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Abstract

We present two novel algorithms for constructing spatial hierar-
chies on GPUs. The first is for kd-trees that automatically balances
between the level of parallelism and total memory usage by using
a novel PBFS (partial breadth-first search) construction scheme.
With this PBFS construction scheme, peak memory consumption
can be efficiently controlled without costly CPU-GPU data trans-
fer. We also develop memory allocation strategies to effectively
limit memory fragmentation. The resulting algorithm scales well
with GPU memory and constructs kd-trees of models with millions
of triangles at interactive rates on GPUs with 1GB memory. Com-
pared with existing algorithms, our algorithm is an order of magni-
tude more scalable for a given GPU memory bound.

The second algorithm is for out-of-core BVH (bounding volume hi-
erarchy) construction for very large scenes based on the PBFS con-
struction order. At each iteration, all constructed nodes are dumped
to the CPU memory, and the GPU memory is freed for the next it-
eration’s use. In this way, the algorithm is able to build trees that
are too large to be stored in the GPU memory. Experiments show
that our algorithm can construct BVHs for scenes with up to 20M
triangles, several times larger than previous GPU algorithms.
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1 Introduction

Current many-core GPUs have evolved into incredible computing
processors for general purpose computation, and this evolution is
likely to continue in the future. Recently, GPU construction of hi-
erarchical data structures such as kd-trees [Zhou et al. 2008] and
BVHs [Lauterbach et al. 2009] has shown great promise in a vari-
ety of applications, including ray tracing, photon mapping, point
cloud modeling and simulations. Unlike traditional CPU-based
algorithms, which build hierarchical data structures following the
DFS (depth-first search) order, the GPU algorithms achieve inter-
active construction by using the BFS (breadth-first search) order,
which best exploits the massive parallelism on the GPU. These al-
gorithms exploit the multiple cores and high memory bandwidth in
terms of building hierarchies of complex models at interactive rates.
Unfortunately, this parallel computation comes at the cost of exces-
sive memory consumption overhead because the GPU algorithms
need to maintain and process a large amount of data simultaneously.
This becomes a serious issue for interactive applications involving
complex models with more than few million triangles [Zhou et al.
2008; Lauterbach et al. 2009]. Current GPUs have a different mem-
ory architecture than CPUs. The on-chip memory on GPUs is lim-
ited to a few GBs. Moreover, GPUs have high memory bandwidth
and much smaller caches. As a result, it is important to design
GPU-based algorithms that can exploit these memory architecture
characteristics of GPUs for interactive applications.

In this paper, we first present a GPU kd-tree algorithm that achieves
superior performance for a given memory bound. Our algorithm au-
tomatically adapts the level of parallelism based on available mem-
ory and thus allows the peak memory consumption to be controlled
without swapping any data out of the GPU. The basic idea is to
construct the kd-tree in a PBFS (partial breadth-first search) order.

(a) Falling objects (b) Running animals

Figure 1: Kd-tree construction and ray tracing of two large ani-
mated scenes. (a) 7,140K triangles, 612 instances of three models
each of which has 5K-20K triangles. (b) 6,763K triangles, a ter-
rain and 135 instances of three skinning meshes each of which has
17K-85K triangles. For each scene, at each frame, we construct a
kd-tree and use it to ray trace the scene completely on the GPU.
Images are rendered at 1024× 1024 resolution with 4 point lights.
Note that object instancing is solely used to simplify animation pro-
duction and is not exploited by the kd-tree constructor.

Unlike the BFS and DFS, the PBFS allows the set of tree nodes
being processed simultaneously to be explicitly controlled in each
iteration, and thereby enables management of the memory over-
head and level of parallelism. By fine tuning the set of nodes being
processed simultaneously, we can achieve a good balance between
them. Note that the PBFS only affects the order of node processing
and does not impact the quality of the resulting tree. On an NVIDIA
GeForce GTX 280 GPU with 1 GB memory, we can construct kd-
trees of scenes with up to several million triangles at interactive
rates.

Our second contribution is an out-of-core BVH construction algo-
rithm on the GPU. Compared to kd-tree construction, BVH con-
struction has a relatively small memory overhead. It does not split
triangles and does not need to dynamically allocate GPU memory.
Consequentially, the primitive storage remains static throughout the
construction and the final tree size can be bounded prior to con-
struction. However, the memory consumption will still exceed the
available GPU memory for very large scenes. Our BVH builder is
also based on PBFS construction order. At each PBFS iteration, all
constructed nodes are dumped to the CPU memory or disk, and the
GPU memory is freed for the next iteration’s use. In this way, the
algorithm is able to build trees that are too large to be stored in the
GPU memory. Our algorithm can construct BVHs for scenes with
up to 20M triangles.

As far as we know, ours are the first GPU hierarchy construction
algorithms that are designed with a memory bound in mind. Our
methods can handle scenes nearly an order of magnitude larger
than previous GPU methods. For small scenes that previous GPU
methods can handle, our algorithm achieves similar construction
performance. For large scenes, our method performs comparably
to the state-of-the-art multi-core CPU algorithms in terms of con-
struction time while maintaining tree quality similar to high quality
methods. In general our methods scale well with respect to the



amount of available memory, and hierarchy construction can be
performed within user-specified memory bounds at a modest per-
formance cost.

We will briefly review previous work relevant to fast spatial hier-
archy construction in Section 2. In Section 3, we describe our
memory-scalable kd-tree construction algorithm. Section 4 de-
scribes how to use the PBFS order to support out-of-core BVH con-
struction on the GPU. Finally, we present results in Section 5.

2 Related Work

Several CPU-based algorithms have been proposed for fast con-
struction of SAH (surface area heuristic) kd-trees [Goldsmith and
Salmon 1987; MacDonald and Booth 1990], which are com-
monly regarded to offer optimal ray tracing performance. Hunt
et al. [2006] approximated the SAH cost function to achieve
sub-interactive construction with minimal degradation in tree qual-
ity. Shevtsov et al. [2007] developed an interactive parallel con-
struction algorithm with a modest memory footprint on multi-core
CPUs. However, their tree suffers from considerable quality loss.
Soupikov et al. [2008] recently introduced approximate triangle
clipping to compensate for this quality loss within a similar con-
struction time. However with both algorithms, tests show serious
scalability issues at more than a few hundred threads. This makes
them inappropriate for massively parallel architectures like GPUs.

Zhou et al. [2008] proposed the first kd-tree construction that runs
entirely on the GPU. The algorithm maximizes parallelism in the
construction process and scales well to GPUs with hundreds of
cores. High quality trees can be constructed in rapid time. How-
ever, the high parallelism is achieved at the cost of excessive mem-
ory consumption. This results in a scene size limitation one order of
magnitude smaller than previous methods. We use the node split-
ting schemes of [Zhou et al. 2008] to maintain tree quality and con-
struction performance but introduce novel parallelization and mem-
ory management techniques to bound the memory consumption.

BVH is an alternative spatial hierarchy for ray tracing that favors
build time over tracing performance. Efficient construction has
been demonstrated on both CPU and GPU [Wald 2007; Wald et al.
2008; Lauterbach et al. 2009]. Recent work also demonstrates
ray tracing performance improvement by incorporating kd-tree-like
features into BVHs [Ernst and Greiner 2007]. The state-of-the-art
GPU BVH construction algorithm [Lauterbach et al. 2009] has a
work-flow resembling GPU kd-tree construction. We apply the
the PBFS construction order to the hybrid algorithm described in
[Lauterbach et al. 2009] for out-of-core BVH construction of very
large scenes.

Wachter and Keller [2007] tackled the memory problem of kd-trees
from a different perspective. They terminated the splitting node
when necessary to bound the final hierarchy size. Their approach
puts the tree quality at risk and does not apply to hierarchies with
naturally bounded size like BVH. In contrast, our work seeks to
control the work memory requirement during construction while
maintaining tree quality. Paging systems like virtual memory can
be used to handle large data within limited physical memory, ef-
fectively providing out-of-core support for any algorithm. Built-in
virtual memory support can be expected in future GPUs such as
Larrabee [Seiler et al. 2008]. A general paging-like out-of-core sys-
tem also has been demonstrated on current hardware [Budge et al.
2009]. While paging systems can be very efficient when handling
large input/output, paging intermediate work memory can result in
significant performance overhead. Our PBFS aims to overcome
this problem by bounding work memory within available physi-
cal memory. PBFS can also be used in combination with paging
systems to handle out-of-core input/output more efficiently.

4 4

3

2

1 1

0

5 5

3 6 6

2

(a) DFS kd-tree construction

3 3 3 3 3 3 3 3

2 2 2 2

1 1

0

(b) BFS kd-tree construction

4 4 4 4

3 3

2 2

1 1

0

5 5 5 5

3 3

2

6 6 6 6

2

(c) Our PBFS kd-tree construction

constructed node splitting node unconstructed node

Figure 2: Different kd-tree construction orders. The number in
each node corresponds to the iteration it is created in.

Memory-bounded situations have been investigated in traditional
parallel programming research [Sun and Ni 1993]. The main focus
there is the tradeoff between data replication and communication in
distributed systems. Our work controls peak memory usage by lim-
iting the creation of new data and does not involve data replication.

3 Memory-Scalable KD-Tree Construction

Most CPU-based kd-tree construction methods follow the natural
DFS order. While the DFS order has a small memory footprint, it is
difficult to achieve good scalability on more than a few hundred of
threads. GPU-based constructors follow the BFS order [Zhou et al.
2008; Lauterbach et al. 2009]. The BFS maximizes the number of
nodes constructed simultaneously and thus benefits from the high
parallelism of the GPU to outperform DFS methods. However it
also results in a significantly larger memory footprint.

During kd-tree construction, each node being split requires stor-
age of extra temporary data for the subsequent computation. Thus,
the memory consumption is proportional to the number of nodes
being split simultaneously. Based on this, we can make a rough
comparison of the memory cost between DFS and BFS schemes.
Fig. 2 illustrates the set of splitting nodes maintained simultane-
ously in three construction schemes. The number of splitting nodes
with the DFS scheme is proportional to the current construction
depth, as shown in Fig. 2(a). For a scene with n primitives, this
depth is O(log n). In a BFS constructor, the number of splitting
nodes grows exponentially with the construction depth and eventu-
ally reaches O(n). This is shown in Fig. 2(b). This kind of extreme
difference leads to a heavy storage load for the BFS construction
scheme.

We introduce a novel partial breadth-first search (PBFS) solution
to compromise between parallelism and the size of the peak mem-
ory footprint. We control the peak memory by tuning the number
of nodes being split simultaneously. Compared to the exhaustive



BFS, the PBFS only splits part of the nodes at a time. This is il-
lustrated in Fig. 2(c). When some trunks of the tree are completely
constructed, the corresponding memory is released so that we can
split the remaining nodes.

In the following, we first briefly review the BFS-based construction
algorithm of [Zhou et al. 2008] in Section 3.1. We then present
our PBFS scheme in detail in Section 3.2. Our anti-fragmentation
dynamic buffer management scheme is introduced in Section 3.3.
Section 3.4 describes how we handle memory issues related to tri-
angle clipping.

3.1 Review of BFS KD-Tree Construction on GPU

The GPU kd-tree construction in [Zhou et al. 2008] mainly con-
sists of two stages. The nodes are divided into two categories, large
nodes and small nodes, and are split with different schemes. A
node is categorized as large if the number of triangles it contains
is greater than a prescribed threshold; otherwise, the node is small.
The kd-tree construction starts from the root node. First, a large
node stage is launched to split all large nodes recursively. Small
nodes generated by splitting large nodes are stored in a dynamic
buffer. After dividing all large nodes, the large node stage termi-
nates, outputing a buffer of small nodes. Then a small node stage is
launched to finish the construction by splitting all small nodes re-
cursively. For each large node, which contains more than 64 trian-
gles, the median splitting and “empty space maximizing” are em-
ployed to minimize the traversing cost of ray tracing. After node
splitting, each triangle intersected by a splitting plane is clipped
into two polygons (called clipped triangles in the following) and
distributed to the child nodes. A dynamic buffer is required to hold
the vertices of all the clipped triangles generated in the large node
stage. For each small node, which contains no more than 64 trian-
gles, the splitting plane is determined to minimize the SAH cost to
minimize the traversal cost. Triangle clipping is not performed dur-
ing the small node stage. Each triangle intersected by the splitting
plane is simply distributed to both children.

The SAH cost function is defined as:

SAH(x) = Cts + (CL(x)AL(x) + CR(x)AR(x))/A,

where Cts is the constant cost of traversing the node itself, CL(x)
is the cost of the left child given a split position x and CR(x) is the
cost of the right child given the same split. AL(x) and AR(x) are
the surface areas of the left and right children respectively. A is the
surface area of the node. CL(x) and CR(x) are usually evaluated
as the number of triangles in the two children. For each small node,
the splitting plane candidates are restricted to planes containing the
faces of the axis-aligned bounding boxes (AABBs) of the clipped
triangles contained in the node.

[Zhou et al. 2008] also provides a data structure for storing the tri-
angles in small nodes as bit masks. All small nodes whose parent
nodes are large nodes are called small roots. The triangle set con-
tained in each small node is then stored as a bit mask representing
a subset of its small root. For each small root, the triangle sets con-
tained on both sides of each splitting plane candidate are also pre-
computed as bit masks. For each small node, with its triangle mask
and the precomputed split triangle sets of its small root, CL(x) and
CR(x) can be computed efficiently with bitwise operations.

3.2 PBFS Construction

Note that in the above kd-tree algorithm, small nodes consume
much more memory than large nodes because the number of small
nodes is much greater than that of large nodes. In particular, the pre-
computation data of all small roots consume most of the temporary
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Figure 3: Our alternating kd-tree construction pipeline: the large
node stage and small node stage are launched in alternation.

data in the tree construction. Because the data of each small root
are needed by all of its descendant nodes, the data can only be freed
after all descendants of the small root are completely constructed.
Therefore, the key point to consider in designing the PBFS strategy
is to find an inexpensive way to control the number of small nodes
(including small roots) being processed simultaneously.

Our solution is to alternate between large node and small node con-
struction, as shown in Fig. 3. Our observation is that it is unneces-
sary to wait until all small roots are generated since the small roots
are continuously generated throughout the large node stage. At any
time if we find the small roots are too numerous to be split simulta-
neously, we should launch a small node stage to complete the con-
struction of as many small roots as available memory allows. After
this visit to the small node stage, all temporary data associated with
the completed nodes are discarded. We can then return to the large
node stage to continue generating small roots.

The above solution needs to compute the maximal number of small
roots that the algorithm can process simultaneously under a mem-
ory bound. In other words, we need to compute the memory cost
for building the subtree under a small root. Unfortunately, there is
no theoretical peak memory usage for the SAH-based kd-tree con-
struction because the tree depth is uncertain. We thus need a tight
estimation. Observing that the precomputation data of small roots
take most of the peak memory usage, we calculate the size of pre-
computation data exactly and estimate the remaining memory usage
as a constant factor times the number of small roots. We set this
factor to a very conservative value at first and update it after each
launched small node stage. The number of small roots that can be
handled under a memory bound can be easily computed by dividing
the memory bound by the estimated per-node memory usage.

Each small node stage begins with the estimated number of small
roots to handle. If the number is overestimated and the stage fails
due to insufficient memory, we rollback all operations completed
during this stage and try again with half of the original small roots.
While this approach is robust, the rollback mechanism is costly.
In practice, we find that the memory cost estimation is accurate
enough to entirely avoid the costly rollback in all our experiments.

3.3 Dynamic Buffer Management

Dynamic buffers are constantly used throughout the kd-tree con-
struction process for maintaining splitting nodes and storing con-
structed nodes. They inevitably lead to memory fragmentation. If
there are a few memory fragments left in the middle of an available
memory region, allocating a large buffer could fail, as often hap-
pens when working on large scenes. Therefore, we need efficient
dynamic buffer management to reduce fragmentation. For this pur-
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Figure 4: Memory pool layout in our dynamic buffer management
scheme.

pose, we reserve all available memory as a pool at the beginning of
the kd-tree construction, and allocate memory from the pool using
special strategies.

We compactly place all static buffers, such as the vertex buffer and
the index buffer, at the beginning of our memory pool. For special
reasons to be explained in Section 3.4, we also allocate the buffer
of clipped triangles statically, even though it is a dynamic buffer.

The most important dynamic buffer is the buffer of constructed
nodes. This buffer is continuously appended throughout the entire
construction process and cannot be discarded. Without special han-
dling, allocations made for this buffer can cause permanent mem-
ory fragmentation. We observe that the nodes deposited into the
buffer are left untouched until the construction is complete. This
observation allows us to apply a block-based strategy. We allo-
cate the constructed nodes buffer in 4 MB memory blocks from the
high address end of the memory pool. When construction begins, a
block is allocated at the highest address. When the buffer becomes
full, we allocate another block compactly before the previous one.
Allocations for all other dynamic buffers are performed at the low
address end. The result is that, as long as the memory pool is not
used up, the management of the constructed nodes buffer does not
interfere with other memory allocations. This is illustrated as the
cyan blocks in Fig. 4.

3.4 Efficient Storage of Clipped Triangles

The large node stage also takes a considerable portion of the mem-
ory because of the clipped triangles contained in the nodes. As
shown in Fig. 4, all of these triangles are kept in a buffer. Nodes
only maintain the indices of their triangles. Since we clip triangles
to nodes, newly clipped triangles may be added during construction.
Therefore, the triangle buffer has to be appended on the fly. Instead
of dynamically appending this buffer, we pre-allocate a static buffer
with sufficient size for all triangles.

The triangle buffer differs from the constructed nodes buffer in our
PBFS scheme. After precomputation of each small node stage, the
clipped triangles contained in already-processed small roots are no
longer useful. We can label them after each small node stage and
reuse the freed memory slots later. As shown in Fig. 5, three slots
are freed after a small node stage. These slots are then reused to
store new clipped triangles generated during subsequent triangle
clipping. Also, this buffer does not grow as rapidly as that of the
constructed nodes. For typical scenes, the analysis in [Wald and
Havran 2006] shows that splitting a node with k triangles generates

O(
√

k) clipped triangles. By adding up clipped triangles generated
at all O(log n) tree levels, the total number of generated clipped
triangles can be expected to be O(n), where n is the number of
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Figure 5: Reusing the clipped triangle slots. Three slots are freed
after a small node stage. These slots are then reused to store new
clipped triangles generated during subsequent triangle clipping.
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Figure 6: Packing a clipped triangle shape into a 32-bit integer.

original triangles. These facts make it more attractive to allocate the
triangle list buffer statically. In practice, we find a static triangle list
with the capacity of 1.5n triangles is sufficient for our test scenes.

Slot reuse is only possible if the information for each clipped trian-
gle can be stored in a fixed-size format. Note that we store the cur-
rent shape of each clipped triangle. This shape is a triangle-AABB
intersection, therefore a convex polygon of 3 to 9 vertices. Special
handling is required to pack it in a compact fixed-size format.

A triangle clipped by axis-aligned planes will result in a polygon
with no more than nine vertices and no more than nine edges. The
nine edges can come from the original three edges and the six faces
of the AABB. We encode each edge as a 3- to 4-bit binary num-
ber. Edges of the AABB are labeled from 000 to 101. The three
original triangle edges are labeled from 110 to 1000. The total
number of the edges is packed in the four least significant bits. The
edge labels are placed from the most significant bits to the least sig-
nificant bits in either clockwise or counterclockwise order. If the
clipped triangle contains the 1000 edge, this edge is always placed
in the four most significant bits. Fig. 6 illustrates the packing of
a 9-edged clipped triangle shape. Since there cannot be two edges
with the same label in a polygon, this 32-bit integer is enough for
us to recover all edges and vertices of a polygon given its original
vertices and the AABB. With this representation, a clipped triangle
only needs to keep the AABB, the edge integer, and the index of the
original triangle. This representation only takes 32 bytes per trian-
gle and significantly reduces the memory cost. The reconstruction
of vertices does not slow down the triangle clipping because of the
reduced memory fetching.



3.5 Tree Output

When building the kd-tree with a given memory bound, the out-
put process of the constructed tree merits a bit of discussion. In
[Zhou et al. 2008], the constructed tree is converted into a pre-order
traversal format. However, this conversion is itself a BFS traver-
sal. At its memory peak, the original constructed tree, the pre-order
traversal, and the node correspondence between them coexist in the
memory. This peak is considerably larger than the memory peak in
our PBFS construction and has to be avoided. Also, the finalization
algorithm of [Zhou et al. 2008] has relatively strict requirements on
the processing order of tree nodes and does not fit well in our PBFS
scheme.

We chose to use our natural construction layout directly as the fi-
nal tree node layout and omit the conversion altogether. In theory,
our layout may cause a degradation in ray tracing performance. In
practice, we found such degradation to be minor. Additionally, this
format change allows us to omit the finalization step in [Zhou et al.
2008], resulting in slightly faster tree construction as discussed in
the next section.

4 Out-Of-Core BVH Construction

In this section, we describe how to use the PBFS construction or-
der to extend the hybrid BVH construction algorithm proposed by
[Lauterbach et al. 2009] to handle very large scenes. The under-
lying approach consists of two steps. First, several coarsest tree
levels are constructed in a bootstrap pass to generate sufficient par-
allelism, using Linear Bounding Volume Hierarchy (LBVH), a spa-
tial Morton codes based algorithm. Next, the remaining tree is then
constructed in BFS order using SAH based strategies.

There is a significant difference in memory footprint between BVH
and kd-tree construction. BVH construction does not split triangles
or create duplicate triangle references. Consequentially, the prim-
itive storage remains static throughout the whole construction and
the final tree size can be bounded prior to construction. Based these
observations, Lauterbach et al. [2009] only allocate memory for
primitives and the final tree at the beginning of the construction al-
gorithm. Node splitting and triangle sorting are done in-place and
little temporary memory is required for construction. While the
memory overhead is relatively small, Lauterbach et al. [2009] still
cannot build trees that are too large to be stored in the GPU memory
(e.g. up to 1.5M triangles on a 1GB GPU). An out-of-core solution
is necessary to handle such large scenes.

Our BVH construction also consists of two phases. First, all prim-
itives are loaded into the GPU memory and the AABBs are com-
puted. The bootstrap pass and a few SAH iterations are performed
to generate an initial list of a few thousand splitting nodes. All the
AABBs are sorted in-place to match the order of their containing
nodes. After that, the AABBs and constructed nodes are dumped to
the CPU memory and all GPU memory occupied by phase one are
freed.

In the second phase, we iteratively copy continuous portions of
the splitting nodes and the AABBs of primitives contained in these
nodes to the GPU, and construct sub-trees for these nodes. At the
end of each iteration, the constructed sub-trees are dumped to the
CPU memory and the primitive AABBs are freed. We bound the
memory consumption of sub-trees construction using the total num-
ber of primitives in the constructed sub-trees. This bound is then
used to maximize the number of sub-trees constructed simultane-
ously in each iteration, just like in Section 3.2.

(a) Fairy Forest (b) Dragon (c) Turbine Blade
178K triangles 871K triangles 1,765K triangles

(d) Soda Hall (e) Neptune (f) Asian Dragon
2,195K triangles 4,008K triangles 7,219K triangles

Figure 7: Test scenes used in this paper. All the images have a
resolution of 1024× 1024. The Fairy Forest in (a) is rendered with
2 point lights. All the other scenes are rendered with 1 point light.

5 Results and Discussion

We have implemented the described algorithms in CUDA on a
workstation with Intel Xeon dual-core 3.0 GHz CPU and an
NVIDIA GeForce GTX 280 graphics card with 1 GB of memory.

KD-Tree Construction In Fig. 7, we show six test scenes with
different scales ranging from 200K to 7M triangles. On our hard-
ware, the kd-tree builder in [Zhou et al. 2008] can only handle the
Fairy Forest scene. It fails with the other five scenes due to exces-
sive memory consumption. Our PBFS scheme improves the scale
of scenes by approximately one order of magnitude. In terms of
performance, [Zhou et al. 2008] constructs the Fairy Forest scene
in 0.065s and achieves a 0.125s tracing time. Since this scene can
be processed in pure BFS order, our algorithm automatically de-
generates to a two-stage construction and achieves comparable per-
formance as shown in Table 1. The slight difference is mainly due
to the fact that we do not convert the constructed tree to a pre-order
traversal. Note that even in this scene, our PBFS scheme has a lower
peak memory consumption than that of [Zhou et al. 2008] (68 MB
vs. 123 MB). This is largely due to our efficient clipped triangle

Scene
Our method CPU methods

Ttree Ttrace Mpeak Tmin

tree Tmin

trace

Fig. 7(a) 0.058s 0.127s 68 MB n/a n/a

Fig. 7(b) 0.170s 0.020s 272 MB n/a n/a

Fig. 7(c) 0.287s 0.041s 550 MB 0.690s∗ 0.091 s

Fig. 7(d) 0.461s 0.036s 746 MB 0.450s 0.040 s

Fig. 7(e) 0.849s 0.074s 747 MB n/a n/a

Fig. 7(f) 1.428s 0.108s 715 MB 1.600s 0.200 s

Table 1: Comparison of our algorithm with the state-of-the-art
multi-core CPU methods. The statistics of CPU methods are di-
rectly taken from [Soupikov et al. 2008] and [Shevtsov et al. 2007]
with the latter marked with superscript ∗. The CPU methods make
different trade-offs between construction time and tree quality. We
compare our tree construction time with the fastest construction
method and compare our trace time with the highest tree quality
method. Mpeak is the peak memory consumption of our algorithm.
It includes the final kd-tree but not the scene data.



Scene Mbound #SNS Mpeak Ttree

Fig. 7(b)

Unbounded 1 272 MB 0.170 s
200 MB 3 170 MB 0.187 s
150 MB 5 131 MB 0.194 s
100 MB 7 93 MB 0.204 s

Fig. 7(c)

Unbounded 1 550 MB 0.287 s
400 MB 3 344 MB 0.296 s
300 MB 5 260 MB 0.306 s
200 MB 8 184 MB 0.315 s

Fig. 7(e)

Unbounded 4 747 MB 0.849 s
650 MB 6 646 MB 0.855 s
500 MB 9 481 MB 0.870 s
350 MB 18 320 MB 0.904 s

Table 2: Kd-tree construction under different memory bounds.
“Unbounded” means the memory bound is taken as all available
GPU memory. #SNS is the number of small node stages launched
during construction.
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Figure 8: Memory peak and performance of our construction al-
gorithm for the animated scene shown in Fig. 1(a).

storage as described in Section 3.4.

In Table 1, we compare our algorithm with the state-of-the-art
multi-core CPU kd-tree algorithms [Shevtsov et al. 2007; Soupikov
et al. 2008]. As shown, our algorithm can achieve comparable tree
construction performance to these methods while providing higher
quality trees with less ray tracing time.

An important feature of our algorithm is that, instead of using up all
available GPU memory, the user can choose to specify a memory
bound for kd-tree construction. In many practical applications, not
all GPU memory can be used for tree construction – some memory
has to be reserved for other data (e.g., animation data) or tasks (e.g.,
simulation). Our memory scalable algorithm is very useful in these
types of situations. We tested three scenes under different mem-
ory bounds as shown in Table 2. “Unbounded” means the memory
bound is taken as all available GPU memory, namely the total GPU
memory minus the memory reserved for scene geometry, render-
ing, and the operating system. As the memory bound decreases,
the construction has to be split into more small node stages to re-
duce peak memory consumption and results in less parallelism in
individual small node stages. For small scenes, this causes under-
utilization of the GPU, and slows down construction performance.
For the Dragon scene, restricting the memory bound to less than
half of the memory peak in the unbounded case results in a 10%
performance loss. However for larger scenes, even a small fraction
of the intrinsic parallelism is sufficient to achieve full GPU utiliza-
tion. For the Blade and Neptune scenes, the performance loss is
only about 6%.

We also tested our kd-tree algorithm using the two large animated
scenes shown in Fig. 1. The falling objects animation in Fig. 1(a)
has gradually increasing scene complexity beginning with 560K tri-
angles and reaching 7,140K in the end. This scene demonstrates

(a) Thai Statue (b) Power Plant (c) Swarm Objects
10,000K triangles 12,748K triangles 20,021K triangles

Figure 9: Test scenes for out-of-core BVH construction. All images
are rendered at resolution 1024 × 1024 with 1 point light.

Scene Mpeak Ttree Ttrace

Fig. 9(a) 452 MB 4.081 s 93%
Fig. 9(b) 612 MB 7.561 s 93%
Fig. 9(c) 897 MB 8.064 s 97%

Table 3: Construction timings and hierarchy quality. Mpeak is
the peak memory consumption of our BVH construction algorithm.
Ttree is hierarchy construction time, including GPU–CPU data
copy time. Ttrace is the relative ray tracing performance on a CPU
ray tracer compared to the full SAH solution [Wald 2007].

how our performance and memory consumption changes with re-
spect to the scene complexity. As illustrated in Fig. 8(a), the mem-
ory peak of our construction algorithm exhibits a two-phase behav-
ior. When the scene is small and can fit into the available memory,
the peak grows rapidly at a roughly linear speed. As the scene be-
comes larger, our PBFS scheme takes effect and the memory peak
oscillates at a relatively steady level. As the scene size increases
further, the memory consumed by the scene geometry increases
and the memory available for kd-tree construction decreases. Our
construction algorithm thus reduces its memory peak accordingly.
Regardless of the memory peak behavior, our construction time
grows linearly with the number of triangles, as shown in Fig. 8(b).
The PBFS scheme successfully controls peak memory consumption
with minimal performance penalty.

The example in Fig. 1(b) demonstrates the potential of our method
in handling large animations. The scene geometry and animation
consume 248 MB GPU memory. Excluding the memory reserved
for rendering and the operating system, only 650 MB memory on
the GPU is available for kd-tree construction. Our algorithm can
handle that well and achieves interactive performance. Each frame
takes approximately 1.84 seconds to render: the kd-tree construc-
tion takes about 1.46 seconds, and the remaining time is spent on
ray tracing, shading, and animation preparation.

BVH Construction Fig. 9 shows three test scenes which cannot
be handled by the in-core BFS-based algorithm [Lauterbach et al.
2009] due to the large memory consumption of geometry and the fi-
nal tree. [Lauterbach et al. 2009] only handled scenes with less than
2M triangles, while our out-of-core algorithm can support scenes
with up to 20M triangles. For all scenes, our constructed BVHs
offer similar rendering performance to the reference results which
correspond to the full SAH-based BVHs [Wald 2007].

Note that for the same tree quality, our out-of-core BVH construc-
tion is still slower than the in-core algorithm running on a 8-core
CPU with 16GB memory [Wald 2007]. Our main focus is to push
the state of the art in the hierarchies that can be built by GPU-based
algorithms, base on memory efficiency. In the future, we plan to
use the CPU to construct a portion of the nodes in parallel with the
GPU. Significant potential improvement may be achieved if work-
loads can be efficiently balanced between the CPU and GPU.



6 Conclusion and Future Work

We have presented two GPU algorithms for constructing spatial hi-
erarchies with controllable memory consumption, one for in-core
kd-tree construction and one for out-of-core BVH construction.
Both algorithms are based on the novel PBFS construction order,
and can handle scenes several times larger than previous GPU meth-
ods. The construction time is comparable with the state-of-the-art
multi-core CPU methods and our tracing performance outperforms
these methods.

The PBFS scheme provides an effective approach for balancing
memory usage while exploiting the parallelism in general purpose
GPU computation. In the future, we would like to apply this scheme
to other GPU algorithms in scientific computations and related ap-
plications. Although promising, our kd-tree algorithm still has
some limitations – it does not control the final tree size. To cope
with available memory less than the tree size, tree-size-controlling
techniques as in [Wachter and Keller 2007] have to be incorporated
into our PBFS scheme.
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