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1. Introduction

In this paper we list a number of open problems and conjectures on Hilbert functions and

syzygies. Some of the problems are closely related to Algebraic Geometry, Combinatorics, and

Hyperplane Arrangements Theory.

Our aim is to stimulate interest, rather than to give a complete survey. When de-

scribing a problem, we sometimes state one or two related results, and give pointers to a few

references, rather than giving an exhaustive list of references and what is known. A detailed

survey of the covered topics would make the paper far longer than we (and perhaps, the

readers) could handle.

Our list of problems is certainly not complete. We have focused on problems that we see

as most exciting, or important, or popular. We present three types of problems: Conjectures,

Problems, and Open-Ended Problems. Some of the problems and especially the Open-Ended

problems are general problems which point to interesting directions for exploration.

The books [Ei] and [Pe] contain expository papers on some of the problems and related

topics. Section 17 is a (probably non-complete) list of helpful books. [Av, Ei4, Gr, He, He2,

JW, Va, We] provide lecture notes. A good way to get a feel of the recent research is to browse

the web pages of the mathematicians working in this area.

Acknowledgments. We thank Chris Francisco for contributing most of Section 9, Hal

Schenck for his suggestions on Section 16, and Aldo Conca for his suggestions on Section 14.
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2. Notation

Throughout k stands for a field. For simplicity, we assume that k is algebraically closed

and has characteristic 0. However, many of the open problems and conjectures make sense

without these assumptions. In the paper, the polynomial ring S = k[x1, . . . , xn] is graded

by deg(xi) = 1 for all i. A polynomial f is homogeneous if f ∈ Si for some i, that is, if all

monomial terms of f have the same degree. An ideal I is graded (or homogeneous) if it has

a system of homogeneous generators. Throughout the paper, I stands for a graded ideal in S

and R stands for S/I. The quotient ring R inherits the grading by (S/I)i = Si/Ii for all i.

Let T be a graded finitely generated R-module.

A very interesting and important numerical invariant of T is its Hilbert function

HilbT (i) =dim(Ti) for i ∈ N.

The idea to associate a free resolution to T was introduced in Hilbert’s famous 1890,

1893 papers [Hi, Hi2]. Let U be a graded minimal free resolution of T . The submodule

Ker(di−1) = Im(di) of Ui−1 is called the i’th syzygy module of T , and its elements are called

i’th syzygies. The rank of Ui is called the i’th Betti number of T and is denoted bR
i (T ). The

Betti numbers are among the most studied invariants of T .

The modules in the resolution U are graded and the differential has degree 0. For p ∈ Z

denote by R(−p) the free graded R-module such that R(−p)i = Ri−p; the module R(−p) is

generated by one element in degree p. Since each module Ui is a free finitely generated R-

module, we can write it as Ui = ⊕p∈ZR(−p)bi,p . Therefore,

U : . . . → Ui = ⊕p∈Z R(−p)bi,p
di−−→ Ui−1 = ⊕p∈ZR(−p)bi−1,p → . . .

The numbers bR
i,p(T ) are called the graded Betti numbers of T . We say that bR

i,p(T ) is the Betti

number in homological degree i and (inner) degree p.

Recent computational methods have made it possible to compute graded free resolu-

tions and Hilbert functions by computer. Algorithms for computation of syzygies and Hilbert

functions are implemented in computer algebra systems as COCOA [Rob], MACAULAY [BS],

MACAULAY2 [GS], and SINGULAR [GPS].

3. Regularity

The Castelnuovo-Mumford regularity (or simply regularity) of S/I is

reg(S/I) = max{j | bS
i,i+j(S/I) 6= 0 for some i }
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and reg(I) = reg(S/I) + 1. [Ch] is an expository paper on the properties and open problems

on regularity. The following conjecture has been open for about 25 years and is the most

exciting (currently) open conjecture on syzygies.

The Regularity Conjecture 3.1. (Eisenbud-Goto) [EG], [BM] If P ⊂ (x1, . . . , xn)2 is a

prime graded ideal, then

reg(P ) ≤ deg(S/P )− codim(S/P ) + 1 .

It is known to hold for irreducible curves by [GLP], and for irreducible smooth surfaces and

3-folds by [La, Ran]. The following particular case is very interesting; it is open for toric ideals.

Conjecture 3.2. If P ⊂ (x1, . . . , xn)2 is a prime graded ideal, then the maximal degree of an

element in a minimal system of homogeneous generators is ≤ deg(S/P ) .

A number of examples show that Conjecture 3.1 is sharp. For example, the equality

holds for the defining ideal of the twisted cubic curve. It also holds for a rational curve in

P3 with a (q − 1)-secant line; this provides an example for every degree deg(S/P ). It will be

interesting to explore when the equality holds.

Open-Ended Problem 3.3. Find classes of graded prime ideals so that for every ideal

P ⊂ (x1, . . . , xn)2 in this class we have reg(P ) = deg(S/P )− codim(S/P ) + 1 .

There is only one known family of ideals – the Mayr-Meyer’s examples – where the

regularity is doubly exponential in the number of variables, while the maximum degree of an

element in a minimal system of homogeneous generators of the ideal is fixed (it is 4) [BS2,

MM, Ko, Sw]. Eisenbud has pointed recently that it is of interest to construct and study more

such examples.

Problem 3.4. Find families of graded ideals with large regularity (doubly exponential, or

exponential, or polynomial) in the number of variables, while the maximum degree of an

element in a minimal system of homogeneous generators of an ideal is bounded (by a constant).

In the spirit of works by Bertram-Ein-Lazarsfeld [BEL] and Chardin-Ulrich [CU], we

consider:

Open-Ended Problem 3.5. Let a1 ≥ . . . ≥ ap ≥ 2 be the degrees of the elements in a

minimal system of homogeneous generators of I. Set r = codim(S/I). Find nice sufficient

conditions on I so that

reg(S/I) ≤ a1 + . . . + ar − r .

One can also consider a multiple of a1 + . . . + ar − r as a possible bound.

A general problem, which has inspired a lot of work is:

Open-Ended Problem 3.6. Assuming the ideal I satisfies some special conditions, find a
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sharp upper bound for reg(I) in terms of the maximum degree of an element in a minimal

system of homogeneous generators of I.

For a generic linear form f , we have that reg(I + (f)) ≤ reg(I). However, it is not

known what happens if f is not generic.

Problem 3.7. (Caviglia) Let f be a linear form. Is reg(I + (f)) bounded by a polynomial

(possibly quadratic) function of reg(I)?

The following two problems stem form a result of Ravi, who proved that reg(rad(I)) ≤

reg(I) if I is a monomial ideal. Chardin-D’Cruz [CD] constructed examples where reg(rad(I))

is the cube of reg(I).

Problem 3.8. (Ravi) Find classes of ideals for which reg(rad(I)) ≤ reg(I).

Problem 3.9. Is reg(rad(I)) bounded by a (possibly polynomial) function of reg(I)?

Results of Eisenbud-Huneke-Ulrich [EHU] in the case dim Tor1(M,N) ≤ 1 give rise to

the following problem.

Problem 3.10. Let M and N be finitely generated graded S-modules. Is reg(TorS
i (M,N))

bounded in terms of reg(M) and reg(N) (possibly under some conditions on M and N)?

Furthermore, one can study the regularity of intersections, sums, or powers.

Open-Ended Problem 3.11. Find classes of ideals for which you can obtain a nice upper

bound on the regularity of intersections.

Open-Ended Problem 3.12. Find classes of ideals for which you can obtain a nice upper

bound on the regularity of products.

For example, the following results are of this type: Let I1, . . . , Ir be ideals in S gener-

ated by linear forms. By [CH], reg(I1 · · · Ir) = r. By [DS], reg(I1 ∩ . . . ∩ Ir) = r.

Open-Ended Problem 3.13. Find classes of ideals for which you can obtain a nice upper

bound on the regularity of powers. For example, question [Ch, Question 7.3] is asking for a

bound on the regularity of a square of an ideal.

Caviglia proved that the following problem is equivalent to Problem 3.11 on regularity.

Problem 3.14. (Stillman) Fix a sequence of natural numbers a1, . . . , ar. Does there exist a

number p, such that

pd (W/J) ≤ p

if W is a polynomial ring (over k) and J is a graded ideal with a minimal system of homoge-

neous generators of degrees a1, . . . , ar? Note that the number of variables in the polynomial

ring W is not fixed.
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Problem 3.15. Fix a sequence of natural numbers a1, . . . , ar . Does there exist a number q,

such that

reg (W/J) ≤ q

if W is a polynomial ring (over k) and J is a graded ideal with a minimal system of homoge-

neous generators of degrees a1, . . . , ar? Note that the number of variables in the polynomial

ring W is not fixed.

The following problem is related to regularity, since it yields an upper bound on it.

For problems of this type in the toric case, cf. [BGT].

Open-Ended Problem 3.16. Fix a certain class of graded ideals. Obtain a nice upper

bound on the maximal degree of an element in a minimal homogeneous Gröbner basis.

By [AE,AP] we have that every graded finitely generated S/I-module has finite reg-

ularity if the quotient ring S/I is Koszul (see Section 13 for definition of Koszulness). This

leads to a problem on infinite free resolutions:

Open-Ended Problem 3.17. Study the properties of regularity over a Koszul (non-

polynomial) ring.

In several cases of interest, we study multigraded rings, ideals, and modules. For

Hilbert functions and regularity in that setting see [Ha, MS, SVW, Sw2].

Open-Ended Problem 3.18. Study the properties of multigraded regularity.

4. Characterization of Hilbert Functions

The following question is very natural and important: “What sequences of numbers are Hilbert

functions of ideals (subject to some property)?”.

The characterization of all Hilbert functions of graded ideals in S was discovered

by Macaulay [Ma]. The characterization of all Hilbert functions of graded ideals containing

x2
1, . . . , x

2
n was obtained by Kruskal-Katona [Ka, Kr]; such Hilbert functions are often stud-

ied by counting faces of simplicial complexes via the Stanley-Reisner theory. Furthermore,

Clements-Lindström [CL] (cf. [MP]) generalized Macaulay’s idea and provided a characteri-

zation of all Hilbert functions of graded ideals containing xa1

1 , . . . , xan
n for a1 ≤ . . . ≤ an ≤ ∞.

The following very challenging conjecture aims to answer the question “What se-

quences of numbers are Hilbert functions of ideals containing a regular sequence?”.

The Eisenbud-Green-Harris Conjecture 4.1. (Eisenbud-Green-Harris) [EGH] If I con-

tains a regular sequence of homogeneous elements of degrees a1, . . . , aj , then there exists a

monomial ideal containing xa1

1 , . . . , x
aj

j with the same Hilbert function.
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Using Clements-Lindström’s Theorem, it is easy to see that if j = n then Conjecture 4.1

is equivalent to the numerical criterion conjectured in [EGH]. The following special case is open,

and is the main case of interest.

Conjecture 4.2. [EGH] If I contains a regular sequence of n quadrics, then there exists a

monomial ideal containing x2
1, . . . , x

2
n with the same Hilbert function.

Another challenging conjecture aims to answer the question “What sequences of num-

bers are Hilbert functions of ideals generated by generic forms?”. The conjecture is that if I is

generated by generic forms, then Ii is expected to generate in degree i+1 as much as possible;

the numerical form of the conjecture is:

Conjecture 4.3. (Fröberg) [Fr] Let f1, . . . , fr be generic forms of degrees a1, . . . , ar. Set

I = (f1, . . . , fr). The Hilbert series of S/I is

HilbS/I(t) =

∣∣∣∣

∏
1≤i≤r (1 − tai)

(1 − t)n

∣∣∣∣,

where | | means that a term cit
i in the series is omitted if there exists an earlier term cjt

j with

j ≤ i and negative coefficient cj ≤ 0.

The conjecture holds for r ≤ n since the generic forms form a regular sequence in this

case. A solution of the following problem could lead to a solution of 4.3 or at least will shed

light on it.

Problem 4.4. (cf. [Va, Problem 4.4]) What is the generic initial ideal with respect to revlex

order of the ideal generated by generic forms f1, . . . , fr of degrees a1, . . . , ar?

Another open problem of this type is:

Open-Ended Problem 4.5. (cf. [Va, Problem 2.16]) Does there exist a nice characterization

of the Hilbert functions of artinian Gorenstein graded algebras?

5. Lex ideals

The key idea in Macaulay’s Theorem, which provides a characterization of the Hilbert functions

of graded ideals in S, is that every Hilbert function is attained by a lex ideal. If I is a monomial

or toric ideal, then we can define the notion of a lex ideal in the quotient ring R = S/I, see

[GHP].

Open-Ended Problem 5.1. (Mermin-Peeva) [MP] Find classes of either monomial or pro-

jective toric ideals I so that Macaulay’s Theorem holds over R, that is, every Hilbert function

over R is attained by a lex ideal.
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Toric varieties are an important class of varieties which occur at the intersection of

Algebraic Geometry, Commutative Algebra, and Combinatorics. They might provide several

examples of interesting rings in which all Hilbert functions are attained by lex ideals.

It is easy to find rings over which Macaulay’s Theorem does not hold. Sometimes, the

trouble is in the degrees of the minimal generators of I. Thus, it makes sense to relax the

problem as follows.

Open-Ended Problem 5.2. (Mermin-Peeva) [MP] Let p be the maximal degree of an

element in a minimal homogeneous system of generators of I. Find classes of (either monomial

or projective toric) ideals I so that every Hilbert function over R of a graded ideal generated

in degrees > p is attained by a lex ideal.

Furthermore, in view of Hartshorne’s Theorem [Har] that every graded ideal in S is

connected by a sequence of deformations to a lex ideal, it is natural to ask:

Problem 5.3. Let J be a graded ideal in R, where I is either a monomial or a projective

toric ideal, and let L be a lex ideal with the same Hilbert function. When is J connected to L

by a sequence of deformations? What can be said about the structure of the Hilbert scheme

that parametrizes all graded ideals in R with the same Hilbert function as L?

A consequence of the proof of Hartshorne’s Theorem is that the lex ideal attains

maximal graded Betti numbers among all graded ideals in S with the same Hilbert function;

it should be noted that there are examples where no ideal attains minimal Betti numbers. In

the same spirit we can consider:

Open-Ended Problem 5.4. (Mermin-Peeva) Let J be a graded ideal in R, where I is either

a monomial or a toric ideal. Suppose that L is a lex ideal with the same Hilbert function in

R. Find conditions on R or J so that some of the following hold.

(1) The Betti numbers of J over R are less than or equal to those of L.

(2) The Betti numbers of J + I over S are less than or equal to those of L + I.

Problem 5.4(2) was inspired by work of G. Evans and his conjecture 5.5 , cf. the

expository paper [FR].

The Lex-plus-powers Conjecture 5.5. (Evans) [FR] If a graded ideal J in S contains

a regular sequence of graded elements of degrees a1, . . . , aj , and if there exists a lex-plus-

(xa1

1 , . . . , x
aj

j ) ideal L with the same Hilbert function as J , then the Betti numbers of L are

greater or equal to those of J .

Conjecture 5.5 was inspired by the Eisenbud-Green-Harris Conjecture 3.1. It is quite

challenging. It is proved for ideals containing powers of the variables by Mermin-Murai [MM].
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In a different direction: very little is known on when (that is, in what rings) the

Gotzmann’s Persistence Theorem holds. For example:

Problem 5.6. Does the Gotzmann’s Persistence Theorem hold over a Clements-Lindström

ring C = S/(xa1

1 , . . . , xan
n ), where a1 ≤ a2 ≤ . . . ≤ an ≤ ∞?

A result of Peeva shows that the Gotzmann’s Persistence Theorem holds for a Borel

ideal in C. In order to solve Problem 5.6, it remains to make a reduction to a Borel ideal.

6. Extremal Betti numbers and Lower Bounds

In the spirit of the above conjectures that the lex ideal attains maximal Betti numbers in

various settings, there are several other difficult problems on minimal/maximal Betti numbers

for specific classes of ideals.

Problem 6.1. (Geramita-Harima-Shin) [GHS] Does there exist an ideal which has great-

est graded Betti numbers among all Gorenstein artinian graded ideals with a fixed Hilbert

function?

The problem is solved under the additional hypothesis that the weak Lefschetz prop-

erty holds in [MN].

Conjecture 6.2. (Herzog-Hibi) cf. [HM]. Let M be a square-free monomial ideal in S. Let

P be the square-free monomial ideal in S such that P is the generic initial ideal of M over the

exterior algebra (on the same variables as S). The Betti numbers of M over S are less than

or equal to those of P .

This problem is motivated by the technique of algebraic and combinatorial shifting,

cf. [HM].

It is proved by Bigatti, Hulett, Pardue that a lex ideal in S attains the greatest Betti

numbers among all graded ideals with the same Hilbert function, cf. [CGP]. However, there

exist examples of Hilbert functions for which no ideal has smallest (total or graded) Betti

numbers [DMMR, Ri]. Furthermore, they provide examples where no monomial ideal attains

smallest (total or graded) Betti numbers among all monomial ideals with a fixed Hilbert

function. In view of these examples, it is interesting to obtain constructions on how to get

smallest Betti numbers. The next two problems propose such ideas.

Open-Ended Problem 6.3. (Nagel-Reiner) [NR] Let M be a monomial ideal generated by

q monomials of degree p. Let W be the monomial ideal generated by the first q square-free

monomials (in a bigger polynomial ring if needed) of degree p in the reverse lex order. Find

conditions on M that imply

bS
i (S/W ) ≤ bS

i (S/M) for every i ≥ 0 .
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Note that S/W and S/M may not have the same Hilbert function. The expectation

is that many monomial ideals have the property in 6.3.

Problem 6.4. (Peeva-Stillman) [PS] Let P be a projective toric ideal. Is it true that S/P

has the smallest Betti numbers among all ideals with the same multigraded Hilbert function

as P ?

Problems 6.3 and 6.4 yield lower bounds on the Betti numbers in the cases that are

considered. Obtaining lower bounds on the Betti numbers is usually a very hard problem.

The following conjecture has been open for a long time, cf. the expository paper [CE] .

Conjecture 6.5. (Buchsbaum-Eisenbud, Horrocks) If M is an artinian graded finitely gen-

erated S-module, then

bS
i ≥

(
n

i

)
for i ≥ 0 .

Note that the lower bounds are given by the ranks of the free modules in the Koszul

complex that is the minimal free resolution of k over S. A more general version of the

conjecture is open:

Problem 6.6. (cf. [CE]) Let I ⊆ (x1, . . . , xn)2, and let T be an artinian graded finitely

generated R-module. Is it true that

bR
i (M) ≥ bR

i (k) for i ≥ 0 .

The following weaker conjecture is also open, cf. [AB].

Conjecture 6.7. If M is an artinian graded finitely generated S-module, then

∑

i≥0

bS
i (M) ≥ 2n .

7. The linear strand

Let F be the graded minimal free resolution of S/I over the polynomial ring S. The subcomplex

. . . → S(−i − 1)bi,i+1
di−−→ S(−i)bi−1,i → . . . → S(−2)b1,2

of F is called the 2-linear strand of S/I. All entries in the differential matrices in the 2-linear

strand are linear forms. The length of the 2-linear strand is max{i | bi,i+1 6= 0}.
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The basic idea is that the existence of a long 2-linear strand imposes strong geometric

or combinatorial constraints. The following is a generalization of a conjecture of Green (see

[Ei2] for a more complete discussion):

Open-Ended Problem 7.1. (Eisenbud) [Ei2] Let P be a prime graded ideal containing no

linear form and whose quadratic part is spanned by quadrics of rank ≤ 4. Suppose that the

2-linear strand of S/P has length p. Find nice sufficient conditions on P so that P contains

the 2 × 2-minors of a v × w-matrix A satisfying the following conditions:

(1) v + w − 3 = p

(2) A has linear entries

(3) no entry is zero, and no entry can be made zero by row and column operations.

The need of extra conditions on P in the above problem, is shown to be necessary by

the examples constructed by Schenck-Stillman [SSt]. Green’s conjecture covers a special case

of 7.1 when the ideal P satisfies the following additional conditions:

(1) S/I is normal (that is, it is integrally closed)

(2) dim(S/I) = 2 (that is, P defines a projective curve)

(3) S/I is Koszul (see Section 13 for definition of Koszulness)

(4) S/I is Gorenstein

(5) deg(S/I) = 2(n − 1).

Open-Ended Problem 7.2. How is the length of the linear strand related to the other

invariants of S/I?

Next, we focus on the question for how long does the linear strand coincide with the

minimal free resolution; this is captured in the property Np defined as follows. Let p ≥ 1. A

graded ideal I ⊆ (x1, . . . , xn)2 satisfies the property Np if the graded Betti numbers bS
i,i+j(S/I)

vanish for j ≥ 2, i ≤ p. Note that N1 is equivalent to the property that I is generated by

quadrics. In geometric situations, the property Np typically includes also the property N0,

which states that S/I is projectively normal. We have the following general problem.

Open-Ended Problem 7.3. Fix a certain class of graded ideals. Find a geometric or

combinatorial criteria for ideals in the considered class to satisfy Np.

For example, [EGHP] provides a criterion for monomial ideals to satisfy Np.

Fix integer numbers r, q ≥ 1. Set n =

(
r + q − 1

r − 1

)
. Let V be the q’th Veronese ring in

r variables which defines the q’th Veronese embedding of Pr−1. Set T = k[t1, . . . , tr], graded

by deg(tj) = 1 for 1 ≤ j ≤ r. Then,

V ∼= ⊕∞
j=0Tjq = k[ all monomials of degree q in T ] .

Ottaviani-Paoletti [OP] conjecture a criterion for V to satisfy Np. They prove that the criterion
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gives a necessary condition. Surprisingly, the following part of their conjecture is not solved

yet.

Conjecture 7.4. [OP] If q and r are ≥ 3, and p ≤ 3q − 3, then V satisfies Np.

The general toric case is considered in [HSS].

8. Betti diagrams

The graded Betti numbers of a graded finitely generated S-module form a diagram. A re-

cent breakthrough in understanding such diagrams was generated by the conjectures of Boij-

Söderberg [BSö], which were solved in [BSö2, EFW, ES]. Clearly, the diagrams form a semi-

group B. There are many open problems emerging involving the structure of this semigroup.

We list two of them.

Problem 8.1. Is there an algorithm (or criterion) which takes a given diagram, and determines

whether there exists a graded S-module with these graded Betti numbers?

The semigroup of virtual (or potential) Betti diagrams is the semigroup of lattice points

in the positive rational cone generated by B. The solution of the Boij-Soderberg conjectures

allow us to check whether a given diagram is a virtual Betti diagram.

Erman [Er] proved that the semigroup is finitely generated (if we restrict which Betti

numbers can be non-zero); this raises the next problem.

Problem 8.2. Describe the generators of the semigroup (when we restrict which Betti num-

bers can be non-zero).

9. Free resolutions and Hilbert functions of points in Pn−1

This section focuses on the possible Hilbert functions and graded Betti numbers that can occur

for ideals representing points in Pn−1. A survey is given in Migliore’s paper [Mi]. See [Gr,

Ei4, Ei5, Va] for helpful background on this topic.

One can investigate “ordinary” points, which are reduced zero-dimensional subschemes

of Pn−1, or “fat” points, which one can think of as points with multiplicity. Geramita-

Maroscia-Roberts [GMR] gave a classification of the possible Hilbert functions of reduced

points (in fact, of a reduced variety) in Pn−1. One can ask the analogous questions in other

situations, for example:

Open-Ended Problem 9.1. What are the possible Hilbert functions of sets of double points

in Pn−1? How about for sets of points in Pn1 × · · · ×Pnr (or even just P1 ×P1)?
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For examples of progress on these questions, see work of Geramita-Migliore-Sabourin

[GMS] for the former question and Guardo-Van Tuyl [GV] for the latter. There are similar

problems for Betti numbers as well.

Open-Ended Problem 9.2. Given a Hilbert function for a set of points in Pn−1, what are

the possible graded Betti numbers for sets of points with that Hilbert function?

There is an answer for P2, but little is known in general, cf. [Harb]. One could also

ask the question for sets of fat points in Pn−1. More fundamentally, there are many open

problems about the possible minimal free resolutions for different configurations of fat points.

One can also isolate particular properties of sets of reduced points and ask about the

Hilbert functions of sets with those characteristics. For example, a set of points possesses the

Uniform Position Property (UPP) if any two subsets of the same cardinality have the same

Hilbert function. The following question is open in P3 and higher [Mi].

Open-Ended Problem 9.3. What are the possible Hilbert functions of sets of points with

the UPP?

The following conjecture was first stated as a problem in Geramita-Orecchia [GO].

Ideal Generation Conjecture 9.4. If X ⊂ Pn−1 is a generic set of q points, then the

homogeneous coordinate ring of X has the maximal rank property. (We say that R = S/I

satisfies the maximal rank property if each map Rp ⊗ R1 −→ Rp+1 has maximal rank, for all

p ∈ N.)

Note that if S/I has the maximal rank property and its Hilbert function is known,

then it is easy to determine the degrees of the elements in a minimal system of generators of

the ideal I.

10. Problems from Algebraic Combinatorics

The expository paper [St] discusses several open problems in Algebraic Combinatorics; see

also [St3]. We focus on problems related to Hilbert functions and resolutions.

Let ∆ be a simplicial complex on vertex set x1, . . . , xn. Let F(∆) be the set of facets

of ∆. It is said that ∆ is partitionable if there exists a partition

∆ = ∪r
i=1 [Gi : Fi] ,

where F(∆) = {F1, . . . , Fr } and the closed interval [Gi : Fi] is the set {Gi ⊆ H ⊆ Fi }. For

example, the simplicial complex ∆ with facets F(∆) = {x1x2x3, x2x3x4, x2x4x5, x1x2x5 } has

a partition

∆ = [∅ : x1x2x3] ∪ [x4 : x2x3x4] ∪ [x5 : x2x4x5] ∪ [x1x5 : x1x2x5] .
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A long standing and central conjecture in Combinatorics, cf. [St, Problem 6], [St3, Conjecture

2.7] is:

Conjecture 10.1. If the Stanley-Reisner ring of a simplicial complex ∆ is Cohen-Macaulay,

then ∆ is partitionable.

The conjecture clearly holds for shellable simplicial complexes, but is open for con-

structible ones. By Alexander duality [ER, Te], a simplicial complex ∆ is Cohen-Macaulay

if and only if the Alexander dual ideal I∆∨ has a linear resolution. Thus, Conjecture 10.1

leads to the conjecture that if a monomial ideal has a linear resolution, then it has a Stanley

decomposition, cf. [JA, HJY, EP].

Recall that there exists a polynomial h(t) such that the Hilbert series of S/I is

h(t)

(1 − t)dim(S/I)
. The coefficients of this polynomial form the h-vector.

According to [St, Problem 1], the question whether the g-Theorem holds for Gorenstein

simplicial complexes is perhaps the main open problem in the subject of h-vectors. It states:

Problem 10.2. (Stanley) [St, Problem 1] If I is a square-free monomial ideal such that the

quotient S/I is Gorenstein with an h-vector (h0, . . . , hq), then is it true that h0 ≤ h1 ≤ . . . ≤

h q

2
? (It might be reasonable to generalize the problem to non-monomial ideals.)

An overview of the cases when the g-Theorem holds is given in [St]. A possible goal is to

characterize the Hilbert functions (equivalently, h-vectors) of Gorenstein simplicial complexes,

cf. [St3, Conjecture 6.2]. Another goal was stated in Open-Ended Problem 4.5: to characterize

the Hilbert functions of Gorenstein graded algebras; for example, see [BR] for a result in this

direction. Another conjecture in the Gorenstein case is:

Problem 10.3. (Charney-Davis-Stanley) [RW], [St, Problem 4] Let I be a quadratic square-

free monomial ideal such that S/I is Gorenstein with h-vector (h0, . . . , h2e). Is it true that

(−1)e(h0 − h1 + h2 − . . . + h2e) ≥ 0?

It might be reasonable to generalize Problem 10.3 to all Koszul (non-monomial) ideals. (See

Section 13 for definition of Koszulness.)

A sequence c0, . . . , cr of real numbers is called unimodal if for some 0 ≤ s ≤ r we have

c0 ≤ . . . ≤ cs−1 ≤ cs ≥ cs+1 ≥ . . . ≥ cr . The sequence is called log-concave if c2
i ≥ ci−1ci+1 for

all 1 ≤ i ≤ r − 1. A log-concave sequence of positive numbers is unimodal.

Conjecture 10.4. (Stanley) [St2] If S/I is a Cohen-Macaulay integral domain, then its

h-vector is unimodal.

See [HNO] for a result in this direction. The following problem is in the spirit of the

above conjecture.
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Open-Ended Problem 10.5.

(1) Find classes of graded ideals for which the sequence of Betti numbers is log-concave

or just unimodal.

(2) The graded Betti numbers are log-concave or just unimodal if for every j ≥ 0 the

sequence of the Betti numbers in the j’th strand {bS
i,i+j(S/I)}i≥1 has the desired

property. Find classes of graded ideals for which the graded Betti numbers are log-

concave or just unimodal.

11. Betti numbers of infinite free resolutions

We continue with open problems and conjectures on infinite free resolutions. Expository

lectures in this area are given in [Av]; see also [Av3, Av4]. In view of the examples in [Ei3]

which show that the beginning of an infinite free resolution can be unstructured, it is natural

to focus on the asymptotic properties of the resolutions. In the rest of this paper, we assume

that R = S/I and I ⊆ (x1, . . . , xn)2.

The following problem seems to be the most basic open problem on infinite free reso-

lutions.

Problem 11.1. (Avramov) [Av2] Is it true that the Betti numbers of every finitely generated

graded R-module are eventually non-decreasing?

The following two special cases of 11.1 are of interest.

Problem 11.2. (Ramras) [Ra] Is it true that if the Betti numbers of a graded finitely

generated R-module are bounded, then they are eventually constant?

Problem 11.3. Does there exist a graded finitely generated periodic R-module (that is, a

module isomorphic to some of its syzygies) with non-constant Betti numbers?

In the rest of this section, M stands for a graded finitely generated R-module. The

following question related to 11.1 is also open.

Problem 11.4. (Avramov) [Av] Is the limit lim supn→∞

bR
i+1(M)

bR
i (M)

always finite?

For a long time the rationality of the Poincarè series
∑

i≥0 bR
i (M)ti was a central

problem in Commutative Algebra. After Anick’s example of an irrational Poincarè series [An],

the research can be continued in the following directions.

Open-Ended Problem 11.5. Find classes of graded rings over which every finitely generated

graded module has a rational Poincarè series.

Open-Ended Problem 11.6. If the Poincarè series of a finitely generated graded module is

rational, then what can be said about its denominator and its roots?
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A motivation for the above problem comes from the fact that the radius of convergence

of the Poincarè series can provide a measure of the asymptotic behavior of the Betti numbers,

cf. [Su]. There are a number of questions on the asymptotic growth of the Betti numbers. It

is known that the growth of the Betti numbers in a minimal free resolution over a quotient

ring is at most exponential. The following problems are wide open, cf. [Av].

Problem 11.7. (Avramov) What types of growth can the sequence of Betti numbers have?

Are polynomial and exponential growth the only possibilities?

Polynomial growth can be measured by the complexity

cxR(M) = inf
{
c ∈ N

∣∣∣ there exists a polynomial p(t) of degree c − 1,

such that bR
i (M) ≤ p(i) for i ≥ 1

}
.

Avramov raised the question whether complexity satisfies the analogue of the

Auslander-Buchsbaum Formula:

Problem 11.8. (Avramov) [Av] Suppose that cxR(M) < ∞. Is it true that cxR(M) ≤

codepth(R)?

It is also unknown if finite complexity forces polynomial asymptotic behavior:

Problem 11.9. (Avramov) [Av] Suppose that c = cxR(M) < ∞. Is it true that there exists

a constant a ∈ R such that

lim
i→∞

bR
i (M)

i(c−1)
= a ?

The curvature

curvR(M) = lim supi→∞

ln(bR
i (M))

ln(i)

is another numerical invariant introduced by Avramov in order to measure growth.

Problem 11.10. (Avramov) [Av] Does curvR(M) = 1 imply cxR(M) < ∞?

Problem 11.11. (Avramov) [Av] Suppose that curvR(M) > 1. Is it true that there exists a

constant a ∈ R such that

lim
i→∞

bR
i (M)

(curvR(M))i
= a ?

The sequence of Betti numbers {bR
i (M)}i≥0 has strong polynomial growth if there exist

two polynomials f(x) and g(x) in R[t] of the same degree and with the same leading term,

such that f(i) ≤ bR
i (M) ≤ g(i) for i >> 0. The sequence {bR

i (M)}i≥0 has strong exponential
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growth if there exist two numbers α, β ∈ R, such that α > 1, β > 1 , and αi ≤ bR
i (M) ≤ βi

for i >> 0. It is of interest to find modules with such types of growth.

Open-Ended Problem 11.12. Find classes of graded finitely generated modules with strong

polynomial growth, or with strong exponential growth.

12. Complete intersections and exterior algebras

There has been a lot of exciting progress on the structure of minimal free resolutions over

complete intersections (cf. [AB2, AGP, Ei3]) and over exterior algebras (cf. [AAH, Ei6, Ei7,

EFS]). Although we list only two specific problems, we believe that these areas are very fruitful

and important, and that it is of high interest to continue studying such resolutions.

Let I be generated by a homogeneous regular sequence f1, . . . , fc, and consider the

complete intersection R = S/I. Given a complex of free R-modules G, choose a sequence of

homomorphisms of free S-modules G̃, such that G = R⊗SG̃. Since R⊗ d̃ = 0 (where d̃ is the

differential in G̃) there exist maps τ̃i : G̃ → G̃ of degree −2, such that d̃2 =
∑c

i=1fiτ̃i. Then

for 1 ≤ i ≤ c define maps τi : G → G of degree −2 by setting τi = R⊗ τ̃i. These operators are

called Eisenbud operators and were introduced by Eisenbud in [Ei3]; cf. also [AG, AS]. They

are independent up to homotopy of the choice of the lifting d̃, they are homomorphisms of

complexes, and they commute up to homotopy. Thus, TorR(M,k) and ExtR(M,k) are graded

modules over the polynomial ring in c variables. It would be helpful to have this property for

the resolution itself, but the following conjecture is open.

Conjecture 12.1. (Eisenbud) [Ei3] Let G be the minimal free resolution of a finitely gener-

ated module over a complete intersection. The Eisenbud operators on G can be chosen so that

they commute asymptotically. (Here, “asymptotically” means that we ignore the beginning

of the resolution and consider a high enough truncation.)

In [EH] the following problem is stated in the case when R is a complete intersection,

but the authors remark that this assumption might be unnecessary.

Problem 12.2. (Eisenbud-Huneke) [EH] Let G be a graded minimal free resolution over R.

Do there exist a number p and bases of the free modules in G, such that for all i ≥ 0 we have

that each entry in the matrix of the differential di has degree less than p?

13. Koszul rings and Rate

Throughout this section we assume that R = S/I and I ⊆ (x1, . . . , xn)2. If regularity is

infinite, then a meaningful numerical invariant is rate. Backelin introduced

16



rateR(k) = sup
{ pi − 1

i − 1

∣∣∣ i ≥ 2
}

, where pi = max{ j | bR
i,j(k) 6= 0 or j = i},

called the rate of k over R (sometimes called the rate of R).

By [ERT], if I is a monomial ideal and q is the maximal degree of a monomial in its

minimal system of monomial generators, then rateS/I(k) = q − 1. Furthermore, rateS/I(k) ≤

rateS/in(I)(k) for every initial ideal in(I) of I. Therefore, rateR(k) < ∞. Thus, Open-Ended

Problem 3.18 yields an upper bound on the rate.

Open-Ended Problem 13.1. Find classes of rings over which you can give a sharp bound

on the rate of k.

Koszul rings play an important role in Commutative Algebra, Algebraic Geometry,

and other fields. A ring R is called Koszul if the following equivalent conditions hold:

◦ if i 6= j then the graded Betti number bR
i,j(k) of k over R vanishes

◦ the entries in the matrices of the differential (in the minimal free resolution of k) are

linear forms.

◦ rateR(k) = 1.

Open-Ended Problem 13.2. Find classes of rings, which are Koszul.

Roos [Ro] constructed for each integer j ≥ 3 a quotient ring W generated by 6 variables

subject to 11 quadratic relations, with bW
ij (k) = 0 for i 6= i < j and bW

j,j+1(k) 6= 0. Therefore,

the Koszul property cannot be inferred from the knowledge of any finite number of Betti

numbers of k. One of the most fruitful techniques in establishing the Koszul property is to

obtain a quadratic Gröbner basis. Thus, Open-Ended Problem 13.2 leads to:

Open-Ended Problem 13.3. Find classes of ideals with quadratic Gröbner basis.

The following is the most interesting currently open conjecture on Koszul toric rings.

Problem 13.4. (Bøgvad) Is the toric ring of a smooth projectively normal toric variety

Koszul?

In particular, it is not known:

Problem 13.5. (Bøgvad) Is the toric ideal of a smooth projectively normal toric variety

generated by quadrics?

Problem 16.7 is a very challenging open question on Koszul rings and comes from the

theory of Hyperplane Arrangements.
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14. Generic Poincarè series

This is a new area of research on infinite free resolutions. Avramov has recently raised the

problem to search for meaningful conjectures and ideas on what generic behavior means for

Poincarè series.

Let I be the ideal generated by the set U = {f1, . . . , fr} of r generic forms of fixed

degrees a1, . . . , ar. Let V be a matrix with homogeneous entries; for simplicity, we may assume

that the entries are linear forms. The data U, V is parametrized by an algebraic variety. We

consider the minimal free resolution of the cokernel of V over the quotient ring R = S/I.

Thus, we consider the minimal free resolutions of cokernels of generic matrices over generic

quotient rings.

There are several directions, which one might explore. One of them is to vary the

generators of I.

Open-Ended Problem 14.1. (Avramov) Let I be generated by generic forms f1, . . . , fr of

degrees a1, . . . , ar. What can be said about the Poincarè series of k over R?

For example, Fröberg and Löwfall prove that if a1 = . . . = ar = 2 and r ≤ n or

r ≥ n/2 + n2/4 then generic quotient rings are Koszul, and Conca [Co] studies quadratic

Gröbner basis. More generally one can ask:

Problem 14.2. (Avramov) Is the Poincarè series of k over R determined by the Hilbert series

of R if I is generated by generic forms?

Another possibility is to fix the generators of I, but vary the module that we are

resolving.

Open-Ended Problem 14.3. (Avramov) Let R be fixed (here we either want I to be

generated by generic forms, or to have another assumption on I). What can be said about

the Poincarè series of the generic finitely generated modules over R?

Yet another possibility is to fix some parameters or properties, and then search for

generic behavior. An example of this kind is that if you take 7 generic quadrics in 4 variables

and a module presented by a (2×2)-matrix with generic linear entries, then its Betti numbers

are constant and equal to 2. Results over rings with (x1, . . . , xn)3 = 0 are obtained in [Co,

AIS]. Recall that the pair U, V is parametrized by an algebraic variety X. The following

question was raised by Avramov, Iyengar, and Sega recently.

Problem 14.4. (Avramov, Iyengar, Sega) Let I be generated by generic quadrics. Here we

vary both U and V . Denote by A the set of points in X for which the cokernel of V over

R has constant Betti numbers. Does A contain a non-empty Zariski open set? Denote by B
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the set of points in X for which the cokernel of V over R has constant Betti numbers and a

non-periodic minimal free resolution. Does B contain a non-empty Zariski open set?

Eisenbud raised (long time ago) a related question, where U is fixed.

Open-Ended Problem 14.5. Consider a fixed quotient ring R = S/I, where I is generated

by (generic) quadrics (perhaps, we need to impose some restrictions on R). For example,

consider the ring constructed in [GP].

(1) Denote by B the set of points for which the cokernel of V over R has Betti numbers

equal to 2 and a non-periodic minimal free resolution. Does B contain a non-empty

Zariski open set? What can be said about B?

(2 Let T be a graded finitely generated R-module with Betti numbers equal to 2 and a

non-periodic minimal free resolution. What can be said about the infinite set of points

that are syzygies of T?

15. Monomial and Toric ideals

The problems in this section concern both finite and infinite minimal free resolutions.

Some of the known concepts/constructions useful for studying finite resolutions of

monomial ideals are: the Stanley-Reisner correspondence, simplicial and cellular resolutions,

Alexander duality, the lcm-lattice, algebraic and combinatorial shifting, discrete Morse theory,

the Scarf complex. The main goal in this area is:

Open-Ended Problem 15.1. Introduce new constructions and ideas on resolutions of mono-

mial (or toric) ideals.

A monomial ideal M is p-Borel fixed if it is invariant under the action of the general

linear group in characteristic p; such ideals are characterized by a combinatorial property on

the multidegrees of their monomial generators. The interest in studying such ideals comes

from the fact that the generic initial ideals are p-Borel fixed in characteristic p. The minimal

free resolution of a 0-Borel fixed ideal is known; it is the Eliahou-Kervaire resolution.

Problem 15.2. (Evans-Stillman) Describe the minimal free resolution and find a formula

for the regularity (and the Betti numbers) of a p-Borel fixed ideal if p > 0. Note that the

resolution is considered in characteristic 0.

There are a number of particular classes of monomial or toric ideals, for which one

might expect to get interesting results on the structure of their minimal free resolutions. For

example:

Open-Ended Problem 15.3. Find a formula (or at least sharp upper bounds) on the

regularity of an edge monomial ideal in terms of the properties of the defining graph.

Open-Ended Problem 15.4. Find a formula (or at least sharp upper bounds) on the
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regularity or rate of an edge toric ideal, in terms of the properties of the defining graph.

Let G be the minimal free resolution of a monomial ideal over R = S/I. Assume that

I is either a monomial or a toric ideal. It will be interesting to explore what can be said about

the structure of G. For example:

Open-Ended Problem 15.5. Develop the theory of infinite cellular resolutions.

Open-Ended Problem 15.6. Find how to compute the Betti numbers of G using various

simplicial complexes.

When I is a square-free monomial ideal and J is the maximal ideal, Problem 15.5 is

solved by Berglund [Be] and he also proved the conjecture by Charalambou-Reeves on the

possible terms in the denominator of the Poincarè series.

Problem 15.7. Construct G in the case it is resolving a lex ideal. (For example, we can

assume here that R is a Veronese or a Segre ring.)

Problem 15.8. Let C = S/(xa1

1 , . . . , xan
n ), where a1 ≤ a2 ≤ . . . ≤ an ≤ ∞, be a Clements-

Lindström ring. Construct the minimal free resolution over C of a Borel ideal.

16. Problems on Subspace Arrangements

The problems in this section concern both finite and infinite minimal free resolutions. For

background on Subspace Arrangements, see [OT]. A set A of subspaces in Cr is called a

subspace arrangement.

Open-Ended Problem 16.1. Study problems that relate the properties of subspace ar-

rangements and minimal free resolutions.

The above problem sounds vague, but this is a new area of research and Problem 16.1

is just inviting to explore in that direction. [PRW] provides a result of this type. Another

similar problem is about the complement Cr \A, whose topology has been extensively studied

in topological combinatorics. [GPW] provides a result in the spirit of the next problem.

Open-Ended Problem 16.2. Relate the cohomology algebra of the complement Cr \A and

Tor-algebras.

In the rest of this section, we assume that A =
n⋃

i=1

Hi ⊆ Cr is a central arrangement

of n hyperplanes (“central” means that each of the hyperplanes contains the origin). The

cohomology ring A of the complement Cr \ A has a simple combinatorial description; it is

a quotient of an exterior algebra by a combinatorially determined ideal. Namely, if E is the

exterior algebra on n variables e1, . . . , en, then the Orlik-Solomon algebra is A = E/J where
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J is generated by all elements

∂(ei1∧ . . .∧eip
) =

∑

1≤q≤p

(−1)q−1ei1∧· · ·∧ êiq
∧· · ·∧eip

for which codim (Hi1 ∩· · ·∩Hip
) < p ;

such a set {i1, . . . , ip} is called dependent. The Orlik-Solomon algebra is similar in some ways

to the Stanley–Reisner ring, but formulas for the graded Betti numbers are elusive.

Problem 16.3. Find a combinatorial description for the Betti numbers dimCTorE
i (A,C)j (in

special cases).

First steps in this direction are taken in [KR]. The Betti number dimCTorE
i (A,C)i is

the ith Chen rank [SS]. The Resonance Formula in [Su] is an intriguing conjecture for these

numbers.

Even more challengingly, we could ask for descriptions of the differentials in the reso-

lutions. Investigating in special classes of rings (arrangements) is likely to yield results.

Problem 16.4. Construct the minimal free resolution of the Orlik-Solomon algebra A over

the exterior algebra E (in special cases).

Problem 16.5. Construct a nicely structured non-minimal free resolution of the Orlik-

Solomon algebra A over the exterior algebra E (in special cases).

We can also study the minimal free resolution of C over the quotient ring A.

Problem 16.6. Find a combinatorial description for the Betti numbers dimCTorA
i (C,C)j .

When A is Koszul, then a formula is known for the Betti numbers dimCTorA
i (C,C)i.

These linear Betti numbers are of great interest in algebraic topology since they are related

to the homotopy of the complement Cr \ A by the formula

∏∞

j=1
(1 − tj)−ϕj =

∑

i≥0

dimCTorA
i (C,C)it

i ,

where ϕi is the ith lower central series rank (LCS rank) of the fundamental group π1(C
r \A),

cf. [Pe2]. In the introduction to [Hir], Hirzebruch wrote: “The topology of the complement

of an arrangement of lines in the projective plane is very interesting, the investigation of

the fundamental group of the complement very difficult.” The following problem is a very

challenging open question in this direction.

Problem 16.7. [FRa, Problem 2.2] Find a non-supersolvable central hyperplane arrangement

for which the Lower Central Series Formula
∏∞

j=1(1− tj)ϕj = HilbA(−t) holds. Equivalently

(by [Pe2]), find a Koszul Orlik-Solomon algebra without a quadratic Gröbner basis.
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See [FRa] for more problems in this direction. Problem 16.7 is similar in flavor to the

example of the pinched Veronese ring, which was proved to be Koszul by Caviglia in [Ca].

A set W ⊆ {1, . . . , n} is called a circuit if it is dependent and has minimal support

among the dependent sets, and W is a broken circuit if there exists a hyperplane Hi such that

W ∪ i is a circuit and i > max(W ). We call the monomial ei1 ∧ . . . ∧ eip
a circuit (or broken

circuit) if W has that property. The broken circuit ideal T the monomial ideal in E generated

by the broken circuits. Consider the lex order in the exterior algebra E with e1 > . . . > en. If

W = {i1 < . . . < ip} is a circuit, then the initial term of ∂(ei1 ∧ . . .∧ eip
) is the broken circuit

ei1 ∧ . . .∧ eip−1
. Therefore, the ideal T is contained in the initial ideal of J . By [OT, Theorem

3.43], it follows that T is the initial ideal. In view of the above questions, it is interesting to

obtain information about E/T .

Problem 16.8. Consider problems 16.3–16.6 for E/T instead of A.

Another interesting object is the module Ω1(A) of logarithmic one-forms with pole

along the arrangement or (dually) the module D(A) of derivations tangent to the arrangement.
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[BSö2] M. Boij, J. Söderberg: Betti numbers of graded modules and the Multiplicity Conjecture in the non-

Cohen-Macaulay case, preprint.

[BGT] W. Bruns, J. Gubeladze, N.Trung: Problems and algorithms for affine semigroups, Semigroup Forum

64 (2002), 180–212.
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Mathematics 166, (1998), 119–185.

[GPS] G-M. Greuel, G. Pfister, and H. Schnemann: SINGULAR – a system for computation in algebraic

geometry and commutative algebra, 1997, available from http://www.singular.uni-kl.de/

[GLP] L. Gruson, R. Lazarsfeld and C. Peskine: On a theorem of Castelnuovo, and the equations defining

space curves, Inventiones mathematicae 72 (1983), 491–506.

[GV] E. Guardo, A. Van Tuyl: The minimal resolutions of double points in P
1
× P

1 with ACM support,

J. Pure Appl. Algebra 211 (2007), 784–800.

[Ha] H. Ha: Multigraded regularity, a
∗-invariant and the minimal free resolution, J. Algebra 310 (2007),

156–179.

[Harb] B. Harbourne: Problems and progress: a survey on fat points in P2. Zero-dimensional schemes and

applications (Naples, 2000), 85–132, Queen’s Papers in Pure and Appl. Math. 123, Queen’s Univ.,

Kingston, ON, 2002.

[Har] R. Hartshorne: Connectedness of the Hilbert scheme, Publ. Math. IHES 29 (1966), 5-48.

[HSS] M. Hering, H. Schenck, G. Smith: Syzygies, multigraded regularity and toric varieties, Compos. Math.

142 (2006), 1499–1506.

[He] J. Herzog: Finite free resolutions, in Computational commutative and non-commutative algebraic

geometry, 118–144, NATO Sci. Ser. III Comput. Syst. Sci. 196, IOS, Amsterdam, 2005.

[He2] J. Herzog: Generic initial ideals and graded Betti numbers., in Computational commutative algebra

and combinatorics (Osaka, 1999), 75–120, Adv. Stud. Pure Math. 33, Math. Soc. Japan, Tokyo, 2002.

[HJY] J. Herzog, A. Jahan, and S. Yassemi: Stanley decompositions and partitionable simplicial complexes,

J. Algebraic Combin. 27 (2008), 113–125.

[HM] T. Hibi and S. Murai: The behaviour of Betti numbers via algebraic shifting and combinatorial

shifting, preprint.

[HNO] T. Hibi, H. Nishida, H. Ohsugi: Hilbert functions of squarefree Veronese subrings, Proceedings of the

4th Symposium on Algebra, Languages and Computation (Osaka, 2000), 65–70, Osaka Prefect. Univ.,

Sakai, 2001.
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