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Abstract— A substantial amount of research has focused on
analyzing and achieving the diversity-multiplexing tradeoff in
multiple antenna (MIMO) wireless communications. Recently,
ARQ protocols have been added to these formulations and shown
to perform as a type of diversity. Our goal in this paper is to
find the optimal operating point in the diversity-multiplexing-
ARQ tradeoff, with a particular focus on delay sensitive systems.
Previous results in this area construct performance measures
through the use of high SNR asymptotic approximations. While
effective, these approximations tend to trivialize the delay perfor-
mance of MIMO systems. We present a dynamic programming
formulation for finding the optimal diversity gain, multiplexing
gain, and ARQ window size, without relying on a high SNR
approximation. Our results show that the a delay sensitive system
requires one to adapt diversity and multiplexing to the time-
varying workload in the system. We provide numerical examples
that demonstrate the significant performance gains that can be
achieved by choosing an adaptive policy over a static allocation
of diversity and multiplexing.

I. INTRODUCTION

Multiple antennas can significantly improve the perfor-
mance of wireless systems. Roughly speaking, signalling
schemes that exploit the spatial domain can be used to increase
the data rate of the system (through spatial multiplexing) or
to decrease the probability of error (through spatial diversity).
The work by Zheng and Tse [13] demonstrated that both
diversity and multiplexing can be accomplished simultane-
ously. However, there is a fundamental tradeoff between the
two quantities: higher spatial multiplexing gain leads to lower
diversity and vice versa. Recently, El Gamal and Caire [2]
extended the diversity-multiplexing tradeoff to include ARQ
protocols. In ARQ, the receiver feeds back a message to
the transmitter denoting whether or not the transmission was
successful. If the message was received in error, the transmitter
re-sends another version of the message until it is received
correctly. The results in [2] show that the ARQ process can
be viewed as another form of diversity. Moreover, they show
that a sufficiently large ARQ window permits the recovery
of nearly all the spatial diversity lost to spatial multiplexing.
Hence, through the use of ARQ one can “flatten out” the
diversity-multiplexing tradeoff curve and develop systems with
essentially both full multiplexing and full diversity.

The results in [2] provide a number of interesting sugges-
tions for system design. Perhaps the most surprising is that
large ARQ windows provide substantial diversity gains with-
out destroying multiplexing gains (i.e. ARQ retransmissions do
not cause a significant reduction in throughput performance).
Hence, if the performance metric of interest is link layer

throughput then the optimal design choice is to use a large
ARQ window and as much multiplexing as possible.

In [9] we considered the question: “Given the diversity-
multiplexing tradeoff region, where should one choose to
operate?” We showed that a standard end-to-end distortion
metric allowed one to rigorously determine the optimal level
of multiplexing and diversity to be used in the design of
a multiple antenna system. The new results from [2] also
apply to the distortion problem in [9]. One can easily show
that the optimal average distortion is achieved by choosing a
high multiplexing gain and utilizing all of the available ARQ
window to create diversity.

Our goal in this paper is to consider a different distortion
measure that also accounts for end-to-end delay. This perfor-
mance metric is more appropriate for voice, video, and other
types of multimedia traffic. We will show that a delay sensitive
distortion measure results in a fundamentally different type
of optimal control in the diversity, multiplexing, and ARQ
tradeoff; where high levels of multiplexing and long ARQ
windows are no longer optimal. Indeed, we show that the
optimal amount of multiplexing and ARQ window length are
both highly dependent on the traffic’s delay sensitivity. We
also show that substantial gains can be realized by adapting
the choice of diversity and multiplexing to the time-varying
system workload.

In the next section we review previous results on the
diversity-multiplexing-ARQ tradeoff. We examine the impact
of ARQ on this tradeoff and consider some of the problems
these formulations introduce when we wish to examine delay.
Specifically, we show that the high SNR asymptotic regime
can trivialize many measures of delay. In Section III we
introduce a distortion model that also accounts for end-to-
end delay. We model an encoder concatenated with a MIMO-
ARQ channel as a large Markov chain. Then we show that
we can formulate and solve a Markov decision process to
minimize this new distortion measure and find the optimal
adaptive diversity-multiplexing control. Section IV contains
some initial numerical examples. We conclude in Section V.

II. PREVIOUS WORK REGARDING THE

DIVERSITY-MULTIPLEXING-ARQ TRADEOFF

We will use the same channel model and notation from
[2]. Consider a wireless link with M transmit antennas and
N receive antennas. We assume that the system performs the
following ARQ scheme. Each information message is encoded
into a sequence of L blocks each of size T . Transmission
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commences with the first block and after decoding the message
the receiver sends a positive (ACK) or negative (NACK)
acknowledgement back to the transmitter. In the case of a
NACK the transmitter sends the next block in the sequence
and the receiver uses all accumulated blocks to try to decode
the message. This process proceeds until either the receiver
correctly decodes the message or until all L blocks have been
sent. If a NACK is sent after the transmission of the Lth block
then an error is declared, the message is removed from the
system, and the transmitter starts over with the next queued
message. For the sake of clarity we will use the term “block”
to describe a single transmission attempt during the ARQ
process. We will refer to an attempt to send a message using
ARQ as an “ARQ round”. Hence, each round of ARQ consists
of up to L blocks, and each block is of size T .

The fading coefficients hij that model the gain from transmit
antenna i to receive antenna j are i.i.d. complex Gaussian
with unit variance. The channel gain matrix H with elements
H(i, j) = (hij : i ∈ {1, . . . N}, j ∈ {1, . . . , M}) is assumed
to be known at the receiver and unknown at the transmitter.
We assume that the channel remains constant over the entire
ARQ round of up to LT symbols, while each ARQ round is
i.i.d. Therefore, in block l ∈ {1, . . . , L} of an ARQ round we
can represent the channel as

Yl =

√
SNR

M
HXl + W, (1)

where Xl ∈ CMxT and Yl ∈ CNxT are the transmitted and
received signals in block l, respectively. The additive noise
vector W is i.i.d. complex Gaussian with unit variance.

A. The Fundamental Tradeoff

With the above model in hand define a family of codes
{C(SNR)}, indexed by the SNR level. Each code has
length LT and the bit rate of the first block in each code
is b(SNR)/T . Suppose we consider a sequence of ARQ
rounds. At time s the random variable B[s] = b(SNR) if a
message is successfully decoded at the receiver, and B[s] = 0
otherwise. Then, we can define the average throughput of the
ARQ protocol using these codes as

η(SNR) = lim inf
τ→∞

1
Tτ

τ∑
s=1

B[s], (2)

and we can view η(SNR) as the average number of trans-
mitted bits per channel use. Further define Pe(SNR) as
the average probability of error of the ARQ round (i.e. the
probability that a NACK is sent after L transmission rounds).
Define the multiplexing gain of the ARQ protocol as

r = lim
SNR→∞

η(SNR)
log SNR

, (3)

and the diversity gain as

d = − lim
SNR→∞

log Pe(SNR)
log SNR

. (4)

For each r and L we define the optimal diversity gain
d∗(r, L) as the supremum of the diversity gain achieved by

any scheme. For L = 1 (i.e. no ARQ) we have the following
result from [13].

Diversity-Multiplexing Tradeoff: Assume the block length
T ≥ M + N − 1. Then the optimal tradeoff between diversity
gain and multiplexing gain is given by d∗(r, 1) = f(r),
where f(r) is the piecewise linear function joining the points
(k, (M − k)(N − k), at integer values of k for 0 ≤ k ≤
min(M,N).

For L > 1 we have the following result from [2].

Diversity Gain of ARQ: The diversity gain for the ARQ
protocol with a maximum of L blocks is

d∗(r, L) = f
( r

L

)
. (5)

The diversity gain achieved by ARQ is quite remarkable.
According to (5), for any r < min(M,N) we can achieve
the full diversity gain d = MN for sufficiently large L. This
suggests that there is little point in utilizing spatial diversity
since we can always acquire any needed diversity through
ARQ.

In order to analyze the diversity, multiplexing, and ARQ
tradeoff in delay sensitive systems we must recognize two
important conditions of the above results. First, in delay
sensitive systems we may not be able to tolerate a long
ARQ window (in some cases ARQ may not be tolerated at
all). Second, we must carefully consider the impact of the
high SNR asymptotic regime, which is crucial in the proofs
of the above results. Specifically, in the high SNR regime
the occurrence of a NACK in the ARQ protocol becomes
a rare event (i.e. the probability of a NACK tends to zero
as SNR → ∞). Therefore, with probability tending to one,
each message is decoded correctly during the first transmission
attempt – resulting in a multiplexing gain equivalent to that
of a system without ARQ. The increasingly rare errors are
corrected by the ARQ process, which results in increased
diversity.

The main difficulty in using these asymptotic results to
evaluate delay performance is that in the high SNR regime
there is essentially no delay . Using standard results from
queueing theory one can show that the rare error events will
cause arriving messages to almost always find the system
empty. Hence, with high probability an arriving message will
immediately begin transmission and suffer no queueing delay.
In wireless systems, errors during a transmission attempt are
not rare events. Indeed, modern wireless systems typically
become reliable only after the application of ARQ. In other
words, errors after completion of the ARQ process might be
rare events, but errors during the ARQ process are not rare. As
we shall see in the next section, this subtle difference results in
an entirely different optimization problem and solution when
we consider delay sensitive distortion measures.
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III. A DELAY-DISTORTION MODEL FOR THE

DIVERSITY-MULTIPLEXING-ARQ TRADEOFF

This section presents our system model for minimizing
a delay sensitive end-to-end distortion measure. We do not
assume a high SNR regime in this analysis. However, we do
assume that the SNR is fixed for each problem instance (i.e.
we do not optimize power control).

We assume the original source data u is a random vector
with probability density f(u), which has support on a closed,
bounded subset of �k with non-empty interior. During each
transmission block of length T an instance of u arrives at
the system independently with probability λ and is queued
for transmission. We assume that each message has a playout
deadline k at the receiver. Hence, if a message arrives at time
t and is not received by time t + kT then its deadline expires
and the message is dropped from the system. We assume that
each message is quantized according to the scheme discussed
below. The quantized version of each message is then mapped
into a codeword in the codebook {C(SNR)} and passed to
the MIMO-ARQ transmitter discussed in the previous section.

Due to the random message arrival times and the random
completion times of the ARQ process we will have queueing
and delay in this system. Our goal is to select a diversity
gain, multiplexing gain, and ARQ window size to minimize the
distortion created by both the quantizer and the messages lost
due to delay. The intuition behind the diversity-multiplexing-
ARQ tradeoff is straightforward. We would we like to use as
much multiplexing as possible since this will allow us to use
more bits to describe a message and reduce encoder distortion.
However, high levels of multiplexing induce more errors in the
wireless channel, thereby requiring longer ARQ windows to
reduce errors. The longer ARQ windows induce higher delays,
which also cause higher distortion due to messages missing
their deadlines. We must balance all of these quantities to
optimize system performance.

A. Message Distortion Model

An s-bit quantizer is applied to each message via the
following transformation:

F (u) =
2s∑

i=1

viI[Ai], (6)

where I[Ai] is the standard indicator function, and {Ai}2s

i=1

is a partition of �k into disjoint regions. Each region Ai is
represented by a single codevector vi.

We assume the encoder/decoder pair achieves the noiseless
distortion [5]

Ds(F ) = 2−ps/k, (7)

where

Ds(F ) =
2s∑

i=1

∫
Ai

||u − vi||pf(u)du, (8)

and ||u−vi||p is the pth power of the Euclidian norm. We use
this distortion measure strictly for the sake of simplicity. In-

deed, we only require a function that is convex and decreasing
in s and discuss this issue in more detail in [10].

Assume that the rate of the channel codebook C{SNR}
is matched to the rate of the quantizer. Hence, the number
of bits used to describe the message will determine b(SNR)
and the amount of spatial multiplexing gain in the system.
Furthermore, we assume that we can achieve the optimal
point on the diversity-multiplexing tradeoff curve. Therefore
a choice of spatial multiplexing gain also specifies the spatial
diversity gain.

We assume, as in [8], [9], [6] that the total distortion
DT (F, SNR) can be split into two dependent pieces

DT (F, SNR) = Ds(F ) + De(d, SNR), (9)

where De(d, SNR) is the distortion caused by messages
declared in error. Here the errors are incurred whenever the
ARQ process fails or when a message’s deadline expires. As
in [6], [8] we also assume the distortion due to erroneous
messages is bounded by the overall loss probability:

De(d, SNR) ≤ Pe(SNR)+ (1−Pe(SNR))P{Delay > k},
(10)

where P{Delay > k} is the probability that a message
violates its deadline. We note that this assumption coincides
with tight rigorous bounds [8] as well as heuristic distortion
measures that have been fitted to real world traffic streams
[12].

B. Minimizing Total Distortion

Our goal is to minimize the total delay-distortion bound

DT (F, SNR) ≤ Ds(F ) + Pe(SNR) (11)

+ (1 − Pe(SNR))P{Delay > k}.
In order to optimize (11) we require a formulation that
accounts for the different delays experienced by each message.
Hence we turn to the theory of Markov decision processes to
model and solve this problem.

Without loss of generality assume that the queue described
in the previous section is of maximum size k. Note that
each message requires at least one time block of size T for
transmission, hence any arriving message that sees more than
k messages in the queue will not be able to meet its deadline.
Unlike standard queueing models that only track the number
of messages awaiting transmission, we must also track the
amount of time a particular message has waited. For example,
if one message is queued for transmission we will differentiate
between the states where a message has just arrived and a
message whose deadline is about to expire. Since we may only
have a finite number of messages in the queue, this combined
message and waiting time model exists in a finite space. Define
the queue process XQ = (XQ(n) : n ≥ 0), which takes
values on a finite space XQ. Likewise, we may define the
state of the ARQ process XL = (XL(n) : n ≥ 0) on a
finite space XL. Here, the state of the ARQ process denotes
the number of the current transmission block in the current
ARQ round. Define the overall state of the system as a process
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X = (X(n) : n ≥ 0) such that X(n) = (XQ(n),XL(n)) (i.e.
the space X is the product space of XQ and XL).

Since the arrival process is geometric and each ARQ round
is assumed to be i.i.d., the process X is a finite-state discrete-
time Markov chain. The transition dynamics of this Markov
chain are governed by the choices of diversity, multiplexing,
and ARQ window size. Assume that at the start of each
ARQ round the transmitter chooses the number of bits to
assign to the vector encoder and hence the amount of spatial
diversity and multiplexing in the codeword selected from
{C(SNR)}. The transmitter also selects the length of the
ARQ window. These choices then remain fixed until either
the message is received or the ARQ window expires. Define
the space of actions A as the set of all possible combinations
of multiplexing gain and ARQ window length. (Note that a
choice of multiplexing gain implicitly selects the number of
bits given to the source encoder as well as the amount of
spatial diversity available.) We assume that the number of
antennas M and N are finite and that the ARQ window size
is also finite. Hence, the action space A consists of a finite
set.

Define a control policy g as a probability distribution on the
space X x A. We can view the elements of g as

g(x, a) = P{action a chosen in state x}, ∀x ∈ X , a ∈ A.

For any control g, the Markov chain X is irreducible and
aperiodic1. Define Q(g) as the transition matrix for X corre-
sponding to control policy g. Hence, Q(g) = (Qi,j(g) : i, j ∈
X ) is a stochastic matrix with entries

Qi,j(g) = P (X(n + 1) = j|X(n) = i, g)

=
∑
a∈A

P (X(n + 1) = j|X(n) = i, A(n) = a)g(i, a)) .

For each state-action pair we define a reward function
r(x, a). For the states in X corresponding to completion of
the ARQ process the reward function denotes the distortion
incurred in that particular state. Hence,

r(x, a) = 2−ps/k + I[ARQ Fail] + I[ARQ Succeed]I[Delay>k].
(12)

Let G be the set of all available control policies. Then for
any g ∈ G define the limiting average value of g starting from
state x as

V (x, g) = lim sup
n→∞

[(
1

n + 1

) n∑
k=0

Ex,g [r(X(k), g)]

]
.

where r(X(k), g) is the random reward earned at time k under
control policy g. Since X is an irreducible and aperiodic
Markov chain for any control g we know [1] that the above
value function reduces to

V (x, g) = π(g)r(g) ∀ x ∈ X , (13)

where π(g) = π(g)Q(g) is the stationary distribution of X
under control g and r(g) is the column vector of rewards

1To create a non-irreducible Markov chain we would require the ability to
successfully transmit a packet with probability one.

earned for each state x ∈ X under control g. Hence, the value
function is simply the expected value of our reward function
r with respect to the stationary distribution of X . Notice that
given our definition for r in (12), the value function V (g)
provides us with the delay-based distortion (11) caused by
control policy g.

Our goal is to find a g ∈ G that minimizes V (x, g). From
[1] we know this problem can be solved through the following
linear program.

min
s

∑
x∈X

∑
a∈A

r(x, a)sxa (14)

subject to:∑
x∈X

∑
a∈A

(δ(x, x ′) − p(x ′|x, a)) sxa = 0, x ′ ∈ X
∑
x∈X

∑
a∈A

sxa = 1,

sxa ≥ 0; a ∈ A, x ∈ X ,

where δ(x, x ′) is the Kronecker delta, sxa is the steady-
state probability of being in state x and taking action a, and
p(x ′|x, a) is the probability of jumping to state x ′ given action
a in state x. The state-action frequencies sxa provide a unique
mapping to an optimal control g∗ [1].

With this dynamic programming formulation in hand we
can solve for the optimal diversity gain, multiplexing gain, and
ARQ window size as a function of queue state and deadline
sensitivity. We demonstrate the performance of these solutions
with a numerical example in the next section.

IV. NUMERICAL EXAMPLE

Consider the system setup described above with messages
arriving in each time block with probability λ = .9. We
assume a 4x4 MIMO-ARQ system (M = N = 4) utilizing
the incremental redundancy codes proposed in [3] which
have been shown to achieve the diversity-multiplexing-ARQ
tradeoff. The ARQ window size will take values in a finite
set L ∈ {1, . . . , 4}. We will allow the deadline parameter k
to range over several values (k ∈ {2, . . . , 16}) in order to
examine the impact of delay sensitivity on the solution to our
dynamic program (14). For each value of k we solve a new
version of (14), the plots below contain the data accumulated
from all of the solutions.

Figure 1 plots the optimal ARQ window length as a function
of queue state for different values of k. We can see that for
short deadlines we cannot afford long ARQ windows for any
queue state. As the deadlines become more relaxed we can
increase the ARQ window size. Although as the queue fills up
we are forced to again decrease the amount of ARQ diversity.

Figure 2 plots the optimal multiplexing gain r as a function
of queue state for different values of k. Here we can see
that with short deadlines we must utilize fairly low amounts
of spatial multiplexing (i.e. high spatial diversity), since we
cannot use ARQ diversity. As the deadlines become more
relaxed we can increase the amount of spatial multiplexing
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Fig. 1. Optimal ARQ window size vs. queue state vs. deadline parameter k.
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Fig. 2. Optimal multiplexing gain vs. queue state vs. deadline parameter k.

and utilize ARQ for diversity. Once again, as the queue fills
up we must switch back to low levels of multiplexing in order
to ensure that traffic is cleared from the system on time.

We also evaluate the performance advantage gained by
adapting the settings of diversity, multiplexing, and ARQ
rather than choosing fixed allocations. For k = 4 we computed
the distortion resulting from all possible fixed allocations of
ARQ window length and multiplexing gain. The curved sur-
face in Figure 3 plots the distortion of these fixed allocations
for all values of L and r. The flat surface in Figure 3 is
the distortion achieved by the adaptive scheme (plotted as
a reference). Even in the most favorable cases, the adaptive
scheme outperforms any fixed scheme by more than 50%.

V. CONCLUSION

In this paper we investigate the optimal diversity-
multiplexing-ARQ tradeoff in terms of minimizing a delay
sensitive end-to-end distortion measure. We show that current
analysis, which relies on a high SNR approximation, may not
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Fig. 3. Distortion for the fixed allocation problem vs. multiplexing gain vs.
ARQ window size.

be suitable for measuring delay performance. We then present
a dynamic programming framework for optimizing the choices
of diversity, multiplexing, and ARQ window length in delay
constrained environments. Our results show that it is optimal to
adapt ARQ and the diversity-multiplexing gains to the amount
of data queued for transmission. Furthermore, the gains in
performance achieved by adaptation can be significant when
compared with static allocation policies.
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