharply with rhetoric that one finds elsewhere.
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Of course, solid arguments for causation have been made from observa-
tional data, but fitting regressions is only one aspect of the activity (Freedman
1999). Replication seems to be critical, with good study designs and many
different kinds of evidence. Also see Freedman (1997), noting the differ-
ence between conditional probabilities that arise from selection of subjects
with X = x, and conditional probabilities arising from an intervention that sets
X to x. The data structures may look the same, but the implications can be
worlds apart.

3. TWO LINEAR REGRESSIONS

The discussion can now be extended to path diagrams, with similar con-
clusions. Figure 2 involves three variables and is a cameo version of applied
statistics. If we are interested in the effect of Y on Z, then X confounds the
relationship. Some adjustment is needed to avoid biased estimates, and
regression is often used. The diagram unpacks into two response schedules:

Yi,x = a + bx + δi, (2a)

Zi,x,y = c + dx + ey + εi. (2b)

We assume that δ1, . . . , δn, ε1, . . . , εn are all independent. The δs have a com-
mon distribution . The εs have another common distribution . These two
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distributions are unknown but are assumed to have mean 0. Again, nothing in
(2) is observable.

To generate the data, Nature chooses {Xi: i = 1, . . . , n} independently of
{δi, εi: i = 1, . . . , n}. We observe

(Xi, Yi, Zi)

for i = 1, . . . , n, where

Yi = Yi Xi, = a + bXi + δi

Zi = Zi X Yi i, , = c + dXi + eYi + εi.

Basically, this is a recursive system with two equations. The Xs are “exoge-
nous,” that is, independent of the δs and εs. According to the model, Nature
plugs the Xs into (2a) to compute the Ys. In turn, those very Xs and Ys get
plugged into (2b) to generate the Zs. That is the recursive step. In other words,
Yi is computed as a linear function of Xi, with intercept a and slope b, plus the
error term δi. Then Zi is computed as a linear function of Xi and Yi. The inter-
cept is c, the coefficient on Xi is d, the coefficient on Yi is e; at the end, the error
εi is tagged on. Again, the δs and εs remain the same no matter what xs and ys
go into (2); so do the parameters a, b, c, d, e. (Interactions across subjects are
precluded because, for instance, subject i’s response Yi is computed from Xi

and δi rather than Xj and δj.)
The proposed alternative involves not random errors but their distribu-

tions and . These distributions are unknown but have mean 0. We still
have the parameters a, b, c, d, e. To generate the data, we assume that Nature
chooses X1, . . . , Xn at random from some n-dimensional distribution. Given
the Xs, the Ys are assumed to be conditionally independent: Yi is generated by
computing a + bXi, then adding some independent noise distributed accord-
ing to . Given the Xs and Ys, the Zs are assumed to be conditionally inde-
pendent: Zi is generated as c + dXi + eYi, with independent additive noise dis-
tributed according to . The exogeneity assumption is the independence
between the Xs and the errors.

As before, the second setup assumes less invariance than the first. It is
error distributions that are invariant, not error terms; the inference is to distri-
butions rather than specific numerical values. Either way, there are unbiased
estimates for the parameters a, b, c, d, e. The error distributions and
are identifiable; parameters and error distributions are constant in both for-
mulations. As before, the second setup may be used to describe conditional
distributions of random variables. If those conditional distributions admit a
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causal interpretation, then causal inferences can made from observational
data. In other words, regression succeeds in determining the effect of Y on Z if
we know (a) X is the confounder and (b) the statistical relationships are linear
and causal.

What can go wrong? Omitted variables are a problem, as discussed
before. Assuming the wrong causal order is another issue. For example, sup-
pose equation (2) is correct; the errors are independent and normally distrib-
uted; moreover, the exogenous variable X has been randomized to have a nor-
mal distribution. However, the unfortunate statistician regresses (a) Y on Z,
then (b) X on Y and Z. Diagnostics will indicate success: The distribution of
residuals will not depend on the explanatory variables. But causal inferences
will be all wrong. The list of problem areas can easily be extended to include
functional form, stochastic specification, measurement. . . .

The issue boils down to this. Does the conditional distribution of Y given X
represent mere association, or does it represent the distribution Y would have
had if we had intervened and set the values of X? There is similar question for
the distribution of Z given X and Y. These questions cannot be answered just
by fitting the equations and doing data analysis on X, Y, and Z. Additional
information is needed. From this perspective, the equations are “structural” if
the conditional distributions inferred from the equations tell us the likely
impact of interventions, thereby allowing a causal rather than an associa-
tional interpretation. The take-home message will be clear: You cannot infer
a causal relationship from a data set by running regressions—unless there is
substantial prior knowledge about the mechanisms that generated the data.

4. SIMULTANEOUS EQUATIONS

Similar considerations apply to models with simultaneous equations. The
invariance assumptions will be familiar to many readers. Changing pace, I
will discuss hypothetical supply and demand equations for butter in the state
of Wisconsin. The endogenous variables are Q and P, the quantity and price
of butter. The exogenous variables in the supply equation are the agricultural
wage rate W and the price H of hay. The exogenous variables in the demand
equation are the prices M of margarine and B of bread (substitutes and com-
plements). For the moment, “exogeneity” just means “externally deter-
mined.” Annual data for the previous 20 years are available on the exogenous
variables and on the quantity of Wisconsin butter sold each year as well as its
price. Linearity is assumed, with the usual stochastics.
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The model can be set up formally with two linear equations in two
unknowns, Q and P:

Q = a0 + a1P + a2W + a3H + δt, Supply (3a)

Q = b0 + b1P + b2M + b3B + εt. Demand (3b)

On the right hand side, there are parameters (the as and bs). There are also
error terms (δt, εt), which are assumed to be independent and identically dis-
tributed for t = 1, . . . , 20. The common two-dimensional “error distribution”

for (δt, εt) is unknown but is assumed to have mean 0.
Each equation describes a thought experiment. In the first, we set P, W, H,

M, B and observe how much butter comes to market. By assumption, M and B
have no effect on supply, whereas P, W, H have additive linear effects. In the
second, we set P, W, H, M, B and observe how much butter is sold: W and H
have no effect on demand, whereas P, M, B have additive linear effects. In
short, we have linear supply and demand schedules. Again, the error terms
themselves are invariant to all interventions, as are the parameters. Because
this is a hypothetical, there is no need to worry about the EEC, NAFTA, or the
economics.

A third gedanken experiment is described by taking equations (3a) and
(3b) together. Any values of the exogenous variables W, H, M, B—perhaps
within certain ranges—can be substituted in on the right and the two equa-
tions solved together for the two unknowns Q and P, giving us the transacted
quantity and price in a free market, denoted

QW,H,M,B and PW,H,M,B. (4)

Because δ and ε turn up in the formulas for both Q and P, the random vari-
ables in (4) are correlated—barring some rare parameter combinations—
with the error terms. The correlation is “simultaneity.”

So far, we have three thought experiments expressing various assump-
tions, but no data: Nothing in the equations is observable. We assume that
Nature generates data for us by choosing Wt, Ht, Mt, Bt for t = 1, . . . , 20, at ran-
dom from some high-dimensional distribution, independently of the δs and
εs. This independence is the exogeneity assumption, which gives the concept
a more technical shape. For each t, we get to see the values of the exogenous
variables

Wt, Ht, Mt, Bt,
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and the corresponding endogenous variables computed by solving (3a)-(3b)
together, namely,

Qt = QW H M Bt t t t, , , and Pt = PW H M Bt t t t, , , .

Of course, we do not get to see the parameters or the disturbance terms. A
regression of Qt on Pt and the exogenous variables leads to “simultaneity
bias,” because Pt is correlated with the error term; hence two-stage least
squares and related techniques. With such estimators, enough data, and the
assumptions detailed above, we can (almost) recover the supply and demand
schedules (3a)-(3b) from the free market data—using the exogenous vari-
ables supplied by Nature.

The other approach, sketched above for Figures 2 and 3, suggests that we
start from the parameters and the error distribution . If we were to set P, W,
H, M, B, then Nature would be assumed to choose the errors in (3) from :
Farmers would respond according to the supply equation (3a) and consumers
according to the demand equation (3b). If we were to set only W, H, M, B and
allow the free market to operate, then quantity and price would in this parable
be computed by solving the pair of equations (3a)-(3b).

The notation for the error terms in (3) is a bit simplistic now, because these
terms may be functions of W, H, M, B. Allowing the errors to be functions of
P may make sense if (3a) and (3b) are considered in isolation; but if the two
equations are considered together, this extra generality would lead to a
morass. We therefore allow errors to be functions of W, H, M, B but not P. To
generate data, we assume that Nature chooses the exogenous variables at ran-
dom from some multidimensional distribution. The market quantities and
prices are still computed by solving the pair of equations (3a)-(3b) for Q and
P, with independent additive errors for each period drawn from ; the usual
statistical computations can still be carried out.

In this setup, it is not the error terms that are invariant but their distribu-
tion. Of course, parameters are taken to be invariant. The exogeneity assump-
tion is the independence of {Wt, Ht, Mt, Bt: t = 1, 2 . . . } and the error terms.
The inference is for instance to the probability distribution of butter supply, if
we were to intervene in the market by setting price as well as the exogenous
variables. By contrast, with assumed invariance for the error terms them-
selves, the inference is to the numerical quantity of butter that would be
supplied.

I have presented the second approach with a causal interpretation. An
associational interpretation is also possible, although less interesting. The
exposition may seem heavy-handed, because I have tried to underline the
critical invariance assumptions that need to be made in order to draw causal
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conclusions from nonexperimental data: Parameters are invariant to inter-
ventions, and so are errors or their distributions. Exogeneity is another con-
cern. In a real example, as opposed to a butter hypothetical, real questions
would have to be asked about these assumptions. Why are the equations
“structural,” in the sense that the required invariance assumptions hold true?

Obviously, there is some tension here. We want to use regression to draw
causal inferences from nonexperimental data. To do that, we need to know
that certain parameters and certain distributions would remain invariant if we
were to intervene. That invariance can seldom if ever be demonstrated by
intervention. What then is the source of the knowledge? “Economic theory”
seems like a natural answer but an incomplete one. Theory has to be anchored
in reality. Sooner or later, invariance needs empirical demonstration, which is
easier said than done.

5. NONLINEAR MODELS: FIGURE 1 REVISITED

Graphical models can be set up with nonlinear versions of equation (1), as
in Pearl (1995, 2000). The specification would be something like Yi,x = f(x, δi),
where f is a fairly general (unknown) function. The interpretation is this: If
the treatment level were set to x, the response by subject i would be Yi,x. The
same questions about interventions and counterfactual hypotheticals would
then have to be considered. Instead of rehashing such issues, I will indicate
how to formulate the models using conditional distributions (“Markov ker-
nels”), so that the graphs can be interpreted either distributionally or causally.
In the nonlinear case, Kx—the conditional distribution of Y given that X = x—
depends on x in some fashion more complicated than linearity with additive
noise. For example, if X, Y are discrete, then K can be visualized as the matrix
of conditional probabilities P(Y = y|X = x). For any particular x, Kx is a row in
this matrix.

Inferences will be to conditional distributions, rather than specific numer-
ical values. There will be some interesting new questions about identi-
fiability. And the plausibility of causal interpretations can be assessed sepa-
rately, as will be shown later. I will organize most of the discussion around
two examples used by Pearl (1995); also see Pearl (2000, 66-68, 83-85). But
first, consider Figure 1. In the nonlinear case, the exogenous variables have to
be assumed independent and identically distributed in order to make sense
out of the mathematics; otherwise, there are substantial extra complications,
or we have to impose additional smoothness conditions on the kernel.
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Assume now that (Xi, Yi) are independent and distributed like (X, Y) for i =
1, . . . , n; the conditional distribution of Yi given Xi = x is Kx, where K is an
unknown Markov kernel. With a large enough sample, the joint distribution
of (X, Y) can be estimated reasonably well; so can Kx, at least for xs that are
likely to turn up in the data. If K is only a conditional probability, that is what
we obtain from data analysis. If K admits a causal interpretation—by prior
knowledge or assumption, not by data analysis on the Xs and Ys—then we
can make a causal inference: What would the distribution of Yi have been, if
we had intervened and set Xi to x? (The answer is Kx.)

6. TECHNICAL NOTES

The conditional distribution of Y given X tells you the conditional proba-
bility that Y is in one set C or another, given that X = x. A Markov kernel K
assigns a number Kx(C) to pairs (x, C); the first element x of the pair is a point;
the second, C, is a set. With x fixed, Kx is a probability. With C fixed, the func-
tion that sends x to Kx(C) should satisfy some minimal regularity condition.
Below, I will write Kx(dy) as shorthand for the kernel whose value at (x, C) is
Kx(C), where C is any reasonable set of values for Y. Matters will be arranged
so that Kx(C) is the conditional probability that Y ∈ C given X = x and perhaps
additional information. Thus, Kx(C) = P(Y ∈ C | X = x . . . ).

Without further restrictions, graphical models are nonparametric, because
kernels are infinite-dimensional “parameters.” Our ability to estimate such
things depends on the degree of regularity that is assumed. With minimal
assumptions, you may get minimal performance—but that is a topic for
another day. Even in the linear case, some of the fine points about estimation
have been glossed over. To estimate the model in Figure 1, we would need
some variation in X and δ. To get standard errors, we would assume finite vari-
ances for the error terms. Conditions for identifiability in the simultaneous-
equations setup do not need to be rehearsed here, and I have assumed a
unique solution for (3). Two-stage least squares will have surprising behavior
unless variances are assumed for the errors; some degree of correlation
between the exogenous and endogenous variables would also be needed.

More general specifications can be assumed for the errors. For example,
in (1), the δi may be assumed to be independent, with common variances and
uniformly bounded fourth moments; then the hypothesis of a common distri-
bution can be dropped. In (3), an ARIMA model may be assumed. And so
forth. The big picture does not change, because (a) questions about invari-
ance remain, and (b) even an ARIMA model requires some justification.
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7. MORE COMPLICATED EXAMPLES

The story behind Figure 3 will be explained below. For the moment, it is
an abstract piece of mathematical art. The diagram corresponds to three ker-
nels: Kx(dy), Ly(dz), and Mx,z(dw). These kernels describe the joint distribu-
tion of the random variables shown in the diagram (X, Y, Z, W). The condi-
tional distribution of Y given X = x is Kx. The conditional distribution of Z
given X = x and Y = y is Ly: There is no subscript x on L because—by assump-
tion—there is no arrow from X to Z in the diagram. The conditional distribu-
tion of W given X = x, Y = y, Z = z is Mx,z: There is no subscript y on M
because—again by assumption—there is no arrow leading directly from Y to
W in the diagram.

You can think of building up the variables X, Y, Z, W from the kernels and a
base distribution µ for X, in a series of steps:

(i) Choose X at random according to µ(dx).
(ii) Given the value of X from step (i), say X = x, choose Y at random from

Kx(dy).
(iii) Given X = x and Y = y, choose Z at random from Ly(dz).
(iv) Given X = x, Y = y, and Z = z, choose W at random from Mx,z(dw).

The recipe is equivalent to the graph.
By assumption, the four-tuples (Xi, Yi, Zi, Wi) are independent and distrib-

uted like (X, Y, Z, W) for i = 1, . . . , n. There is one more wrinkle: The circle
marked “X” in the diagram is open, meaning that X is not observed. In other
words, Nature hides X1, . . . , Xn but shows us
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Y1, . . . , Yn, Z1, . . . , Zn, W1, . . . , Wn.

That is our data set.
The base distribution µ and the kernels K, L, M are unknown. However,

with many observations on independent and identically distributed triplets
(Yi, Zi, Wi), we can estimate their joint distribution reasonably well. More-
over—and this should be a little surprising—we can compute Ly from that
joint distribution, as well as

Mz x zdw M dw dx( ) ( ) ( ),,=∫ µ (5a)

where µ is the distribution of the unobserved confounder X. Hence we can
also compute

L My z ydw dw L dz( ) ( ) ( ).=∫ (5b)

Here is the idea: L is computable because the relationship between Y and Z
is not confounded by X. Conditional on Y, the relationship between Z and W is
not confounded, so z in (5a) is computable. Then (5b) follows.

More specifically, with “P” for probability, the identity

P(Z ∈ C | Y = y) = P(Z ∈ C | X = x, Y = y) = Ly(C)

can be used to recover L from the joint distribution of Y, Z.
Likewise, we can recover in (5a) from the joint distribution of Y, Z,

W, although the calculation is a little more intricate. Let Px,y,z = P(• | X = x, Y =
y, Z = z) be a regular conditional probability given X, Y, Z. Then

P W D Y y Z z P W D P X dx Y y Z z

M D

x y z

x z

( | , ) ( ) ( | , )

( )

, ,

,

∈ = = = ∈ ∈ = =

=

∫
P X dx Y y( | ),∈ =∫

because Px,y,z(W ∈ D) = Mx,z(D) by construction, and X is independent of Z
given Y by a side-calculation.

We have recovered ∫ Mx,z(D)P(X ∈ dx|Y = y) from the joint distribution of
Y, Z, W. Hence we can recover

M D P X dx Y y P Y dy M D dx

D

x z x z

z

, ,( ) ( | ) ( ) ( ) ( )

( ),

∈ = ∈ =

=
∫∫ ∫ µ

M
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although the distribution µ of X remains unknown, and so does the kernel M.
These may all just be facts about conditional distributions, in which case

(5) is little more than a curiosity. On the other hand, if K, L, M have causal
interpretations, then z in (5a) tells you the effect of setting Z = z on W, aver-
aged over the possible Xs in the population. Similarly, y in (5b) tells you the
effect of Y on W. If you intervene and set Y to y, then the distribution of W will
be y, on the average over all X and Z in the population. (There may be excep-
tional null sets, which are being ignored.) How to estimate and in a
finite sample is another question, which will not be discussed here.

The next example (Figure 4) is a little more complicated. (Again, the story
behind the figure is deferred.) There are two unobserved variables, A and B.
The setup involves six kernels, which characterize the joint distribution of the
random variables (A, B, U, X, V, W, Y) in the diagram:

Ka(db) = P(B ∈ db | A = a),

La(du) = P(U ∈ du | A = a),

Ma(dx) = P(X ∈ dx | A = a),

Nu,x(dv) = P(V ∈ dv | A = a, B = b, U = u, X = x),

Qb,v(dw) = P(W ∈ dw | A = a, B = b, U = u, X = x, V = v),

Rx,v,w(dy) = P(Y ∈ dy | A = a, B = b, U = u, X = x, V = v, W = w).
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Here, P represents “probability”; it seemed more tasteful not to have kernels
labeled O or P. There is no a, b, u among the subscripts on R because there are
no arrows going directly from A, B, U to Y in the diagram; similarly for the
other kernels. The issue is to determine the effect of X on Y, integrating over
the unobserved confounders A, B. This is feasible, because conditional on the
observed U, V, W, the relationship between X and Y is not confounded. (If the
kernels have causal interpretations, “effect” is meant literally; if not,
figuratively.)

To fix ideas, we can go through the construction of the random variables.
There is a base probability µ for A. First, choose A at random from µ. Given A,
choose B, U, X independently at random from KA, LA, MA, respectively. Given
A, B, U, X, choose V at random from NU,X. Given A, B, U, X, V, choose W at
random from QB,V. Finally, given A, B, U, X, V, W, choose Y at random from
RX,V,W. The data set consists of n independent septuples Ai, Bi, Ui, Xi, Vi, Wi, Yi.
Each septuple is distributed as A, B, U, X, V, W, Y. The kicker is that the As and
Bs are hidden. The “parameters” are µ and the six kernels. Calculations pro-
ceed as for Figure 3. Again, the graph and the description in terms of kernels
are equivalent. Details are (mercifully?) omitted.

8. PARAMETRIC NONLINEAR MODELS

Similar considerations apply to parametric nonlinear models. Take the
logit specification, for example. Let Xi be a p-dimensional random vector,
with typical value xi; the random variable Yi is 0 or 1. Let β be a p-dimensional
vector of parameters. For the p-dimensional data vector x, let Kx assign mass

eβx/(1 + eβx)

to 1, and the remaining mass to 0. Given X1, . . . , Xn, each being a p-vector,
suppose the Yi are conditionally independent, and

P(Yi = 1|X1 = x1, . . . , Xn = xn) = Kx i
. (6)

On the right hand side of (6), the subscript on K is xi: The conditional distribu-
tion of Y for a subject depends only on that subject’s x. If the x1, . . . , xn are rea-
sonably spread out, we can estimate β by maximum likelihood. (With a
smooth, finite-dimensional parametrization, we do not need the Xi to be inde-
pendent and identically distributed.)
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Of course, this model could be set up in a more strongly invariant form,
like (1). Let Ui be independent (unobservable) random variables with a com-
mon logistic distribution: P(Ui < u) = eu/(1 + eu). Then

Yi,x = 1 ⇔ Ui < βx. (7)

The exogeneity assumption would make the Xs independent of the Us, and
the observable Yi would be Yi Xi, . That is, Yi = 1 if Ui < βXi, else Yi = 0.

This is all familiar territory, except perhaps for (7), so familiar that the crit-
ical question may get lost. Does Kx merely represent the conditional probabil-
ity that P(Yi = 1|Xi = x), as in (6)? Or does Kx tell us what the law of Yi would
have been, if we had intervened and set Xi to x? Where would the Ui come
from, and why would they be invariant, if we were to intervene and manipu-
late x? Nothing in the mysteries of Euclidean geometry and likelihood statis-
tics can possibly answer this sort of question. Other kinds of information are
needed.

9. CONCOMITANTS

Some variables are potentially manipulable; others (“concomitants”) are
not. For example, education and income may be manipulable; age, sex, race,
personality, . . . , are concomitants. So far, we have ignored this distinction,
which is less problematic for kernels, but a difficulty for the kind of strong
invariance in equation (1). If Y depends on a manipulable X and a concomi-
tant W through a linear causal law with additive error, we can rewrite (1) as

Yi,x = a + bx + cWi + δi. (8)

In addition to the usual assumptions on the δs, we would have to assume inde-
pendence between the δs and the Ws. Similar comments apply when there are
several manipulable variables, or logits, probits, and so forth. In applications,
defining and isolating the intervention may not be so easy, but that is a topic
for another day. Also see Robins (1986, 1987).

10. THE STORY BEHIND FIGURES 3 AND 4

When some variables are unobserved, Pearl (1995) develops an interesting
calculus to define confounding and decide which kernels or composites—see
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(5) for example—can be recovered from the joint distribution of the
observed variables. That is a solution to the identification problem for
such diagrams. He uses Figure 3 to illustrate his “back-door criterion.” The
unobserved variable X is genotype; the observed variables Y, Z, W repre-
sent smoking, tar deposits in the lung, and lung cancer, respectively (Fig-
ure 5). The objective is to determine the effect of smoking on lung cancer,
via (5).

Data in this example would consist of a long series of independent triplets
(Yi, Zi, Wi), each distributed like (Y, Z, W). Pearl interprets the graph causally.
The timeworn idea that subjects in a study form a random sample from some
hypothetical superpopulation still deserves a moment of respectful silence.
Moreover, there are three special assumptions in Figure 5:

(i) Genotype has no direct effect on tar deposits.
(ii) Smoking has no direct effect on lung cancer.
(iii) Tar deposits can be measured with reasonable accuracy.

There is no support for these ideas in the literature. (i) The lung has a mecha-
nism—“the mucociliary escalator”—for eliminating foreign matter, includ-
ing tar. This mechanism seems to be under genetic control. (Of course, clear-
ance mechanisms can be overwhelmed by smoking.) The forbidden arrow
from genotype to tar deposits may have a more solid empirical basis than the
permitted arrows from genotype to smoking and lung cancer. Assumption
(ii) is just that—an assumption. And assumption (iii) is clearly wrong. The
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consequences are severe: If arrows are permitted from genotype to tar depos-
its or from smoking to lung cancer, or if measurements of tar are subject to
error, then equation (5) does not apply. Graphical models cannot solve the
problem created by an unmeasured confounder without introducing strong
and artificial assumptions.

The intellectual history is worth mentioning. Fisher’s (1959) “constitu-
tional hypothesis” explained the association between smoking and disease
on the basis of a gene that caused both. This idea is refuted not by making
assumptions but by doing some empirical work. For example, Kaprio and
Koskenvuo (1989) present data from their twin study. The idea is to find pairs
of identical twins where one smokes and one does not. That sets up a race:
Who will die first, the smoker or the nonsmoker? The smokers win hands
down, for total mortality or death from heart disease. The genetic hypothesis
is incompatible with these data.

For lung cancer, the smokers win two out of the two races that have been
run. (Why only two? Smoking-discordant twin pairs are unusual, lung cancer
is a rare disease, and the population of Scandinavia is small.) Carmelli and
Page (1996) have a similar analysis with a larger cohort of twins. Do not bet
on Fisher. The International Agency for Research on Cancer (1986, 179-98)
reviews the health effects of smoking and indicates the difficulties in measur-
ing tar deposits. Nakachi et al. (1993) and Shields et al. (1993) illustrate con-
flicts on the genetics of smoking and lung cancer. Also see Miller et al.
(2003). The lesson: Finding the mathematical consequences of assumptions
matters, but connecting assumptions to reality matters even more.

Pearl (1995) uses Figure 4 to illustrate his “front-door criterion,” calling
the figure a “classical example due to Cochran,” with a cite to Wainer (1989).
Pearl’s vision is that soil fumigants X are used to kill eelworms and improve
crop yields Y for oats. The decision to apply fumigants is affected by the
worm population A before the study begins, hence the arrow from A to X. The
worm population is measured at baseline, after fumigation, and later in the
season: The three measurements are U, V, W. The unobserved B represents
“birds and other predators.”

This vision is whimsical. The example originates with Cochran (1957,
266) who had several fumigants applied under experimental control, with
measurements of worm cysts and crop yield. Pearl converts this to an obser-
vational study with birds, bees, and so forth—entertaining, a teaching tool,
but unreal. It might be rude to ask too many questions about Figure 4, but
surely crops attract predators? Don’t birds eat oat seeds? If early birds get the
worms, what stops them from eating worms at baseline? In short, where have
all the arrows gone?
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11. MODELS AND KERNELS REVISITED

Graphical models may lead to some interesting mathematical develop-
ments. The number of successful applications, however, is at best quite lim-
ited. The examples discussed here are not atypical. Given that the arrows and
kernels represent causation, while variables are independent and identically
distributed, we can use Pearl’s (1995) framework to determine from the dia-
gram which effects are estimable. This is a step forward. However, we cannot
use the framework to answer the more basic question: Does the diagram rep-
resent the causal structure? As everyone knows, there are no formal algorith-
mic procedures for inferring causation from association; everyone is right.

Pearl (1995) considers only models with a causal interpretation, the latter
being partly formalized; and there is new terminology that some readers may
find discouraging. On the other hand, he draws a clear distinction between
averaging Ys when the corresponding X is

• set to x, and
• observed to be x in the data.

That is a great advantage of his formalism.
The approach sketched here would divide the identification problem in

two: (a) reconstructing kernels, viewed as ordinary conditional distributions,
from partial information about joint distributions; and (b) deciding whether
these kernels bear a causal interpretation. Problem (a) can be handled entirely
within the conventional probability calculus. Problem (b) is one of the basic
problems in applied statistics. Of course, kernels—especially mixtures like
(5)—may not be interesting without a causal interpretation.

In sum, graphical models can be formulated using conditional distribu-
tions (“Markov kernels”), without invariance assumptions. Thus, the graphs
can be interpreted either distributionally or causally. The theory governing
recovery of kernels and their mixtures can be pushed through with just the
distributional interpretation. That frees us to consider whether or not the ker-
nels admit a causal interpretation.

So far, the graphical modelers have few if any examples where the causal
interpretation can be defended. Pearl generally agrees with this discussion:

Causal analysis with graphical models does not deal with defending modeling assump-
tions, in much the same way that differential calculus does not deal with defending the
physical validity of a differential equation that a physicist chooses to use. In fact no analy-
sis void of experimental data can possibly defend modeling assumptions. Instead, causal
analysis deals with the conclusions that logically follow from the combination of data
and a given set of assumptions, just in case one is prepared to accept the latter. Thus, all
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causal inferences are necessarily conditional. These limitations are not unique to graphi-
cal models. In complex fields like the social sciences and epidemiology, there are only
few (if any) real life situations where we can make enough compelling assumptions that
would lead to identification of causal effects. (Pearl, personal communication)

12. LITERATURE REVIEW

The model in (1) was proposed by Neyman (1923). It has been rediscov-
ered many times since; see, for instance, Hodges and Lehmann (1964, sec.
9.4). The setup is often called “Rubin’s model,” but this simply mistakes the
history. See Dabrowska and Speed (1990), with a comment by Rubin. Com-
pare Rubin (1974) and Holland (1986). Holland (1986, 1988) explains the
setup with a superpopulation model to account for the randomness, rather
than individualized error terms. These error terms are often described as the
overall effects of factors omitted from the equation. But this description
introduces difficulties of its own, as shown by Pratt and Schlaifer (1984,
1988). Stone (1993) presents a clear superpopulation model with some
observed covariates and some unobserved.

Dawid (2000) objects to counterfactual inference. Counterfactual distri-
butions may be essential to any account of causal inference by regression
methods. On the other hand, as the present article tries to show, invariant
counterfactual random variables—like δi in equation (1)—are dispensable.
In particular, with kernels, there is no need to specify the joint distribution of
random variables across inconsistent hypotheticals.

There is by now an extended critical literature on statistical modeling,
starting perhaps with the exchange between Keynes (1939, 1940) and
Tinbergen (1940). Other familiar citations in the economics literature
include Liu (1960), Lucas (1976), and Sims (1980). Manski (1995) returns to
the underidentification problem that was posed so sharply by Liu and by
Sims. In brief, a priori exclusion of variables from causal equations can sel-
dom be justified, so there will typically be more parameters than data.
Manski suggests methods for bounding quantities that cannot be estimated.
Sims’s idea was to use simple, low-dimensional models for policy analysis,
instead of complex high-dimensional ones. Leamer (1978) discusses the
issues created by inferring the specification from the data, as does Hendry
(2000). Engle, Hendry, and Richard (1983) distinguish several kinds of
exogeneity, with different implications for causal inference.

Heckman (2000) traces the development of econometric thought from
Haavelmo and Frisch onwards, stressing the role of “structural” or “invari-
ant” parameters, and “potential outcomes”; also see Heckman (2001a,
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2001b). According to Heckman (2000), the enduring contributions are the
insights that

causality is a property of a model, that many models may explain the same data and that
assumptions must be made to identify causal or structural models . . . recognizing the pos-
sibility of interrelationships among causes . . . [clarifying] the conditional nature of
causal knowledge and the impossibility of a purely empirical approach to analyzing
causal questions. . . . The information in any body of data is usually too weak to eliminate
competing causal explanations of the same phenomenon. There is no mechanical algo-
rithm for producing a set of “assumption free” facts or causal estimates based on those
facts. (Pp. 89-91)

For another discussion of causal models from an econometric perspective,
see Angrist (2001) or Angrist, Imbens, and Rubin (1996). Angrist and
Krueger (2001) provide a nice introduction to instrumental variables; an
early application of the technique was to fit supply and demand curves for
butter (Wright 1928, 316).

One of the drivers for modeling in economics and cognate fields is rational
choice theory. Therefore, any discussion of empirical foundations must take
into account a remarkable series of papers, initiated by Kahneman and
Tversky (1974), that explores the limits of rational choice theory. These
papers are collected in Kahneman, Slovic, and Tversky (1982) and in
Kahneman and Tversky (2000). The heuristics and biases program has
attracted its own critics (Gigerenzer 1996). That critique is interesting and
has some merit. In the end, however, the experimental evidence demonstrates
severe limits to the descriptive power of choice theory (Kahneman and
Tversky 1996).

If people are trying to maximize expected utility, they don’t do it very
well. Errors are large and repetitive, go in predictable directions, and fall into
recognizable categories: These are biases, not random errors. Rather than
making decisions by optimization—or bounded rationality, or satisficing—
people seem to use plausible heuristics that can be identified. If so, rational
choice theory is generally not a good basis for justifying empirical models of
behavior. Sen (2002) makes a far-reaching critique of rational choice theory,
based in part on the work of Kahneman and Tversky.

Recently, modeling issues have been much canvassed in sociology. Berk
(2003) is skeptical about the possibility of inferring causation by modeling,
absent a strong theoretical base. Abbott (1997) finds that variables (like
income and education) are too abstract to have much explanatory power; also
see Abbott (1998). Clogg and Haritou (1997) review various difficulties with
regression, noting in particular that you can all too easily include endogenous
variables as regressors.
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Goldthorpe (1998, 2001) describes several ideas of causation and corre-
sponding methods of statistical proof, with different strengths and weak-
nesses; he finds rational choice theory to be promising. Hedström and
Swedberg (1998) edited a lively collection of essays by a number of sociolo-
gists, who turn out to be quite skeptical about regression models; rational
choice theory takes its share of criticism. Ní Bhrolcháin (2001) has some par-
ticularly forceful examples to illustrate the limits of regression. There is an
influential book by Lieberson (1985), with a follow-up by Lieberson and
Lynn (2002). The latest in a series of informative papers is Sobel (2000).

Meehl (1978) reports the views of an empirical psychologist; also see
Meehl (1954), with data showing the advantage of using regression to make
predictions—rather than experts. Meehl and Waller (2002) discuss the
choice between similar path models, viewed as reasonable approximations to
some underlying causal structure, but do not reach the critical question—
how to assess the adequacy of the approximation. Steiger (2001) has a critical
review.

There are well-known books by Cook and Campbell (1979) and by
Shadish, Cook, and Campbell (2002). In political science, Brady and Collier
(forthcoming) compare regression methods with case studies; invariance is
discussed under the rubric of causal homogeneity. Cites from other perspec-
tives include Freedman, Rothenberg, and Sutch (1983); Oakes (1986); as
well as Freedman (1985, 1987, 1991, 1995, 1999).

There is an extended literature on graphical models for causation. Green-
land, Pearl, and Robins (1999) give a clear account in the context of epidemi-
ology. Lauritzen (1996, 2001) has a careful treatment of the mathematics.
These authors do not recognize the difficulties in applying the methods to
real problems.

Equation (5) is a special case of the “g-computation algorithm” due to
Robins (1986, 1987); also see Gill and Robins (forthcoming); Pearl (1995,
2000); or Spirtes, Glymour, and Scheines (1993). Robins (1995) explains—
all too briefly—how to state Pearl’s results as theorems about conditionals.

For critical reviews of graphical models (with responses and further cita-
tions) see Freedman (1997), Humphreys (1997), Humphreys and Freedman
(1996, 1999): Among other things, these papers discuss various applications
proposed by the modelers. Woodward (1997, 1999) stresses the role of
invariance.

Freedman and Stark (1999) show that different models for the correlation
of outcomes across counterfactual scenarios can have markedly different
consequences in the legal context. Scharfstein, Rotnitzky, and Robins (1999)
demonstrate a large range of uncertainty in estimates, due to incomplete
specifications; also see Robins (1999).
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