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AbstractWe describe the diagnosis and treatment of bottlenecks in computer systems usingdecison theoretic techniques. The techniques rely on a high-level functional model ofthe interaction between application workloads, the operating system (Windows NT),and system hardware. Given a workload description, the model predicts the values ofsystem counters observable with the Windows NT performance monitoring tool. Un-certainty in workloads, predictions, and counter values are characterized with Gaussiandistributions. During diagnostic inference, observed performance monitor values areused to �nd the most probable assignment to the workload parameters.In this paper we provide some background on performance modeling and automatedbottleneck detection, describe the structure of the system model, and discuss empiricalprocedures for model veri�cation. Our method for inferring the cause of the bottleneckis discussed. Initial results in diagnosing bottlenecks are presented. Based on thediagnosis of the bottleneck we can make both a recommendation of the most cost-e�ective hardware upgrade, and a prediction of the performance counter values andthroughput once the upgrade is installed.1 IntroductionComputer performance bottlenecks are typi�ed by the overconsumption of some hardwareresource or set of resources. Usually this results in the underconsumption of other hardwareresources resulting in a delay completing the workload. Once a particular resource set isidenti�ed as the bottleneck, a number of remedies exist. These include distributing theload across additional instances of that resource set, installing faster resources in the set, orredesigning the workload to use another set of resources instead. These actions will resolvethe bottleneck by reducing the time spent using the bottlenecking resource, possibly evenshifting the bottleneck to another component.Several problems arise which prevent the simplistic detection of bottlenecks by merelyobserving device utilization. In commodity computer hardware in widespread use today,there is the problem of inadequate system instrumentation. Frequently, resource utilizationsare not measured directly. This is partly due to a lack of fast, inexpensive, accurate clocksfor timing the usage of resources, and partly due to a lack of computer industry coordinationconcerning the metering of resource activity and access to that information throughout thehardware hierarchy. Even in a modern system such as Microsoft's Windows NT whichsupports over 500 di�erent performance metrics [Blake, 1995], inadequate instrumentationremains an impediment to bottleneck detection. Gradual improvement is being made inthese areas, but at present there is often a need to infer device utilization indirectly.1



Another problem confounding simple bottleneck detection is that some resources areused to satisfy fundamentally di�erent workload requirements. Just because in a certaincase we deduce that the disk is the bottleneck, we cannot simply conclude that a fasterdisk is the correct solution. Modern computer systems use disks and local area networksfor both virtual memory and �le storage. A shortage of RAM can cause disk activity aseasily as �le activity can, so the correct solution might be to buy more RAM, not fasterdisks. Even if the activity is simple �le activity, modern systems also use RAM to cache�le data, so even if the activity is pure �le access the addition of RAM may still be theright solution. Conversely if the activity is one-time sequential �le access, it is unlikely thatadditional RAM will be of assistance, and a faster disk is required.Which of these causes of the bottleneck prevails in a given case is key to the correctremedy. To answer this question we must infer the bottleneck's cause from existing systemmetrics. This is an inherently uncertain endeavor. We typically do not know preciselythe users' patterns of access of the system's functionality. We do not know the speci�cperformance characteristics of all the concurrently executing software on the particularmachine in question. And typically we do not have perfect measurements of internal systemstates; rather there are some limited set of metered outputs from which we can determineperformance.In general, there has been relatively little work addressing the uncertain aspects of per-formance analysis in real-world, dynamic environments. To address this problem we usemethodologies and techniques from probability and and statistics [Pearl, 1988, Heckerman and Wellman, 1995,DeGroot, 1970]. We construct an analogous probabilisitic model of operating system re-source allocation policies. We explicitly represent uncertainties in the workload, the model,and the measurements and use estimates of these to deduce the workload most likely tohave caused the bottleneck. Once we know the cause of the bottleneck we can use themodel to predict the performance of proposed changes. Eventual applications of this diag-nostic capability include support for hardware purchase decision making, advanced softwaredevelopment tools, and dynamic system tuning.In Section 2, we review some of the literature relevant to performance analysis andbottleneck detection. In Section 3, we present issues in developing, calibrating, and verifyingthe model of the operating system. In Section 4, we present our method for inferring systembehavior from observables, including learning an error model for model predictions, and inSection 5 we present empirical results. 2



2 Performance AnalysisThe literature on computer performance modelling has been largely concerned with answer-ing the following question: Given a planned workload, what selections of possible computerequipment, interconnection schemes, protocols, and algorithms should be made to producesatisfactory performance? This problem is generally attacked by determining the relevantcharacteristics of the workload to be applied and the relevant characteristics of the com-puter system performance behavior. A model of the proposed system is constructed, veri�edagainst either the actual equipment or a simulation, and used to predict the ability of thesystem to handle the proposed workload [Dowdy, 1989].All computer performance models need a description of the workload which will be ap-plied to the systems by the anticipated application. Application workloads are naturallyexpressed in terms of the use of those facilities the application makes available (e.g., open adocument or print a report.) When possible, the original workload used to drive the modelcan be taken from traces of real system activity on a pre-existing system [Yu et al., 1985].Considerable literature supports the clustering of application functions into a set of statis-tically equivalent synthetic activities [Ferrari, 1984, Raghavan and Kalyanakrishnan, 1985,Graf, 1987, Raghavan et al., 1987, Bodnarchuk and Bunt, 1991]. Workloads as describedto the model are usually at a lower level of detail than application functions, such asat the level of calls for system services. Methods have been developed for hierarchicallydecomposing application functional actions into system level calls for input into models[Graf, 1987, Raghavan et al., 1987]. All of this literature assumes the workload is known;the problem is in specifying it economically at the right level of detail for consumption bythe model.Over the past decade there has been a shift away from monolithic applications on dedi-cated hardware to a client/server environment where inter-communicating applications arethrown together on a mix of servers. Ferrari has noted that \no systematic methodolo-gies are known to reduce a multi-computer workload's description to a more compact andrepresentative model of that workload" [Ferrari, 1989]. The independent construction ofthe applications and operating systems|combined with their inter-dependent operation|make it very di�cult, if not impossible, to specify the workload. Furthermore, much ofthe workload applied to a system may not be the direct plan of the application designer atall. For example the amount of paging tra�c induced by placing a particular applicationonto a particular system is seldom the intent of the application designer, since typically theapplication co-exists on the system with other applications, and the cumulative e�ect deter-mines paging behavior. These very real concerns threaten to render the large body of e�ort3



thus far expended on computer performance modeling irrelevant, because the workload tobe supplied to any model cannot be known a priori.The thrust of our research is to overcome this fundamental problem by using probabilisticmethods to infer the most probable workload from the performance measures provided byan existing system. In the situation where a new application is to be added to an existingcon�guration, the inferred workload can then be combined algebraically with the anticipatedapplication workload derived using the conventional techniques referenced above. If theinter-process interactions are too strong for the anticipated application workload to becharacterized in isolation [Ferrari, 1989], a prototype of the new application embedded inthe expected environment can be measured to infer the new composite workload. Theresulting workload can be used to drive the many sorts of models discussed above, enablingclassical analyses such as identifying the bottleneck and its causes, predicting the e�ect ofequipment purchases, or predicting the e�ects of changes in operating system algorithms.Previous attempts to automate bottleneck detection expertise have been constructedusing rule-based techniques and have focused on performance tuning [Irgon et al., 1988,Domanski, 1989]. These methods have no explicit representation of a workload or a modelof the system. While shown to be useful for automating tuning, a rule-based approach can-not be easily manipulated to extrapolate changes in the workload, di�erences in hardwarecon�guration, or revisions in operating system algorithms. In addition these methods pro-vide no explicit methodology for managing uncertainty in the heuristics or their mappingto the rules.Hellerstein has recently compared di�erent techniques for bottleneck detection [Hellerstein, 1994].In his treatment Hellerstein refers to an observed performance metric as \causal" if thatmetric plays a principle role in the observed delay. This is unrelated to our notion ofcausality as used in reference to belief networks from decision theory, where the applicationworkload \causes" the bottleneck on the system. In decision theoretic belief networks, thecausal relationships fully dictate the structure of the model and are not changed by anyparticular measurement.Some attention has been given to the issue of diagnosing transient bottlenecks in com-puter systems [Hellerstein, 1989, Berry and Hellerstein, 1991]. In our work thus far we havefocused on bottlenecks which endure for some period of time. In principle it appears thatthe automatic bottleneck detection capability we have created could operate in real-timeon a network of systems, displaying bottlenecks as they shift about the computer network.4



3 A Model of Computer System PerformanceAtomic models [Blake, 1979, Gray, 1987] of computer systems are a re�nement of opera-tional models [Buzen, 1976, Buzen and Shum, 1987]. Atomic models assign atomic perfor-mance values to fundamental system operations. Operational service times at devices canbe thought of as molecules of device consumption; atomic models depict these molecules asbeing made up of atoms of device consumption combined to re
ect the structure of the op-erating system. This permits operational models to re
ect operating system policy decisionsregarding the allocation of resources, without resorting to the level of detail and consequentlong run times of simulation models. Atomic models permit realistic operational models tobe constructed and veri�ed for existing or proposed systems, are computationally simple,but like operational models provide only average performance metrics.The system model we have developed is an atomic model which combines workload at-tributes with calibrated operating system characteristics and calibrated hardware resourcesto predict performance monitor counters. To accomplish this it must approximate the algo-rithm the operating system uses to allocate the workloads to resources. Despite the wealthof services o�ered by modern operating systems, such a model can be built at a fairly highlevel of abstraction with reasonable accuracy [Blake, 1979, Gray, 1987].A high level of abstraction is possible because a surprisingly small number of basic op-erations comprise the majority of sustained activity inherent in most bottlenecks. This is inpart due to the kernel [Ritchie and Thompson, 1974] and microkernel [Accetta et al., 1986]approaches to operating system construction. In this design paradigm, shared in part bythe Windows NT operating system [Custer, 1993], system services are built on top of a rel-atively small number of primitive functions comprising the kernel of the operating system.Knowing the instruction path lengths of those kernel primitives at the root of sustained op-erations is su�cient to characterize the majority of system activity, since most non-primitiveservices are constructed using these atomic services as building blocks. The workload spec-i�cation can therefore be limited to the important subset of calls that repeatedly invokekernel operating system services.The di�culty in constructing a model can be further reduced by initially restrictingthe application domain under consideration. In our case we have deferred constructing adetailed model of system graphical services. This limits detailed bottleneck detection inworkstation environments where the graphical user interface is a primary component ofsustained activity. It nonetheless leaves open the domain of the server in a network, asystem which provides services to other computers over network connections.Operating system atoms may be instruction path lengths, or they may be memory5



consumption requirements of various system components. Operating system atoms arecalibrated once each release on an arbitrary base system and do not need to be recalibrateduntil the next release, although small di�erences in the operating system code from oneprocessor architecture to the next introduce additional uncertainty into the model.The portion of the model which determines the amount of pressure on RAM page frameswill illustrate its construction. A belief network of the model of paging behavior on WindowsNT appears in Figure 1. The �gure shows the structure of the model. The values ofvariables shown in double ovals are deterministic functions of the values of their predecessors.Deterministic nodes with no predecessors are constants based on the calibrated hardwareor software, or are functions of variables in other portions of the model.The application workload parameters are shown in Figure 1 as chance nodes (singleovals) at the upper left. The APP RAM DEMAND is the amount of RAM the applicationmust access at steady state. The LOCAL PAGING AFFINITY is a number between 0 and1 indicating the fraction of active virtual memory that is on the local server, as opposedto the fraction that is elsewhere on the network. At the bottom of Figure 1 is a chancenode denoting a system counter or metric, Pages Input Per Second. As discussed in Section4 the probability distribution for Pages Input Per Second is a function of the variableInput Page Rate as predicted by the model. This is the rate of input page tra�c, a keysystem performance counter indicating how severely the system is thrashing or moving pagesbetween RAM and disk or network. The other deterministic nodes in Figure 1 denote theinternal operating system state variables that are well characterized when their predecessorsare known, but are typically unmetered and hence unobservable.Here are the atomic model formulae corresponding to the belief net fragment shown inFigure 1.// NT characteristics, or measured directly.SystemPaged: GraphicsRamDemand + SpoolerRamDemand + PoolPaged + System-CodePaged + SystemNominalAvailableBytes [\megabytes"]SystemNonPaged: PoolNonPaged + KernelNonPaged + ProtocolNonPaged + Driver-sNonPaged [\megabytes"]// Memory usage di�ers for CISC and RISC processors.RelativeMemoryUsage: TableLookup ( RelativeMemorySize, InstalledProcessorIndex )[\ratio"] 6
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Figure 1: A fragment of the operating system functional model. Variables in double ovalsare deterministic functions of their predecessors (perhaps not shown in this diagram) or�xed based on system con�guration. Variables shown in single ovals are random variablesconditioned on their predecessors. 7



RamDemand: ( RelativeMemoryUsage * ( SystemNonPaged + SystemPaged ) ) + Ap-plicationRamDemand [\megabytes"]// The key formula for mapping RAM requirements.ThrashingLevel: 1 / ( ( 1 + exp ( min ( 500, (InstalledRam { RamDemand)3 ) ) ) )[\fraction from 0 to 1"]// These formulae determine input page cluster size.SystemPageInputSize: max ( PageSizeUsed, 2.5 * PageSizeUsed * ThrashingLevel )[\bytes"]SystemPageInputCluster: PageSizeUsed * ( int ( ( SystemPageInputSize + PageSizeUsed) / PageSizeUsed ) ) [\bytes"]// This formula determines maximum paging rate.InputPagingDiskThruput: TableLookup ( SystemPageInputCluster, RandomDiskThrough-put, PagingDiskIndex) [\bytes/second"]// These formulae determine actual input page rate.DiskPagingDemand: LocalPagingA�nity * ThrashingLevel [\fraction from 0 to 1"]DiskPagingReadRate: DiskPagingDemand* ( InputPagingDiskThruput / SystemPageIn-putSize ) [\operations/second"]DiskPageInputRate: DiskPagingReadRate * SystemPageInputSize / PageSizeUsed [\pages/sec"]InputPageRate: DiskPageInputRate + NetPageInputRate [\pages/sec"]// The Performance Monitor counter predicted.Memory.PagesInputPerSec: InputPageRate +( ( DiskReadFileByteRate + NetReadFileByteRate ) / PageSizeUsed ) [\pages/second"]The complete model as of this writing contains some 300 such formulae.8



Sequential Read from Disk


0


0.005


0.01


0.015


0.02


0.025


0.03


0
 20000
 40000
 60000
 80000


Record Size (Bytes)


P
ri

vi
le

g
ed

 T
im

e 
(s

ec
o

n
d

s)



Measured

Privileged/Op


Calibrated

Privileged/Op
Figure 2: Calibration of sequential reads for a range of record sizes.3.1 CalibrationIn applying the model it is necessary to calibrate the hardware resource maximum band-widths. This is ideally done on the system under test. Calibration is carried out while thesystem is otherwise idle.A synthetic workload generator is used to apply known workloads for calibration. Sinceworkloads of this type are simple and the programs which create them could be quite smallloops, the synthetic workload generator is expanded arti�cially to touch lots of memory inorder to exercise the memory cache subsystem as real application workloads do. Neglect-ing this point would lead to unrealistically high maximum throughput measurements, andincorrect approximation of operating system atoms on the system under test. Nonethelessthe deviations between actual workload usage of the memory cache subsystem and that ofthe synthetic workload generator add uncertainty to the calibration results.The limits of throughput are collected for each resource over a range of key parameters,and placed into a data base for later extraction. When possible, simple linear regressionsare performed to extract parameters for resource characteristics. Figure 2 illustrates onesuch regression. The processor overhead for disk operations is greatly dependent on thetype of disk controller installed in the system. The �t is good, but deviations introduceadditional uncertainty into the model. 9



App Workload CountersInter-operation cpu times: System.PctPriv{Sequential Write System.PctUser{Sequential Read System.SystemCallRate{Random Read Disk.DiskReadByteRate{Random Write Disk.DiskReadRateSequential Read Size Disk.DiskWriteByteRateSequential Write Size Disk.DiskWriteRateRandom Read Size Cache.CopyReadHitsPctRandom Write Size Cache.CopyReadsPerSecRandom Read Extent Cache.LazyWritePgsPerSecRandom Write Extent Memory.PgFaultsPerSecRAM Demand Memory.CacheFaultsPerSecMemory.PagesInputPerSecMemory.PagesOutputPerSecTable 1: Workloads and counters that are incorporated into the current model.3.2 Veri�cationBefore we can use the model we must verify its accuracy. Let ~w be a vector of workloadparameters of length m. Let ~cp = f(~w) be the vector of predicted counter values of length nand ~ca are the corresponding actual counter values. The application workload parameters(~w) and counters (~ca;~cp) that are in the model are listed in Table 1.The synthetic workload generator is used to construct a series of one-dimensional work-loads. Each generated workload exercises a single system service, varying a key workloadparameter wi, while holding the others �xed. Such a workload might be the sequential read-ing of a �le from disk, with wi being the size of the record read, and taking on a sequence ofincreasing record sizes. These synthetic workloads are applied to a system, and the vectorof actual performance counters, ~ca, are logged for each value assumed by the key workloadparameter wi.An identical series of one-dimensional workloads is then applied to the model, and thepredicted performance counters ~cp are recorded for each level of wi . The results of themodel's predictions are compared to the actual performance counters from the real system.Figure 3 illustrates a comparison of a particular actual counter cja to a corresponding modelpredicted counter value cjp over a series of values assumed by a key workload parameter wi.10



Sequential Read Verification
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Figure 3: The initial veri�cation for Sequential Reads3.3 Model Re�nementVeri�cation results can be used to re�ne the model speci�cation. For example we wereconcerned about the deviation in Figure 3 of model predicted processor utilization fromthat observed when the workload was applied to the real system. Examination of theatomic model intermediate values showed that the major component of processor demandwas the processor being used by the operating system to read the data from the disk. In themodel which produced Figure 3 this was expressed as a linear function of the application'sread size in bytes.A more re�ned model of this activity can be obtained by �rst regressing operating systemprocessor usage against the size of a read from disk, as shown in Figure 2. The operatingsystem processor usage for reading from disk during sequential reads can then be determinedfrom this regression by evaluating the regression formula at the size of the read-ahead recordused by the operating system. The read-ahead size depends on the operating system kernelin Windows NT and not on the application record size. The operating system overhead foreach read-ahead multiplied by the ratio of application read size to system read-ahead sizegives the processor overhead for sequential reading.This new model produces the more accurate veri�cation depicted in Figure 4. Althoughthe re�nement is an improvement over that shown in Figure 3, it is not perfect and thediscrepancy is a continuing source of uncertainty.11
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Figure 4: A revised veri�cation for Sequential ReadsOne important initial question concerned the robustness of the model with respect toother computer systems than the one on which it is initially tested. As of this writing wehave veri�ed the model to acceptable levels across a number of systems, including an Intel486, an Intel Pentium, and a DEC Alpha, all running Windows NT.4 InferenceDuring inference we wish to determine those values of the workload parameters that bestexplain the observed performance counter values. As before, ~w is a vector of workloadparameters of length m and ~cp = f(~w) is the vector of predicted counter values of length n.The vector ~ca are the actual counter values corresponding to ~cp. The function f capturesthe dependence of the counter values on the workload and has been described in Section 3.In this section we describe our method for reasoning with this model, that is �nding thevalue of ~w that best explains ~ca.From a probabilistic perspective, the best explanation of the observed counters is thatworkload assignment with maximum probability given the data, that is the assignment thatis the most probable explanation (MPE) for the observations. We will use a generalizedversion of least squares to �nd this most probable assignment.The uncertainty structure for this problem is shown in Figure 5 as a belief network.The network represents the conditional independencies we have asserted in this domain12



w cp caFigure 5: Belief network structure for operating system model.[Pearl, 1988]. The deterministic functional relationship between workload (~w) and predictedcounters (~cp), the atomic model, is re
ected in the double-oval representation in Figure 5.Note that the problem is modelled causally as follows: application workloads \cause" a set ofpredicted counter values, which in turn \cause" (with noise) the actual counter observations.Uncertainty in the belief network is characterized by Pr(~wj�), the prior distribution ofworkload parameters, and Pr(~caj~cp; �) the uncertain relationship between the predicted andactual counter values. In these expressions, � is background information including suchfactors as the installed hardware and the version of the operating system software1.The MPE assignment ~w� is that set of workload parameters ~w that has the maximumprobability given the observed counters, that isPr(~w�j~ca; �) = max~w Pr(~wj~ca; �) (1)Given the belief network model, we can write the joint probability of the variables ofinterest as a product of conditionals:Pr(~w;~cp;~caj�) = Pr(~caj~cp; �) Pr(~cpj~w; �) Pr(~wj�)We can integrate over possible predicted counter values as follows.Pr(~ca; ~wj�) = Z~cp Pr(~caj~cp; �) Pr(~cpj~w; �) Pr(~wj�)d~cp= Pr(~cajf(~w); �) Pr(~wj�) (2)since Pr(~cpj~w; �) is a unit impulse at ~cp = f(~w). By the rules of probability and substitutingEquation 2 we have Pr(~wj~ca; �) = Pr(~ca; ~wj�)Pr(~caj�)= Pr(~cajf(~w); �) Pr(~wj�)Pr(~caj�)1Recall that model parameters relating to inherent hardware and software speed on a particular machineand release of the operating system are �xed during calibration.13



Since the denominator is a constant in any particular case, Equation 1 becomes:Pr(~w�j~ca; �) = kmax~w Pr(~cajf(~w); �) Pr(~wj�) (3)where k is a constant.In evaluating this expression, we made two sets of assumptions. First, we assumed thatthe workload parameters are marginally independent, implying that Pr(~wj�) = Qi Pr(wij�).In various experiments, we have assumed these parameters to be either uniformly, lognor-mally, or beta distributed, or a mixture of these. For example, with lognormally distributedworkloads we have: Pr(wij�) = (�i(wi � ai)p2�)�1e�(ln(wi�ai)��i)2=2�2i (4)where �i, �i, and ai are the logarithmic mean, standard deviation, and minimum valuerespectively for workload component wi; i = 1 : : :m. The values of these parameters areprovided by direct assessment from an expert. In choosing the distribution we have foundit important not to preclude possible workloads by assigning them vanishingly small prob-abilities.Second, we assume a multivariate Gaussian error model, that is ~ca = f(~w) + ~� where~� � N(~��;�) and ~�� is the n-dimensional vector of mean errors and � = (�i;j) is a symmetricn by n covariance matrix [DeGroot, 1970]. We estimate the mean errors and covariancefrom a sample of known workloads, model predictions, and actual counter values on thetarget system. Using techniques from [DeGroot, 1970], we can update the parameters ofthe error model by assuming that the distribution for ~�� is multivariate normal and thedistribution for ��1 is Wishart.For purposes of this study, we will estimate ~�� using the sample mean error and estimate� with the sample covariance from a set of veri�cation samples. Using procedures similarto those applied during veri�cation, we can run a set of controlled experiments on thetarget machine to generate model error data. For a set of sampled known workloads, wegenerate model predictions (using the calibrated model) and collect actual counter values.This yields sample data for estimating the covariance matrix.Since the actual error given a set of workload parameters is just ~ca � f(~w), then theprobability of the observed counter values, given the model f and ~w is calculated as follows.Pr(~cajf(~w); �) =ce�1=2(~ca�f(~w)�~��)T��1(~ca�f(~w)�~��) (5)14



where c = (2�)�n=2j�j�1=2. Equations 4 and 5 are used to evaluate Equation 3.Evaluation of Equation 3 is composed of a prior term Pr(~wj�) and a liklihood termPr(~cajf(~w); �). The prior term captures prior knowledge regarding application workloads,for example the typical programmemory footprints for code and data, and sizes of sequentialreads.The liklihood term measures the how well the predictions match the observations. Underthe assumption of multivariate normality, the magnitude of the covariance terms re
ectthe scaling and precision of the various counters. If we restrict the covariance matrixto zeros in the o�{diagonal elements (�i;j = 0; i 6= j) then the term in the exponent ofEquation 5 is the same as in ordinary least squares for the di�erence between the actualand predicted counters. Maximizing the liklihood is equivalent to minimizing the weightedsum of squares, where the weight is the inverse of the variance for each counter di�erence.Counter di�erences that tend to be noisy will get less weight in the probability calculationthan more precise counters. The full covariance method is the multidimensional version ofleast squares accounting for correlated errors.Unfortunately, we cannot solve for ~w� analytically due to numerous discontinuities andnon-linearities in the model f . The discontinuities arise in discrete shifts in operatingsystem algorithms, such as di�erences in �le system implementation when the record size isa multiple of the page size. Therefore we use numerical methods, such as Newton's Method(see e.g., [Press et al., 1992], to search for the ~w� which is the most probable explanationfor the bottleneck. Although these numerical optimization methods �nd local maximum,we have found empirically that the numerically derived solutions are very close to theglobal maximums for problems for which we know the globally maximum con�guration.We have not encountered a case where several signi�cantly diverse workloads recieve thesame probability score, though this is an area for future research.5 Implementation and ResultsThe Windows NT system model and inference procedure have been implemented in Mi-crosoft Excel. We utilize the Excel Solver feature to provide Newton's Method to search forthe desired workload vector ~w�. Using Excel Solver, numerical inference is taking less thana couple of minutes. In order to test the inference procedures, we impose a set of knownworkload parameters on a given platform and collect actual performance monitor counters.The model is then used to infer the workloads. Our test suite consists of the following caseswhich vary as to the nature of the bottleneck and its cause:� Sequential Read 15
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Figure 6: Comparison actual versus inferred processor and disk demands for 5 scenarios.� Sequential Write� Random Read� Random Write� PagingWe have been able to estimate the error model on a veri�cation set of over 180 casesrepresenting model predictions and actual values for the three di�erent computer systemsmentioned. Even with this sparse dataset, performance is encouraging. The Figure 6 showsthat for every scenario, the model is �nding the correct bottleneck and a good approximationof resource demand.In Figure 7, we show additional detail regarding resource utilizations for the case ofSequential Reads. Again the actual levels of each variable along with inferred value areshown. Our method is �nding the correct solution. We have tested further cases where16
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Figure 7: Comparison actual versus inferred device utilizations for Sequential Read.the workloads are more complex, as well as some real programs, and so far have found thecorrect solution in each case.6 Hardware RecommendationsNow that we know the workload which caused the bottleneck, we can apply the modelin more conventional ways. The user can supply, for example, the cost and performancecharacteristics of a variety of hardware upgrades that might be under consideration. Theperformance characteristics of the anticipated upgrades are characterized using the cali-bration technique we described earlier. When the equipment has not been purchased andcannot be calibrated, we have provisions for entry of the calibration data estimated by theuser from the speci�cations of the hardware.The recommendation analysis cycles through the various combinations of hardware up-grade and develops for each one the maximum throughput that will be attained and thecost per transaction for the increase. The unit of transaction is taken as the workloadparameter with the highest frequency under the original workload. The user can simplyselect the upgrade option with the lowest price/performance. Alternatively, the user mayhave a particular throughput requirement for this upgrade. In this case the user can selectthe smallest price/performance change which achieves that goal.Atomic models do not directly compute response times, but they do deliver resourceutilization �gures. It is possible to apply standard queueing theory to the results of themodel to estimate the resulting response times [Blake, 1979].17



7 Conclusions and Future WorkThere is a natural synergy between the causal Belief Nets of decision theory and atomicmodels of operating systems. The use of the atomic model permits a simple characterizationof operating system resource allocation policies. The atomic models avoid possibly unreal-istic assumptions often present in queueing models and are much more economical to buildand run than simulation models. That atomic models evaluate rapidly is crucial to ourbottleneck detection method because we use numerical search techniques to �nd the mostprobable cause of the bottleneck. Decision theory provides a �rm conceptual framework inwhich the model can be used to infer the causes of performance problems. Probablistic char-acterization of the workload domain combined with the statistics of a learned error modellead to a rapid numerical search for the most probable cause. Knowledge of the cause of thebottleneck, together with the predictive capability of the model, yield a recommendation ofthe most cost-e�ective hardware upgrade to resolve the bottleneck.We plan to use similar approaches to predict the e�ects of changes to application work-load parameters. The model can predict throughput and bottlenecks given an incrementto application workloads. It also can be used by software developers to predict the per-formance of their application, and to help determine which portions of the program meritadditional design and implementation e�ort.Finally, since the model includes many variables relating to operating system designand algorithms, this approach can address issues relating to the structure of the operatingsystem itself. This would include o�-line design studies, for example, estimating the possiblesystem-wide e�ects of di�erent paging algorithms. Similar models could also potentially beused for dynamic tuning of system operating parameters, such as cache sizes, in responseto inferred application loadings.AcknowledgmentsThe authors thank Brian Beckman, Bob Davidson, David Heckerman, Nathan Myhrvold,and Gideon Yuval for useful comments and suggestions.References[Accetta et al., 1986] Accetta, M., Baron, R., Bolos ky, W., Golub, D., Rashid, R., Teva-nian, A., and Young, M. (1986). Mach: a new kernel for UNIX development. In Proceed-ings of USENIX Association Summer Conference, pages 93{112, Atlanta.18
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