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Abstract

A general theory is presented to describe the effects of dispersion fluctuations on optical pulses propagating inside

single-mode fibers modeled as a linear dispersive medium. It is shown that the pulse broadening induced by dispersion

fluctuations can be quite large in dispersion-managed lightwave systems, especially at high bit rates, and can exceed that

induced by third-order dispersion and polarization mode dispersion. � 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

It is well known that pulse broadening induced
by group-velocity dispersion (GVD) can limit the
performance of fiber-optic communication systems
[1]. The use of a dispersion-management technique
in which the GVD is alternated along the fiber link
in such a way that the average GVD remains close
to zero solves this problem to a large extent [2]. In
modern dispersion-managed lightwave systems, the
single-channel bit rate can exceed 40 Gb/s. At such
high bit rates, higher-order dispersive effects be-
come quite important. Indeed, considerable atten-
tion is being paid to the effects of third-order
dispersion (TOD) and polarization-mode disper-

sion (PMD) in this context [1–4]. However, the ef-
fects of dispersion fluctuations that are inherent in
any real optical fiber have attracted much less at-
tention [5]. Dispersion fluctuations can result from
two different sources. First, unintentional varia-
tions in the core diameter, or dopant distributions,
of the fiber generally change fiber dispersion along
the fiber length. Several measurements of fiber
dispersion have shown that random dispersion
variations along the fiber length can be quite large
[6–10]. Such variations are static, i.e., they do not
change with time. Second, environmental changes
such as temperature fluctuations can introduce
time-dependent changes in the fiber dispersion [11–
14]. Such changes are relatively small but can add to
considerable fluctuations for long-haul fiber links,
especially at high bit rates, for which the require-
ments on accumulative dispersion become quite
stringent. In this paper, we address the issue of
pulse broadening induced by dispersion fluctua-
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tions and show that their impact on the system
performance can become severe and might exceed
those of PMD and TOD at a bit rate of 40 Gb/s or
more.

2. Theory

To focus on the effect of dispersion fluctuations,
we ignore the PMD effects initially. In a single-
mode fiber, the optical field can be written in the
form [1]

Eðx; y; z; tÞ ¼ F ðx; yÞAðz; tÞ

¼ F ðx; yÞ 1ffiffiffiffiffiffi
2p

p
Z þ1

�1
Sðz;xÞe�ixt dx

� �
;

ð1Þ

where F ðx; yÞ represents the spatial distribution of
the fiber mode. The spectral amplitude Sðz;xÞ
changes with z as [2]

Sðz;xÞ ¼ Sð0;xÞ exp i

Z z

0

bðx; zÞdz
� �

� S0ðxÞeihðxÞ� �
exp iuðz;xÞ½ 
; ð2Þ

where S0ðxÞ and hðxÞ are the amplitude and
phase of the initial pulse spectrum, uðz;xÞ ¼R z
0
bðx; zÞdz is the propagation-induced phase

shift, and b is the propagation constant of the
fiber mode. If the core radius of the fiber or the
distribution of dopants inside the fiber varies
along the fiber length in a random fashion, b
varies with z because of the waveguide contri-
bution to the effective mode index of the fiber
[1]. If the environmental variables such as tem-
perature fluctuate at different locations of fiber,
bðzÞ fluctuates with time as well, because the
material dispersion of fiber depends on temper-
ature [11–14]. Our objective is to find pulse
broadening induced by such fluctuations in
addition to that resulting from the average value
of b.

To obtain a general expression for the pulse
width valid for an arbitrary pulse shape, we cal-
culate the root-mean-square (RMS) width r of the

pulse defined as r2 � bt2t2 � ðbtt Þ2, where the hat
denotes an average over the pulse intensity profile.

It is useful to express the two temporal moments in
terms of the pulse spectrum Sðz;xÞ as

btt � Z þ1

�1
tjAðz; tÞj2 dt ¼�i

Z þ1

�1
S�ðz;xÞSxðz;xÞdx;

ð3Þ

bt2t2 � Z þ1

�1
t2jAðz; tÞj2 dt ¼

Z þ1

�1
S�

xðz;xÞSxðz;xÞdx;

ð4Þ
where the subscript x denotes a frequency deriv-
ative, i.e., Sx ¼ oS=ox. We have assumed that
Aðz; tÞ and Sðz;xÞ are normalized such thatZ þ1

�1
jAðz; tÞj2 dt ¼

Z þ1

�1
jSðz;xÞj2 dx ¼ 1:

We substitute Sðz;xÞ from Eq. (2) in Eqs. (3) and
(4) and express r2 in the form

r2 ¼ r2
0 þ s2 � sð Þ2 þ 2 shx

�
� shx

�
; ð5Þ

where r0 is the initial RMS width of the pulse at
z ¼ 0, hx ¼ dh=dx, and s represents the group
delay defined as

s � ou
ox

¼
Z z

0

bxðx; zÞdz: ð6Þ

In Eq. (5), an overbar denotes average over the
initial pulse spectrum, i.e., f ¼

Rþ1
�1 f ðxÞjS

ð0;xÞj2 dx. It is obvious that the pulse broadening
is determined by the accumulative dispersion of
the whole fiber link. Because of dispersion fluctu-
ations, r2 itself is a random quantity.

Since bðx; zÞ fluctuates randomly only along z,
we assume that it can be written in the form

bðx; zÞ ¼ bdðxÞ½1þ eðzÞ
; ð7Þ
where eðzÞ is a random process whose first two
moments are given by

heðzÞi ¼ 0; heðz1Þeðz2Þi ¼ Rðz2 � z1Þ: ð8Þ
The angle brackets denote an ensemble average
over dispersion fluctuations and bdðxÞ � hbðx; zÞi
is the average value of bðx; zÞ. In the case of a
dispersion-managed fiber link, bdðxÞ itself be-
comes a function of z because it varies from fiber
to fiber in a stepwise fashion.
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To calculate hr2i, we substitute Eq. (7) in Eq.
(6) and separate the group delay s ¼ sd þ sr into its
deterministic and random parts defined as

sd �
Z z

0

bd1ðxÞdz; sr �
Z z

0

bd1ðxÞeðzÞdz; ð9Þ

where bd1 ¼ dbd=dx ¼ v�1
g and vg is the group

velocity. The average value of r2 can then be
written as

hr2i ¼ r2
0 þ r2

d þ hr2
r i; ð10Þ

where

r2
d ¼ s2d � sdð Þ2 þ 2 hxsd

�
� hxsd

�
ð11Þ

is the broadening induced by the deterministic part
of bðx; zÞ. The additional broadening resulting
from dispersion fluctuations is given by

hr2
r i ¼ hs2r � ðsrÞ2i

¼ ½b2
d1 � ðbd1Þ

2

Z z

0

dz1

Z z

0

dz2Rðz2 � z1Þ: ð12Þ

Eqs. (10)–(12) constitute our main result. They are
valid for optical pulses of any shape and take into
account the effects of initial frequency chirp.
Moreover, they include fiber dispersion to all or-
ders.

3. Application to chirp Gaussian pulses

To illustrate the significance of Eq. (10), we
apply it to the case of chirped Gaussian pulses and
consider fiber dispersion up to third order using
bdðxÞ � b0 þ b1x þ b2x

2=2þ b3x
3=6. The input

field in Eq. (1) is of the form Að0; tÞ ¼ A0 exp
½�ð1þ iCÞt2=4r2

0
. As the input pulse spectrum is
also Gaussian, all frequency integrals can be done
analytically. In fact, in the absence of dispersion
fluctuations, r2 ¼ r2

0 þ r2
d, and we recover the

well-known result [1]

r2

r2
0

¼ b2zC
2r2

0

�
þ 1

�2

þ b2z
2r2

0

� �2

þ 1

2

b3z 1þC2ð Þ2

4r3
0

" #2

:

ð13Þ
To calculate the additional broadening hr2

r i pro-
duced by dispersion fluctuations, we need a specific

form of the correlation function Rðz2 � z1Þ ap-
pearing in Eq. (12). Using Rðz2 � z1Þ ¼ g2

e�jz2�z1j=lc , where g indicates the strength of dis-
persion fluctuations and lc is the length over which
fluctuations remain correlated, we obtain

r2
r

� �
¼ b2

2ð1þ C2Þ
2r2

0

"
þ b2

3ð1þ C2Þ2

16r4
0

#
� g2lc z½ � lc 1ð � exp ð � z=lcÞÞ
: ð14Þ

Eq. (14) applies to fibers with constant average
dispersion. In the case of dispersion-managed
lightwave system, Eq. (14) can be applied sepa-
rately for each fiber section used to form the dis-
persion map. If the section length Li � lc, the last
factor in Eq. (14) is approximately equal to Li.
Noting that the ratio

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ C2

p
=r0 is related to the

spectral width of the pulse that does not change in
a linear medium, the total broadening can be ob-
tained by summing over all fiber segments. The
final result is given by

r2
r

� �
¼ ð1þ C2Þ

2r2
0

XN
i¼1

b2
2ig

2
i lciLi

þ ð1þ C2Þ2

16r4
0

XN
i¼1

b2
3ig

2
i lciLi: ð15Þ

If we assume that the relative level g of dispersion
fluctuations and the correlation length lc are the
same for all fibers used to form the fiber link, this
equation reduces to

hr2
r i ¼

ð1þ C2Þ b2
21L1 þ b2

22L2

� �
2r2

0ðL1 þ L2Þ

"

þ
ð1þ C2Þ2 b2

31L1 þ b2
32L2

� �
16r4

0ðL1 þ L2Þ

#
g2lcL ð16Þ

for a two-section map, where L is the total link
length.

To illustrate the importance of dispersion fluc-
tuations, we consider a specific dispersion map
made using 60 km of standard single-mode fiber
ðb2 ¼ �22 ps2=kmÞ and � 13:2 km of dispersion-
compensating fiber ðb2 ¼ 100 ps2=kmÞ such that
average GVD bav

2 of the link is zero or has a small
value. Both fibers have a constant TOD,
b3 ¼ 0:1 ps3=km. Fig. 1 shows the broadening
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factor b ¼ hr2i1=2=r0 for bav
2 ¼ 0 and�0:05 ps2=km

when r0 ¼ 5 ps and C ¼ 0. The g ¼ 0 case is shown
by dashed lines for comparison.We assume g ¼ 2%
and lc ¼ 2 km as representative of typical disper-
sion fluctuations in optical fibers. The TOD effects
are relatively small for such wide pulses (full width
at half maximum � 12 ps) and the pulse broadens
by only 20% at 5000 km when bav

2 ¼ 0. However,
even 2% fluctuations produce broadening by a
factor of 2.9 at 5000 km. When the average GVD is
not zero, the effect is not as dramatic but still re-
mains quite large. For example, when bav

2 ¼ �0:05
ps2=km, broadening factor at 5000 km increases
from 5.1 to 5.8.

To study the dependence of pulse broadening
on the level of dispersion fluctuations, we show in
Fig. 2 the broadening factor at 5000 km as a
function of g for three different pulse widths
ðC ¼ 0Þ and the same map used in Fig. 1 with
bav
2 ¼ 0. When g ¼ 0 (no dispersion fluctuations)

the effects of TOD lead to considerable pulse
broadening for 2.5-ps pulses. The broadening
factor does not change much when g is below 1%
but increases rapidly for g > 2%. The rate of in-
crease depends inversely on the pulse width. For
2.5-ps pulses, broadening factor increases from 6
to 27 when g ¼ 5%. These results show that the
impact of dispersion fluctuations would become

severe for systems operating at single-channel bit
rates of 40 Gb/s or more.

Finally, one may ask how broadening induced
by dispersion fluctuations compares with that in-
duced by PMD. We use Eq. (7) of Ref. [4] to in-
clude PMD effects. Fig. 3 compares the
broadening induced by dispersion fluctuations

Fig. 1. Broadening factor for unchirped Gaussian pulses as a

function of propagation distance with (solid lines) and without

(dashed lines) dispersion fluctuations for a dispersion map

having average dispersion of 0 and �0:05 ps2=km.

Fig. 2. Broadening factor at 5000 km as a function of the

standard deviation of dispersion fluctuations for three values of

the RMS width r0. Average dispersion of the map is zero. Other

parameters are the same as in Fig. 1.

Fig. 3. Broadening factor as a function of distance for two

values of r0. The dispersion map is the same as in Figs. 1 and 2

but average dispersion equals zero. Other parameters are the

same as in Fig. 1. Dashed lines show for comparison broad-

ening induced by first-order PMD in the absence of dispersion

fluctuation (g ¼ 0).
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(solid curves) with that of PMD (dashed curves)
assuming g ¼ 2% and a PMD value of 0:2 ps=ffiffiffiffiffiffiffi
km

p
. The comparison is made for 5 and 10-ps

pulses using the same dispersion map used earlier
in Fig. 1 with bav

2 ¼ 0. For 10-ps pulses, dispersion-
fluctuation-induced broadening (b ¼ 1:19) is al-
most the same as PMD-induced broadening
(b ¼ 1:16). However, when pulse width decrease to
5 ps, the dispersion fluctuations induced broad-
ening greatly increases to 2.8, almost three times
the initial pulse width, although that induced by
PMD still keeps as low as 1.6. The impact is even
more severe for shorter pulses. It is clear that high-
bit-rate lightwave systems will be affected consid-
erably by dispersion fluctuations.

4. Conclusions

In conclusion, we have derived a general ex-
pression for pulse broadening that is valid for
chirped pulses of arbitrary shape and includes
dispersive effects to all orders. We have used it to
study the effect of dispersion fluctuations and
found that even a few percent fluctuations from
the average value of dispersion can enhance pulse
broadening by a large factor, especially for short
pulses. Although the manufacturing-induced dis-
persion fluctuations, such as random variations in
fiber core and dopant distribution along the fiber
length, are static and can be compensated totally
in real systems by pre- or post-compensation
techniques, the environment-induced dispersion
fluctuations (such as temperature-induced chan-
ges) vary with time randomly. The important
question is whether such time-dependent fluctua-
tions can be compensated in a practical lightwave
system. The answer depends on the time-scale at
which fluctuations occur. Temperature-induced
dispersion fluctuations are likely to vary slowly
and it may be possible to compensate for them by
using an adaptive dynamic compensation tech-

nique [12–15]. In contrast, any mechanism that
leads to rapid dispersion fluctuations may be dif-
ficult to eliminate fully. Our results show that
dispersion fluctuations may be much more limiting
factor than PMD for lightwave systems in which
each channel operates at a bit rate of 40 Gb/s or
more.
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