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In celebration of the 10th anniversary of the Journal of Computing and Information Sci-
ence in Engineering this article will provide a retrospective of past research on intelli-
gent systems in engineering design research, and new perspectives. Intelligent systems
and expert design knowledge have become important and integral parts of systems that
support product design; they are embedded in many CAD tools, design knowledge reposi-
tories, design assistants, and design critics. Such tools have become common place for
assisting designers in creating new designs, modifying old ones, or storing expert design
knowledge for later use by oneself, other designers or future generations. Intelligent sys-
tems are becoming increasingly important as computer technologies have matured, and
global competition has demanded increasingly better products, faster. As these trends
continue, intelligent systems will be increasingly necessary for competitiveness. This
retrospective will present past advances in a range of areas from model-based and case-
based reasoning, machine learning, biologically inspired design, creative design, and
virtual design. The work described has roots in many disciplines including engineering,
artificial intelligence, psychology, human factors and management science. We present
this work with an aim to identify directions in which the field is moving, and more impor-
tantly, to gain insights into future directions and critical areas for future research invest-
ments. [DOI: 10.1115/1.3593410]

1 Introduction

Computing and intelligent systems have become integral and
critical parts of the engineering tools on which organizations that
design products have come to depend. Such tools include intelli-
gent computer-aided design (CAD) systems, design knowledge
repositories, design assistants, and design critics, all of which aim
to reduce designers’ work and/or capture design knowledge while
improving accuracy, safety, and quality. The goals of this paper
are to provide a retrospective of research on intelligent systems in
design research, to identify the directions in which the field is
moving and to use those insights to suggest important areas for
future research investments.

Intelligent systems in design research have resulted from rich
cross fertilizations between engineering, artificial intelligence
(AI), knowledge-based systems, human-computer interaction,
human factors, and psychology. Such work has lead to important
advances in the use, development, and theory of intelligent sys-
tems in product design, as well as vibrant new ways of thinking
about design and other forms of complex problems solving.
Because of their importance as design tools, smart investments in
intelligent systems for design are critical for ensuring effective-
ness in rapidly producing new, high quality products, the ability to
compete in a rapidly moving global market, and a strong eco-
nomic future.

We make no attempt to be comprehensive; the field is far too
broad and rich to capture in a single article. Instead, we have
selected specific topics that highlight particular issues that we
view as important, particularly to inform thinking about future
needs and directions. Other surveys on intelligent systems in
design can be found in Refs. [1–6].

Product design is used to refer to any and all facets of the pro-
cess by which a product specification is created. In practice, there
is no clear dividing line between design, manufacturing, and other
life-cycle issues; for example, a designer may need to work out

part or all of the manufacturing plan and logistics in order to
make cost-effective design decisions. However, for the purposes
of this review, we focus on design, primarily computer-aided con-
ceptual design. Designed products are not necessarily physical
artifacts, nor are they all created by engineers. Products may be
devices, such as the latest mobile phones, laptops, or music play-
ers; complex, distributed systems, such as healthcare information
networks; or services, such as repair and maintenance contracts.
Designing products and systems typically involves many people
with wide ranging areas of expertise, who must often collaborate
over long distances through virtual technologies.

Intelligent systems refer broadly to computer systems that per-
form some degree of intelligent reasoning. They range from those
that are highly automated and perform their logic without much as-
sistance from people, such as expert systems or genetic algorithms,
to those that simply provide structure or access to critical knowl-
edge, such as ontologies and design repositories, which people
draw on when they do their own reasoning. In particular, intelligent
systems that augment or amplify human reasoning, in contrast to
those automate and replace human reasoning, are growing in im-
portance for complex, knowledge, and judgment intensive tasks
such as design. After early experiments in automated, knowledge-
intensive systems it rapidly became apparent that designers do not
necessarily want computers to create designs or make judgments
for them. Designers prefer to remain in control, with intelligent
computer assistants to help them with particular parts of the pro-
cess. Thus, we include intelligent assistants and knowledge lean
systems as important parts of modern day intelligent systems.

Researchers and product developers have long looked for new
and better ways to use intelligent systems to assist in product
design because it is a process that is very work intensive, com-
plex, and error prone. Intelligent systems have the potential to
shoulder some of the workload managed by experienced designers
and manufacturing engineers, reduce errors, as well as help them
to manage, organize design, and manufacturing data and knowl-
edge, capture it for later reuse, and coordinate with others across
distance. However, intelligent systems can also introduce new
challenges and difficulties such as complexity, knowledge mainte-
nance, and human-computer interaction issues.
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2 Historical Roots

Ever since computational machines with the capability of per-
forming intelligent reasoning were realized in the 20th century,
researchers and product designers have looked for ways in which
to use intelligent systems to make product design more effective
and to improve the quality, safety, and appeal of the resulting
products [7].

Researchers started exploring the uses of computers and intel-
ligent systems in design, and, more generally, product develop-
ment shortly after the first “intelligent system” was developed.
In 1956, Newell and Simon [8,9] created the first intelligent sys-
tem, Logic Theorist; the very next year (1957) Hanratty devel-
oped PRONTO, an early CNC programming tool [10]. The first
computer-aided design tools, such as Sketchpad [11] were devel-
oped a few years later. Although PRONTO and Sketchpad were
not artificially intelligent tools, researchers had begun to think
about the possibility of intelligent systems in tools to support
product design.

In 1969, in “The Sciences of the Artificial” Herbert Simon pro-
posed that in addition to the natural sciences, which characterize
naturally occurring phenomena, we need a “science of the
artificial” to characterize man-made phenomena [12]. A science of
the artificial is a science of the design and synthesis of artifacts, in
other words, the “realm of engineering.” In this work, Simon
viewed design as a psychological, social, and economic process in
which the nature of human designers, organizations in which they
exist, and economic constraints must jointly be considered. The
topics that he covered foretold most of the concepts which have
become recurring themes in intelligent systems for product design
research:

(1) representation of design problems including design knowl-
edge, spatial representations, and functional representations;

(2) problem solving structure and design organization;
(3) the nature of the design process, and
(4) a theory of design.

These themes are equally relevant today, as when Simon first
proposed them over 40 years ago.

Over the years, intelligent systems have been used to enrich
many facets of product design. Intelligent systems have become
so pervasive that many are unaware of the role they have played
in the development of today’s search engines, data mining algo-
rithms, operating systems, embedded computing, computer gam-
ing, social computing, robotics, etc. There have been impressive
and economically important successes, yet many challenges have
persisted even after many years of research.

Intelligent systems are even more necessary than ever as global
competition has become fiercer, products and product systems
have become more complex and time-to-market shorter. They
have become essential tools for competition in the global market
place, and appropriate innovations and investments in this area
will be critical for continued future participation in those markets.

3 Intelligent Systems Research in Product Design

Intelligent systems research in product design pertains to
several closely related issues, which we will classify into seven
categories [13]:

(1) uses of knowledge,
(2) content and representation of knowledge,
(3) organization and access of knowledge in memory,
(4) acquisition and learning of knowledge,
(5) human-computer interaction in tools to support product

designers,
(6) support for collaboration across distance in product design

tasks, and
(7) methodologies for studying product design.

Briefly, uses of knowledge pertain to design methods and tasks,
such as the method of case-based reasoning to support the task of

proposing a conceptual design or the method of model-based rea-
soning (MBR) for the task of adapting a proposed design to meet
specific design requirements. Content of knowledge refers to the
types and ontologies of knowledge, for example, knowledge of
specific kinds of objects, variables, concepts, relations, processes,
etc. Representation of knowledge refers to forms of knowledge
such as logical predicates and production rules (e.g., if-then rules
[9]), frames and schemas, drawings and diagrams, etc. The uses,
contents, and representations of knowledge are the focus of much
research on knowledge-based product design.

However, knowledge, in general, is useful only insofar as it can
be acquired when feasible and accessed when needed. It is critical
to knowledge-based product design. Topics in organization of
memory and access of knowledge cover a wide range, including
use of conceptual graphs and discrimination trees to organize
design cases and use of functions as indices to the structural com-
ponents and causal behaviors of a design. Topics in learning and
acquisition of knowledge also cover a vast landscape, including
issues such as learning of functional indices to design cases, learn-
ing of design patterns and principles from design cases, and learn-
ing functional models of designs from their drawings.

While the challenge of collaborating over distance is not spe-
cific to design, it has become a major issue in design practice
[14,15]. Research in design and intelligent design tools must now
consider the fact that design is now commonly carried out in the
context of distance and virtual collaboration [16]. Intelligent
design tools will be used in distance and virtual collaboration
whether their designers intend for them to be used in this way or
not. Therefore, such tools must be designed to be compatible with
distance collaboration or miss their mark. Similarly, research on
design methods and practice must take these practical realities
into consideration, as they greatly impact the ways in which
designers use tools, carry out design, and share knowledge. For
example, studies indicate that explicit articulation of design goals
and knowledge becomes more important in virtual distance col-
laborations, increasing the need for tools and schema for sharing
design rationale, knowledge, and data [17].

Finally, research on knowledge-based design addresses meth-
odological issues such as the empirical basis and epistemological
foundations of design theories as well as measures and metrics for
evaluating design techniques and decisions. Methodological
topics in knowledge-based design include set- and graph-theoretic
characterization of classes of design problems, axiomatization of
design knowledge, protocol and in situ descriptive studies of
designers, and construction of standardized datasets for evaluating
the efficacy of design methods.

Table 1 expands on the intelligent product development themes
above and describes their roots in artificial intelligence and related
disciplines.

However, this table is not meant to imply that there is a one-to-
one correspondence between problems and intelligent systems
techniques; instead, it is intended to show examples of problems
in which specific techniques have been used. Generally, any given
intelligent system technique has been employed in many aspects
of product design and vice versa. Nor should the reader infer that
existing intelligent systems techniques could be taken directly and
simply “applied” to a given product design problem. Quite the
contrary, an intelligent systems technique may serve as an initial
inspiration for how to approach a given design task, but most such
techniques had to be changed, enriched, and refined in actually
applying them to real problems. Thus, the process of combining
intelligent systems and product design has advanced the scientific
understanding of both areas.

4 Examples of Intelligent Systems in Product Design

The literature on intelligent systems design is very broad and
we will not attempt to survey all of it here. Finger and Dixon
[18,19] provide useful summaries of early work on knowledge-
based design. Tong and Sriram’s [2–4] three-volume anthology
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describes many early knowledge-based systems. Dym and Levitt
[20] and Dym [21] textbooks provide a view of engineering
design from the perspective of AI in design, and several special
issues provide many examples of AI in design, including IEEE
Expert’s special issues on AI in design (volume 12, numbers 2 &
3, 1997) and JCISE’s special issue on AI in Design (volume 10,
number 3, 2010). Below, we briefly review developments in intel-
ligent systems in design and identify the main issues they raised
and the questions that remain open today.

4.1 Knowledge-Based Design. Design tasks were among the
early successful applications of artificial intelligence and knowl-
edge-based systems research. Examples of design applications
addressed by these early systems included Eastman’s General
Space Planner (GSP), which automatically designed two dimen-
sional spatial arrangements [22], circuit and VLSI design [23,24],
design of mechanical assemblies [25,26], and computer configura-
tion design [27].

John McDermott’s R1 [27] used hundreds of if-then production
rules to capture knowledge about how to connect a computer’s
central processing unit with the peripheral units through buses and
ports, etc. Later, the Digital Equipment Corporation deployed
XCON [28], a revised and expanded version of R1, for several
years to actually address computer system configuration problems
in practice. Both R1 and XCON were considered to be major suc-
cesses in their day.

Like R1, many other early knowledge-based design systems
such as AIR_CYL [29,30], PRIDE [31], VEXED [32], VT [33],
and ADIS [34] focused mainly on configuration design. In config-
uration design, all components and connections in the design are
known and the task is to select specific instances of components
and connections and assign specific values to variables character-
izing them [35]. However, starting with AIR_CYL, research on
AI in design branched into many directions, exploring abstraction
in design analysis, forms of knowledge representation such as pro-

duction rules, design methods such as plan refinement and con-
straint propagation, and use of domain knowledge.

Early work in knowledge-based design identified many issues
that are important today. These questions include:

(i) What are useful taxonomies of design tasks and methods?
(ii) What are the various types of design knowledge?

(iii) How should design knowledge be organized so it can be
accessed when needed?

(iv) How may design knowledge be acquired interactively
from experts?

(v) How can machine learning (ML) be used to automatically
acquire, categorize, and organize design knowledge?

(vi) How can the consistency of the knowledge base be
maintained as new knowledge is added to it?

(vii) How should a design system explain its reasoning to a
human?

4.2 Design Critics: Designer and Computer as
Partners. Some of the drawbacks of knowledge intensive sys-
tems included brittleness, and the high cost of system develop-
ment and maintenance [36]. Because of these drawbacks, there
has been a shift over time from knowledge intensive automated
design tools intended to replicate and replace human skills, to less
knowledge-intensive design critics and assistants intended to aug-
ment human expertise, help human designers to structure and
organize their own thinking, or support their interactions with
other designers [28,29,37,40–43]. Some of the advantages of
design critics and assistants over more highly automated design
tools are that critics and assistants are typically less expensive to
design and maintain. They are less knowledge intensive [44], and
designers often prefer tools which allow them to remain “in the
driver’s seat” while still easing their workload.

Tools that support and partner with humans require an
increased emphasis on human-computer interaction, human fac-
tors, and an understanding of cognitive processes. Consequently,

Table 1 Artificial intelligence and product development

Product development topic Roots in artificial intelligence (and related areas where noted)

Model-based reasoning Qualitative reasoning, functional models
Model-based diagnosis Qualitative physics, functional models

Bayesian networks, reasoning about uncertainty
Knowledge-based design Knowledge-based reasoning

Production rules
Problem decomposition
Knowledge-based representation, abstraction, organization
Ontologies, frames, schemas
Knowledge acquisition and machine learning
Causal reasoning

Design rationale capture & use Intent inferencing
Design archival systems

Design reuse and adaptation Recommender systems
Case-based reasoning

Generative designs Shape grammars
Evolutionary computing & genetic algorithms
Multiagent systems

Manufacturing planning Means-ends analysis
Planning, constraint-based reasoning

Feature recognition and extraction Image recognition and extraction
Design theory Protocol analysis (from Psychology)

Ethnographic studies (from Work Anthropology and Human Factors)
“Sciences of the Artificial” Herbert Simon

Virtual design teams Virtual and augmented reality
Social computing and CSCW: computer supported cooperative work

System development methods Human-centered systems (from Human Factors and HCI)
Geometries and constraint propagation
Product data models and ontologies
Collaborative design tools
Enterprise-wide data integration
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the development of such tools also benefits from methods bor-
rowed from these fields [45].

4.3 Model-Based Reasoning in Design. With its roots in
qualitative reasoning (e.g., Refs. [46,47]) and functional reasoning
in the AI community (e.g., Ref. [48]), MBR has received much
attention in engineering design, and in particular, in assuring the
reliability and performance of the resulting products. MBR meth-
ods draw inferences from models of the physical world, including
the way in which physical objects may behave.

Specifically, as the necessity of identifying and understanding
failures as early as possible has become more accepted in the
design community, a significant body of work has emerged that
uses function-based approaches to bridge the gap between failure
analysis and conceptual design. The emphasis of this body of
work has been on the use of functional descriptions to describe
early concepts, moving away from the need for detailed models of
system architectures used for traditional failure analysis methods
such as failure modes and effects analysis (FMEA) (MIL-STD-
1629 A), fault tree analysis (FTA) [49], and probabilistic risk
assessment (PRA) [50–52]. Functional design or function-based
modeling is used as a convenient way to express designs at the
early stages by describing what they will do and how they will do
it [53–60]. Abstract risk analyses can be applied in conceptual
design to these function-based descriptions to provide insights on
the risk of various possible functional failures. Failure analysis is
then mapped to functional representations in order to improve
diagnosability and reliability at the early functional and concep-
tual design stages [61–65].

MBR based on qualitative reasoning (as opposed to quantitative
reasoning: Ref. [66]) provides a unique advantage during the early
design stages where design information is primarily qualitative.
Many authors have approached early design-stage analysis using
model-based reasoning, with varying levels of success. The key
challenge in these approaches is the ability to represent the quali-
tative aspects of the design effectively, enabling the designers to
move away from the need to work with more detailed design in-
formation. Most of the approaches, presented here briefly, have in
common their use of different abstractions of the design, but differ
in the way they generate a mapping between these abstractions.
They have all demonstrated successful applications of their
approaches to large-scale complex systems.

Early examples using function-based representations to
reason about failures in design include the work of Refs.
[55,56,58,59,67–69]. Specifically, Goel and Chandrasekaran [55]
used the functional representation scheme for redesign problem
solving in which the design agent first used the functional repre-
sentation for failure-driven diagnosis faults of faults and then
repair of the faults. Umeda et al. [58] initially developed a func-
tional redundancy designer to identify functional redundancies in
design by analyzing structural architecture of a system to identify
physical features of a design that are capable of performing identi-
cal functions. They later developed a model-based reasoner for di-
agnosis and reactive control [59].

In engineering, Pahl and Beitz [70] extensively discussed
design functions and function decompositions. Early work on
function in engineering includes Refs. [71,72]. Hubka and
Eder’s theory of technical systems, for example, describe func-
tion-means hierarchies that are similar in many ways to behav-
iors that achieve functions in the work of Refs. [56,69]. Recent
work on functions in this tradition includes Refs. [60,73]. The
functional basis scheme of Hirtz et al., for example, describes
the use of an ontology of functions for enabling functional
decomposition.

In addition, function-behavior-structure (FBS) paths were
developed by Qian and Gero [67] in which relations among func-
tion, behavior, structure, and processes are utilized to define FBS
paths. These are then used to retrieve design information to con-
duct analogy-based design. In parallel, Bhatta and Goel [74,75]
developed structure-behavior-function (SBF) models for analogy-

based design based on abstraction and transfer of design patterns.
Another example is found in the Function Behavior Representa-
tion Language (FBRL) [68], which is a language developed for
representing function and behavior with predefined tasks. It was
later used as a basis for computer-aided support of FMEA type of
analysis [76].

More recently, the Function-Failure Identification and Propaga-
tion (FFIP) analysis framework was introduced by Kurtoglu and
Tumer [77] to help the process of identifying functional failures
during the system design stage by combining failure identification
with model-based reasoning approaches. FFIP is presented as a
design tool that aims to eliminate or reduce the likelihood of
reaching certain possible futures by formal analysis of risk of fail-
ures early in the design process and proper guidance of decisions
before the design becomes solidified [77–80].

4.4 Case-Based Reasoning In Design. Case-based reasoning
(CBR) enables the use of past design solutions to “redesign” solu-
tions to meet new complex problems. CBR usually follows these
steps: identification and retrieval of relevant cases, reuse and revi-
sion of the case to meet the new need, and archiving of relevant
new cases. Much case-based reasoning research has been incorpo-
rated into product design work. AI theories of case-based reason-
ing [81,82] provide a framework for developing computational
architectures and languages both for understanding design proc-
esses and for building interactive tools for supporting the design
processes.

Early examples of development of CBR in design include
CYCLOPS [83,84], STRUPLES [85,86], ARGO [87], and KRI-
TIK [88,89]. That these systems were so different from each
other indicates that CBR is not a technique that can be applied
to any design problem, but a framework that needs to be
adapted for specific classes of design problems. For example,
ARGO used rule-based reasoning to transform design plans for
designing VLSI circuits to meet functional specifications of
new circuits. In contrast, KRITIK integrated case-based and
model-based reasoning to produce conceptual designs for engi-
neering devices such as heat exchange devices and electric cir-
cuits. If a designer specified a function, F, KRITIK generated a
qualitative specification of a structure S, which could accom-
plish that function. To do so, it stored an inverse mapping
(from structure S, to behavior B, to function F) in the form a
structure–behavior–function (SBF) model for each past case.
Thus, SBF model provided a functional vocabulary for indexing
past design cases so that they could be stored and later
retrieved, adapted, or verified. Maher and Gomez [90] provide
a survey of some of the early case-based design systems; Maher
and Pu [91] provide a more detailed treatment.

The last two decades saw an explosion of interest in CBR in
product design. We identify four major trends in this period.
The first trend was to develop interactive CBR design systems
that provided access to libraries of design cases but left the
task of design adaptation to the user [92–96]. A second trend
was to integrate CBR with a wide variety of reasoning methods
such as rule-based reasoning and model-based reasoning
[97,98], constraint satisfaction [99,100], and genetic algorithms
[90,101,102] in order to create or evolve emergent new designs
from the original case base. A third trend was the development
of hierarchical case-based reasoning in which design cases were
decomposed into subcases at storage time and recomposed at
problem-solving time [103]. A fourth major trend in research
on CBR in 1990s was to develop CBR for a variety of design
tasks, such as assembly planning [104], in a wide variety of
design domains such as software design [105,106], and design
of human-machine interfaces [107].

Currently, CBR, integrated with database-driven configuration
design systems, has become so pervasive that we are not always
aware when they are embedded in the systems we use. For exam-
ple, much of the work in web-based commerce for mass custom-
ization has its roots in this earlier work.
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More recently, diagrammatic CBR has been at the forefront of
research. Gross and Do’s [108] Electronic Napkin took queries in
the form of simple design sketches and retrieved matching design
drawings from a design case library. Geminus is a system that
took design drawings generated by vector graphics programs as
input and retrieved matching vector graphics design drawings
from a diagrammatic case library [109]. Galatea uses diagram-
matic knowledge to transfer design plans from a known design
case to a new design problem [110].

4.5 Knowledge Representation and Standards. Represen-
ting knowledge for product design is one challenge; however as
representation approaches mature, it is equally important to de-
velop and adopt standards for representations to facilitate knowl-
edge sharing, broad adoption, and interoperability between tools
to support product design. Supporting these needs, the develop-
ment of information exchange standards and interoperability tech-
niques have begun to emerge from the knowledge representation
community. In particular, RDF, OWL, etc. all have their roots in
the high performance knowledge bases (HPKBs) and other
DARPA AI programs in the late 1980s and early 1990s. These
representations have had a great influence of data standards
(XML, STEP, etc.) and now software interoperability standards
(service based computing).

4.6 Machine Learning In Design. ML, another branch of
AI, has intersected with product design in several ways [111,113].
Four main threads are identified in this article, which we will elab-
orate below.

Learning design domain knowledge. Examples include efforts
by Maher and Li [114] and Reich [115]. Reich’s BRIDGER sys-
tem used knowledge-based classification learning techniques to
learn design concepts in structural design.

Learning design rules from design examples include efforts by
Arciszewski et al. [116] and Stahovich [117]. Stahovich’s LearnIT
system learned new parametric design rules for simple mechanical
systems by observing a designer’s sequence of decisions in a care-
fully selected set of training examples.

Learning case indices and design patterns include the IDEAL
system, which uses model-based learning to learn indices for
organizing and storing new design cases for later use [75] as
well as to learn design principles and patterns from design cases
[74]. Design patterns were proposed by Alexander as abstrac-
tions to capture the similarities between architectural designs
[118,119].

Design adaptation and optimization through evolutionary
computing make use of evolutionary computing algorithms that
create progressively better solutions by iteratively creating many
variants on existing solutions and keeping only the best. For
example, genetic algorithms are one commonly used form of
evolutionary computing that has been successfully used for
design adaptation [90,101,120–124]. Below, in Sec. 4.7, we will
describe how evolutionary computing can be used to create
completely new solutions, not just modifications of existing
solutions.

4.7 Creative Design. Augmenting and amplifying human
creativity in design has long been a goal of AI research in design.
As with intelligence, it is hard to define creativity or distinguish it
from related notions such as innovation and invention. However,
like intelligence, it may not be necessary to precisely define crea-
tivity to make progress in developing AI theories, techniques, and
tools for aiding human creativity in design. Four of the common
and sustained research threads in creative design include: genera-
tive design, analogical design, visual reasoning in design, and
measurement of creativity in design.

Generative design allows an expansion of the design space
beyond parameterization, with the ability to create new design
concepts not related to those in the original case base. Generative

designs can be created through a variety of methods including rule
and constraint based approaches, in which the rules and con-
straints describe the characteristics of feasible and high quality
solutions [42] and evolutionary computing approaches, which
additionally use stochastic processes, such as genetic algorithms
or simulated annealing, to optimize designs. Evolutionary com-
puting algorithms start by creating a set of randomly con-
structed but feasible solutions and then iteratively improve
those solutions. They do so by identifying the “best” solutions
from the current set, according to specified criteria for what
constitutes “best,” generate many variants on good solutions,
and keep only the best. Those best solutions become the
“seeds” for the next generation of solution variants. This “hill
climbing” process is repeated many times until acceptable solu-
tions are reached. Genetic algorithms are one commonly used
form of evolutionary computing that has been successfully used
for design optimization [125,126] .

1stPRINCE [127] was an early effort at generative design from
first principles. This program assumed knowledge only about
physical constraints, basic relations, and fundamental equations to
design mechanical structures such as beams, rods, and tubes to
design more complex mechanical structures. Shape grammars use
geometric features and associated rules to permit one shape to be
part of another, creating new metashapes; these grammars can
include rules based on first principles [128–131].

Analogical design is closely related to case-based design. In
case-based design, the new design problem is very similar in its
features to a known design case, for example, the design of a
new pocket flashlight given the design of a similar household
flashlight. In analogical design, the new design problem is quite
different from known design cases in many of its features and
yet is similar in terms of some abstract relationship [132]. For
example, the design of a mechanism for controlling fluctuations
in the angular momentum of a gyroscope by transferring knowl-
edge about closed-loop feedback from the design of an opera-
tional amplifier circuit: while the designs of the gyroscope and
the operational amplifier circuits are different in most features,
they are similar in the use of feedback control. References
[67,74,75,133] provide examples of analogical design systems.
Cobb et al. [134] combine biologically inspired analogical design
with case-based reasoning to create MEMS sensor design. Hey et
al. [135] explore the relationship between use of analogies and
metaphors to inspire creative solutions at different stages of the
design process, and Kolb et al. [136] build on this work to de-
velop an intelligent system called Meta4acle to inspire humans
to think creatively.

TRIZ [137] is a theory of creative design based on analogies. In
TRIZ, when addressing a design problem leads to a contradiction
between two design goals, one strategy for solving the contradic-
tion is to abstract the design problem and use the problem abstrac-
tion to identify a relevant “inventive” principle. TRIZ provides a
taxonomy of 40 such inventive principles culled from a corpus of
design inventions.

Visual reasoning in design was described earlier for some
design systems that perform visual reasoning systems under dia-
grammatic case-based reasoning. In addition, Joskowicz et al.
[138] developed algorithms based on configuration spaces for
analysis of tolerance in kinematic pairs on a plane such as wheel
and its driver. Stahovich et al. [139] have developed techniques
for extracting behavioral models from design sketches. Yaner and
Goel [140] describe an alternative, analogical method for building
models from design drawings.

5 Future Research Challenges and Opportunities

Nothing happens in isolation. The specific directions that intel-
ligent systems research in product design has taken over the years
have been shaped by technological, social/organizational, eco-
nomic, and methodological developments in many disciplines.
Examples of technological developments in the last decade
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include the growing availability of powerful low-cost computers,
ubiquitous and mobile computing and sensing, wireless platforms
for sensing, computing and actuating, standards pertaining to
design and manufacturing data, and social networking tools. With
ever accelerating technological advancements, consumers are
demanding more features and personalization in products, while
market pressures are shrinking the “time to market” for new prod-
ucts and upgrades.

The move of many manufacturing industries to countries with
low-cost labor is another challenge for product design in the future,
as is the globalization of product design teams composed of spe-
cialists situated in multiple locations or countries. These technolog-
ical advances and socioeconomic drivers provide challenges to
product design and opportunities for intelligent systems solutions.

In response to these needs, CAD systems and design tools have
become “smarter” and incorporate many forms of design knowl-
edge, representations, and intelligent systems. Knowledge, data-
based, and constraint propagation have become standard parts of
many modern CAD tools. Plug-ins with specialized knowledge
bases have become readily available, and many intelligent assis-
tants, such as design advisors, are incorporated in design tools
[37,42,44]. However, we have only begun to realize the power of
intelligent systems in product design; there are many new direc-
tions for the future which hold great promise for enhancing the
effectiveness and ease with which people and intelligent systems
may jointly create designs.

5.1 New Directions: Social, Virtual, and Global
Design. Globally distributed design team members that carry out
much of their joint design work in a virtual cyberspace [16]. How-
ever, they have found that some of their traditional tools and
approaches that work well in face-to-face design teams need adap-
tion or augmentation when applied to virtual teams.

While participation in virtual design teams has now become
quite common [14], virtual design tends to be more difficult than
design in more traditional face-to-face teams for numerous rea-
sons [17]. For example, the loss of the rich contextual informa-
tion from virtual settings, which is inherent in face-to-face set-
tings [141], makes it more difficult to clearly articulate design
goals, ideas, design descriptions, and project coordination infor-
mation in a virtual team [15]. Consequently, relationships and
trust between design team members in virtual teams may develop
more slowly [142], and misunderstandings, miscommunications,
and failed coordination are more common [143]. However,
whether or not they are difficult, virtual teams have become an
economic necessity because it is prohibitively expensive to bring
all relevant talent to the same location for the duration of a
design project.

To be as successful and effective as possible, virtual design
teams benefit from more structured management and goal setting
[17], and greater articulation of design goals, knowledge, and
data—which makes the design representation and ontology
research cited above all the more relevant and important. Social
computing and networking tools, such as net meeting, twitter, and
face book have already become quite common additions to the set
of tools used by virtual design teams.

However, much remains to be done. Our understanding of how
to manage global design teams has not kept pace with their
increasing use [15]. We need to develop new management and
incentive techniques that are tailored to the special needs and
challenges of virtual design teams. We need better shared 2-d
and 3-d virtual workspaces that can work with practical band-
width limitations. Additionally, the heavily spatial nature of
design tasks may impose its own special challenges which current
social networking tools may not adequately address, such as the
need to convey spatial concepts and kinematics quickly and
effectively through gestures [144–147].

The economics of production changes as well with globally dis-
tributed supply chains. The embedded knowledge used in intelli-

gent CAD must be adaptable to consider local manufacturing con-
ditions, while at the same time promoting desired practices in
design for assembly and manufacture and, increasingly so, the
environment. There are many opportunities for intelligent systems
research to support virtual and distributed product design, as well
as customized knowledge bases for combinations of locations in
the supply chain. This, in turn, puts increasing demands on the
representation of design knowledge and data to facilitate informa-
tion exchange and understanding in virtual design spaces and on
tools that support virtual collaboration.

5.2 New Directions: Mass Customization, Smart Grids,
and Information-Dense Products. Another driving force of the
past decade is the consumer demand for the latest technologies
that are tailored to personal needs. What role can embedded intel-
ligence and miniature sensing play in advancing mass customiza-
tion and personalization in designed products? Designers need
tools that can handle increasingly networked, “information dense”
products. Designers will need tools and approaches to help them
manage the sheer volume of product information, so they may
represent, organize, and navigate this vast space of information.
Social computing and embedded sensing in new products add to
the overwhelming wealth of data available to both designers and
consumers. Interesting research questions relate to how personal
devices can be part of a world-wide smart grid and how ubiqui-
tous user data be mined in the design process.

5.3 New Directions: Cognitive Design Tools. As human
interactions and processes change with technological advances,
there will continue to be a need to understand the evolving cogni-
tive processes associated with modern product design, both from
the individual and the team perspectives. A better understanding
of a design team’s cognitive processes, group dynamics, and com-
munication needs in today’s global work environment is needed
to create tools to support both co-located and virtual design teams.

Building on this descriptive research, there is an opportunity
to fully integrate design tools and cognitive design processes to
effectively augment human designers’ capabilities as assisted
cognition systems. Exciting research areas include intelligent
sketching, tangible computing, and virtual design and decision
teams. Developers of design tools will need to expand their rep-
ertoire of methods to include work borrowed from psychology,
work anthropology, and human factors so that they may effec-
tively study cognitive processes, the impact of work situated in a
context, group dynamics, and the impact of tools on human
performance.

Enabling creativity and innovation has become an important
societal goal for intelligent engineering systems. Innovation will
be the key to any country’s ability to succeed financially in the
future. Research in this area ranges from autonomous computa-
tional designers with emergent behavior to creative IT,1 in which
the computer stimulates and enhances human creativity. Finally,
if we are to design tools that can support creative design, then we
need some operational measures of creativity for human/com-
puter-generated designs. Shah et al. [148] have provided an excel-
lent set of metrics in novelty, variety, quality, and quantity of
design ideas.

5.4 New Directions: Sustainable Design. Over the last dec-
ade, sustainable design, sometimes also known as environmental
design or “design for environment,” has emerged as an important
design problem. Sustainable design refers to design of materials,
products, processes, and services in accordance with the principles
of biological diversity, ecological integrity, and environmental
responsibility. Design for recycling and design for reuse has long
been a part of Product Lifecycle Management (PLM), and their
importance in PLM is likely to increase with time.

1http://www.nsf.gov/pubs/2009/nsf09572/nsf09572.htm
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Sustainable design, however, goes much further than design for
PLM. Sustainable design engages a new set of economic, social,
and cultural values such as water conservation, energy efficiency,
and minimal carbon emissions. By bringing in new design
requirements and constraints into the design problem statement,
sustainable design changes the design problem space itself. Many
researchers in the design community have turned their attention to
the challenges of sustainable design. The latest examples have
been published in the ASME Journal of Mechanical Design’s Sep-
tember 2010 special issue on Sustainable Design (Vol. 132, Issue
9.) Additionally, the AI community has started to focus on the
issues of sustainable design, as is evidenced by the 2011 AAAI
Symposium on AI in Sustainable Design at Stanford, CA.

Biologically inspired design, sometimes also called biomimicry
or bionics, offers a large space of potential design solutions for
addressing many problems in sustainable design [149–151]. While
evolutionary computing techniques such as genetic algorithms are
inspired by the processes of biological evolution [152], biologi-
cally inspired design makes use of the results of evolution.
Although biological “designs” are not necessarily optimal relative
to their “functions,” functions and designs of biological systems
typically have been finely honed by the evolutionary processes.
As a result, biological designs often are not only multifunctional
but also robust and efficient. Biologically inspired design seeks to
make use of this robustness and efficiency of biological systems
to address technological problems. The Biomimicry Institute’s
webportal, AskNature,2 provides many examples of biologically
inspired sustainable design.

Although neither sustainable design nor biologically inspired
design is new, it is only in the last decade that they have become
fields of systematic study. It is here—in the systemization of
knowledge, problem solving, and learning for sustainable
design—that AI can be most helpful. As we indicated in Sec. 3,
AI has been successful at identifying types of knowledge and
building schemes of knowledge representation and organization.
Further, as Sec. 4 illustrates, AI is also successful at building com-
putational methods for the use, access, acquisition, and communi-
cation of different kinds of knowledge. As an example, biologi-
cally inspired design by definition entails analogies from biology
to design disciplines such as engineering, architecture, and com-
puting. How then, might AI theories of case-based and analogical
reasoning inform development of biologically inspired design
methods? As another example, a need when scaling biologically
inspired design from case studies into a design methodology is
representation of biological knowledge in a language that is useful
for engineering designers. How might AI theories of ontologies
inform the development of a knowledge representation language
that can bridge engineering and biology? The excitement sur-
rounding AI and sustainable design can be gauged from the
upcoming symposia organized by the Association for Advance-
ment of Artificial Intelligence [153].

6 Conclusions

This paper has presented an overview of both the history and
prospectus for intelligent systems in engineering design. It is the
hope of the authors that this paper will serve as a useful guide for
new students of the field, experienced practitioners, and research-
ers. While the breadth of the field makes any such effort impossi-
bly incomplete, we hope that readers will find the path we have
charted through this interdisciplinary area useful for organizing
intelligent design research. Over the past decades, we have wit-
nessed researchers and practitioner continuing to find new ways to
marry intelligent systems techniques with complex engineering
problems to produce work that expands and deepens our under-
standing of intelligent systems and has inspired much of the basic
science surveyed here. It is a testament to the role ASME’s JCISE,
on this its 10th Anniversary, that many of these works have

appeared on its pages in the past decade. It has created a home for
these interdisciplinary problems and provides a gathering place
for collecting the new advances in the application of intelligent
systems to engineering problems.
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