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Abstract

Synchronization is a crucial operation in many parallel
applications. As network latency approaches thousands of
processor cycles for large scale multiprocessors, conventional
synchronization techniques are failing to keep up with the in-
creasing demand for scalable and efficient synchronization op-
erations.

In this paper, we present a mechanism that allows atomic
synchronization operations to be executed on the home mem-
ory controller of the synchronization variable. By perform-
ing atomic operations near where the data resides, our pro-
posed mechanism can significantly reduce the number of net-
work messages required by synchronization operations. Our
proposed design also enhances performance by using fine-
grained updates to selectively “push” the results of offloaded
synchronization operations back to processors when they com-
plete (e.g., when a barrier count reaches the desired value).

We use the proposed mechanism to optimize two of the
most widely used synchronization operations, barriers and
spin locks. Our simulation results show that the proposed
mechanism outperforms conventional implementations based
on load-linked/store-conditional, processor-centric atomic in-
structions, conventional memory-side atomic instructions, or
active messages. It speeds up conventional barriers by up to
2.1 (4 processors) to 61.9 (256 processors) and spin locks by a
factor of up to 2.0 (4 processors) to 10.4 (256 processors).

1 Introduction

Barriers and spinlocks are common synchronization
primitives used by many parallel applications. A barrier
ensures that no process in a group of cooperating pro-
cesses advances beyond a given point until all processes
have reached the barrier. A spin lock ensures atomic ac-
cess to data or code protected by the lock. Given the se-
rializing nature of synchronization operations, their per-
formance often limits the achievable concurrency, and
thus performance, of parallel applications.

The performance of synchronization operations is
limited by two factors: (i) the number of remote accesses

required for a synchronization operation and (ii) the la-
tency of each remote access. Its impact on the overall
performance of parallel applications is increasing due to
the growing speed gap between processors and mem-
ory. Processor speeds are increasing by approximately
55% per year, while local DRAM latency is improv-
ing only approximately 7% per year and remote mem-
ory latency for large-scale machine is almost constant
due to speed of light effects. These trends are making
synchronization operations more and more expensive.
For instance, a 32-processor barrier operation on an SGI
Origin 3000 system takes about 90,000 cycles, during
which time the 32 400MHz R14K processors could exe-
cute 5.76 million FLOPS. The 5.76 MFLOPS/barrier ra-
tio is an alarming indication that conventional synchro-
nization mechanisms hurt system performance.

Most conventional synchronization mechanisms are
implemented using some form of processor-centric
atomic read-modify-write operations. For exam-
ple, the Itanium-2 processors support semaphore in-
structions [11] and many RISC processors use load-
linked/store-conditional instructions [4, 13, 16] to im-
plement synchornization operations. An LL instruction
loads a block of data into the cache. A subsequent SC in-
struction attempts to write to the same block. It succeeds
only if the block has not been evicted from the cache
since the preceding LL. Any intervention request from
another processor between the LL and SC pair causes
the SC to fail. To implement an atomic operation, li-
brary routines typically retry the LL/SC pair repeatedly
until the SC succeeds.

A main drawback of processor-centric atomic oper-
ations is that they introduce interprocessor communica-
tion for every atomic operation. Figure 1(a) illustrates a
simple scenario in a CC-NUMA (cache-coherence non-
uniform memory access) system, in which three pro-
cessors synchronize using a barrier based on processor-
centric atomic operations. Solid lines of this figure rep-
resent request and data messages, dashed lines represent
intervention messages, and dotted lines represent inter-
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Figure 1. A three-processor barrier

vention replies. At the beginning, all three processors
request exclusive ownership (line (1), (2), and (3)), but
only one of them will succeed at one time; the others
must retry. As the figure shows, even without addi-
tional interference, conventional barriers needs 18 one-
way messages before all three processors can proceed
past the barrier.

In an attempt to speed up synchronization operations
without surrendering to increased programming com-
plexity, we are investigating the value of augmenting a
conventional memory controller (MC) with an Active
Memory Unit (AMU) capable of performing simple
atomic operations. We refer to such atomic operations
as Active Memory Operations (AMOs). AMOs let
processors ship simple computations to the AMU on the
home memory controller of the data being processed, in-
stead of loading the data in to a processor, processing it,
and writing it back to the home node. AMOs are particu-
larly useful for data items, such as synchronization vari-
ables, that are not accessed many times between when
they are loaded into a cache and later evicted. Synchro-
nization operations can exploit AMOs by performing
atomic read-modify-write operations at the home node
of the synchronization variables, rather than bouncing
them back and forth across the network as each proces-
sor tests or modifies them.

To further reduce network traffic and speed up syn-
chronization, we propose to exploit a fine-grained up-
date mechanism so that AMUs can selectively push
word-grained updates to processors to update cached
data. Applications can control when and what to up-
date, e.g., for a barrier operation, an update will be sent
only when the barrier count indicates that all participat-
ing processes have reached the barrier. We assume that

each node contains a remote access cache (RAC) where
updates can be pushed so that word-grained updates can
be supported without processor modifications. Issuing
updates in this manner, rather than having processes spin
across the network, dramatically reduces network traffic.

Figure 1(b) illustrates how an AMO-based barrier
works. By employing AMOs, processor-issued requests
will no longer be retried. Only two message (one request
and one reply) are needed for each process. In this three-
processor case, the total number of network messages
required to perform a synchronization operation drops
from 18 to 6. This dramatic reduction can lead to signif-
icant performance gains. In Section 4 we will show that
AMO-based barriers outperform even highly optimized
conventional barriers by a factor of 2.1 (4 processors) to
61.9 (256 processors), and spin locks by a factor of 2.0
(4 processors) to 10.4 (256 processors).

In the rest of the paper, Section 2 surveys relevant
existing mechanisms not covered in this section, includ-
ing tree-based barriers, ticket locks, array-based queuing
locks, active messages, and simple memory-side atomic
operations. Section 3 presents the architecture of the
AMU and show how it can optimize barriers and spin
locks. Section 4 describes our simulation environment
and presents the performance numbers of barriers/locks
based on AMOs, LL/SC instructions, atomic instruc-
tions, active messages, and memory-side atomic oper-
ations. Section 5 summarizes our conclusions and dis-
cusses future work.

2 Related Work

Active Message (ActMsg) is an efficient way in orga-
nizing parallel applications [3, 27]. An active message
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includes the address of a user-level handler to be exe-
cuted by the home node processor upon message arrival
using the message body as argument. Active messages
can be used to implement AMO-style synchronization
operations on a fixed “home node”, without shuttling the
relevant data back and forth across the network. How-
ever, using the node’s primary processor to execute the
handlers has much higher latency than dedicated hard-
ware and interferes with useful work. In particular, the
load imbalance induced by having a single node handle
synchronization traffic will tend to severely impact per-
formance due to Amdahl’s Law effects. With an AMU,
we achieve the same latency-reducing benefits of cen-
tralizing the simple synchronization operations without
impacting the performance of any particular processor.

A number of barrier solutions have been proposed
over the decades. The fastest of all approaches is to use a
pair of dedicated wires between every two nodes [5, 23].
However, such approaches are only possible for small-
scale systems, where the number of dedicated wires
is small. For large-scale systems, the cost of hav-
ing dedicated wires between every two nodes is pro-
hibitive. In addition to the high cost of physical wires,
hardware-wired approaches cannot support more than
one barrier at one time and do not interact well with
load-balancing techniques, such as processes migration,
where the process-to-processor mapping is not static.

The SGI Origin 2000 [14] and Cray T3E [22] have
a set of memory-side atomic operations (MAOs), trig-
gered by writes to special IO addresses on the home
node of synchronization variables. MAOs do not work
in the coherent domain and rely on software to main-
tain coherence. To spin on the synchronization variable,
each load request must bypass the cache and load data
directly from the home node. Performance of MAO-
based sync operations can be improved by spinning on
a separate variable. Our experimental results will show
that even this optimized version is slower than a simple
AMO version.

The fetch-and-add instruction in the NYU Ultracom-
puter [7] is also implemented in the memory controller.
It uses a combining network that tries to combine loads
and stores for the same memory location within the
routers. However, the hardware cost for queueing cir-
cuitry at each node is high, so there is a performance
penalty for references that do not use the combining fea-
ture.

Some researchers have proposed barrier trees [9, 21,
28] , which use multiple barrier variables organized as a
tree for a barrier operation so that atomic operations on
different variables can be done in parallel. For example,
in Yew et al.’s software combining tree [28], the proces-
sors are leaves of the tree and are organized into groups.
The last processor in a group to arrive at a barrier incre-

ments a counter in the group’s parent node. Continuing
in this fashion, the last processor reaching the barrier
point works its way to the root of the tree and triggers
a reverse wave of wakeup operations to all processors.
Barrier trees achieve significant performance gains on
large-scale systems due to reduced hot spot effects, but
they entail extra programming efforts and their overall
performance is constrained by the base case combining
barrier performance. AMOs can be used to improve the
performance of the base combining barrier operation,
thereby allowing flatter barrier trees.

QOLB [6, 12] by Goodman et al. serializes the syn-
chronization requests through a distributed queue sup-
ported by hardware. The hardware queue mechanism
greatly reduces network traffic. The hardware cost in-
cludes three new cache line states, storage of the queue
entries, a “shadow line” mechanism for local spinning,
and direct node-to-node transfer of the lock.

Off-loading the task of synchronization from the
main processor to network processors is an approach
taken by several recent clusters [10, 20, 26]. Gupta et
al. [10] and Tipparaju et al. [26] use user-level one-sided
protocols of MPI to implement communication func-
tionalities, including barriers. The QuadricsTMQsNet in-
terconnect used by the ASCI Q supercomputer [20] sup-
ports both pure hardware barrier with a crossbar switch
and hardware multicast, and a hybrid hardware/software
tree barrier running on the network processors. The us-
ability of the Quadrics hardware barrier is limited by two
requirements: only one processor per node can partici-
pate in the synchronization and the participating nodes
must be adjacent.

Spin locks are usually implemented in software using
hardware primitives that the underlying machine pro-
vides, e.g., LL/SC or atomic instructions. They suffer
the same problems as barriers, though in a slightly dif-
ferent fashion. A number of spin locks have been pro-
posed [1, 17]. Most of them achieve better performance
at the cost of increased programming complexity.

3 AMU-Supported Synchronization

Our proposed mechanism adds an Active Memory
Unit that can perform simple atomic arithmetic opera-
tions to the memory controller, extends the coherence
protocol to support fine-grained updates, and augments
the ISA with a few special AMO instructions. AMO in-
structions are encoded in an unused portion of the MIPS-
IV instruction set space. We are considering a wide
range of AMO instructions, but for this study we focus
on amo.inc (increment by one) and amo.fetchadd
(fetch and add). Semantically, these instructions are just
like the atomic instructions implemented by processors.
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Figure 2. Hardware organization of the Ac-
tive Memory Controller.

Programmers can use them as if they were processor-
side atomic operations.
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Figure 2 depicts the architecture that we assume. A
crossbar connects processors to the network backplane,
from which they can access remote processors, as well
as their local memory and IO subsystems, shown in Fig-
ure 2 (a). In our model, the processors, crossbar, and
memory controller all reside on the same die, as will be
typical in near-future system designs. Figure 2 (b) is the
block diagram of the Active Memory Controller with the
proposed AMU delimited within the dotted box.

When a processor issues an AMO instruction, it
sends a command message to the target address’ home
node. When the message arrives at the AMU of that
node, it is placed in a queue waiting for dispatch. The
control logic of the AMU exports a READY signal to
the queue when it is ready to accept another request. The
operands are then read and fed to the function unit (FU
in Figure 2 (b)).

Accesses to synchronization variables exhibit high
temporal locality because every participating process ac-
cesses the same synchronization variable. To further im-
prove the performance of AMOs, we add a tiny cache to
the AMU. This cache effectively coalesces operations to
synchronization variables, eliminating the need to load
from and write to the off-chip DRAM every time. Each
AMO that hits in the AMU cache takes only two cy-
cles to complete, regardless the number of processors
contending for the synchronization variable. An N-word

AMU cache allows N outstanding synchronization oper-
ations. For this study, we assume an eight-word AMU
cache.

�"�$# %&���
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�*
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AMOs operate on coherent data. AMU-generated re-
quests are sent to the directory controller as fine-grained
“get” (for reads) or “put” (for writes) requests. The di-
rectory controller still maintains coherency at the block
level. A fine-grained “get” loads the coherent value of a
word (or a double-word) from local memory or a proces-
sor cache, depending on the state of the block containing
the word. The directory controller changes the state of
the block to “shared” and adds the AMU to the list of
sharers. Unlike traditional data sharers, the AMU is al-
lowed to modify the word without obtaining exclusive
ownership first. The AMU sends a fine-grained “put”
request to the directory controller when it needs to write
a word back to local memory. When the directory con-
troller receives a put request, it will send a word-update
request to local memory and every node that has a copy
of the block containing the word to be updated. 1.

To take advantage of fine-grained gets/puts, an AMO
can include a “test” value that is compared against the
result of the operation. When the result value matches
the “test” value, the AMU sends a put request along with
the result value to the directory controller. For instance,
the “test” value of amo.inc can be set as the total num-
ber of processes expected to reach the barrier and then
the update request is like a signal to all waiting processes
that a barrier operation has completed.

A potential way to optimize synchronization is to use
a write-update protocol on synchronization variables.
However, issuing a block update after each write gen-
erates enormous amount of network traffic, offsetting
the benefit of eliminating invalidation requests [8]. On
the contrary, the put mechanism issues word-grained up-
dates (thereby eliminating false sharing) and in the case
of amo.inc, it only issues updates after the last process
reaches the barrier rather than once every time a process
reaches the barrier.

This get/put mechanism introduces temporal incon-
sistency between the barrier variable values in the pro-
cessor caches and the AMU cache. In essence, the
delayed put mechanism implements a release consis-
tency model for barrier variables, where the condition of
reaching a target value acts as a release point. Though
we must be careful when applying AMOs to applica-
tions where release consistency might cause problems,

1Fine-grained “get/put” operations are part of a more general DSM
architecture we are investigating. Its details are beyond the scope of
this paper.
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( a )  naive coding

atomic_inc( &barrier_variable );
spin_until( barrier_variable == num_procs );

int count = atomic_inc( &barrier_variable );

( b )  "optimized" version

if( count == num_procs−1 )
      spin_variable = num_procs;
else
      spin_until( spin_variable == num_procs );

( c ) AMO version

amo_inc( &barrier_variable,num_procs );
spin_until( barrier_variable == num_procs );

Figure 3. There barrier implementations.

release consistency is a completely acceptable memory
model for synchronization operations.

��� � � �� ���������� �������  
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3.3.1 Barrier

The amo.inc instruction increments a specified mem-
ory location by one and returns the original memory
content to the requesting processor. When it is used
to implement barriers, its test value is set as the ex-
pected value of the barrier variable after all processes
have reached the barrier point.

Figure 3(a) shows a naive barrier implementation,
where num procs is the number of participating pro-
cesses. This implementation is inefficient because it di-
rectly spins on the barrier variable. Since processes that
have reached the barrier repeatedly try to read the barrier
variable, the next increment attempt by another process
will have to compete with these read requests, possibly
resulting in a long latency for the increment operation.
Although processes that have reached the barrier can be
suspended to avoid interference with the subsequent in-
crement operations, the overhead of suspending and re-
suming processes is too high to have an efficient barrier.

A common optimization to this barrier implementa-
tion is to use another variable, as shown in Figure 3(b).
Instead of spinning on the barrier variable, this loop
spins on another variable spin variable. Because
data coherence is maintained in block level, for this cod-
ing to work efficiently, programmers must make sure
that barrier variable and spin variable do not
reside in the same block. Using the spin variable elim-
inates false sharing between spin and increment oper-
ations. However, it introduces an extra write to the
spin variable for each barrier operation, which causes
the home node to send an invalidation request to every
processor and then every processor to reload the spin

variable. Nevertheless, the benefit of using the spin
variable often overwhelms its overhead. It is a classic
example of trading programming complexity for per-
formance. Nikolopoulos and Papatheodorou [19] have
demonstrated that using the spin variable gives 25%
performance improvement for a barrier synchronization
across 64 processors.

With AMOs, atomic increment operations are per-
formed at the memory controller without invalidating
shared copies in processor caches and the cache copies
are automatically updated when all processes reach
the barrier. Consequently, AMO-based barriers can
use the naive coding, as shown in Figure 3(c), where
amo inc() is a wrapper function for the amo.inc in-
struction, which uses num procs as the “test” value.

3.3.2 Spin lock

The amo.fetchadd instruction adds a designated
value to a specified memory location, immediately up-
dates the shared copies in processor caches with the new
value, and returns the old value. Different spin lock al-
gorithms require different atomic primitives. We do not
intend to elaborate on every one of them. Instead, we ap-
ply amo.fetchadd to two representative spin lock al-
gorithms, ticket lock and Anderson’s array-based queu-
ing lock [2].

The ticket lock is a simple algorithm that grants ac-
quisition requests in FIFO order. Figure 4 is one of its
typical implementations.

acquire_ticket_lock( ) {

}

 
  spin_until(my_ticket == now_serving);

  int my_ticket = fetch_and_add(&next_ticket, 1);

release_ticket_lock( ) {
  now_serving = now_serving + 1;
}

Figure 4. Ticket lock pseudo-code

It has two global variables, the sequencer
(next ticket) and the counter (now serving).
To acquire the lock, a process atomically increments
the sequencer, obtains a ticket, and waits for the count
to become equal to its ticket number. The reigning
process releases the lock by incrementing the counter.
Races to the sequencer and delays in the propagation
of the new counter value cause the performance of
the ticket lock to degrade rapidly as the number of
participating processors goes up. Mellor-Crummy and
Scott [17] showed that proportional backoff inserted
to the spinning stage was very effective in enhancing
efficiency of ticket locks. On their evaluation systems,
every reference to the global variable now serving
was a remote memory access because it was not cached.
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Backoff eliminated most of the network and memory
traffic and greatly improved lock passing efficiency.
However, on modern cache-coherent multiprocessors,
backoff is less effective. Because most of spinning reads
to now serving hit in local caches, there are very
few remote accesses for backoff to eliminate. Inserting
backoff is also not risk-free; delaying one process will
force a delay on others that arrive later than the process
because of the FIFO nature of the algorithm.

T. Anderson’s array-based queuing lock [2] uses an
array of flags. A counter serves as the index into the
array. Every process spins on its own flag. When the
lock is released, only the next winner’s flag access turns
into a remote memory access. All other processors keep
spinning on their local caches. The sequencer remains a
hot spot, though. Selectively signaling one processor at
a time, however, may noticeably improve performance
in large systems. In addition, all global variables (the
sequencer, the counter and all the flags) must be placed
in different cache lines to achieve the best performance.

To implement spin locks using AMOs, we re-
place the atomic primitive fetch and add with
AMO instruction amo fetchadd(). We also use
amo fetchadd() on the counter to take advantage of
the put mechanism. In addition, using AMOs makes it
a moot point to put global variables into different cache
lines.

3.3.3 Programming complexity

Using conventional synchronization primitives often re-
quires significant effort from programmers to write cor-
rect, efficient, and deadlock-free parallel codes. In con-
trast, AMOs work in cache coherent domain, do not lock
any system resources and eliminate the need for pro-
grammers to be aware of how the atomic instructions
are implemented. In addition, we will show in Section 4
that the complex algorithms designed for conventional
platforms (e.g. combining tree barriers and array-based
queuing locks) are no longer needed for AMOs. Since
synchronization-related codes are often the hardest parts
to code and debug, simplifying the programming model
is another advantage of AMOs over other mechanisms,
in addition to performance superiority.

4 Evaluation

�
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We use a cycle-accurate execution-driven simulator,
UVSIM, in our performance study. UVSIM models a
hypothetical future-generation Origin architecture, in-
cluding a directory-based coherence protocol [24] that

Parameter Value

Processor 4-issue, 48-entry active list, 2GHz
L1 I-cache 2-way, 32KB, 64B lines, 1-cycle lat.
L1 D-cache 2-way, 32KB, 32B lines, 2-cycle lat.
L2 cache 4-way, 2MB, 128B lines, 10-cycle lat.
System bus 16B CPU to system, 8B system to CPU

max 16 outstanding L2C misses, 1GHZ
DRAM 16 16-bit-data DDR channels
Hub clock 500 MHz
DRAM 60 processor cycles latency
Network 100 processor cycles latency per hop

Table 1. System configuration.

supports both write-invalidate and fine-grained write-
update, as described in Section 3.2. Each simulated
node contains two MIPS next-generation microproces-
sors connected to a high-bandwidth bus. Also connected
to the bus is a future-generation Hub [25], which con-
tains the processor interface, memory controller, direc-
tory controller, network interface, IO interface, and ac-
tive memory unit.

Table 1 lists the major parameters of the simulated
systems. The DRAM backend has 16 20-bit channels
connected to DDR DRAMs, which enables us to read
an 80-bit burst every two cycles. Of each 80-bit burst,
64 bits are data. The remaining 16 bits are a mix of
ECC bits and partial directory state. The simulated in-
terconnect subsystem is based on SGI’s NUMALink-4.
The interconnect is built using a fat-tree structure, where
each non-leaf router has eight children. We model a net-
work hop latency of 50 nsecs (100 cpu cycles). The min-
imum network packet is 32 bytes.

UVSIM has a micro-kernel that supports all common
system calls. It directly executes statically linked 64-bit
MIPS-IV executables. UVSIM supports the OpenMP
runtime environment. All benchmark programs used in
this paper are OpenMP-based parallel programs. All
programs in our study are compiled using the MIPSpro
Compiler 7.3 with an optimization level of “-O3”.

We have validated the core of our simulator by set-
ting the configurable parameters to match those of an
SGI Origin 3000, running a large mix of benchmark pro-
grams on both a real Origin 3000 and the simulator, and
comparing performance statistics (e.g., run time, cache
miss rates, etc.). The simulator-generated results are all
within 20% of the corresponding numbers generated by
the real machine, most within 5%.

� �$# � � �
	�� � �	��
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We use a set of representative synchronization algo-
rithms as test benchmarks. The barrier function is from
the IRIX OpenMP library. In addition to simple barriers,
we construct the software barrier combining tree based
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CPUs Speedup over LL/SC barrier
ActMsg Atomic MAO AMO

4 0.95 1.15 1.21 2.10
8 1.70 1.06 2.70 5.48

16 2.00 1.20 3.61 9.11
32 2.38 1.36 4.20 15.14
64 2.78 1.37 5.14 23.78

128 2.74 1.24 8.02 34.74
256 2.82 1.23 14.70 61.94

Table 2. Performance of different barriers.
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Figure 5. Cycles-per-processor of different
barriers.

on the work by Yew et al. [28] for each implementation.
Ticket locks and array-based queuing locks are based on
what is proposed by Mellor-Crummey and Scott [17].

We compare AMOs with LL/SC instructions, ac-
tive messages (“ActMsg”), processor-side atomic in-
structions (“Atomic”), and existing memory-side atomic
operations (“MAOs”). The LL/SC-based versions are
taken as the baseline. The AMU cache is used for both
MAOs and AMOs.

4.2.1 Non-tree-based barriers

Table 2 presents the speedups of different barrier imple-
mentations over the baseline. A speedup of less than one
indicates a slowdown. We vary the number of processors
from four (i.e., two nodes) to 256, the maximum number
of processors allowed by the directory structure [24] that
we use. The ActMsg, Atomic, MAO and AMO versions
all perform better than the baseline LL/SC version, and
scale better. Specifically, when the number of processors
is over 8, active messages outperform LL/SC by a factor
of 1.70 to 2.82. Atomic instructions outperform LL/SC
by a factor of 1.06 to 1.37. Memory-side atomic opera-
tions outperform LL/SC by a factor of 1.21 at four pro-
cessors to an impressive 14.70 at 256 processors. How-
ever, AMO-based version dwarfs all other versions. Its
speedup ranges from a factor of 2.10 for four processors
to a factor of 61.94 for 256 processors.

In the baseline implementation, each processor loads
the barrier variable into its local cache before increment-

ing it using LL/SC instructions. Only one processor will
succeed at one time; other processors will fail and retry.
After a successful update by a processor, the barrier vari-
able will move to another processor, and then to another
processor, and so on. As the system grows, the average
latency to move the barrier variable between processors
increases, as does the amount of contention. As a result,
the synchronization time in the base version increases
superlinearly as the number of nodes increases. This ef-
fect can be seen particularly clearly in Figure 5, which
plots the per-processor barrier synchronization time for
each barrier implementation.

For the active message version, an active message
is sent for every increment operation. The overhead
of invoking the active message handler for each incre-
ment operation dwarfs the time required to run the han-
dler itself. Nonetheless, the benefit of eliminating re-
mote memory accesses outweighs the high invocation
overhead, which results in performance gains as high as
182%.

Using processor-centric atomic instructions elimi-
nates the failed SC attempts in the baseline version.
However, its performance gains are relatively small, be-
cause it still requires a round trip over the network for
every atomic operation, all of which must be performed
serially.

The MAO version performs significantly better than
Atomic. It scales exceptionally well. At 256 processors,
it is nearly 15 times faster than the baseline. This re-
sult further demonstrates that putting computation near
memory is a good solution for synchronization opera-
tions.

AMO barriers are four times faster than MAO. This
performance advantage of AMOs over MAOs has come
from the “delayed update” enabled by the test value
mechanism and the fine-grained update protocol. Since
all processors are spinning on the barrier variable, ev-
ery local cache likely has a shared copy of it. Thus the
total cost of sending updates is approximately the time
required to send a single update multiplied by the num-
ber of participating processors. 2

Roughly speaking, the time to perform an AMO bar-
rier equals (

���������	��

), where

���
is a fixed overhead

and
� �

is a small value related to the processing time of
an amo.inc operation and an update request, and



is

the number of processors being synchronized. This ex-
pression implies that AMO barriers scale well, which is
clearly illustrated in Figure 5. This figure reveals that
the per-processor latency of AMO barriers is constant
with respect to the total number of processors. In fact,
the per-processor latency drops off slightly as the num-

2We do not assume that the network has multicast support; AMO
performance would be even higher if the network supported such op-
erations.
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CPUs Speedup over LL/SC barrier
LL/SC+tree ActMsg+tree Atomic+tree MAO+tree AMO+tree AMO

16 1.70 2.41 2.25 2.60 2.59 9.11
32 2.24 2.85 2.62 4.09 4.27 15.14
64 4.22 6.92 5.61 8.37 8.61 23.78

128 5.26 9.02 6.13 12.69 13.74 34.74
256 8.38 14.72 11.22 20.37 22.62 61.94

Table 3. Performance of tree-based barriers.

ber of processors increases because the fixed overhead
is amortized by more processors. In contrast, other im-
plementations see higher per-processor time when the
system becomes larger.

4.2.2 Tree-based barriers

For all tree-based barriers, we use a two-level tree struc-
ture regardless of the number of processors. For each
configuration, we try all possible tree branching factors
and use the one that delivers the best performance. The
initialization time of the tree structures is not included in
the reported results. The smallest configuration that we
consider for tree-based barriers has 16 processors. Ta-
ble 3 shows the speedups of tree-based barriers over the
original baseline implementation. Figure 6 shows the
number of cycles per processor for the tree-based barri-
ers.
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Figure 6. Cycles-per-processor of tree-
based barriers.

Our simulation results indicate that tree-based barri-
ers perform much better and scale much better than nor-
mal barriers, which concurs with the findings of Michael
et al. [18]. On a 256-processor system, all tree-based
barriers are at least eight times faster than the baseline
barrier. As seen in Figure 6, the cycle-per-processor
number for tree-based barriers decreases as the number
of processors increases, because the high overhead asso-
ciated with using trees is amortized across more proces-
sors and the tree contains more branches that can pro-
ceed in parallel.

The best branching factor for a given system is often
not intuitive. Markatos et al. [15] have demonstrated

that improper use of trees can drastically degrade the
performance of tree-based barriers to even below that
of simple centralized barriers. Nonetheless, our simu-
lation results demonstrate the performance potential of
tree-based barriers.

Even with all of the advantages, tree-based barri-
ers are still significantly slower than AMO-based bar-
riers. For instance, the best non-AMO tree-based barrier
(MAO + tree) is still 3 times slower than the AMO-based
barrier on a 256-processor system.

Interestingly, the combination of AMOs and trees
performs worse than AMOs alone in all tested config-
urations. The cost of an AMO-based barrier includes a
large fixed overhead and a very small number of cycles
per processor. Using tree structures on AMO-based bar-
riers essentially introduces the fixed overhead more than
once, therefore resulting in a longer barrier synchroniza-
tion time. That AMOs alone are better than the combina-
tion of AMOs and trees is another indication that AMOs
do not require heroic programming effort to achieve
good performance. However, the relationship between
normal AMOs and tree-based AMOs might change if we
move to systems with tens of thousands processors. De-
termining whether or not tree-based AMO barriers can
provide extra benefits on very large-scale systems is part
of our future work.

4.2.3 Spin locks

Table 4 presents the speedups of different ticket locks
and array-based queuing locks over the LL/SC-based
ticket lock. For traditional mechanisms, when the sys-
tem has 32 or fewer processors, ticket lock is faster than
array lock. Otherwise, array lock is faster. This verifies
the effectiveness of array locks in alleviating hot spot in
larger systems.

AMOs greatly improve the performance of both locks
and make the difference between ticket lock and ar-
ray lock negligible. This observation implies that with
AMOs, we can use the simpler tick locks instead of
more complicated array locks without losing any per-
formance.

The main reason that AMOs outperform others is its
ability to reduce network traffic. Figure 7 shows the net-
work traffic, normalized to the LL/SC version, of dif-
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CPUs LL/SC ActMsg Atomic MAO AMO
ticket array ticket array ticket array ticket array ticket array

4 1.00 0.48 1.08 0.47 0.92 0.53 1.01 0.57 1.95 1.31
8 1.00 0.58 1.64 0.56 0.94 0.67 1.07 0.59 2.34 2.03

16 1.00 0.60 2.18 0.65 0.93 0.67 1.07 0.62 2.20 2.41
32 1.00 0.62 1.48 0.64 0.94 0.76 1.08 0.65 2.29 2.14
64 1.00 1.42 0.60 1.42 0.80 1.60 0.64 1.49 4.90 5.45

128 1.00 2.40 0.91 2.60 1.21 2.78 1.00 2.69 9.28 9.49
256 1.00 2.71 0.97 2.92 1.22 3.25 0.90 3.13 10.36 10.05

Table 4. Speedups of different locks over the LL/SC-based locks.
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Figure 7. Network traffic for ticket locks.

ferent ticket locks on 128-processor and 256-processor
systems. In both systems, AMOs have significantly less
traffic than any other approach. Interestingly, active
messages, originally designed for eliminating remote
memory accesses, now suffer more network traffic than
others. It is because the high invocation overhead of the
message handlers leads to timeouts and retransmissions
of active messages in heavily contention environments.

5 Conclusions

Efficient synchronization is crucial to effective par-
allel programming of large multiprocessor systems. As
network latency rapidly approaches thousands of pro-
cessor cycles and multiprocessors systems are becom-
ing larger and larger, synchronization speed is quickly
becoming a significant performance determinant.

We present an efficient synchronization mechanism
based on special atomic active memory operations per-
formed in the memory controller. AMO-based barriers
do not require extra spin variables or complicated tree
structures to achieve good performance. AMO-based
spin locks can use one of the simplest algorithms and
still outperform implementations using more complex
algorithms.

In conclusion, AMOs enable extremely efficient syn-
chronization at rather low hardware cost, with a sim-
ple programming model. Our simulation results show
that AMOs are much more efficient than LL/SC instruc-
tions, active messages, processor-side and memory-side

atomic operations, outperforming them by up to a factor
of 62 for barriers and 10 for spin locks.
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