
Conditional Gradient Sliding for Convex Optimization ∗

Guanghui Lan † Yi Zhou ‡

October 17, 2014

Abstract

In this paper, we present a new conditional gradient type method for convex optimization by
utilizing a linear optimization (LO) oracle to minimize a series of linear functions over the feasible
set. Different from the classic conditional gradient method, the conditional gradient sliding (CGS)
algorithm developed herein can skip the computation of gradients from time to time, and as a
result, can achieve the optimal complexity bounds in terms of not only the number of calls to the
LO oracle, but also the number of gradient evaluations. More specifically, we show that the CGS
method requires O(1/

√
ε) and O(log(1/ε)) gradient evaluations, respectively, for solving smooth

and strongly convex problems, while still maintaining the optimal O(1/ε) bound on the number
of calls to the LO oracle. We also develop variants of the CGS method which can achieve the
optimal complexity bounds for solving stochastic optimization problems and an important class
of saddle point optimization problems. To the best of our knowledge, this is the first time that
these types of projection-free optimal first-order methods have been developed in the literature.
Some preliminary numerical results have also been provided to demonstrate the advantages of the
CGS method.

Keywords: convex programming, complexity, conditional gradient method, Frank-Wolfe method,
Nesterov’s method

AMS 2000 subject classification: 90C25, 90C06, 90C22, 49M37

1 Introduction

The conditional gradient (CndG) method, which was initially developed by Frank and Wolfe in
1956 [10] (see also [8, 9]), has been considered one of the earliest first-order methods for solving
general convex programming (CP) problems. Consider the basic CP problem of

f∗ := min
x∈X

f(x), (1.1)

where X ⊆ Rn is a convex compact set and f : X → R is a smooth convex function such that

‖f ′(x)− f ′(y)‖∗ ≤ L‖x− y‖, ∀x, y ∈ X. (1.2)

∗The author of this paper was partially supported by NSF grant CMMI-1000347, DMS-1319050, ONR grant N00014-
13-1-0036 and NSF CAREER Award CMMI-1254446.
†Department of Industrial and Systems Engineering, University of Florida, Gainesville, FL, 32611. (email:

glan@ise.ufl.edu).
‡Department of Industrial and Systems Engineering, University of Florida, Gainesville, FL, 32611. (email:

yizhou@ufl.edu).

1

The CndG method solves (1.1) iteratively by minimizing a series of linear approximations of f over
the feasible set X. More specifically, given xk−1 ∈ X at the k-th iteration, it updates xk according
to the following steps.

1) Call the first-order (FO) oracle to compute (f(xk−1), f ′(xk−1)) and set pk = f ′(xk−1).

2) Call the linear optimization (LO) oracle to compute

yk ∈ Argminx∈X〈pk, x〉. (1.3)

3) Set xk = (1− αk)xk−1 + αkyk for some αk ∈ [0, 1].

In addition to the computation of first-order information, each iteration of the CndG method
requires only the solution of a linear optimization subproblem (1.3), while most other first-order
methods require the projection over X. Since in some cases it is computationally cheaper to solve
(1.3) than to perform projection over X, the CndG method has gained much interests recently from
both the machine learning and optimization community (see, e.g.,[1, 2, 3, 7, 6, 11, 15, 14, 16, 17, 18,
22, 27, 28]. In particular, much recent research effort has been devoted to the complexity analysis
of the CndG method. For example, it has been shown that if αk in step 3) of the CndG method
are properly chosen, then this algorithm can find an ε-solution of (1.1) (i.e., a point x̄ ∈ X s.t.
f(x̄) − f∗ ≤ ε) in at most O(1/ε) iterations. In fact, such a complexity result has been established
for the CndG method under a stronger termination criterion based on the first-order optimality
condition of (1.1) (see [17, 18, 11, 14]).

Observe that the aforementioned O(1/ε) bound on gradient evaluations is significantly worse than
the optimal O(1/

√
ε) bound for smooth convex optimization [23, 25]. Hence, a natural question is

whether one can further improve the O(1/ε) complexity bound associated with the CndG method.
The research results along this direction, however, are mostly pessimistic. For example, Lan [19]
considered a general class of linear-optimization-based convex programming (LCP) methods which
consist of the following steps.

1) Define the linear function 〈pk, ·〉.

2) Call the LO oracle to compute yk ∈ Argminx∈X〈pk, x〉.

3) Output xk ∈ Conv{y0, . . . , yk}.

The LCP methods cover the CndG algorithm and also a few of its variants in [19] as certain special
cases. By generalizing an interesting observation made by Jaggi in [17], Lan [19] shows that the
total number of iterations for the LCP methods cannot be smaller than O(1/ε), even if the objective
function f is strongly convex. By generalizing the black-box oracle complexity of large-scale smooth
convex optimization in [23], Guzman and Nemirovski [13] showed that the aforementioned O(1/ε)
bound is tight (up to a logarithmic in the design dimension) for some particular classes of problems,
e.g., X is an l∞ ball. Improved complexity results can only be obtained under stronger assumptions
on the LO oracle or the feasible set (see, e.g., [12, 19]).

Our main goal in this paper is to show that, although the number of calls to the LO oracle cannot
be improved for the LCP methods in general, we can substantially improve their complexity bounds
in terms of the number of gradient evaluations. To this end, we present a new LCP algorithm,
referred to as the conditional gradient sliding (CGS) method, which can skip the computation for

2

the gradient of f from time to time while still maintaining the optimal bound on the number of
calls to the LO oracle. Our development has been leveraged on the basic idea of applying the CndG
method to the subproblems of Nesterov’s accelerated gradient method [24, 25], rather than to the
original CP problem in (1.1) itself. As a result, the same first-order information of f will be used
throughout a large number of CndG iterations.

Our main theoretical contributions are briefly summarized as follows. Firstly, we show that if f is
a smooth function satisfying (1.2), then the number of calls to the FO and LO oracles, respectively,
can be bounded by O(1/

√
ε) and O(1/ε). Moreover, if f is smooth and strongly convex, then the

number of calls to the FO oracle can be significantly reduced to O(log 1/ε) while the number of calls
to the LO oracle remains the same. It should be noted that these improved complexity bounds were
obtained without enforcing any stronger assumptions on the LO oracle or the feasible set X.

Secondly, we consider the stochastic case where one can only have access to a stochastic first-
order oracle (SFO) of f , which upon requests, return unbiased estimators for the gradient of f . By
developing a stochastic counterpart of the CGS method, i.e., the SCGS algorithm, we show that the
number of calls to the SFO and LO oracles, respectively, can be optimally bounded by O(1/ε2) and
O(1/ε) when f is smooth. In addition, if f is smooth and strongly convex, then the former bound
can be significantly reduced to O(1/ε).

Thirdly, we generalize the CGS and SCGS algorithms to solve an important class of nonsmooth
CP problems that can be closely approximated by a class of smooth functions. By incorporating
an adaptive smoothing technique into the conditional gradient sliding algorithms, we show that the
number of gradient evaluations and calls to the LO oracle can bounded optimally by O(1/ε) and
O(1/ε2), respectively.

To the best of our knowledge, all these theoretical developments seem to be new in the literature.
Some promising numerical results have also been provided to demonstrate the advantages of the CGS
algorithm over the classic CndG method applied directly to problem (1.1).

This paper is organized as follows. In Section 2 we present the basic scheme for the CGS method,
and establish its general convergence properties to solve problem (1.1). Moreover, we develop a
variant of CGS to solve strongly convex problems in this section. Section 3 is devoted to the stochastic
conditional gradient sliding algorithm for solving a class of stochastic programming problems and its
variant to solve strongly convex stochastic problems. In Section 4, we generalize the CGS algorithm
for solving a special class of nonsmooth CP problems possessing a saddle point structure. Finally,
we present some promising numerical results for the basic CGS algorithms in Section 5.

1.1 Notation and terminology

Let X ∈ Rn and Y ∈ Rm be given convex compact sets. Also let ‖ · ‖X and ‖ · ‖Y be the norms
associated with inner product in Rn and Rm, respectively (see Remark 5 for more discussions). For
the sake of simplicity, we often skip the subscripts in the norms ‖ · ‖X and ‖ · ‖Y . We define the
diameter of the sets X and Y , respectively, as

DX ≡ DX,‖·‖ := max
x,y∈X

‖x− y‖ (1.4)

and
DY ≡ DY,‖·‖ := max

x,y∈Y
‖x− y‖. (1.5)

3

For a given norm ‖ · ‖, we denote its conjugate by ‖s‖∗ = max‖x‖≤1〈s, x〉. Let A : Rn → Rm be a
given linear operator, we use ‖A‖ to denote its operator norm given by ‖A‖ := max‖x‖≤1 ‖Ax‖. Let
f : X → R be a convex function, we denote its linear approximation at x by

lf (x; y) := f(x) + 〈f ′(x), y − x〉. (1.6)

Clearly, if f satisfies (1.2), then

f(y) ≤ lf (x; y) +
L

2
‖y − x‖2, ∀x, y ∈ X. (1.7)

Notice that the constant L in (1.2) and (1.7) depends on ‖ · ‖.

2 The conditional gradient sliding method

Our goal in this section is to present a new LCP method, namely the conditional gradient sliding
(CGS) method, which can skip the computation for the gradient of f from time to time when
performing linear optimization over the feasible region X. More specifically, we introduce the CGS
method for smooth convex problems in Subsection 2.1 and generalize it for smooth and strongly
convex problems in Subsection 2.2.

2.1 Smooth convex optimization

The basic scheme of the CGS method is obtained by applying the classic conditional gradient
(CndG) method to solve the projection subproblems existing in the accelerated gradient (AG) method
approximately. By properly specifying the accuracy for solving these subproblems, we will show that
the resulting CGS method can achieve the optimal bounds on the number of calls to the FO and
LO oracles for solving problem (1.1). The development of the CGS method, in spirit, is similar to
the gradient sliding algorithm developed by Lan in [20] for solving a class of composite optimization
problems. It should be noted, however, that the gradient sliding algorithm in [20] requires to perform
projections over X and targets to solve CP problems with a general nonsmooth term in the objective
funtion.

The CGS method is formally described as follows.

4

Algorithm 1 The conditional gradient sliding (CGS) method

Input: Initial point x0 ∈ X and iteration limit N .
Let βk ∈ R++, γk ∈ [0, 1], and ηk ∈ R+, k = 1, 2, . . ., be given and set y0 = x0.
for k = 1, 2, . . . , N do

zk = (1− γk)yk−1 + γkxk−1, (2.1)

xk = CndG(f ′(zk), xk−1, βk, ηk), (2.2)

yk = (1− γk)yk−1 + γkxk. (2.3)

end for
Output: yN .

procedure u+ = CndG(g, u, β, η)
1. Set u1 = u and t = 1.
2. Let vt be an optimal solution for the subproblem of

Vg,u,β(ut) := max
x∈X
〈g + β(ut − u), ut − x〉. (2.4)

3. If Vg,u,β(ut) ≤ η, set u+ = ut and terminate the procedure.
4. Set ut+1 = (1− αt)ut + αtvt with

αt = max

{
0,min

{
1,
〈β(u− ut)− g, vt − ut〉

β‖vt − ut‖2

}}
. (2.5)

5 Set t← t+ 1 and go to step 2.
end procedure

Clearly, the most crucial step of the CGS method is to update the search point xk by calling the
CndG procedure in (2.2). Denoting φ(x) := 〈g, x〉+β‖x−u‖2/2, the CndG procedure can be viewed
as a specialized version of the classical conditional gradient method applied to minx∈X φ(x). In
particular, it can be easily seen that Vg,u,β(ut) in (2.4) is equivalent to maxx∈X〈φ′(ut), ut−x〉, which
is often called the Wolfe gap, and the CndG procedure terminates whenever Vg,u,β(ut) is smaller than
the pre-specified tolerance η. In fact, this procedure is slightly simpler than the generic conditional
gradient method in that the selection of αt in (2.5) explicitly solves

αt = argminα∈[0,1]φ((1− α)ut + αvt). (2.6)

In view of the above discussion, we can easily see that xk obtained in (2.2) is an approximate solution
for the projection subproblem

min
x∈X

{
φk(x) := 〈f ′(zk), x〉+

βk
2
‖x− xk−1‖2

}
(2.7)

such that
〈φ′k(xk), xk − x〉 = 〈f ′(zk) + βk(xk − xk−1), xk − x〉 ≤ ηk, ∀x ∈ X, (2.8)

5

for some ηk ≥ 0.

We now add a few comments about the main CGS method. Firstly, similarly to the accelerated
gradient method, the above CGS method maintains the updating of three intertwined sequences,
namely {xk}, {yk}, and {zk}, in each iteration. The main difference between CGS and the original
AG exists in the computation of xk. More specifically, xk in the original AG method is set to the exact
solution of (2.7) (i.e., ηk = 0 in (2.8)), while the subproblem in (2.7) is only solved approximately
for the CGS method (i.e., ηk > 0 in (2.8)).

Secondly, we say that an inner iteration of the CGS method occurs whenever the index t in
the CndG procedure increments by 1. Accordingly, an outer iteration of CGS occurs whenever k
increases by 1. While we need to call the FO oracle to compute the gradient f ′(zk) in each outer
iteration, the gradient φ′k(pt) used in the CndG subroutine is given explicitly by f ′(zk)+βk(p−xk−1).
Hence, the main cost per each inner iteration of the CGS method is to call the LO oracle to solve
linear optimization problem in (2.4). As a result, the total number of outer and inner iterations
performed by the CGS algorithm are equivalent to the total number of calls to the FO and LO
oracles, respectively.

Thirdly, observe that the above CGS method is conceptual only since we have not specified a few
parameters, including {βk}, {γk}, and {ηk}, used in this algorithm yet. We will come back to this
issue after establishing some important convergence properties for the above generic CGS algorithm.

We first state a simple technical result that will be used in the analysis of the CGS algorithm.
This result slightly generalizes Lemma 3 of [19].

Lemma 1 Let wt ∈ (0, 1], t = 1, 2, . . ., be given. Also let us denote

Wt :=

{
1 t = 1

(1− wt)Wt−1 t ≥ 2.
(2.9)

Suppose that Wt > 0 for all t ≥ 2 and that the sequence {δt}t≥0 satisfies

δt ≤ (1− wt)δt−1 +Bt, t = 1, 2, (2.10)

Then for any 1 ≤ l ≤ k, we have

δk ≤Wk

(
1− wl
Wl

δl−1 +

k∑
i=l

Bi
Wi

)
. (2.11)

Proof. Dividing both sides of (2.10) by Wt, we obtain

δ1

W1
≤ (1− w1)δ0

W1
+
B1

W1

and
δi
Wi
≤ (1− wi)δi−1

Wi
+
Bi
Wi

=
δi−1

Wi−1
+
Bi
Wi

, ∀i ≥ 2.

The result then immediately follows by summing up the above inequalities for i = l, . . . , k and
rearranging the terms.

Theorem 2 describes the main convergence properties of the above CGS method. More specif-
ically, both Theorem 2.a) and b) show the convergence of the AG method when the projection

6

subproblem is approximately solved according to (2.8), while Theorem 2.c) states the convergence
of the CndG procedure by using the Wolfe gap as the termination criterion. To the best of our
knowledge, the analysis of the AG method under the inexact projection condition in (2.8) has not
been studied before in the literature (see [20] for the analysis of a different inexact AG method),
while the convergence of the CndG method using the Wolfe gap as the termination criterion has
been well-understood in the literature (see, e.g., [17, 11]). Hence, part c) is included here mainly for
the sake of completeness. It should be noted, however, that the analysis we provided in part c) is
more specialized to problem (2.7), and seems to be slightly simpler than those given in [17, 11].

Observe that the following quantity will be used in the convergence analysis of the CGS algorithm:

Γk :=

{
1 k = 1

Γk−1(1− γk) k ≥ 2.
(2.12)

Theorem 2 Let Γk be defined in (2.12). Suppose that {βk} and {γk} in the CGS algorithm satisfy

γ1 = 1 and Lγk ≤ βk, k ≥ 1. (2.13)

a) If
βkγk
Γk
≥ βk−1γk−1

Γk−1
, k ≥ 2, (2.14)

then for any x ∈ X and k ≥ 1,

f(yk)− f(x∗) ≤ βkγk
2

D2
X + Γk

k∑
i=1

ηiγi
Γi

. (2.15)

where x∗ is an arbitrary optimal solution of (1.1) and

DX := max
x,y∈X

‖x− y‖. (2.16)

b) If
βkγk
Γk
≤ βk−1γk−1

Γk−1
, k ≥ 2, (2.17)

then for any x ∈ X and k ≥ 1,

f(yk)− f(x∗) ≤ β1Γk
2
‖x0 − x∗‖2 + Γk

k∑
i=1

ηiγi
Γi

. (2.18)

c) Under the assumptions in either part a) or b), the number of inner iterations performed at the
k-th outer iteration can be bounded by

Tk :=

⌈
6βkD

2
X

ηk

⌉
, ∀k ≥ 1. (2.19)

7

Proof. We first show part a). Note that by (2.1) and (2.3), we have yk − zk = γk(xk − xk−1). By
using this observation, (1.7) and (2.3) we have

f(yk) ≤ lf (zk; yk) +
L

2
‖yk − zk‖2

= (1− γk)lf (zk; yk−1) + γklf (zk;xk) +
Lγ2

k

2
‖xk − xk−1‖2

= (1− γk)lf (zk; yk−1) + γklf (zk;xk) +
βkγk

2
‖xk − xk−1‖2 −

γk
2

(βk − Lγk) ‖xk − xk−1‖2

≤ (1− γk)f(yk−1) + γklf (zk;xk) +
βkγk

2
‖xk − xk−1‖2, (2.20)

where the last inequality follows from the convexity of f(·) and (2.13). Also observe that by (2.8),
we have

〈f ′(zk) + βk(xk − xk−1), xk − x〉 ≤ ηk, ∀x ∈ X,

which implies that

1

2
‖xk − xk−1‖2 =

1

2
‖xk−1 − x‖2 − 〈xk−1 − xk, xk − x〉 −

1

2
‖xk − x‖2

≤ 1

2
‖xk−1 − x‖2 +

1

βk
〈f ′(zk), x− xk〉 −

1

2
‖xk − x‖2 +

ηk
βk
. (2.21)

Combining (2.20) and (2.21), we obtain

f(yk) ≤ (1− γk)f(yk−1) + γklf (zk;x) +
βkγk

2

(
‖xk−1 − x‖2 − ‖xk − x‖2

)
+ ηkγk

≤ (1− γk)f(yk−1) + γkf(x) +
βkγk

2

(
‖xk−1 − x‖2 − ‖xk − x‖2

)
+ ηkγk, ∀x ∈ X, (2.22)

where the last inequality follows from the convexity of f(·). Subtracting f(x) from both sides of the
above inequality, we have

f(yk)− f(x) ≤ (1− γk)[f(yk−1)− f(x)] +
βkγk

2

(
‖xk−1 − x‖2 − ‖xk − x‖2

)
+ ηkγk, ∀x ∈ X.

which, in view of Lemma 1, then implies that

f(yk)− f(x) ≤ Γk(1− γ1)

Γ1
[f(y0)− f(x)]

+ Γk

k∑
i=1

βiγi
2Γi

(‖xi−1 − x‖2 − ‖xi − x‖2) + Γk

k∑
i=1

ηiγi
Γi

. (2.23)

Our result in part a) then immediately follows from the above inequality, the assumption that γ1 = 1,

8

and the fact that

k∑
i=1

βiγi
Γi

(‖xi−1 − x‖2 − ‖xi − x‖2)

=
β1γ1

Γ1
‖x0 − x‖2 +

k∑
i=2

(
βiγi
Γi
− βi−1γi−1

Γi−1

)
‖xi−1 − x‖2 −

βkγk
Γk
‖xk − x‖2

≤ β1γ1

Γ1
D2
X +

k∑
i=2

(
βiγi
Γi
− βi−1γi−1

Γi−1

)
D2
X =

βkγk
Γk

D2
X , (2.24)

where the inequality follows from the third assumption in (2.14) and the definition of DX in (2.16).
Similarly, Part b) follows from (2.23), the assumption that γ1 = 1, and the fact that

k∑
i=1

βiγi
Γi

(‖xi−1 − x‖2 − ‖xi − x‖2) ≤ β1γ1

Γ1
‖x0 − x‖2 −

βkγk
Γk
‖xk − x‖2 ≤ β1‖x0 − x‖2, (2.25)

due to the assumptions in (2.13) and (2.17).
Now we show that part c) holds. Let us denote φ ≡ φk and φ∗ ≡ minx∈X φ(x). Also let us denote

λt :=
2

t
and Λt =

2

t(t− 1)
. (2.26)

It then follows from the above definitions that

Λt+1 = Λt(1− λt+1), ∀ t ≥ 2. (2.27)

Let us define ūt+1 := (1− λt+1)ut + λt+1vt. Clearly we have ūt+1− ut = λt+1(vt− ut). Observe that
ut+1 = (1 − αt)ut + αtvt and αt is an optimal solution of (2.6), and hence that φ(ut+1) ≤ φ(ūt+1).
Using this observation, (1.7) and the fact that φ has Lipschitz continuous gradients, we have

φ(ut+1) ≤ φ(ūt+1) ≤ lφ(ut, ūt+1) +
β

2
‖ūt+1 − ut‖2

≤ (1− λt+1)φ(ut) + λt+1lφ(ut, vt) +
βλ2

t+1

2
‖vt − ut‖2. (2.28)

Also observe that by (1.6) and the fact that vt solves (2.4), we have

lφ(ut, vt) = φ(ut) + 〈φ′(ut), vt − ut〉 ≤ φ(ut) + 〈φ′(ut), x− ut〉 ≤ φ(x)

for any x ∈ X, where the last inequality follows from the convexity of φ(·). Combining the above
two inequalities and re-arranging the terms, we obtain

φ(ut+1)− φ(x) ≤ (1− λt+1)[φ(ut)− φ(x)] +
βλ2

t+1

2
‖vt − ut‖2, ∀x ∈ X,

which, in view of Lemma 1, then implies that, for any x ∈ X and t ≥ 1,

φ(ut+1)− φ(x) ≤ Λt+1(1− λ2)[φ(u1)− φ(x)] + Λt+1β
t∑

j=1

λ2
j+1

2Λj+1
‖vj − uj‖2 ≤

2βD2
X

t+ 1
, (2.29)

9

where the last inequality easily follows from (2.26) and the definition of DX in (2.16). Now, let the
gap function Vg,u,β be defined in (2.4). Also let us denote ∆j = φ(uj) − φ∗. It then follows from
(1.6), (2.4), and (2.28) that that for any j = 1, . . . , t,

λj+1Vg,u,β(uj) ≤ φ(uj)− φ(uj+1) +
βλ2

j+1

2
‖vj − uj‖2

= ∆j −∆j+1 +
βλ2

j+1

2
‖vj − uj‖2.

Dividing both sides of the above inequality by Λj+1 and summing up the resulting inequalities, we
obtain

t∑
j=1

λj+1

Λj+1
Vg,u,β(uj) ≤ −

1

Λt+1
∆t+1 +

t∑
j=2

(
1

Λj+1
− 1

Λj

)
∆j + ∆1 +

t∑
j=1

βλ2
j+1

2Λj+1
‖vj − uj‖2

≤
t∑

j=2

(
1

Λj+1
− 1

Λj

)
∆j + ∆1 +

t∑
j=1

βλ2
j+1

2Λj+1
D2
X ≤

t∑
j=1

j∆j + tβD2
X ,

where the last inequality follows from the definitions of λt and Λt in (2.26). Using the above inequality
and the bound on ∆j given in (2.29), we conclude that

min
j=1,...,t

Vg,u,β(uj)
t∑

j=1

λj+1

Λj+1
≤

t∑
j=1

λj+1

Λj+1
Vg,u,β(uj) ≤ 3tβD2

X ,

which, in view of the fact that
∑t

j=1 λj+1/Λj+1 = t(t+ 1)/2, then clearly implies that

min
j=1,...,t

Vg,u,β(uj) ≤
6βD2

X

t+ 1
, ∀t ≥ 1, (2.30)

from which part c) immediately follows.

Clearly, there exist various options to specify the parameters {βk}, {γk}, and {ηk} so as to
guarantee the convergence of the CGS method. In the following corollaries, we provide two different
parameter settings for {βk}, {γk}, and {ηk}, which lead to optimal complexity bounds on the total
number of calls to the FO and LO oracles for smooth convex optimization.

Corollary 3 If {βk}, {γk}, and {ηk} in the CGS method are set to

βk =
3L

k + 1
, γk =

3

k + 2
, and ηk =

LD2
X

k(k + 1)
, ∀k ≥ 1, (2.31)

then for any k ≥ 1,

f(yk)− f(x∗) ≤
15LD2

X

2(k + 1)(k + 2)
. (2.32)

As a consequence, the total number of calls to the FO and LO oracles performed by the CGS method

for finding an ε-solution of (1.1) can be bounded by O
(√

LD2
X/ε

)
and O

(
LD2

X/ε
)
, respectively.

10

Proof. We first show Part a). It can be easily seen from (2.31) that (2.13) holds. Also note that
by (2.31), we have

Γk =
6

k(k + 1)(k + 2)
, (2.33)

and
βkγk
Γk

=
9L

(k + 1)(k + 2)

k(k + 1)(k + 2)

6
=

3Lk

2
,

which implies that (2.14) is satisfied. It then follows from Theorem 2.a), (2.31), and (2.33) that

f(yk)− f(x∗) ≤
9LD2

X

2(k + 1)(k + 2)
+

6

k(k + 1)(k + 2)

k∑
i=1

ηiγi
Γi

=
15LD2

X

2(k + 1)(k + 2)
,

which implies that the total number of outer iterations performed by the CGS method for finding an

ε can be bounded by N =
√

15LD2
X/(2ε). Moreover, it follows from the bound in (2.19) and (2.31)

that the total number of inner iterations can be bounded by

N∑
k=1

Tk ≤
N∑
k=1

(
6βkD

2
X

ηk
+ 1

)
= 18

N∑
k=1

k +N = 9N2 + 10N,

which implies that the total number of inner iterations is bounded by O(LD2
X/ε).

Observe that in the above result, the number of calls to the LO oracle is not improvable in terms
of their dependence on ε, L, and DX for LCP methods [19]. Similarly, the number of calls to the FO
oracle is also optimal in terms of its dependence on ε and L [23, 25]. It should be noted, however,
that we can potentially improve the latter bound in terms of its dependence on DX . Indeed, by using
a different parameter setting, we show in Corollary 4 a slightly improved bound on the number of
calls to the FO oracle which only depends on the distance from the initial point to the set of optimal
solutions, rather than the diameter DX . This result will play an important role for the analysis of
the CGS method for solving strongly convex problems. The disadvantage of using this parameter
setting is that we need to fix the number of iterations N in advance.

Corollary 4 Suppose that there exists an estimate D0 ≥ ‖x0−x∗‖ and that the outer iteration limit
N ≥ 1 is given. If

βk =
2L

k
, γk =

2

k + 1
, ηk =

2LD2
0

Nk
, (2.34)

for any k ≥ 1, then

f(yN)− f(x∗) ≤ 6LD2
0

N(N + 1)
. (2.35)

As a consequence, the total number of calls to the FO and LO oracles performed by the CGS method
for finding an ε-solution of (1.1), respectively, can be bound by

O

(
D0

√
L

ε

)
(2.36)

and

O

(
LD2

X

ε
+D0

√
L

ε

)
. (2.37)

11

Proof. It can be easily seen from the definition of γk in (2.34) and Γk in (2.12) that

Γk =
2

k(k + 1)
. (2.38)

Using the previous identity and (2.34), we have βkγk/Γk = 2L, which implies that (2.17) holds. It
then follows from (2.18), (2.34), and (2.38) that

f(yN)− f(x∗) ≤ ΓN

(
LD2

0 +
N∑
i=1

ηiγi
Γi

)
= ΓN

(
LD2

0 +
N∑
i=1

iηi

)
=

6LD2
0

N(N + 1)
.

Moreover, it follows from the bound in (2.19) and (2.34) that the total number of inner iterations
can be bounded by

N∑
k=1

Tk ≤
N∑
k=1

(
6βkD

2
X

ηk
+ 1

)
=

6N2D2
X

D2
0

+N.

The complexity bounds in (2.36) and (2.37) then immediately follow from the previous two inequal-
ities.

In view of the classic complexity theory for convex optimization, the bound on the total number
of calls to FO oralce in (2.36) is optimal for smooth convex optimization. Moreover, in view of the
complexity results established in [19], the total number of calls to the LO oracle in (2.37) is not
improvable for a wide class of LCP methods. To the best of our knowledge, the CGS method is the
first algorithm in the literature that can achieve these two optimal bounds at the same time.

Remark 5 Observe that in this section, we have assumed that the Euclidean distance function ‖x−
xk−1‖2 has been used in the subproblem (2.7). However, one can also replace it with the more general
Bregman distance

V (x, xk−1) := ω(x)− [ω(xk−1) + 〈ω′(xk−1), x− xk−1〉]

and releax the assumption that the norms are associated with the inner product, where ω is a strongly
convex function. We can show similar complexity results as those in Corollaries 3 and 4 under the
following assumptions: i) ω is a smooth convex function with Lipschitz continuous gradients; and
ii) in the CndG subroutine, the objective function in (2.4) and the stepsizes αt in (2.5) are replaced
by g + β[ω′(ut) − ω′(u)] and 2/(t + 1), respectively. However, if ω is nonsmooth (e.g., the entropy
function), then we cannot obtain these results since the CndG subroutine cannot be directly applied to
the modified subproblem. One possible remedy to this issue is to incorporate the randomized smoothing
technique into the CndG subroutine (see [19]).

2.2 Strongly convex optimization

In this subsection, we assume that the objective function f is not only smooth (i.e., (1.7) holds), but
also strongly convex, that is, ∃µ > 0 s.t.

f(y)− f(x)− 〈f ′(x), y − x〉 ≥ µ

2
‖y − x‖2, ∀x, y ∈ X. (2.39)

12

Our goal is to show that a linear rate of convergence, in terms of the number of calls to the FO oracle,
can be obtained by only performing linear optimization over the feasible region X. In contrast with
the shrinking conditional gradient method in [19], here we do not need to enforce any additional
assumptions on the LO oracle. We also show that the total number of calls to the LO oracle is
bounded by O(LD2

X/ε), which has been shown to be optimal for strongly convex optimization (see,
e.g., [17, 19]).

We are now ready to formally describe the CGS method for solving strongly convex problems,
which is obtained by properly restarting the CGS method in Algorithm 1.

Algorithm 2 The CGS method for strongly convex problems

Input: Initial point p0 ∈ X and an estimate δ0 > 0 satisfying f(p0)− f(x∗) ≤ δ0.
for s = 1, 2, . . .

Call the CGS method in Algorithm 1 with input

s0 = ps−1 and N =

⌈
2

√
6L

µ

⌉
, (2.40)

and parameters

βk =
2L

k
, γk =

2

k + 1
, and ηk = ηs,k :=

8Lδ02−s

µNk
, (2.41)

and let ps be its output solution.
end for

In Algorithm 2, we restart the CGS method for smooth optimization (i.e., Algorithm 1) every
d2
√

6L/µe iterations. We say that a phase of the above CGS algorithm occurs whenever s increases
by 1. Observe that {ηk} decrease by a factor of 2 as s increments by 1, while {βk} and {γk} remain
the same. The following theorem shows the convergence of the above variant of the CGS method.

Theorem 6 Assume (2.39) holds and let {ps} be generated by Algorithm 2. Then,

f(ps)− f(x∗) ≤ δ02−s, s ≥ 0. (2.42)

As a consequence, the total number of calls to the FO and LO oracles performed by this algorithm
for finding an ε-solution of problem (1.1) can be bounded by

O

{√
L

µ

⌈
log2 max

(
1,
δ0

ε

)⌉}
(2.43)

and

O

{
LD2

X

ε
+

√
L

µ

⌈
log2 max

(
1,
δ0

ε

)⌉}
, (2.44)

respectively.

13

Proof. We prove (2.42) by using induction. This inequality holds obviously when s = 0 due to
our assumption on δ0. Now suppose that (2.42) holds before the s-th phase starts, i.e.,

f(ps−1)− f(x∗) ≤ δ02−s+1.

Using the above relation and the strong convexity of f , we have

‖ps−1 − x∗‖2 ≤
2

µ
[f(ps−1)− f(x∗)] ≤ 4δ02−s

µ
.

Hence, by comparing the parameter settings in (2.41) with those in (2.34), we can easily see that
Corollary 4 holds with x0 = ps−1, yN = ps, and D2

0 = 4δ02−s/µ, which implies that

f(ys)− f(x∗) ≤ 6LD2
0

N(N + 1)
=

24Lδ02−s

µN(N + 1)
≤ δ02−s,

where the last inequality follows from the definition of N in (2.40). In order to show the bounds in
(2.43) and (2.44), it suffices to consider the case when δ0 > ε (otherwise, the results are obvious).
Let us denote

S :=

⌈
log2 max

(
δ0

ε
, 1

)⌉
. (2.45)

By (2.42), an ε-solution of (1.1) can be found at the s-th phase for some 1 ≤ s ≤ S. Since the number
of calls to the FO in each phase is bounded by N , the total number of calls to the FO performed by
Algorithm 2 is clearly bounded by NS, which is bounded by (2.43). Now, let Ts,k denote the number
of calls to LO required at the the k-th outer iteration in s-th phase. It follows from Theorem 2.c)
that

Ts,k ≤
6βkD

2
X

ηk,s
+ 1 ≤

3µD2
X2sN

2δ0
+ 1.

Therefore, the total number of calls to the LO can be bounded by

S∑
s=1

N∑
k=1

Ts,k ≤
S∑
s=1

N∑
k=1

3µD2
X2sN

2δ0
+NS =

3µD2
XN

2

2δ0

S∑
s=1

2s +NS

≤
3µD2

XN
2

2δ0
2S+1 +NS

≤ 6

ε
µD2

XN
2 +NS, (2.46)

which is bounded by (2.44) due to the definition of N and S in (2.40) and (2.45), respectively.

In view of the classic complexity theory for convex optimization, the bound on the total number
of calls to FO oracle in (2.43) is optimal for strongly convex optimization. Moreover, in view of
the complexity results established in [19], the bound on the total number of calls to the LO oracle
in (2.44) is also not improvable for a wide class of linear-optimization based convex programming
methods. To the best of our knowledge, this is the first time that these two bounds were achieved
simultaneously by a single optimization algorithm.

14

3 The stochastic conditional gradient sliding method

In this section, we still consider smooth convex optimization problems satisfying (1.2). However,
here we only have access to the stochastic first-order information about f . More specifically, we
assume that f is represented by a stochastic first-order (SFO) oracle , which, for a given search point
zk ∈ X, outputs a vector G(zk, ξk) s.t.

E [G(zk, ξk)] = f ′(zk), (3.1)

E
[
‖G(zk, ξk)− f ′(zk)‖2∗

]
≤ σ2. (3.2)

Our goal in this section is to present a stochastic conditional gradient type algorithm that can achieve
the optimal bound on the number of calls to SFO and LO oracles, while no such algorithms have
been developed before in the literature.

In order to develop some large deviations results associated with the aforementioned optimal
complexity bounds, we augment (3.2) with the “light-tail” assumption

E
[
exp

(
‖G(zk, ξk)− f ′(zk)‖2∗/σ2

)]
≤ exp(1). (3.3)

Indeed, it can be easily seen from Jensen’s inequality that (3.3) implies (3.2).
The stochastic CGS (SCGS) method is obtained by simply replacing the exact gradients in

Algorithm 1 with an unbiased estimator computed by the SFO oracle. The algorithm is formally
described as follows.

Algorithm 3 The stochastic conditional gradient sliding method

This algorithm is the same as Algorithm 1 except that (2.2) is replaces by

xk = CndG(gk, xk−1, βk, ηk). (3.4)

Here,

gk :=
1

Bk

Bk∑
j=1

G(zk, ξk,j) (3.5)

and G(zk, ξk,j), j = 1, . . . , Bk, are stochastic gradients computed by the SFO at zk.

In the above stochastic CGS method, the parameters {Bk} denote the batch sizes used to compute
gk. It can be easily seen from (3.1), (3.2), and (3.5) that

E[gk − f ′(zk)] = 0 and E[‖gk − f ′(zk)‖2∗] ≤
σ2

Bk
(3.6)

and hence gk is an unbiased estimator of f ′(zk). Since the algorithm is stochastic, we will establish
the complexity for finding a stochastic ε-solution, i.e., a point x̄ ∈ X s.t. E[f(x̄) − f(x∗)] ≤ ε, as
well as a stochastic (ε,Λ)-solution, i.e., a point x̄ ∈ X s.t. Prob {f(x̄)− f(x∗) ≤ ε} ≥ 1−Λ for some
ε > 0 and Λ ∈ (0, 1).

Observe that the above SCGS method is conceptual only as we have not yet specified the param-
eters {Bk}, {βk}, {γk}, and {ηk}. We will come back to this issue after after establishing the main
convergence properties for this algorithm.

15

Theorem 7 Let Γk and DX be defined in (2.12) and (2.16), respectively. Also assume that {βk}
and {γk} satisfy (2.13) and (2.14).

a) Under assumptions (3.1) and (3.2), we have

E [f(yk)− f(x∗)] ≤ Ce :=
βkγk

2
D2
X + Γk

k∑
i=1

[
ηiγi
Γi

+
γiσ

2

2ΓiBi(βi − Lγi)

]
, ∀k ≥ 1, (3.7)

where x∗ is an arbitrary optimal solution of (1.1). If in addition, assumption (3.3) holds, then

Prob {f(yk)− f(x∗) ≥ Ce + λCp} ≤ exp(−λ2/3) + exp(−λ), ∀k ≥ 1, (3.8)

where

Cp := ΓkσDX

(
k∑
i=1

γ2
iB
−1
i Γ−2

i

) 1
2

+ Γkσ
2

k∑
i=1

γi
2ΓiBi(βi − Lγi)

. (3.9)

b) If (2.17) (rather than (2.14)) is satisfied, then the results in part a) still hold by replacing
βkγkD

2
X with β1Γk‖x0 − x∗‖2 in the first term of Ce in (3.7).

c) Under the assumptions in part a) or b), the number of inner iterations performed at the k-th
outer iterations is bounded by (2.19).

Proof. Let us denote δk,j = G(zk, ξk,j)− f ′(zk) and δk ≡ gk − f ′(zk) =
∑Bk

j=1 δk,j/Bk . Note that
by (2.20) and (2.21) (with f ′(zk) replaced by gk), we have

f(yk) ≤ (1− γk)f(yk−1) + γklf (zk, xk) + γk〈gk, x− xk〉+
βkγk

2

[
‖xk−1 − x‖2 − ‖xk − x‖2

]
+ ηkγk −

γk
2

(βk − Lγk) ‖xk − xk−1‖2

= (1− γk)f(yk−1) + γklf (zk, x) + γk〈δk, x− xk〉+
βkγk

2

[
‖xk−1 − x‖2 − ‖xk − x‖2

]
+ ηkγk −

γk
2

(βk − Lγk) ‖xk − xk−1‖2.

Using the above inequality and the fact that

〈δk,x− xk〉 −
1

2
(βk − Lγk) ‖xk − xk−1‖2

= 〈δk, x− xk−1〉+ 〈δk, xk−1 − xk〉 −
1

2
(βk − Lγk) ‖xk − xk−1‖2

=

Bk∑
j=1

[
1

Bk
〈δk,j , x− xk−1〉+

1

Bk
〈δk,j , xk−1 − xk〉 −

1

2
(βk − Lγk) ‖xk − xk−1‖2

]

≤
Bk∑
j=1

[
1

Bk
〈δk,j , x− xk−1〉+

‖δk,j‖2

2B2
k(βk − Lγk)

]
,

16

we obtain

f(yk) ≤ (1− γk)f(yk−1) + γkf(x) +
βkγk

2

[
‖xk−1 − x‖2 − ‖xk − x‖2

]
+ ηkγk

+

Bk∑
j=1

γk

[
1

Bk
〈δk,j , x− xk−1〉+

‖δk,j‖2

2B2
k(βk − Lγk)

]
, ∀x ∈ X. (3.10)

Subtracting f(x) from both sides of (3.10) and using Lemma 1, we have

f(yk)− f(x) ≤ Γk(1− γ1) [f(y0)− f(x)] + Γk

k∑
i=1

{
βiγi
2Γi

[
‖xk−1 − x‖2 − ‖xk − x‖2

]
+
ηiγi
Γi

}

+ Γk

k∑
i=1

γi
BiΓi

Bi∑
j=1

[
〈δi,j , x− xi−1〉+

‖δi,j‖2

2Bi(βi − Lγi)

]

≤ βkγk
2

D2
X + Γk

k∑
i=1

ηiγi
Γi

+ Γk

k∑
i=1

γi
BiΓi

Bi∑
j=1

[
〈δi,j , x− xi−1〉+

‖δi,j‖2

2Bi(βi − Lγi)

]
, (3.11)

where the last inequality follows from (2.24) and the fact that γ1 = 1. Note that by our assump-
tions on the SFO, the random variables δi,j are independent of the search point xi−1 and hence
E[〈δi,j , x∗ − xi−1〉] = 0. In addition, relation (3.6) implies that E[‖δi,j‖2∗] ≤ σ2. Using the previous
two observations and taking expectation on both sides of (3.11) (with x = x∗), we obtain (3.7).
Now let us assume that (3.3) holds. By our assumptions on the SFO and the definition of δi,j , the
sequence {〈δi,j , x∗ − xi−1〉} is a martingale-difference sequence. Using the large-deviation theorem
for martingale-difference sequence (e.g., Lemma 2 of [21]) and the fact that

E
[
exp

{
γ2
i Γ−2

i B−2
i 〈δi,j , x

∗ − xi−1〉2/
(
γ2
i Γ−2

i B−2
i D2

Xσ
2
)}]

≤ E
[
exp

{
‖δi,j‖2∗/σ2

}]
≤ exp{1},

we conclude that

Prob

{∑k
i=1

∑Bi
j=1 γi(BiΓi)

−1〈δi,j , x∗ − xi−1〉 > λσDX

√∑k
i=1

∑Bi
j=1 γ

2
i (BiΓi)−2

}
= Prob

{∑k
i=1

∑Bi
j=1 γi(BiΓi)

−1〈δi,j , x∗ − xi−1〉 > λσDX

√∑k
i=1 γ

2
iB
−1
i Γ−2

i

}
≤ exp{−λ2/3},∀λ > 0.

(3.12)

Now let
Si :=

γi
B2
i Γi(βi − Lγi)

and S :=
∑k

i=1

∑Bi
j=1 Si. By the convexity of exponential function, we have

E
[
exp

{
1
S

∑k
i=1

∑Bi
j=1 Si‖δi,j‖2∗/σ2

}]
≤ E

[
1
S

∑k
i=1

∑Bi
j=1 Siexp

{
‖δi,j‖2∗/σ2

}]
≤ exp{1}.

17

where the last inequality follows from (3.3). Therefore, by Markov’s inequality, for all λ > 0,

Prob
{∑k

i=1

∑Bi
j=1 Si‖δi,j‖2∗ > (1 + λ)σ2

∑k
i=1

∑Bi
j=1 Si

}
= Prob

{
exp

{
1
S

∑k
i=1

∑Bi
j=1 Si‖δi,j‖2∗/σ2

}
≥ exp{1 + λ}

}
≤ exp{−λ}.

(3.13)

Our result in (3.8) now directly follows from (3.11), (3.12), and (3.13). Part b) follows similarly from
(3.11) and the bound in (2.25), and the proof of part c) is exactly the same as that of Theorem 2.c).

Now we provide a set of parameters {βk}, {γk}, {ηk}, and {Bk} which lead to optimal bounds on
the number of calls to the SFO and LO oracles.

Corollary 8 Suppose that {βk}, {γk}, {ηk}, and {Bk} in the SCGS method are set to

βk =
4L

k + 2
, γk =

3

k + 2
, ηk =

LD2
X

k(k + 1)
, and Bk =

⌈
σ2(k + 2)3

L2D2
X

⌉
, k ≥ 1. (3.14)

a) Under assumptions (3.1) and (3.2),

E [f(yk)− f(x∗)] ≤
6LD2

X

(k + 2)2
+

9LD2
X

2(k + 1)(k + 2)
, ∀k ≥ 1. (3.15)

As a consequence, the total number of calls to the SFO and LO oracles performed by the SCGS
method for finding a stochastic ε-solution of (1.1), respectively, can be bounded by

O

{√
LD2

X

ε
+
σ2D2

X

ε2

}
and O

{
LD2

X

ε

}
. (3.16)

b) Under assumptions (3.1) and (3.3),

Prob

{
f(yk)− f(x∗) ≥

6LD2
X

(k + 2)2
+

9(1 + λ)LD2
X

2(k + 1)(k + 2)

}
≤ exp(−λ2/3) + exp(−λ), ∀λ > 0.

(3.17)
As a consequence, the total number of calls to the SFO and LO oracles performed by the SCGS
method for finding a stochastic (ε,Λ)-solution of (1.1), respectively, can be bounded by

O

{√
LD2

X

ε
log

1

Λ
+
σ2D2

X

ε2
log2 1

Λ

}
and O

{
LD2

X

ε
log

1

Λ

}
. (3.18)

Proof. It can be easily seen from (3.14) that (2.13) holds. Also by (3.14), Γk is given by (2.33)
and hence

βkγk
Γk

=
2Lk(k + 1)

k + 2
,

which implies that (2.14) holds. It can also be easily checked from (2.33) and (3.14) that

k∑
i=1

ηiγi
Γi
≤
kLD2

X

2
,

k∑
i=1

γi
ΓiBi(βi − Lγi)

≤
kLD2

X

2σ2
, and

k∑
i=1

γ2
iB
−1
i Γ−2

i ≤
L2D2

X

σ2

k∑
i=1

i2(i+ 1)2

4(i+ 2)3
≤
k(k + 1)L2D2

X

8σ2
.

18

Using these bounds in (3.7) and (3.8), we obtain (3.15) and (3.17), respectively. It can be easily seen
from (3.15) and (3.17) that the total number of outer iterations can be bounded by

O

(√
LD2

X

ε

)
and O

(
max

{
1, log

1
2

1

Λ

}√
LD2

X

ε

)

under the assumptions in part a) and b), respectively. The bounds in (3.16) and (3.18) then im-
mediately follow from these observations and the fact that the number of calls to the SFO and LO
oracles are bounded by

N∑
k=1

Bk ≤
N∑
k=1

σ2(k + 2)3

L2D2
X

+N ≤ σ2(N + 3)4

4L2D2
X

+N,

N∑
k=1

Tk ≤
N∑
k=1

(
6βkD

2
X

ηk
+ 1

)
≤ 12N2 + 13N.

Now we give a different set of parameters {βk}, {γk}, {ηk}, and {Bk}, which can slightly improve
the bounds on the number of calls to the SFO in terms of its dependence on DX .

Corollary 9 Suppose that there exists an estimate D0 s.t. ‖x0−x∗‖ ≤ D0 ≤ DX . Also assume that
the outer iteration limit N ≥ 1 is given. If

βk =
3L

k
, γk =

2

k + 1
, ηk =

2LD2
0

Nk
, and Bk =

⌈
σ2N(k + 1)2

L2D2
0

⌉
, k ≥ 1. (3.19)

a) Under assumptions (3.1) and (3.2),

E [f(yN)− f(x∗)] ≤ 8LD2
0

N(N + 1)
, ∀N ≥ 1. (3.20)

As a consequence, the total number of calls to the SFO and LO oracles performed by the SCGS
method for finding a stochastic ε-solution of (1.1), respectively, can be bounded by

O

{√
LD2

0

ε
+
σ2D2

X

ε2

}
and O

{
LD2

X

ε

}
. (3.21)

b) Under assumptions (3.1) and (3.3),

Prob

{
f(yN)− f(x∗) ≥ 8LD2

0 + λLD0(2DX +D0)

N(N + 1)

}
≤ exp(−λ2/3) + exp(−λ), ∀λ > 0.

(3.22)
As a consequence, the total number of calls to the SFO and LO oracles performed by the SCGS
method for finding a stochastic (ε,Λ)-solution of (1.1), respectively, can be bounded by

O

{√
LD0DX

ε
log

1

Λ
+
σ2D2

X

ε2
log2 1

Λ

}
and O

{
LD2

X

ε
log

1

Λ

}
. (3.23)

19

Proof. It can be easily seen from (3.19) that (2.13) holds. Also by (3.19), Γk is given by (2.38)
and hence

βkγk
Γk

= 3L,

which implies that (2.17) holds. It can also be easily checked from (2.38) and (3.19) that

N∑
i=1

ηiγi
Γi
≤ 2LD2

0,
N∑
i=1

γi
ΓiBi(βi − Lγi)

≤
N∑
i=1

i(i+ 1)

LBi
≤ LD2

0

σ2
, and

N∑
i=1

γ2
iB
−1
i Γ−2

i ≤
L2D2

0

σ2

N∑
i=1

i2

N(i+ 1)2
≤ L2D2

0

σ2
.

Using these bounds in (3.7) and (3.8) (with βkγkD
2
X replaced by β1ΓkD

2
0 in the definition of Ce),

we obtain (3.20) and (3.22), respectively. It can be easily seen from (3.20) and (3.22) that the total
number of outer iterations can be bounded by

O

(√
LD2

0

ε

)
and O

(
max

{
1, log

1
2

1

Λ

}√
LD0(D0 +DX)

ε

)

under the assumptions in part a) and b), respectively. The bounds in (3.21) and (3.23) then imme-
diately follow from these observations and the fact thats the total number calls to the SFO and LO
are bounded by

N∑
k=1

Bk ≤ N
N∑
k=1

σ2(k + 1)2

L2D2
0

+N ≤ σ2N(N + 1)3

3L2D2
0

+N,

N∑
k=1

Tk ≤
N∑
k=1

6βkD
2
X

ηk
+N ≤

9N2D2
X

D2
0

+N.

According to the complexity bounds in Corollaries 8 and 9, the total number of calls to the
SFO oracle can be bounded by O(1/ε2), which is optimal in view of the classic complexity theory for
stochastic convex optimization. Moreover, the total number of calls to the LO oracle can be bounded
by O(1/ε), which is the same as the CGS method for deterministic smooth convex optimization and
hence not improvable for a wide class of LCP methods.

In view of the results in Corollary 9, we can present an optimal algorithm for solving stochastic
strongly convex problems, similarly to the deterministic case.

20

Algorithm 4 The stochastic CGS method for solving strongly convex problems

Input: Initial point p0 ∈ X and an estimate δ0 > 0 satisfying f(p0)− f(x∗) ≤ δ0.
for s = 1, 2, . . .

Call the stochastic CGS method in Algorithm 3 with input

s0 = ps−1 and N =

⌈
4

√
2L

µ

⌉
, (3.24)

and parameters

βk =
3L

k
, γk =

2

k + 1
, ηk = ηs,k :=

8Lδ02−s

µNk
, and Bk = Bs,k :=

⌈
µσ2N(k + 1)2

4L2δ02−s

⌉
, (3.25)

and let ps be its output solution.
end for

The main convergence properties of Algorithm 4 are described as follows.

Theorem 10 Assume that (2.39) holds and let {ps} be generated by Algorithm 4. Then,

E[f(ps)− f(x∗)] ≤ δ02−s, s ≥ 0. (3.26)

As a consequence, the total number of calls to the SFO and LO oracles performed by this algorithm
for finding a stochastic ε-solution of problem (1.1) can be bounded by

O

{
σ2

µε
+

√
L

µ

⌈
log2 max

(
1,
δ0

ε

)⌉}
(3.27)

and

O

{
LD2

X

ε
+

√
L

µ

⌈
log2 max

(
1,
δ0

ε

)⌉}
, (3.28)

respectively.

Proof. In view of Corollary 9, (3.26) can be proved in a way similar to (2.42). It now remains
to show the bounds in (3.27) and (3.28), respectively, for the total number calls to the SFO and LO
oracles. It suffices to consider the case when δ0 > ε, since otherwise the results are obvious. Let us
denote

S :=

⌈
log2 max

(
δ0

ε
, 1

)⌉
. (3.29)

By (3.26), a stochastic ε-solution of (1.1) can be found at the s-th phase for some 1 ≤ s ≤ S. Since
the number of calls to the SFO oracle in each phase is bounded by N , the total number of calls to
the SFO oracle can be bounded by

S∑
s=1

N∑
k=1

Bk ≤
S∑
s=1

N∑
k=1

(
µσ2N(k + 1)2

4L2δ02−s
+ 1

)
≤ µσ2N(N + 1)3

12L2δ0

S∑
s=1

2s + SN ≤ µσ2N(N + 1)3

3L2ε
+ SN.

21

Moreover, let Ts,k denote the number of calls to LO oracle required at the the k-th outer iteration
in s-th phase of the CGS method. It follows from Theorem 2.c) that

Ts,k ≤
6βkD

2
X

ηk,s
+ 1 ≤

9µD2
X2sN

4δ0
+ 1.

Therefore, the total number of calls to the LO oracle can be bounded by

S∑
s=1

N∑
k=1

Ts,k ≤
S∑
s=1

N∑
k=1

9µD2
X2sN

4δ0
+NS =

9

4
µD2

XN
2δ−1

0

S∑
s=1

2s +NS

≤ 9

ε
µD2

XN
2 +NS

which is bounded by (2.44) due to the definition of N and S in (3.24) and (3.29), respectively.
According to Theorem 10, the total number of calls to the SFO oracle can be bounded by

O(1/ε), which is optimal in view of the classic complexity theory for strongly convex optimization.
Moreover, the total number of calls to the LO oracle can be bounded by O(1/ε), which is the same
as the deterministic CGS method for strongly convex optimization and not improvable for a wide
class of LCP methods discussed in [19].

4 Generalization to saddle point problems

In this section, we consider an important class of saddle point problems with f given in the form of:

f(x) = max
y∈Y

{
〈Ax, y〉 − f̂(y)

}
, (4.1)

where A : Rn → Rm denotes a linear operator, Y ∈ Rm is a convex compact set, and f̂ : Y → R is a
simple convex function. Since the objective function f given in (4.1) is nonsmooth, we cannot directly
apply the CGS method presented in the previous section. However, as shown by Nesterov [26], the
function f(·) in (4.1) can be closely approximated by a class of smooth convex functions. More
specifically, let v : Y → R be a given strongly convex function such that

v(y) ≥ v(x) + 〈v′(x), y − x〉+
σv
2
‖y − x‖2, ∀x, y ∈ Y, (4.2)

for some σv > 0, and let us denote cv := argminy∈Y v(y), V (y) := v(y)− v(cv)− 〈∇v(cv), y− cv〉 and

D2
Y,V := max

y∈Y
V (y). (4.3)

It can be easily seen that

‖y − cv‖2 ≤
2

σv
V (y) ≤ 2

σv
D2
Y,V , ∀y ∈ Y

and hence that

‖y1 − y2‖2 ≤
4

σv
D2
Y,V , ∀y1, y2 ∈ Y.

In view of these relations, the function f(·) in (4.1) can be closely approximated by

fτ (x) := max
y

{
〈Ax, y〉 − f̂(y)− τ [V (y)−D2

Y,V] : y ∈ Y
}
. (4.4)

22

Indeed, by definition we have 0 ≤ V (y) ≤ D2
Y,V and hence, for any τ ≥ 0,

f(x) ≤ fτ (x) ≤ f(x) + τ D2
Y,V , ∀x ∈ X. (4.5)

Moreover, Nesterov [26] shows that fτ (·) is differentiable and its gradients are Lipschitz continuous
with the Lipschitz constant given by

Lτ :=
‖A‖2

τσv
. (4.6)

In this subsection, we assume that the feasible region Y and the function f̂ are simple enough,
so that the subproblem in (4.4) is easy to solve, and as a result, the major computational cost for
computing the gradient of fτ exists in the evaluation of the linear operator A and its adjoint operator
AT . Our goal is to present a variant of the CGS method, which can achieve the optimal bounds on
the number of calls to the LO oracle and the number of evaluations for the linear operator A and
AT .

Algorithm 5 The CGS method for solving saddle point problems

This algorithm is the same as Algorithm 1 except that (2.2) is replaces by

xk = CndG(f ′τk(zk), xk−1, βk, ηk), (4.7)

for some τk ≥ 0.

We now ready to describe the main convergence properties of this modified CGS method to solve
the saddle point problem in (1.1)-(4.1).

Theorem 11 Suppose that τ1 ≥ τ2 ≥ . . . ≥ 0. Also assume that {βk} and {γk} satisfy (2.13) (with
L replaced by Lτk and (2.14). Then,

f(yk)− f(x∗) ≤ βkγk
2

D2
X + Γk

k∑
i=1

γi
Γi

(
ηi + τiD2

Y,V

)
, ∀k ≥ 1, (4.8)

where x∗ is an arbitrary optimal solution of (1.1)-(4.1). Moreover, the number of inner iterations
performed at the k-th outer iteration can be bounded by (2.19).

Proof. First, observe that by the definition of fτ (·) in (4.4), and the facts that V (y)−D2
Y,V ≤ 0

and τk−1 ≥ τk, we have
fτk−1

(x) ≥ fτk(x) ∀x ∈ X, ∀k ≥ 1. (4.9)

Applying relation (2.22) to fτk and using (4.9), we obtain

fτk(yk) ≤ (1− γk)fτk(yk−1) + γkfτk(x) +
βkγk

2
(‖xk−1 − x‖2 − ‖xk − x‖2) + ηkγk

≤ (1− γk)fτk−1
(yk−1) + γk

[
f(x) + τkD2

Y,V

]
+
βkγk

2
(‖xk−1 − x‖2 − ‖xk − x‖2) + ηkγk

for any x ∈ X, where the second inequality follows from (4.5) and (4.9). Subtracting f(x) from the
both sides of the above inequality, we have

fτk(yk)− f(x) ≤ (1− γk)
[
fτk−1

(yk−1)− f(x)
]

+
βkγk

2
(‖xk−1 − x‖2 − ‖xk − x‖2) + ηkγk + γkτkD2

Y,V

23

for any x ∈ X, which, in view of Lemma 1 and (2.24), then implies that

fτk(yk)− f(x) ≤ Γk

k∑
i=1

βiγi
2Γi

(‖xi−1 − x‖2 − ‖xi − x‖2) + Γk

k∑
i=1

γi
Γi

(
ηi + τiD2

Y,V

)
≤ βkγk

2
D2
X + Γk

k∑
i=1

γi
Γi

(
ηi + τiD2

Y,V

)
. (4.10)

Our result in (4.8) then immediately follows from the above relation and the fact that fτk(yk) ≥ f(yk)
due to (4.5). The last part of our claim easily follows from Theorem 2.c).

We now provide a set of parameters for {βk}, {γk}, {ηk}, and {τk} which can guarantee the
optimal convergence of the above variant of CGS method for saddle point optimization.

Corollary 12 Suppose that the parameters {βk}, {γk}, {ηk}, and {τk} used in Algorithm 5 are set
to

βk =
3Lτk
k + 1

, γk =
3

k + 2
, ηk =

LτkD2
X

k2
, and τk =

2‖A‖DX

DY,V
√
σvk

, k ≥ 1. (4.11)

Then, the number of linear operator evaluations (for A and AT) and the number of calls to the LO
oracle performed by Algorithm 5 for finding an ε-solution of problem (1.1)-(4.1), respectively, can be
bounded by

O
{
‖A‖DXDY,V√

σvε

}
and O

{
‖A‖2D2

XD2
Y,V

σvε2

}
. (4.12)

Proof. Observe that Γk is given by (2.33) due to the definition of γk in (4.11). By (2.33) and
(4.11), we have

βk
γk

=
Lτk(k + 2)

k + 1
≥ Lτk ,

and
βkγk
Γk

=
3Lτkk

2
=

3‖A‖DY,V k2

4
√
σvDX

≥ βk−1γk−1

Γk−1
.

The above results show that the assumptions in Theorem 11 are satisfied. It then follows from
Theorem 11 and (4.11) that

f(yk)− f(x∗) ≤
9LτkD2

X

2(k + 1)(k + 2)
+

6

k(k + 1)(k + 2)

k∑
i=1

[
LτiD2

X

i2
+

2‖A‖DXDY,V√
σvi

]
i(i+ 1)

2

≤
9‖A‖DXDY,V k

4
√
σv(k + 1)(k + 2)

+
15‖A‖DXDY,V√
σvk(k + 1)(k + 2)

k∑
i=1

i ≤
39‖A‖DXDY,V
4(k + 2)

√
σv

,

where the second inequality follows from the definition of Lτk in (4.6). Moreover, it follows from
(2.19) and (4.11) that the total number of calls to the LO oracle in N outer iterations can be bounded
by

N∑
k=1

Tk ≤
N∑
k=1

(
18LτkD2

X

k + 1

k2

LτkD2
X

+ 1

)
≤ 18(N + 1)N

2
+N ≤ 9N2 + 10N.

24

The bounds in (4.12) and (4.16) then immediately follow the previous two conclusions.

In view of the discussions in [5], the O(1/ε) bound on the total number of operator evaluations
is not improvable for solving the saddle point problems in (1.1)-(4.1). Moreover, according to [19],
the O(1/ε2) bound on the total number of calls to the LO is also optimal for the LCP methods for
solving the saddle point problems in (1.1)-(4.1).

We now turn our attention to stochastic saddle point problems for which only stochastic gradients
of fτ is available. In particular, we consider the situation when the original objective function f in
(1.1) is given by

f(x) = E
[
max
y∈Y
〈Aξx, y〉 − f̂(y, ξ)

]
, (4.13)

where f̂(·, ξ) is simple concave function for all ξ ∈ Ξ and Aξ is a random linear operator such that

E
[
‖Aξ‖2

]
≤ L2

A (4.14)

We can solve this stochastic saddle point problem by replacing (4.7) with

xk = CndG(gk, xk−1, βk, ηk) where gk =
1

Bk

Bk∑
j=1

F ′(zk, ξj) (4.15)

for some τk ≥ 0 and Bk ≥ 1. By properly specifying {βk}, {ηk}, {τk}, and {Bk}, we can show
that the number of linear operator evaluations (for Aξ and ATξ) and the number of calls to the LO
performed by this variant of CGS method for finding a stochastic ε-solution of problem (1.1)-(4.13)
can be bounded by

O

{
L2
AD

2
XD2

Y,V

σvε2

}
. (4.16)

This result can be proved by combining the techniques in Section 3 and those in Theorem 11.
However, we skip the details of these developments for the sake of simplicity.

5 Numerical experiments

Our goal in this section is to present the results from our preliminary numerical experiments. In
particular, we will demonstrate the potential advantages of the basic CGS method over the original
CG method through two numerical experiments detailed in Subsection 5.1 and 5.2.

5.1 Quadratic programming problems over standard spectrahedrons

In this experiment, we consider quadratic programming (QP) problems over a standard spectrahe-
dron. Let A : Rn×n → Rm and b ∈ Rm be given, the QP over a standard spectrahedron is defined
by

min
x∈Sn

‖Ax− b‖22, where Sn :=
{
x ∈ Rn×n : Tr(x) = 1, x � 0

}
. (5.1)

In our experiment, we use the same instances as those generated in [19]. More specifically, the
linear operators A : Rn×n → Rm are sparse with entries uniformly distributed over [0, 1], and the

25

Table 1: Randomly generated instances for QP

Inst. Domain n m d Inst. Domain n m d

SPE11 Sn 100 500 0.6 SPE12 Sn 100 1, 000 0.6
SPE21 Sn 200 500 0.4 SPE22 Sn 200 1, 000 0.4
SPE31 Sn 400 500 0.2 SPE32 Sn 400 1, 000 0.2

total number of nonzero entries is specified by the density parameter d. Because of the way the
instances are generated, the optimal values of these problems are given by 0. Totally 6 instances
have been generated, see Table 1 for more details. The CG and CGS algorithms are implemented
in MATLAB R2012b with initial point y0 randomly generated and remaining the same for different
algorithms. The parameters {βk}, {γk}, and {ηk} used in the CGS method are set according to
(2.31). It is also observed from our initial experiments that the choice of ηk has great impact on
the performance of the CGS method. Hence, we employed a trial-and-error method to fine tune the
selection of ηk. More specifically, we set ηk = cLD2

X/k
2, where c > 0 is a scaling factor, and choose

the best c from {0.005, 0.01, 0.05, 0.1, 1} that can minimize the total CPU time to achieve a relative
low accuracy (i.e., 10−1). Table 2 shows the results we obtained for instance SPE31, for which the
scaling factor c = 0.1 has been chosen for our final experiment.

Table 2: The selection of ηk

c 0.005 0.01 0.05 0.1 0.5 1

Time 33.52 21.67 15.47 12.77 15.03 17.91

Now for each problem instance, we report in Table 3 the target accuracy (f(x̄)−f∗), the number
of iterations (or gradient evaluations), and the CPU time (in seconds, Intel Core i3-2310 2.1GHz)
required for performing these algorithms. For CGS, we also recorded the total number of inner
iterations, i.e. the total number of calls to the LO oracle, and the scaling factor c in Table 3.

Table 3: Comparison of the CG and CGS methods for QP over spectrahedron

CG CGS

Inst f(y0) Accuracy Iterations Time Iterations Time Total inner c

SPE11 4.70e+1 1e-3 1200 29.03 118 7.16 236 1
SPE12 9.33e+1 1e-3 2200 66.92 148 16.13 433 1
SPE21 1.59e+1 1e-3 765 38.36 110 12.65 183 0.5
SPE22 3.29e+1 1e-3 1440 103.33 116 25.54 225 0.5
SPE31 3.26e+0 1e-3 600 78.89 60 21.59 130 0.1
SPE32 6.20e+0 1e-3 800 147.18 64 41.31 167 0.1

Let us make a few observations about the results obtained in Table 3. Firstly, CGS is more
advantageous over CG in terms of both CPU time and number of iterations (gradient evaluations)
to obtain the target accuracy. For example, for SPE11, the CG method requires 1, 200 gradient
evaluations while the CGS method only requires 118 gradient evaluations. Secondly, it is interesting
to observe that the total number of inner iterations of the CGS method is small. For all the tested
instances, the total inner iterations, i.e., the total number of calls to the LO oracle, are within 3
times of total number of outer iterations. One plausible explanation is that a warm-start strategy

26

has been incorporated into the CndG subroutine (i.e., the point xk−1 is chosen as an initial point in
this subroutine).

5.2 Matrix completion problem

In our second experiment, we intend to recover a lower rank matrix by solving the following matrix
completion problem:

min
∑

(i,j)∈Ω

‖Xi,j − ai,j‖2 s.t. ‖X‖∗ ≤ R. (5.2)

Here, ‖ · ‖∗ represents the nuclear norm, that is, ‖A‖∗ = trace(
√
ATA) =

∑min{m,n}
i=1 σi, R is a

certain constant, Ω is a subset of entries of A, and ai,j , i, j ∈ Ω are given. As in [4], we generate
the original matrix A, an m × n matrix of rank r, by first generating an m × r factor AL and
an r × n factor AR with Gaussian entries and then setting A = AL ∗ AR. We also assume that
|Ω| = s = min(5r(m + n − r), d0.99mne) and choose these s entries uniformly. Totally 4 instances
have been generated in this manner (see Table 4). The CG and CGS algorithms are implemented in
MATLAB R2012b with the initial point y0 randomly generated and remaining the same for different
algorithms. Similar to Section 5.1, we had used a trial-and-error procedure to fine-tune the scaling
factor c for the CGS method, but it turned out that the final selection is c = 1 for all these instances
(we set the target accuracy as 1e+ 5 for inst 1, 3 and 4, and 4e+ 6 for inst 2 to fine-tune the scaling
factor). Observe that instead of the MATLAB built-in function ’svds.m’, we use a faster maximum
singular value decomposition code by Vijayan[29].

Table 4: Randomly generated instances for the matrix completion problem

Inst. m n r R

Inst1 3, 000 1, 000 10 30, 000
Inst2 5, 000 4, 000 10 50, 000
Inst3 10, 000 100 10 10, 000
Inst4 100 20, 000 10 15, 000

Our numerical results are reported in Figure 1, where the x-axis represents the elapsed time
in seconds (Intel Core i3-2310 2.1GHz), and the y-axis represents the objective function values in
logarithmic scale (log10). From this figure, we can clearly see that the CGS method converges much
faster than CG for all the tested instances. In particular, for a given CPU time, the solution accuracy
obtained by the CGS method can be better than the one by the CG method by up to 3 orders of
magnitude (see, e.g., Inst 3 at 35 seconds).

6 Concluding remarks

In this paper, we present a new conditional gradient type method, referred to as the CGS method
for convex optimization. We show that this method can achieve the optimal complexity bounds in
terms of not only the number calls to the LO oracle, but also the number of gradient evaluations.
We generalize the CGS method for solving stochastic optimization problems and show that they
also exhibit the optimal rate of convergence in terms of the number of calls to the stochastic oracle.
Generalization to a special class of saddle point problems and promising preliminary numerical

27

Figure 1: Numerical results of CGS and CG for matrix completion problem

results have also been presented in this paper. It is worth noting that in this paper we assume
that the Lipschitz constant L is given. We expect that a certain line search procedure for L can
be incorporated in order to further improve the numerical performance of the CGS algorithms.
Extensions to the composite case where the objective function of (1.1) contains a relatively simple
nonsmooth component can also be considered in the CGS algorithm. We leave these as interesting
topics for the future research.

References

[1] S.D. Ahipasaoglu and M.J. Todd. A modified frank-wolfe algorithm for computing minimum-
area enclosing ellipsoidal cylinders: Theory and algorithms. Computational Geometry, 46:494–
519, 2013.

[2] F. Bach, S. Lacoste-Julien, and G. Obozinski. On the equivalence between herding and condi-
tional gradient algorithms. In the 29th International Conference on Machine Learning, 2012.

[3] A. Beck and M. Teboulle. A conditional gradient method with linear rate of convergence for
solving convex linear systems. Math. Methods Oper. Res., 59:235–247, 2004.

[4] J. Cai, E. J. Candes, and Z. Shen. A singular value thresholding algorithm for matrix completion,
journal = siopt, volume =.

[5] Y. Chen, G. Lan, and Y. Ouyang. Optimal primal-dual methods for a class of saddle point
problems. SIAM Journal on Optimization, 2014. to appear.

28

[6] Kenneth L. Clarkson. Coresets, sparse greedy approximation, and the frank-wolfe algorithm.
ACM Trans. Algorithms, 6(4):63:1–63:30, September 2010.

[7] B. Cox, A. Juditsky, and A. S. Nemirovski. Dual subgradient algorithms for large-scale nons-
mooth learning problems. Manuscript, School of ISyE, Georgia Tech, Atlanta, GA, 30332, USA,
2013. submitted to Mathematical Programming, Series B.

[8] J. C. Dunn. Rates of convergence for conditional gradient algorithms near singular and nonsin-
gular extremals. SIAM Journal on Control and Optimization, 17(2):674–701, 1979.

[9] J. C. Dunn. Convergence rates for conditional gradient sequences generated by implicit step
length rules. SIAM Journal on Control and Optimization, 18(5):473487, 1980.

[10] M. Frank and P. Wolfe. An algorithm for quadratic programming. Naval Research Logistics
Quarterly, 3:95–110, 1956.

[11] R. M. Freund and P. Grigas. New Analysis and Results for the Frank-Wolfe Method. ArXiv
e-prints, July 2013.

[12] D. Garber and E. Hazan. A Linearly Convergent Conditional Gradient Algorithm with Appli-
cations to Online and Stochastic Optimization. ArXiv e-prints, Jan 2013.

[13] Cristóbal Guzmana and A. Nemirovski. On Lower Complexity Bounds for Large-Scale Smooth
Convex Optimization. ArXiv e-prints, January 2014.

[14] Z. Harchaoui, A. Juditsky, and A. S. Nemirovski. Conditional gradient algorithms for machine
learning. NIPS OPT workshop, 2012.

[15] Elad Hazan. Sparse approximate solutions to semidefinite programs. In EduardoSany Laber,
Claudson Bornstein, LoanaTito Nogueira, and Luerbio Faria, editors, LATIN 2008: Theoretical
Informatics, volume 4957 of Lecture Notes in Computer Science, pages 306–316. Springer Berlin
Heidelberg, 2008.

[16] M. Jaggi. Sparse Convex Optimization Methods for Machine Learning. PhD thesis, ETH Zürich,
2011. http://dx.doi.org/10.3929/ethz-a-007050453.

[17] M. Jaggi. Revisiting frank-wolfe: Projection-free sparse convex optimization. In the 30th Inter-
national Conference on Machine Learning, 2013.

[18] M. Jaggi and M. Sulovský. A simple algorithm for nuclear norm regularized problems. In the
27th International Conference on Machine Learning, 2010.

[19] G. Lan. The complexity of large-scale convex programming under a linear optimization or-
acle. Manuscript, Department of Industrial and Systems Engineering, University of Florida,
Gainesville, FL 32611, USA, June 2013. Available on http://www.optimization-online.org/.

[20] G. Lan. Gradient sliding for composite optimization. Manuscript, Department of Industrial and
Systems Engineering, University of Florida, Gainesville, FL 32611, USA, June 2014.

[21] G. Lan, A. S. Nemirovski, and A. Shapiro. Validation analysis of mirror descent stochastic
approximation method. Mathematical Programming, 134:425–458, 2012.

29

[22] R. Luss and M. Teboulle. Conditional gradient algorithms for rank one matrix approximations
with a sparsity constraint. SIAM Review, 55:65–98, 2013.

[23] A. S. Nemirovski and D. Yudin. Problem complexity and method efficiency in optimization.
Wiley-Interscience Series in Discrete Mathematics. John Wiley, XV, 1983.

[24] Y. E. Nesterov. A method for unconstrained convex minimization problem with the rate of
convergence O(1/k2). Doklady AN SSSR, 269:543–547, 1983.

[25] Y. E. Nesterov. Introductory Lectures on Convex Optimization: a basic course. Kluwer Academic
Publishers, Massachusetts, 2004.

[26] Y. E. Nesterov. Smooth minimization of nonsmooth functions. Mathematical Programming,
103:127–152, 2005.

[27] A. Gonen S. Shalev-Shwartz and O. Shamir. Large-scale convex minimization with a low rank
constraint. In the 28th International Conference on Machine Learning, 2011.

[28] C. Shen, J. Kim, L. Wang, and A. van den Hengel. Positive semidefinite metric learning using
boosting-like algorithms. Journal of Machine Learning Research, 13:1007–1036, 2012.

[29] V. Vijayan. Faster svdsecon.m. http://www.mathworks.com/matlabcentral/fileexchange/47132-fast-svd-and-pca.

30

