
WWM: A Practical Methodology for Web Application Modeling

Chanwit Kaewkasi1 Wanchai Rivepiboon2

Software Engineering Laboratory
Department of Computer Engineering

Chulalongkorn University, Bangkok, Thailand
Tel. +66-2218-6988, Fax. +66-2215-6955.

chanwit@customix.net, wanchai.r@chula.ac.th

Abstract
Web applications are becoming more complex and

the way to manage the complexity is to model them. This
paper presents a methodology to model Web applications
directly from the object-oriented fashion on the top of the
event-driven programming concept. Our approach,
WebForm-based Web application modeling Methodology
(WWM), provides guidelines to model Web application
architectures from higher point-of-view than the Web
element perspective. We employ the Unified Modeling
Language (UML) and a subset of Use Case Maps (UCM)
for our methodology. The case study is developed to
present how a Web application can be modeled, built and
integrated with the business objects. A set of components
is developed in order to use in the case study. Connection
of the presentation to business layer shows that it could
be done transparently via the components. The various
issues are discussed to further extend our work.
12

1. Introduction

Business sectors highly demand to anchor their
transactions into the Internet environment. This trend
makes Web applications more complex. Traditional Web
applications were developed using Common Gateway
Interface (CGI). Because of performance limitation and
persistent state maintainability issues [15], it should be
avoided for enterprise-class Web applications. With more
flexible features comparing to CGI, Active Server Pages
(ASP) [16] and Java Server Pages (JSP) [14] are current
popular technologies. Microsoft’s ASP is server-side
engine that processes scripting languages embedded as
special tags into HTML page. JSP acts in the same
manner to ASP, but its major objective is to improve Java
servlet. Java servlet is a Java server-side executable
program that processes the requests from client. JSP
gives more maintainability to Java servlet [14, 21]. Both
of them have the following limitations: 1) the content and

1 Master student.
2 Associate Professor, Head laboratory.

code are not separated; 2) the component-based
architecture cannot be applied to the user-interface design.

To build complex Web applications, we need an
appropriate tool. Fortunately, the evolution of Web
application development drives itself into the new era.
Coming of the tools that support event-driven
programming to Web application development may
change the trend. There are some existing tools, such as
Microsoft’s ASP.NET with Visual Studio .NET [17], and
AtoZed Software’s IntraWeb [11] in the marketplace that
support event-driven programming. Those tools make
Web applications development easier because they hide
many complexities away from developers. However, it is
not enough for making a high-complex application; we
still need to model it first.

Object oriented techniques become popular. They
are widely used for implementing business logic. In order
to build a Web application that connects to those business
objects, its presentation layer should be modeled in the
same fashion, not only for maintainability issue, but also
extensibilities. The work reported in [8, 9] shows that it is
possible to model Web application architectures with the
notations from the Unified Modeling Language (UML)
[20]. The author defined an extension to UML, called
Web Application Extension (WAE), including the concept
and some stereotypes, such as <<JavaScript>> and
<<Form>>. WAE is mainly focused to the Web element
semantics, not object-oriented perspective. We propose a
methodology to model high-complex Web applications on
the top of the event-driven programming scheme. Our
methodology shows a modeling approach from the object-
oriented point-of-view, and it is also based on UML. To
make our methodology more efficiency and practical, we
additionally apply Use Case Maps (UCM) to our work for
describing the scenarios of the Web application systems.
We show that the methodology can be used with the use-
case driven development process to build not only a
practical Web application model, but also the real-world
software.

Section 2 reviews the event-driven tools that support
Web application development, Use Case Maps, and the
work on Web modeling techniques. Section 3 describes
our methodology. Section 4 presents how to model and

Proceedings of the 26 th Annual International Computer Software and Applications Conference (COMPSAC’02)
0730-3157/02 $17.00 © 2002 IEEE

build Web application with our techniques as a case
study. Section 5 gives conclusion and discussion of our
work and its further extension.

2. Related Works

2.1 Web application development tools

Event-driven programming has been widely used in
many desktop application development environments.
There are few existing frameworks in the market that
apply this programming scheme to Web application
development. ASP.NET, the member of the Microsoft’s
forth-coming .NET Application framework [17], and
AtoZed Software’s IntraWeb [11] are such new kind of
the development framework that support event-driven
programming for Web application. ASP.NET provides
the necessary services for developers to build the
enterprise-class Web applications. IntraWeb acts the
same functions as ASP.NET and it could be used for
Borland Delphi. The technique behind frameworks is a
back-end engine, which acts as the input/output manager
of Web applications. The engine provides transparently
interactive simulation for developers feel as they are
writing a desktop application with normal event-driven
programming scheme.

2.2 Use Case Maps

Use Case Maps (UCM) [6, 7] is a set of semi-formal
notations for describing the scenario of the system. It
gives a scenario-based model to the system. UCM model
fulfills the gap between the high-level architectural and
the detailed design phase. UCM has been successfully
applied to wide range of the systems, including
telecommunication systems [1, 3]. Previous works
reported the use of UCM with UML [2, 6]. In the
literature [18], the authors purposed methodology and
techniques for deriving Message Sequence Chart from
UCM model.

In [5], the authors applied this scenario-based
modeling together with goal-oriented requirements
technique to model the architecture of system. The
objective is to make more strength connection between
requirements and design during the early stages.

UCM visually illustrates causal relationships between
responsibilities on the organizational structures of
components. Responsibilities represent general behaviors
(actions, tasks, etc.). Components are also general and
could represent software entities (objects, processes, Web
pages, etc.). They represent non-software entities, such as
actors as well. The relationships are said to be causal
because they link causes to effects by arranging
responsibilities in sequence, as alternatives, or in parallel.
Normally, UCMs show related and interacting use cases

in a map-like diagram, and causal paths display the
sequence of behaviors that explain a scenario along a use
case.

2.3 Web application modeling techniques

The methodology reported in [12], Relationship
Management Methodology (RMM), is for structured
design of hypermedia systems. RMM uses for supporting
the design of Web sites, and provides integration with
databases. It employs the Relationship Management Data
Model, which focuses on the design phase.

In the recent years many object-oriented modeling
languages have been developed for software engineering.
UML is the synthesis of many of such notations and it is
considered as a standard for the industrial development
software. It is a modeling language for object-oriented
design and analysis.

Recent works [8, 9] introduced a set of extension
notations to UML, named Web Application Extension
(WAE), and it could be used with use-case driven
software development process [13]. WAE employs UML,
but it uses UML only as the notations. The extension
gives the model not much object-oriented semantic since
it sees the model from Web element perspective. WAE
covers both server- and client-side of Web application
architecture. The server-side elements (e.g. Server Page),
and the client-side notations (e.g. ActiveX, Java applet,
JavaScript code, and etc.) have been described by using
the stereotype concept of UML. However, the object-
oriented concepts (e.g. inheritance) are not concerned
enough by the extension. A class notation in class
diagram is used for representation an HTML page. WAE
mainly focuses on the scripting page technology, such as
ASP [16] and JSP [14].

In [10], the authors compared a number of
methodologies for the design of a hypermedia application.
The guidelines, stated in that work, gave some useful
comparison aspects as the following:
• Methodology: it considered that the approach

provides models and guidelines;
• Completeness: it considered that the most part of the

lifecycle is deeply treated;
• Model: it considered that the approach gives some

models;
• Tool CASE: there exists a tool CASE supporting the

considered approach;
We follow the above features to compare our work with
[8, 9].

3. WebForm-based Web Application
Modeling Methodology

There are many definitions for a Web application [9].
In this paper, we scope a Web application to a program

Proceedings of the 26 th Annual International Computer Software and Applications Conference (COMPSAC’02)
0730-3157/02 $17.00 © 2002 IEEE

that presents its output as an HTML document, transfers
data via HTTP, and changes a state of business logic only
on the server-side. The following subsections discuss the
definitions, notations, and steps that appear in the
methodology.

3.1 Definitions

Firstly, we recall two terms stated in [8, 9] a client
page and a server page. A client page is an HTML page
that displays on the client side, rendered by the user’s
Web browser program. A server page is a program on
server that can produce one or more client pages. We
introduce two of new terms a WebForm class and a
WebForm object. The term “WebForm” is borrowed
from Microsoft’s’ ASP.NET framework [17]. We define
this term as WebForm because we look Web application
architecture from higher point-of-view. Instead of
modeling a Web application using the semantic of HTML
pages directly, we put the related pages together and
group it into a class using object-oriented concept,
including its relationship. A WebForm class is an object-
oriented class, which is defined as a template of a
WebForm object. A WebForm object is an object of its
corresponding class. The object produces a client page
and acts like a server page stated in [9]. We do not define
the semantic of any client page since its notation will be
eliminated from our model. There is the difference
between the semantic of the server page and the
WebForm class that we need to point them out. The
server page cannot be instantiated to object by its sense,
but the WebForm class can. It is possible to create two
distinguish WebForm objects from the same class; both of
them have their own state for each connecting session.

Web
Browsers

Presentation
Layer

Web Application
Controller
(WAC)

Business
Objects

Figure 1: Four-tier model for an event-driven
Web application.

Recall an event-driven programming framework for
Web application development given in section 2. It has a
back-end engine that manages the connecting sessions and
binds itself with the presentation layer. We call that
engine the Web Application Controller (WAC). Figure 1
shows the system architecture in the four-tier fashion.

We define the BlankForm class as the base class of
all WebForm classes. In fact, a client page that is
produced by the BlankForm class does not contain any
Web element. Figure 2 shows the BlankForm class and
its derivative. A WebForm class contains zero or more
Web components. A Web component is not only an
atomic HTML element, but also a compound one. A Web
component receives an event, from WAC, to perform its

appropriate action. A WebForm object works in the
following manner. An object is created, and rendered as a
client page by WAC. When user makes the requests for
changing state of the Web application, WAC receives
those requests, and then tells the object to change its state
and re-produce a new client page.

BlankForm

WebForm1 WebForm2

WebForm1sChild

Figure 2: BlankForm class, WebForm classes
and their relationships.

3.2 Notations and Methodology

This section describes our methodology, WebForm-
based Web application modeling Methodology (WWM).
It models Web applications from requirements
specification, and use-case diagrams into UML and UCM
diagrams using the definition of WebForm above. The
final results of WWM are a set of UML diagrams, which
consist of class diagrams, sequence diagrams, and a set of
UCM scenario diagrams. The resulting class diagrams
usually contain WebForm classes. A WebForm class in
WWM must contain stereotype <<WebForm>>. The
resulting sequence diagrams present how a WebForm
object sends message to itself and the others. These
represent hyper links among client pages. WWM utilizes
the sequence diagram to model those links and their
interaction. For more clarification of Web application
modeling, we also apply the subset of UCM notations as a
portion of our methodology. UCM is useful for describing
the scenarios of the system. WWM describes
architectural flows of Web application systems using its
notations. We do not describe the list of UML notations
here because of its well known. The UCM notations that
used in WWM and a UML class in UCM’s component
concept are shown in figure 3.

The following steps describe how WWM performs to
model Web applications starting from use-case model:
a) Define all actors of the system.
b) Define all candidate classes of the system.
c) Filter WebForm classes from the set of candidate
classes, then construct a class diagram for them and put
all WebForm classes into the class diagram.
d) For each use case, create its corresponding use-case
realization.

Proceedings of the 26 th Annual International Computer Software and Applications Conference (COMPSAC’02)
0730-3157/02 $17.00 © 2002 IEEE

e) For each use-case realization, construct UCM
scenario diagram for it using UCM notations, and then put
related WebForm classes (from the class diagram) as
UCM components into the diagram.

i) Define a causal path.
ii) For each WebForm class on UCM scenario
diagram, define its responsibilities and name them.

f) Repeat e) on the same UCM scenario diagram, if
there exists causal paths that should be defined.
g) Remove WebForm class that has no responsibility
from the UCM scenario diagrams.
h) Construct a sequence diagram for each UCM
scenario diagram, and each causal path. Model all
message sending that corresponds to each responsibility
on the causal path in the sequence diagram.
i) Refine all diagrams with the above steps if necessary.
The above guidelines include steps from use-case driven
development process [13]. WWM results both UML and
UCM diagrams. It is iterative methodology, thus all
diagrams can be further revised.

<<WebForm>>
Form1

R1

responsibility

start point

end point

end point

start point

OR joins / forks

causal pathUML class as
UCM component

Figure 3: UCM notations and UML class notation
that are used in WWM.

The comparison of our work with [9] is done
following the partial guideline stated in [10]. The
summarized result is shown in table 1.

4. Case Study

A case study illustrated in this section shows how
WWM can be used to model a Web application. Firstly,
we model a Web application starting from a use-case
diagram, and then use the result for developing software.
Our demonstrating environment is Borland Delphi. We
use IntraWeb [11] as WAC, and BoldSoft’s Bold for
Delphi [4] as an implementation tool for the business
objects. We have chosen IntraWeb as WAC because it is
only product in the market that contains the inherent state
management. A set of components, named IWBold, is
developed in order to use with the case study. IWBold is
built on the top of both IntraWeb and Bold architectures
to connect them together. It acts as the Presentation-to-
Business layer bridge.

WWM WAE Description

Methodology +
Our work introduces the
methodology.
WAE is a set of notations.

Completeness +

Our work covers use-case,
scenario descriptive, static,
and behavioral analysis.
WAE can be used with the
use-case driven development
process, but it does not cover
the steps for early scenario
description.

Model + +

WAE is a rich set of UML
extension, covering both
server- and client-side, that
gives model as Web elements.
Our work emphasizes on
using UML and UCM
notations to model Web
application with the object-
oriented concept.

CASE Tool + +

Both of them employs UML,
thus a tool such as Rational
Rose can be used. However,
our UCM scenario diagram’s
editing tool is under
development.

Table 1: The Comparison of WWM and WAE.

The interactions on the Web application are as the
following:
1. The client browser receives the input from the user,
and submits it to the WAC via HTTP.
2. The WAC receives the inputs, parses and sends them
to the active WebForm object and IWBold components.
IWBold components invoke the business objects
implemented with Bold for Delphi to perform the
business rules via Object Constraint Language (OCL)
expression.
3. The business objects update their states and the
corresponding database.
4. Each IWBold component on the active WebForm
object produces HTML fragment by retrieving data from
business objects using OCL expression.
5. The WAC sends the rendered HTML page back to
the browser via HTTP.

Our case study is based on the Buildings and Owners
demo came with Bold for Delphi. The given class
diagram that represents business entities is in figure 4.
We create an additional use-case diagram for starting
analysis by WWM. The use-case diagram is in figure 5.

The building and owners class diagram in figure 4
contains three classes, the Person class, the Building
class, and the Residential Building class. The Residential
Building is derived from the Building class. A person
object from the Person class has zero or one home,
whereas a home is from the Residential Building class.
The Rent home use case, illustrated in figure 5, assigns a
home to a person. From the Rent home use case, we create
the UCM model contains the causal path rent_home.

Proceedings of the 26 th Annual International Computer Software and Applications Conference (COMPSAC’02)
0730-3157/02 $17.00 © 2002 IEEE

Building

ZipCode : Integer
Address : String

CompleteCreate()

Residential Building

TotalRent : Currency

ChargeRent()
CompleteCreate()

Pers on

FirstName : S tring
LastName : St ring
Assets : Currency
IsMarried : Boolean

CompleteCreate()
BorrowFrom()

**

+OwnedBui ldings

*

+Owners

*

Ownership

0..1

*

+Home 0..1

+Residents

*
Residence

Figure 4. The UML class model of Bold for
Delphi’s Buildings and Owners demo.

Rent homeUser

Modify Person Info

Figure 5: Additional use cases created for
the case study.

<<BoldObject>>
Person

<<WebForm>>
Person Form

mod_info

add_new

edit

delete

perform

display

rent_home

<<WebForm>>
Buildings Form

rent

select

<<BoldObject>>
Residential Building

pick

assign_to

Figure 6: The UCM model for the case study.

TIWAppForm
<<WebFo rm>>

TPersonForm
<<WebForm>>

TBu ildingsForm
<<WebForm>>

+FBui ldingsForm

Figure 7: WebForm classes that are derived from
UCM model.

: user
: TPersonForm :

TBuildingsForm
: Building : Person

btnRentClick()
show()

pickBuilding()

selectElement()

assignHome()

Figure 8: Sequence diagram of the use case
Rent home that is derived from UCM model and

WebForm class diagram.

Figure 6 shows two components as WebForm, with
two components as BoldObject. The BoldObject
stereotype does not have semantic in WWM, it only notes
that an object of this type is implemented with Bold for
Delphi. There are four responsibilities created on the
rent_home causal path. Figure 7 shows that two UCM
components, stereotyped with WebForm, become
WebForm classes. They are derived from TIWAppForm
class, which has the same semantic to the BlankForm
class in WWM concept. TIWAppForm is also the real-
world class defined in IntraWeb framework [11]. The
sequence diagram in figure 8 is created using UCM model
and WebForm class diagram from figures 6, and 7
respectively. We complete the sequence diagram by
defining the four responsibilities as classes’ method. The
partial screen shots of design-time and compiled
application are in figure 9.

Figure 9: The partial screen shots.

The observation during development of the case
study states:
• The analysis and design of a Web application system
are straightforwardly done.
• UCM model clarify the scenario of the problem
domain. This makes WebForm class, and sequence
diagram easier to define.

Proceedings of the 26 th Annual International Computer Software and Applications Conference (COMPSAC’02)
0730-3157/02 $17.00 © 2002 IEEE

• Client page modeling is omitted, thus the size of
model is reduced.
• A WebForm class does not represent only a scripting
page or a Web element. It is a real object-oriented class
and has inheritance semantic, so it can be reused in both
of model and code.

5. Conclusion and Discussion

We have developed WWM, the methodology for
Web application modeling based on UML and UCM with
fully object-oriented point-of-view. WWM is compatible
and can be integrated to use in the use-case driven
development process. Our methodology employed use-
case diagram, class diagram, and sequence diagram from
the concept of UML. Additionally, we complete the
analysis steps for WWM by describing the scenarios of
the Web application system using the subset of UCM
notations. This paper shows that WWM covers all phases
needed for modeling Web applications with various
notations. We remains all object oriented semantic to the
model, including class concepts, such as the inheritance.
UCM notations clarify the problem domains with scenario
diagrams. Moreover, we have done a few combination of
UCM to the world of UML by assigning the stereotype
concept to the components of UCM. Eliminating the
client page semantic from our methodology makes the use
of fewer notations comparing to previous works [8, 9].
The more complex Web applications are modeled the
more significant benefit.

Our case study shows the working Web application
that is modeled using WWM and built with our set of
components. Usage of WWM makes the sample Web
application model clearly connect to business objects
since both of them employ object-oriented technology.
The observation during development phase also found
that the impact of changes do not effect the whole system
directly because of the use of the components provided
with WWM.

The integration of WWM with use-case driven
development process is demonstrated in this paper.
OMG’s Model-Driven Architecture (MDA) [19] can be
applied to generate source code of selected object-
oriented language from the model. Since WWM models
Web applications in the object-oriented fashion, it is
possible to qualify the quality of a Web application with
object-oriented techniques. The quality measurement
metrics, such as coupling and cohesion can also be
applied to analyze the model of Web application at the
analysis phase.

We are now developing a tool to support a subset of
UCM as an add-in of Rational Rose. Our methodology
shows that stereotype concept in UML can also assign to
components found in UCM. The tool is being
implemented for making the concept realized with
Rational Rose.

References

1. Amyot, D., Specification and Validation of
Telecommunications System wtih Use Case Maps and
Lotos, in School of Technology and Engineering. 2001,
University of Ottawa: Ottawa.

2. Amyot, D. and G. Mussbacher. On the Extension of UML
with Use Case Maps Comcepts. in <<UML>> 2000, 3rd
International Conference on the Unified Modeling
Language. 2000. York, UK.

3. Andrade, R.M.C. Applying Use Case Maps and Formal
Methods to the Development of Wireless Mobile ATM
Networks.

4. BoldSoft, Bold for Delphi Documentation. 2001, BoldSoft
AB.

5. Bruin, H.d. and H.v. Vliet. Scenario-Based Generation and
Evaluation of Software Architectures. 2001.

6. Buhr, R.J.A., Use Case Maps as Architectural Entities for
Complex Systems. IEEE Transactions on Software
Engineering, 1998. 24(12): p. 1131-1155.

7. Buhr, R.J.A. and R.S. Casselman, Use Case Maps for
Object-oriented Systems. 1995: Prentice Hall.

8. Conallen, J., Building Web Applications with UML. The
Addison-Wesley Object Technology Series. 1999: Addison
Wesley.

9. Conallen, J., Modeling Web Application architectures with
UML, in Communication of ACM. 1999. p. 63-70.

10. Costagliola, G., F. Ferrucci, and R. Francese, Web
Engineering: Models and Methodologies for the Design of
Hypermedia Applications, in Handbook of Software
Engineering and Knowledge Engineering, Y. Zhai, Editor.
2001, World Scientific Publishing.

11. Hower, C., IntraWeb Documentation. 2001, AtoZed
Software.

12. Isakowitz, T., A. Stohr, and E. Balasubramanian, RMM: A
methodology for structured hypermedia design, in
Communication of ACM. 1995. p. 34-44.

13. Jacobson, I., G. Booch, and J. Rumbaugh, The Unified
Software Development Process. The Addison-Wesley
Object Technology Series. 1999: Addison-Wesley.

14. JavaSoft, Java 2 Platform, Enterprise Edition
http://www.javasoft.com/j2ee, Sun Microsystems.

15. Kochikar, V.P., The Object-powered web, in IEEE
Software. 1998. p. 57-92.

16. Microsoft, Developer Resources for Active Server Pages
http://msdn.microsoft.com/asp, Microsoft Corp.

17. Microsoft, .NET Framework http://www.microsoft.com/net.
2002, Microsoft Corp.

18. Miga, A., et al. Deriving Message Sequence Charts from
Use Case Maps Scenario Specifications. in SDL' 01. 2001.

19. OMG, Model Driven Architecture
http://www.omg.org/mda, Object Management Group.

20. OMG, Unified Modeling Language Specification version
1.3. 1999, Object Management Group.

21. Saimi, A., et al. Presentation Layer Framework of Web
Application Systems with Server-Side Java Technology. in
Proceedings of the The Twenty-Fourth Annual
International Computer Software and Applications
Conference (COMPSAC). 2000.

Proceedings of the 26 th Annual International Computer Software and Applications Conference (COMPSAC’02)
0730-3157/02 $17.00 © 2002 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

