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Abstract  LIDAR (LIght Detection And Ranging) data are a primary data source for digital terrain 
model (DTM) generation and 3D city models. This paper presents a three-stage framework for a robust
automatic classification of raw LIDAR data as buildings, ground and vegetation, followed by a
reconstruction of 3D models of the buildings. In the first stage the raw data are filtered and interpolated
over a grid. In the second stage, first a double raw data segmentation is performed and then geometric
and topological relationships among regions resulting from segmentation are computed and stored in a
knowledge base. In the third stage, a rule-based scheme is applied for the classification of the regions.
Finally, polyhedral building models are reconstructed by analysing the topology of building outlines,
building roof slopes and eaves lines. Results obtained on data sets with different ground point density,
gathered over the town of Pavia (Italy) with Toposys and Optech airborne laser scanning systems, are
shown to illustrate the effectiveness of the proposed approach.

Keywords  Range images (LIDAR) - DTM - Segmentation - Classification - 3D city models - Building
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1   Introduction
Demands for digital terrain models (DTMs) [1] and 3D representations of the urban environment (3D 
city models) [2] are growing very much. High accuracy, high-resolution DTMs have become important 
in a wide range of applications in civil engineering, environment protection and planning, driven by
raising standards (e.g. requirement of strict cost estimation of earthworks in road building) and by the
development of improved prediction techniques for hydro-geological risk assessment and delimitation
of areas subject to flooding. Besides, several tasks (e.g. urban planning and set-up of
telecommunications networks) need 3D city models to be input in spatial databases, visualisation or
virtual reality tools, wave propagation simulators, etc. Depending on the purpose these models are built
for, several levels of detail and information can be incorporated. For example, buildings can be
represented just as simple boxes with no pictorial information on their facades. In other cases, roof
modelling and textures (artificial or photo textures from rectified images) may be required at least in 
some areas (e.g. for virtual tours). This affects production costs as well as data acquisition and
modelling techniques. If building elevations and digital ground plans are available, simple solid models
can be easily produced; if a DTM is available, more realistic perspective views can be generated,
possibly mapping textures on the DTM (colour raster maps or orthoimages are often used) to improve
the visual representation. However, roof modelling, adding textures to building facades and including 
vegetation dramatically increase production costs, calling for as much automation as possible.

To fulfil demands of the above two products, LIDAR (LIght Detection And Ranging) [3] is probably the 
most effective technology, thanks to the high level of automation of its data acquisition workflow (raw
data are routinely available just a few hours after landing) and to the accuracy and density of the 3D data
delivered. For a true breakthrough in terms of overall production times to be achieved, the automation
level of LIDAR data processing must be improved: the real goal today is to develop effective filtering
and classification techniques for raw data, to avoid time-consuming interactive editing.

In this paper, we present a framework for LIDAR data classification and building reconstruction from 
LIDAR data only. Our aims are the separation of raw data in three main classes (vegetation, bare terrain
and buildings) and the geometric reconstruction of polyhedral models of buildings, achieved by
identifying roof slopes and eaves lines.

The paper is organised as follows. In Sect. 2
we introduce the problems of DTM generation and building reconstruction as faced by the LIDAR
technology. Section 3
describes the proposed framework for LIDAR data classification. Roof segmentation and modelling are 
examined in Sect. 4
together with the construction of a 3D vector model for all buildings. Experimental results and some 
discussions are reported in Sect. 5, before conclusions.

2  
DTM generation and building reconstruction from 
LIDAR data
In this section, after a brief description of the LIDAR technology, we describe the state of the art in 
LIDAR data processing, an overview of our approach and its main characteristics, also in comparison to
other technologies.
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2.1   LIDAR technology
Airborne laser scanners determine the ground position of points with an accuracy of 10–40 cm. The
main components of a LIDAR system are a scanning laser telemeter, which measures the
sensor-to-ground distance, and a global positioning system (GPS) receiver integrated with an inertial
measurement unit (IMU). A Kalman filtering [4] determines the sensor position and attitude at the time
each pulse is emitted, so that the 3D coordinates of each echo received back from a single pulse are
computed. The system may be operated from helicopters or aircrafts, depending on system
characteristics and mission parameters. Combination of the aircraft movement and the scanning across
flight direction by an oscillating mirror results in a swath of terrain being sampled. The point density is
in the order of 0.3–1 pt/m2 for high-accuracy DTMs and may be as high as 3–5 pt/m2 for production of 
3D city models.

Most systems record the intensity of the reflected signal, which is to some extent a measure of the 
surface reflectance. Attempts of using this information in data classification have been made with mixed
or poor results. Since visual representation of the terrain, mainly through orthophoto production or by
including 3D photorealistic models, is still a key by-product of DTM production, most LIDAR systems
are now coupled with an image recording system, such as an aerial photogrammetric camera or a
high-resolution digital camera. Some systems can also discriminate several returns from a single emitted
pulse (multiple echoes arise, for instance, when the pulse hits a power line, then a tree and finally the
terrain, each surface reflecting back a fraction of the signal). Most systems retain at least the first and
the last echo: since vegetation is penetrated by a certain percentage of laser pulses, this represents an
effective way either to measure the canopy volume or to classify points. This is a clear advantage of
LIDAR against image-based methods in DTM generation. LIDAR looks therefore better suited and
more versatile than photogrammetry for DTM production; terrain breaklines extraction, on the other 
hand, is still critical because the anisotropic sampling pattern results in a poor definition of planimetric
features at least in one direction (normally across the flight direction). Besides, data pre-processing, strip
adjustment and strip georeferencing still deserve attention to remove systematic errors [5–7].

2.2   Related work
Automatic approaches to DTM generation and building reconstruction based on radiometric images 
have long since been a research topic [8]. Even using multiple overlapping images and sophisticated 
signal and feature-based matching techniques, they still face problems both in DTM generation (e.g.
steep slopes, forests and urban areas) and in building reconstruction (e.g. detached houses close to high
trees and old city centres). LIDAR technology has obvious advantages in both cases. Most segmentation
problems arising from shadows and occlusions can be considerably reduced using range data. Height
data provide directly the shape and geometric information and are independent of illumination and
texture: with sufficient ground resolution, the quality of the segmentation is better than any other
obtained by automatic techniques applied to optical images. Therefore photogrammetry, to date the
incumbent technology, is likely to see its role diminished to a support for data analysis and data 
integration. Increasing cooperation between image and LIDAR data can also be expected in data
processing and analysis; this is especially true in building extraction, with the former supplying edges
and the latter providing roof identification and roof surfaces, but it will likely apply to data classification
as well.

The main task in automatic DTM generation from LIDAR data is the separation of terrain points from 
non-terrain points; further classification of non-terrain points in buildings, vegetation and other objects
(e.g. bridges) may be necessary, depending on the application. Different filtering strategies have been
proposed, based on deviations from a parametric surface, slope threshold, clustering, etc. Kraus and
Pfeifer [9] filtered out trees in forested areas by fitting an interpolating surface to the data and using an 
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iterative least-squares scheme to bring down the contribution of points above the surface, so that it gets
closer and closer to the lowest data points; the method is effective, but it would not work in urban areas,
and negative outliers may bias the interpolating surface. Rottensteiner and Briese [10] extended the 
technique to also filter out buildings and to discriminate them from vegetation. With this aim, they used 
that interpolating method iteratively on the levels of a data pyramid, where the DTM is improved in
spatial resolution from a coarse initial grid; buildings and vegetation are classified by thresholding the
height differences between the DTM and the digital surface model (DSM, i.e. the mathematical surface
interpolating the raw data). Axelsson [11] proposed an iterative densification of a triangular irregular 
network (TIN), starting from seed points and adding new ones if they satisfy slope-dependent
thresholds. Vosselman and Maas [6], after defining a slope threshold as the maximum allowed height 
difference between two points as a function of their spatial distance, developed a slope-based filtering
using mathematical morphology. These last two methods do not discriminate buildings from vegetation,
depend on the size of the largest non-terrain feature (the largest building in the area) and are susceptible
to negative outliers (i.e. points under the true terrain surface). Brovelli et al. [12] filtered out non-terrain 
points by a complex iterative procedure, based on the analysis of gradient, surface orientation and
residuals from successive spline interpolations. Within a threshold-based evaluation grid, points are first
divided between ground and objects, and then the latter set is further divided into buildings and
vegetation. Other approaches tried a classification of data points, but with partial or no explicit reference
to terrain, vegetation and buildings (i.e. without an explicit separation of laser points): based on
curvature and height difference analysis, Filin [13] developed a method for clustering data points in 
surface categories such as low and high vegetation or smooth and planar surfaces; based on connectivity
and principal component analysis, Roggero [14] clustered points using geometric descriptors such as 
static moments, curvature and data anisotropy.

Buildings play a very important role especially in urban environments. Photogrammetry is technically 
capable of providing 3D city models virtually at any scale and accuracy, but with a main drawback in its
costs, particularly as far as stereoscopic plotting, requiring trained personnel, is concerned. Several
groups and projects have been dealing with automatic building extraction and modelling, focusing on
specific stages of the process: finding whether or not there is a building in the data set (object detection),
finding its position (object location) and building up its 3D representation (object reconstruction). In
interactive systems, object detection may be performed by the operator, while object reconstruction is 
mainly or mostly automatic, thanks to the integration of constructive solid geometry (CSG), supported
by a graphic user interface (GUI), in the estimation of the building model parameters [15, 16]. Indeed, 
witnessing the difficulty of the task, very few (and with low automaticity) commercial software 
packages exist [17].

As far as automatic building reconstruction is concerned, LIDAR data have been taken into 
consideration since mid-1990s. As a rule, much as in image-based techniques, building reconstruction is
performed by a preliminary segmentation, followed by data classification and generation of building
hypotheses; each hypothesis is later checked for further evidence, measuring its consistency with a
building model and reconstructing its shape and location. Haala and Brenner [18], Haala [19], Brenner 
[20] used ground plans to detect buildings and form roof slope hypotheses; roof modelling is achieved 
by segmenting a DSM in planar surfaces using the RANSAC procedure [21] and reconstructing roof 
topology by a rule-based approach. Weidner [22, 23] detected buildings by analysing the blobs in a 
normalised DSM (i.e. a DSM obtained by subtracting the DTM from the original DSM) and separated
buildings from vegetation looking at the variance of the local surface normals; building extraction is
performed using parametric models (general polyhedral can be recovered) by extracting the building 
ground plan, estimating the height and selecting the appropriate model from a library by the minimum
description length (MDL) principle.

2.3   Approach overview
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This paper presents a three-stage framework for a complete, robust and automatic classification of 
LIDAR data as buildings, ground and vegetation, followed by a reconstruction of 3D models of the
buildings. In the first stage, the raw data are filtered and interpolated over a grid. In the second stage,
first a double grid data segmentation is performed (a region-growing technique to obtain regions with a
step edge along their border and a grouping of connected sets of pixels on the basis of an 8-classes
partition of the height gradient orientation) and then geometric and topological relationships among 
regions resulting from segmentation are computed and stored in a knowledge base. In the third stage, a
rule-based scheme is applied for the classification of the regions. Finally, polyhedral building models
are reconstructed by analysing the topology of building outlines, building roof slopes and eaves lines.
The architecture of the system is sketched in Fig. 1, where, in particular, the double relationship between
“Region classification” and “Knowledge base” modules refers to the iterative nature of the classification
process.

Fig. 1 
Components and main relationships of the framework for LIDAR data classification and 3D building
reconstruction

A first important aspect of this framework is to combine data classification and building extraction, 
putting the topological description of the data at the core of both tasks. At each stage of the
segmentation process, the topological structure of the segmented regions is updated and relevant
information recorded. Since the analysis of neighbourhood relationships is crucial to separate and label
regions in building detection as well as in roof segmentation and modelling, we believe this is a key
element to allow a rule-based scheme to succeed.

The rule-based scheme itself represents a second characteristic of our approach making it easily 
adaptable to different situations: more specific rules, depending on the environment/application, might
be easily added to disambiguate the classification of some regions. In particular, this can be exploited in
the case of information data fusion.

A third important characteristic of our approach is that it uses grid data to take advantage of their 
regularity in data processing, but it is possible to go back to raw data when necessary, for example, to
extract more accurate building contours or in the estimation of roof slopes. The hierarchical structure of
the framework enables reasoning about data relationships at an appropriate scale and provides the
contextual information essential to increase the probability of correct classification of each data point in
the final stage. For instance, when several raw data points fall into a grid cell, the interpolation 
algorithm that will be applied may privilege the lower points in DTM generation or the higher points in
building extraction. A major motivation for this strategy is that effective filtering cannot be separated by
some sort of object recognition.
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Compared with other filtering techniques our strategy relies on a very simple but effective segmentation,
which allows the straightforward separation of most vegetation and buildings from the terrain: in this
respect, it is faster than most other approaches; it is simpler and at least as effective as Rottensteiner and
Briese’s technique; it is not sensitive to positive or negative outliers; as Filin’s approach, though in a
different way, it combines both slope and height gradient information with surface texture analysis, but
with explicit classification of points; unlike slope-based filters, it is not sensitive to object size but
rather, as practically all strategies, to point density; excessive fragmentation of the segmentation may
result in more unclassified regions, otherwise normally less than 4%. However, a comparison of
segmentation results is difficult because of the lack of quantitative metrics [24]. It is therefore very 
interesting (and worthwhile continuing) the initiative undertaken by the International Society of
Photogrammetry and Remote Sensing (ISPRS) for a scientific competition on the comparison of existing
automatic filters in extracting DTMs from point clouds on different landscapes and varying point
densities [25]. The conclusions were that the filters performed well in landscapes of low complexity, 
while city areas and areas with sharp discontinuities in the bare earth still pose challenges. For this
reason, in addition to the above-described characteristics of our approach, let us underline how the good
results reported in the next sections are related to a wide and heterogeneous data set like the test site of
Pavia (see Sect. 5.1), which includes urban, suburban and rural environments.

As far as building reconstruction is concerned, our approach has some similarity to Haala’s, but it is
based only on LIDAR data, rather than relying on 2D map data, thus overcoming problems with missing
correspondences between reality and simplified or outdated maps. Indeed, in our test data, we found that
the last available digital map was out of date not only in the new suburbs, but also in the old city centre.
Though our building detection is rather effective, dispensing with map data makes reconstruction more
difficult, since detecting edges from LIDAR data is difficult. Using parametric building models is in
principle simpler and leads to consistent results; on the other hand, the variety of roof shapes found on
our test site would have made it inapplicable to the Pavia case.

3   LIDAR data classification
In this section we describe in detail the procedures and the set of rules used by our data classification 
framework. Raw data are first interpolated to a grid (Sect. 3.1); then a region-growing algorithm, which 
finds connected regions bounded by a discontinuity (Sect. 3.2), and a data segmentation based on 
gradient orientation (Sect. 3.3) are applied; finally, the extraction of topological and geometric features
of the regions (Sect. 3.4) makes it easier to apply a set of rules for data classification (Sect. 3.5).

3.1   Raw data interpolation
Four main issues arise in raw data interpolation: (a) outlier filtering; (b) the choice of the grid spacing; 
(c) what kind of interpolation to use when several data points fall into a grid cell; (d) how to handle data
gaps:

(a) Outliers are intended here as data below the terrain surface or data above the DSM (i.e. points
not falling on terrain, buildings and infrastructures, cars, vegetation, etc). They are dealt with
in the region growing (see Sect. 3.2).

(b) The size of a grid cell defines the discretization of raster data classification, so it depends on
the raw data point density. Ideally, in the context of building reconstruction we would use 0.5
or 1 m cell size, assuming in such cases densities larger than 1 pt/m2, a sort of entry level for 
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building reconstruction. In practice, with anisotropic laser spot distributions like those of a
Toposys instrument, deriving cell size just from point density (i.e. assuming a uniform 
distribution of laser footprints on the ground) may result in a relatively large percentage of
empty cells, whose heights will be interpolated from nearby cells.

(c) If the cell is empty we interpolate with the median of the 8- or 24-connected neighbours. If the
cell has just one point, we use nearest neighbour interpolation. With several points in the cell,
the median is used unless there is evidence of a step edge; if this is the case, an average that
weights more low points in DTM generation and more high points in building extraction is
computed.

(d) We do not fill gaps larger than 3×3 cells; such gaps (possibly coming from occlusions or
material with no laser response, etc.) are all conventionally classified as water.

Figure 2
shows the importance of the choice of the size of a grid cell in the transformation of raw data in grid 
data by interpolation. In particular, some details can totally disappear and the accuracy of object edges is
reduced when using larger grid cells.

Fig. 2  From raw to grid data. a Raw (grey) points with superimposed 1 m (black circles) or 2 m (black squares) 
grid points; b triangulated DSM of raw points; DSMs after interpolation on 1 m (c) and 2 m (d) grids

3.2   Region-growing segmentation
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A primary segmentation of grid data uses the following region-growing algorithm. Let begin the first 
region from any seed pixel; every one of its 8-connected neighbours with a height difference with
respect to the seed pixel less than a threshold is joined to the region and, in turn, becomes a seed pixel
for the same region. The process goes on until no more points can be joined to the region, i.e. until the
region will have expanded to a continuous border with a height discontinuity larger than the threshold.
The same process is started from another seed pixel to form a second region and goes on until all pixels
are assigned to a region. Notice that the aggregation technique does not rule out large discontinuities 
within a region. The algorithm expands in all directions where the slope is smaller than the threshold;
therefore, if there is a path smooth enough, it can for instance go round very steep terrain breaklines,
coming to the top from behind; as it is apparent from Fig. 3, the steep dome of a church falls in the same
region. Indeed, unless the DSM features closed breaklines steeper than the threshold, the procedure will
include all points in a single region. With a grid size of 1 m, the threshold was set to 0.5 m after some
trials; this value proved to be very effective in sorting out buildings and trees from the terrain. A higher 
threshold would make it possible for the algorithm to climb over buildings from nearby trees and also to
include in the same region several adjacent buildings, making their subsequent reconstruction more
complex. A lower threshold would cause an excessive fragmentation, which, in the end, would increase
the number of unclassified regions. Since in most cases the terrain will anyway end up split in several
regions (bordered, for instance, by dense tree rows, buildings or rivers), the labelling of regions
corresponding to terrain will be the major task of data classification. Besides, this preliminary 
segmentation does not separate all instances of terrain, vegetation and buildings: a region may enclose
objects of different classes (for instance, a building can be enclosed in the same region with vegetation),
which must then be separated. This is achieved both by refining the segmentation on the basis of the
orientation of the height gradient and by applying a set of rules, based on a geometric and topological
description of the segmented regions, during the classification process.

Fig. 3  Region-growing segmentation of Pavia’s dome: a aerial image and b segmentation results (1 m grid)

3.3   Gradient orientation segmentation
For each pixel the height gradient orientation is computed using the Roberts operator. Connected sets of 
pixels belonging to the same partition of the orientation space [26] are grouped and labelled (an 
8-classes partition is used). This information is then overlaid with the primary segmentation, mainly for
two reasons: to discriminate between vegetation and buildings and to identify roof slopes. In fact, by 
analysing the distribution of gradient orientation in each region resulting from region-growing
segmentation it becomes easier to distinguish vegetation from building roofs even when they have
comparable heights: contrary to what happens in regions corresponding to vegetation, roof slopes,
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despite noisy data, are always clearly defined and grouped in the same class. For example, this can be
seen in Fig. 4
by comparing the results of gradient orientation segmentation in the upper left part, characterised by
high trees, with those in main roofs and towers of Pavia’s castle.

Fig. 4  Gradient orientation segmentation of Pavia’s castle: a aerial image and b segmentation results (1 m grid)

The integration between the two segmentation methods is guided by the primary segmentation, which 
also remains the primary reference for the following processing. In particular, while regions resulting
from gradient orientation segmentation can be split or merged, regions resulting from region-growing
segmentation can be only split, but not merged. If, for example, a building with a gable roof is adjacent
to a lower building with a one-slope roof at its left and to trees with comparable heights at its right, the
results of the two segmentations could be those sketched in Fig. 5: data classification (see Sect. 3.5) 
based on the primary segmentation detects the two buildings, but probably includes trees together with 
the higher building; if the two leftmost roof slopes have slightly different orientations the gradient
orientation segmentation includes them in a unique region, while vegetation is separated in many
regions; at last, while the leftmost region is correctly recognised only on the basis of the primary
segmentation, three sub-regions are recognised during roof slope extraction (see Sect. 4.1.1), after 
partitioning the region corresponding to the higher building on the basis of results of gradient orientation
segmentation.

Fig. 5  Integration of segmentation results: a region growing; b gradient orientation; c final classification
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3.4   Geometric and topological description of the regions
A geometric and topological description of the regions is a key aspect of our approach. Basic statistical 
parameters are computed for each region resulting from the primary segmentation. The topological
information can be summarised in two graphs, the graph of external adjacencies (EAG) and the graph of 
heights (HG), and in a set, named the useful external border (UEB) of a region, defined as the set of 
pixels that surround the region and exist (do not belong to the image external border).

Let A be the set of n simply or multiply connected regions. An adjacency relationship (AR) between two 
regions A i and A j  ∈ A exists if and only if the UEB of A i and A j have a non-empty intersection. AR is 
reflexive and symmetric. If the UEB
is visited clockwise (so that the region is always to the right of the border), we can say that A j has an 
external adjacency relationship (EAR) with A i when A j is always on the left of the external border of A i
. According to this definition, EAR
is transitive but neither reflexive nor symmetric. The unique difference between our EAG and a usual 
adjacency graph (in which nodes represent the regions and arcs, bi-directional or, equivalently, not 
oriented, the adjacency relationships) is that the arcs must be oriented: if A i EAR A j and A j EAR A i are 
both true (this is not mandatory) the two nodes must be connected by two opposite arcs, not by one 
bi-directional arc.

HG has the same number of nodes as EAG. The arcs of HG are oriented from the node corresponding to 
the region with the higher mean elevation along the common border towards the lower one; the
difference between the mean heights is an attribute of the arc. In particular, an arc between two nodes 
exists only if AR is true.

Figure 6
reports an example of segmentation results as much realistic as representative of all typical relations 
among regions. Region 1 is the terrain, region 6 a courtyard, 4 is a small region and the remaining
regions are buildings. The EAG and the HG of all these regions are shown in Fig. 7. This example shows
clearly how the above-defined topological information can be used in data classification. According to
the rules in Sect. 3.5, the algorithm is not misguided by the fact that regions 2, 4, 8 and 9 are all 
surrounded by both lower and higher regions and it correctly classifies them. Labelling of regions 1 and
6, on the one hand, and of regions 3, 5 and 7, on the other hand, is straightforward because their nodes in
HG have, respectively, ingoing and outgoing arcs only.

Fig. 6  A typical result of the segmentation process
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Fig. 7  The EAG (on the left) and the HG (on the right) of the regions shown in Fig. 6

3.5   Grid data classification
The hierarchical application of a set of rules, based on geometric and topologic properties of regions 
resulting from the segmentation, assigns the regions to one of several classes: bare terrain, buildings,
vegetation, courtyards, water (or data gaps), narrow regions and noise. The process starts with the
identification of vegetation and noise; then the main terrain regions and the higher buildings are
extracted. At this point, some criteria (described below) to detect buildings are applied iteratively and
alternatively to other rules for the detection of fragmented terrain. Anyway, this alternation between 
building and terrain detection is usually necessary only for complex areas, such as city centres with
many adjacent buildings at different heights or residential zones where vegetation produces a high
fragmentation of terrain.

3.5.1   Vegetation, narrow regions and noise

The identification of vegetation and noisy data is straightforward, owing to the characteristics of our
region-growing algorithm: most points on trees fall in adjacent but distinct regions, typically 1–3 pixels
large, as do proper outliers (see Sect. 3.1). Small regions are defined as those containing less than 4 
pixels: if they are adjacent to other small regions, they are grouped in a single region, which is classified
as vegetation; if they are isolated, they are considered as noise. When both first and last pulses are
available, if pixels have differences between the height of the first and last pulses larger than 20 cm (i.e.
about two times the height noise level of the sensor) they are classified as vegetation. Narrow regions 
are defined as those with elongated shapes; they are often found on large trees, fences, dykes, balconies,
shelters, etc. Currently, we are not yet able to discriminate whether a narrow region belongs to an
artificial or natural structure.

3.5.2   Terrain and courtyards

The region with the highest score in terms of geometric and shape descriptors (maximum number of 
pixels and maximum bounding rectangle) as well as topological relationships (maximum number of AR
and outgoing arcs, maximum number of adjacencies with regions classified as vegetation, minimum 
number of lower adjacent regions) is classified as terrain. Regions exceeding a size of 200,000 m2 are 
also classified as terrain, provided all their EARs do not have a mean height difference larger than 5 m
(in this case they are labelled as large industrial buildings). The rationale for this is that unless a small
patch of data is taken around a single, flat large building, this is always the case even in dense urban
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areas. Regions with only ingoing arcs in the HG graph (usually very small ones) are also classified as 
terrain or, if their adjacent regions are all buildings, as courtyards.

The terrain may get fragmented into several regions because of “fences” acting as barriers for the
region-growing algorithm; this happens, for example, with data gaps, tree rows or large hedges and
sometimes with very steep terrain. Looking through the EAG we can pick unclassified regions and find 
out whether the height difference across the region border is less than a threshold of 1.5 m. If this is the
case, they are also considered terrain region, since the threshold is less than anything likely to be called
a building, but enough to overcome rows of trees and bushes.

3.5.3   Buildings

Regions corresponding to buildings are labelled in two stages. In the first stage, rules providing a set of 
regions provisionally classified as buildings are applied. A first rule defines elevated regions as those
with only outgoing arcs in the HG; they will include single buildings (i.e. a whole building enclosed in a 
single region) or building parts higher than those nearby (e.g. building blocks made of adjacent
buildings of different height or superstructures, like turrets or cabins, in large buildings). Afterwards, to
catch buildings with intermediate elevations with respect to terrain and elevated regions, the
relationships in EAG and HG
between unclassified and already classified regions (terrain and elevated regions) are iteratively 
examined according to the following two criteria:

1. An unclassified region is labelled as a possible building if it is adjacent to at least one elevated
region and is higher than all its unclassified neighbours.

2. An unclassified region is labelled as a possible building if it is adjacent to at least one terrain
region and is higher than the terrain and all its unclassified neighbours by a threshold of 1.5 m.

Of course, some of the regions classified as buildings so far may represent either terrain or vegetation: in
most cases classification errors occur on high trees with dense canopy. Whether these regions are really
buildings is decided in the second stage, based on the segmentation of the gradient orientation. Each true
building region will enclose one or more plane surfaces (regular sub-regions defined by at least four
co-planar data points). Ideally, each roof slope should correspond to one regular sub-region, but due to
noise and maybe overhanging trees, it may result in fragmented sub-regions and unconnected pixels 
(adjacent pixels belonging to different partition classes). Therefore, if the area of all regular sub-regions
adds up to less than 30% of the candidate building region, this is classified as vegetation; the same
applies if there is no evidence of roof slopes.

3.5.4   Unclassified regions

Some regions may remain unclassified. In most cases they are small terrain patches enclosed by dense 
vegetation, terrain breaklines or buildings.

4   Building reconstruction
All building regions are passed to the building reconstruction module. First, plane surfaces representing 
roof slopes and building outlines are extracted; then the topology of roof slopes and building outlines is
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reconstructed. Finally, based on geometric and topological information on the roof structure, the 3D
reconstruction of buildings is performed.

While good and robust identification of roof slopes is normally achieved, building outlines are harder to 
derive by just grouping border pixels; this results sometimes in poorly defined edges. Besides, since the
building model assumes a volume bounded only by planar surfaces, buildings with domes, barrel vaults
and so on might be labelled as such, but they will not be reconstructed.

4.1   Roof segmentation
Pixels within a building region are assigned to three classes: roof slopes, roof outlines, noise (small roof 
superstructures, such as small dormers, chimneys and lift-boxes, and vegetation). Roof slopes and points
labelled as noise are obtained from the computation of gradient orientation. Contour points of a building
region are derived as the union of its intersections with every UEB of regions with an AR with the 
building region itself.

4.1.1   Roof slope extraction

For every building region, the segmentation based on gradient orientation (see Sect. 3.3) has provided 
sub-regions corresponding to plane surfaces. To obtain the parameters of each plane, a least-squares fit
is computed using all grid points of the sub-region. If the maximum residual is below a threshold of
15 cm, the estimated parameters of the plane are accepted; otherwise a more robust method is used to
further subdivide the sub-regions. For example, two planes may have been grouped in the same
sub-region in the case of parallel roof slopes or roof slopes with the same orientation but a different
slope angle or just a slightly different orientation. To discriminate such cases, an iterative segmentation
with the RANSAC algorithm is applied, selecting the plane with the largest consensus and discarding its
points in the next iteration, until only noisy isolated points remain (Fig. 8).

Fig. 8  Examples of erroneous roof slope segmentation by gradient orientation (a), corrected by RANSAC 
algorithm (b)

4.1.2   Roof outline extraction

Roof contour pixels of building regions must be segmented to provide a vector representation of eaves. 
To extract roof outlines we developed two methods, depending on the distribution of the heights of the
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roof contour pixels. If a robust statistical analysis confirms that they belong to the same horizontal
plane, each roof slope is intersected with the horizontal plane that best fits the contour pixels; in this
way eaves are defined by straight lines. Otherwise, if no horizontal plane fits the data acceptably, a 2D
version of the RANSAC algorithm implemented for roof slopes is applied and the contour pixels are
segmented in straight line segments. The quality of this second segmentation method is normally good 
or acceptable with rectangular, L and U shapes. With more complex building shapes, such as in small or
one-family houses with many short sides at right angles, results are less satisfactory, since details are
difficult to capture with 1 m resolution. Due to the higher redundancy, the estimates of the coefficients
of the planes fitting the roof slopes are more accurate than those of the straight lines of the 2D RANSAC
segmentation. As it was also confirmed by applying, when suitable, both methods to the same building, 
the intersection with the horizontal plane leads to a more regular outline.

If any outline segment is missing, in some cases the contour can be completed by inference. For 
example, if the segmentation yields only three sides of a hip roof, a fourth side is added to complete the
outline, provided the new side is geometrically consistent with the orientation of the nearby roof
slope(s). With both methods, the endpoints of a contour segment are found by projecting its pixels on
the straight line; the segments are then ordered clockwise, based on the proximity with neighbouring
endpoints. A wall (a vertical plane through an outline segment) is associated with every segment of the 
contour.

4.1.3   Roof topology reconstruction

A topological description of the roof is built in a manner very similar to that used for regions and stored 
in the Roof Adjacency Graph (RAG). Similar to EAG, RAG captures the adjacency relationships between
all the roof segments, i.e. roof slopes and line segments (see Figs. 10 and 11 for two examples). The 
associated data structure records every pixel of the UEB of each segment, so that the extent of the
adjacency can be measured, as well as the “inner border” of the segment, i.e. the segment pixels
themselves. Besides, we are examining the helpfulness of a graph of roof heights (RHG, in strict analogy 
with the HG) in highlighting undetected vertical planes (discontinuities) between roof slopes. The
adjacency between roof slopes and contour segments is recorded only if confirmed by at least 3 pixels:
this normally prevents from highlighting the “point-wise” adjacency of edges and roof slopes (such as
that of “roof slope 1” with “side 4” in Fig. 9). On the other hand, the pixels of the same segment may 
belong to more than one roof slope, as in the gable roof of Fig. 11, so that the correspondence among 
roof slopes and contour segments may be not unique.

Fig. 9  Example of the extraction of internal nodes (on the left) and external nodes (on the right) of a building



10.1007/s10044-005-0018-2 http://www.springerlink.com.ucfproxy.fcla.edu/content/p267665g88386...

15 of 28 7/11/2007 3:43 PM

4.2   Construction of the 3D vector model
The implicit building model that we assume in the reconstruction procedure is a polyhedral, made up of 
a collection of sloping planes (roof slopes) and vertical planes (walls), joining each other along the
eaves, roof hips and ridges. The wireframe reconstruction of buildings is carried out in two steps: the
identification of all vertices (nodes) of the roof, distinguished in internal and external, and the detection 
of edges connecting either roof nodes or the roof nodes to the nearby terrain. Roof nodes are computed,
using the information on roof topology, as the intersection of adjacent terns of planes (either sloping or 
vertical): as it can be seen from Figs. 10 and 11, each triangle (tern) in the RAG corresponds to a 
uniquely determined node, while quadrilaterals (two terns with at least two common planes) correspond
to nodes with multiple solutions.

Fig. 10  RAG of the roof in Fig. 9. Roof slopes are in circles, walls in squares. Internal and external nodes are the 
polygons
in the graph. Edges (hips, ridges, eaves) from a node are found looking for adjacent polygons in the graph (e.g. 
as the polygon associated to node C is adjacent to nodes A, D and F there will be edges CA, CD and CF in the
wireframe model)

Fig. 11  A gable roof (on the left) and its RAG (on the right)

4.2.1   Extraction of internal nodes
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Internal nodes
are defined by the intersection of terns of adjacent roof slopes. A node is computed for each feasible tern
in the RAG; in the example of Fig. 9 there are two terns of connected roof slopes, as shown in Fig. 10: 
the tern (1, 2, 4) and the tern (2, 3, 4). They provide the nodes A and B. When more than three slopes 
join on a single vertex, because of inconsistent solutions, distinct intersection points will be obtained. To
spot such cases, distances between internal nodes are computed and, if below a threshold, the nodes are
fused together: all terns are therefore linked to the new vertex. To check against false internal nodes, the
intersection point must fall into a box-shaped control volume enclosing the whole roof (Fig. 12).

Fig. 12  The box-shaped control volume enclosing a roof; a valid (internal to the box, in blue) and an invalid 
(external to the box, in green) intersection between roof slopes are shown

4.2.2   Extraction of external nodes

External nodes
are defined either by the intersection of two adjacent contour segments (walls) with a roof slope or by 
the intersection of pairs of adjacent roof slopes with the contour wall (if any) common to both. Figure 9
shows an example of the former case with multiple solutions (a quadrilateral in the RAG): a pair of
consecutive edges (e.g. 1 and 2) is intersected first with “roof slope 1” and then with “roof slope 2”.
While the x, y coordinates of node D will be the same, values z 1 and z 2 will generally differ, due to the 
uncertainty in the estimation of planes of both roof slopes. If the difference is under a given threshold,
their mean value will define the elevation of the external node D. Otherwise, this means that there is a
vertical discontinuity between roof slopes 1 and 2, which are not truly adjacent; in this case the 3D 
model will feature a vertical face connecting both roof slopes, while a pair of vertically aligned external
nodes will be introduced. In a gable roof (Fig. 11) there are no internal nodes and the polygons in the 
RAG
are only made of triangles, i.e. there are no multiple solutions. Notice that nodes A and B would not be 
captured by the 2D RANSAC segmentation.

4.2.3   The wireframe model

Once the coordinates of all roof nodes are available, their mutual connections (representing the roof 
eaves, ridges and hips) must be found. This again can be drawn from the RAG, since all pairs of internal 
and external nodes sharing two nodes of the RAG (either slopes or walls) are connected by an edge roof. 
In the example of Fig. 9, node A is connected to roof slopes 1, 2 and 4, while node D to slopes 1 and 2, 
resulting in a hip (AD) between roof slopes 1 and 2. By this method all the segments defining the roof
are found and labelled as external edges (connecting a pair of external nodes), internal ridges
(connecting a pair of internal nodes) and hips
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connecting internal and external nodes. Finally, to complete the wireframe vector model of the whole 
building, vertical lines connecting each node of the external edges to the ground must also be
established. While every external node has already its own height (see Sect. 4.1.2), that of the ground 
has to be derived from the UEB. Currently there is no refinement of the wireframe shape to impose 
constraints of symmetry, orthogonality, etc. Therefore, the quality is sometimes poor, mainly due to
discretization effects, especially in case of short edges.

Though the vectorization of all geometric elements of the building is now completed, the visualisation 
of the reconstructed 3D model in a computer graphics environment requires the definition of the
building external surfaces for rendering or for application of photorealistic materials and the like.
Thanks to the topological information stored in the RAG, the roof polygons can be extracted: each side 
is defined by a pair of nodes connected to a common roof slope; a polygon is found by grouping all
edges linked to a given roof slope; vertices of the polygon will have the coordinates of respective nodes.
Likewise, a polygon representing a wall is derived from each external edge. We have imported all the 
polygons as 3D faces in an Autodesk environment to visualise the reconstructed models. Figure 13d 
shows the reconstruction of a large area of the Pavia town overlaid on the computed DTM.
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Fig. 13  Results on a residential suburban area of Pavia. a Aerial photo; b region classification: buildings (white); 
terrain (yellow); vegetation (green); narrow regions (orange); water (light blue); regions left unclassified (black); c
zoom in of the square area bordered in black in b: roof slope segmentation after noise removal; colours show 
membership to the 8-classes partition of gradient orientation; d 3D models of buildings, superimposed to the 
digital map, that were successfully reconstructed in the polygonal area bordered in white in a

5   Experimental results
The proposed framework has been tested on urban and rural landscape areas with mixtures of vegetation
and buildings on hillsides, data gaps, large buildings, roads with bridges and embankments, densely
packed buildings with vegetation between them, vegetation on river banks and many other situations. In
this section, after the description of the Pavia’s data set used in the experiments to validate our strategy,



10.1007/s10044-005-0018-2 http://www.springerlink.com.ucfproxy.fcla.edu/content/p267665g88386...

19 of 28 7/11/2007 3:43 PM

we first show the results of the classification obtained on a total area of about 5 km2 with two different 
ground point densities and two different instruments; then, the behaviour of the algorithm in two large
areas (one in the old city centre and the other one in a suburban zone) is shown in more detail.

5.1   Pavia’s data set
Under a national research project aiming at the assessment of LIDAR technology for DTM production, 
height data were acquired in November 1999 over the city of Pavia (Italy), with an airborne Toposys I
laser scanning system [27] and, about 2 weeks later, with a helicopter-based Optech 1210 system [28]. 
Stereo aerial images were also gathered during the Toposys flight. The area size is about 30 km2 and 
includes the old city centre (with narrows streets and very complex roof shapes), suburban areas (with 
trees and both high-rise buildings and detached houses), the Ticino river in the southern part of the town
and the countryside (with farms, open fields and forests). The terrain is mostly flat, with a small slope
towards the Ticino river.

The Toposys instrument flew several strips in East–West direction at about 800 m above ground and
two cross strips at 400 m with a scan angle of 14°. Several strips were flown with larger than normal
overlaps, so overall point density ranges from about 6 to 12 pt/m2. Either first pulse or last pulse data
were available from a mission. The low scan angle has the advantage of a good penetration in narrow
streets between buildings, which is typical of most old Italian cities. Due to system characteristics,
patterns of laser spots on a flat terrain are regular but anisotropic, with spacing of about 1.6 m across
track and 0.12–0.15 m along track.

The Optech ALTM 1210 instrument flew three missions: the first one covered the urban area at about
600 m above ground with a scan angle of 30° (point density: 1 pt/m2); the second one over a suburban 
area at about 650 m with a scan angle of 40° (point density: 0.4 pt/m2) and the last mission along a 
railway line at about 500 m with a scan angle of 20° (point density: 2.8 pt/m2). All Optech missions 
acquired first and last pulses.

5.2   Presentation and discussion of the results

The whole Toposys data set was processed at 1 m grid resolution over about 30 km2, while two Optech 
data sets were combined and processed at 2 m grid resolution (point density ranging from 0.4 to 1 pt/m2) 
over about 19 km2.

The classification process outputs three classes: terrain, buildings and vegetation; terrain, apart from 
bare earth, includes any surface accessible to pedestrians; vegetation is intended primarily as trees or
fences; buildings are intended primarily as single family houses or larger, with plane roof surfaces.
Figures for the evaluation have been computed by checking seven sites (from 0.15 to 1.5 km2 wide) in 
various areas: old city centre, suburban areas and countryside for both Toposys and Optech data. The 
classification results have been verified with digital large-scale maps, 1:5,000 aerial images and by
laying the colour-coded DSM upon the classification raster image. The overall evaluation for both data
sets is summarized in the 3×4 matrix of Table 1, where the unclassified regions are also taken into
account. Each row contains the ranges of the percentages, with respect to the true class, of areas that
were correctly classified or wrongly assigned to other classes in the processing of the seven sites. The
heterogeneity of checked data makes the extension of the obtained classification results to the whole
Pavia’s data set reasonable.
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Table 1  Results of the classification in seven sites of the Pavia data sets (about 5 km2, both Toposys and Optech
data)

True class
Classified as (%)
Terrain Vegetation Buildings Unclassified

Terrain 96–98 0 0 2–4
Vegetation 3–6 90–96 1–3 0–1
Buildings 0–1 0–1 97–100 0–2

Ranges represent the percentages, with respect to the true class, of correct or wrong classification

Some remarks can be made about the behaviour of the classification algorithm. First, due to 
heterogeneous data and different point density characteristics, different error types occur in different
zones. On the whole, correctness of the classification in each class turned out to be more than 90%;
commission errors (i.e. wrong labelling of regions) are rather small, apart from classification of low
vegetation. The whole checked data set showed less than 4% of unclassified regions: most of them are
indeed terrain patches in countryside and residential areas, but in the densely packed old city centre, 
some buildings also may remain undetected. As far as the terrain is concerned, terrain patches may
remain unclassified in some complex courtyards of the old city centre, between buildings and nearby
trees in suburban areas and in clearings in forest areas; this behaviour seems independent of the grid
size. Evidence was never found that the terrain was mistakenly classified as vegetation or building; to
some extent, this may be due to the terrain smoothness in Pavia, but was also the case with rough terrain
in other data sets. As far as vegetation is concerned, keeping in mind that the objective is to avoid using
vegetation points in DTM generation, trees were almost always correctly labelled: as mentioned in
Sect. 3.5.3, dense canopy may be confused with buildings; fences were also recognized, if higher than 
the region-growing threshold and sampled with enough density to be classified as narrow regions. Low
vegetation, like isolated bushes, may instead be classified as terrain or noise, depending on size, point
density and grid size. With first and last pulses, which are very effective at identifying vegetation,
bushes are also not erroneously labelled as terrain. As far as buildings are concerned, some one-family
houses with roofs almost occluded by high trees were included in the vegetation class; in some complex 
blocks in the old city centre, the roof of some building parts was labelled as terrain; the same happened
with buildings on very steep terrain (in our case, huts with the roof leaning against the river
embankment) or with car ramps leading to a parking on a roof. Penthouses and balconies may or may
not be captured, depending on their size and shape with respect to grid size: they are currently classified
as narrow regions and so ignored by the reconstruction process.

The behaviour of our framework in the classification of a complex zone of Pavia’s centre of about
350×350 m2, shown in Fig. 14
by an aerial photo and the triangulated DSM of raw data points, is now illustrated. Buildings are 
correctly recognised iteration after iteration. This can be viewed in Fig. 15, where regions not yet 
classified are in black and different colours are associated to regions classified at each step. In
particular, Fig. 15a shows regions classified as terrain (yellow), vegetation (green), narrow regions 
(orange) and not yet classified (black). Figure 15b shows in white the regions corresponding to higher 
buildings. The deep blue regions that appear in Fig. 15c are buildings detected in the first iteration of the 
first criterion described in Sect. 3.5.3, while red regions shown in Fig. 15d are the result of the 
application of all other iterations of the same criterion. Figure 15e reports the result (violet regions) of 
the application of criteria for fragmented terrain detection. Finally, Fig. 15f describes the result at the 
end of the alternative application of building and terrain detection criteria: here all the regions classified
as buildings during the previous steps are in white, terrain in yellow, vegetation in green, narrow regions
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in orange and regions left unclassified in black. Overall, buildings cover about 54% of the area, terrain
34%, vegetation 3% and narrow regions 6%; unclassified regions amount to 3% (of which about half are
buildings). Vegetation misclassified as buildings amount to less than 1% of the total in the area.

Fig. 14  Pavia’s centre: a aerial photo and b triangulated DSM of the raw data points
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Fig. 15  Results of region classification of the zone in the centre of Pavia shown in Fig. 14: a initial identification of 
main terrain (yellow), vegetation (green), narrow regions (orange) and regions not yet classified (black); b
detection of higher buildings (white); c detection of buildings (deep blue) after first application of criteria in
Sect. 3.5.3; d buildings (red) detected after all other applications of criteria in Sect. 3.5.3; e detection of 
fragmented terrain (violet); f final classification: buildings (white), terrain (yellow), vegetation (green), narrow 
regions (orange), regions left unclassified (black)

Results referring to a residential, suburban area of Pavia of about 550×400 m2, with mainly isolated 
buildings and trees, are shown in Fig. 13a; overall, buildings cover about 25% of the area, terrain 61%, 
vegetation 8% and narrow regions 5%; unclassified regions amount to 1%. The classification results
(Fig. 13b) are rather satisfactory: all buildings were recognised; vegetation misclassified as building 
(terrain) is less than 3% (1%) of the vegetation area. There was no evidence of terrain classified either as
building or vegetation.

Three-dimensional building reconstruction is less satisfactory than region classification and must be 
improved, though roof shapes in both the city centre and the suburbs are almost never simple gable or
hip roofs as in the hypotheses. Besides, 3D building reconstruction is possible only with high-density
data (more than 3 or 4 pt/m2), which enable to work at a resolution up to 1 m×1 m. As can be seen in
Fig. 13d, the 3D reconstruction fails on a relatively high number of buildings. A closer look shows that 
failures occurred mainly in buildings with complex shapes and many vertical discontinuities between
adjacent roof slopes, which are difficult to capture (Fig. 13c). In such cases, uncorrected contour 
extraction and problems in segmentation and geometric modelling (i.e. computation of slope equation)
of small roof slopes increase geometric inconsistencies that lead to partial reconstruction with errors. 
Contours might be incorrectly extracted due to the presence of short sides or of small constructions near
to the main body of the building itself. In general, both problems may be attributed to the low
planimetric resolution (1 m×1 m), which did not enable a correct segmentation.

Sometimes, mainly in low-rise buildings, contour definition is poor because of trees that partially cover 
the roof. Failures in roof slopes modelling or identification, especially when dealing with small roof
slopes, lead to errors in roof topology and therefore in false or wrong computation of nodes. The
criterion of the horizontal plane for contour extraction is based on the accuracy of roof plane estimation,
so it fails in the presence of poorly estimated small roof slopes. Considering a numerical evaluation of
failures of former and latter cases, about 70% of cases result from uncorrected contour extraction, while
the remaining 30% from roof slope segmentation.

As far as execution times are concerned, the classification of the two areas (of about 350×350 and
550×400 m2) takes less than 2 and 4 s, respectively, on an AMD Athlon 4 processor with 750 MB
RAM.

6   Conclusions and perspectives
Digital terrain models and 3D city models have become more and more essential in a wide range of 
applications in civil engineering, environment protection and planning. A complete, robust classification
of acquired data is necessary irrespective of the level of detail they are built for. In any case, due to the
large amount of data to be processed, it is fundamental that the construction process is made more and
more automatic.

The automaticity is the main characteristic of the framework presented in this paper, without penalising 
the accuracy of the built models. We combined the processes of data classification and building
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extraction to avoid the need of tuning thresholds to the different environments being processed. After an
initial data segmentation performed using a region-growing algorithm and complemented by a
segmentation on gradient orientation, the classification, mostly as buildings, ground and vegetation, is
performed iteratively by exploiting a set of rules that takes advantage of a geometric and topological 
description of segmented data. This strategy greatly increases the robustness of the classification,
providing support for contextual reasoning. The topological structure of the segmented regions and, in
particular, adjacency relationships have also been exploited in roof segmentation and roof modelling,
allowing a correct reconstruction for the majority of roofs, while the rest, with relatively more complex
topology, remain harder to deal with, even by increasing data resolution. Although none of the many 
adopted pattern analysis techniques is completely new (i.e. all of them have been separately used in
other application fields), the proposed novel framework shows good results and, above all, it is easily
adaptable to many engineering applications: specific rules, depending on the application, might be easily
introduced, while the classification obtained in output by our framework can be used directly or fused
with information coming from other sources. However, while fusing data from multiple sources is
becoming more and more feasible (technology and costs are changing exponentially, but in opposite 
directions), in this paper we concentrated on the extraction of the maximum useful information from a
single data source, because such data still play an important role, especially when they can be processed
in an automated way.

Future work will be mainly oriented in the following directions. Data classification should be improved 
by: (1) detecting misclassified buildings included in terrain regions by a deeper gradient analysis; (2)
exploiting contextual reasoning to increase the number of classes, in particular with the inclusion of
bridges and overpasses, and to label some of the elongated regions; (3) comparing our manually tuned
rules with rules learned by classification trees. As far as building reconstruction, developments are
expected in both segmentation and modelling: (1) going back to raw data, now mainly used to get a
correct classification, should be extended to improve the definition of roof edges, especially contours;
(2) methods to detect discontinuities within the roof by exploiting the RHG (and the definition of the 
RHG itself) should be properly set up.
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