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Abstract

‘We employ the narrowing-based execution mechanism of the func-
tional logic programming language Curry in order to automatically
generate a system of test cases for glass-box testing of Curry pro-
grams. The test cases for a given function are computed by nar-
rowing a call to that function with initially uninstantiated argu-
ments. The generated test cases are produced w.r.t. a selected code-
coverage criterion such as control-flow coverage. Besides an adap-
tion of the notion of control-flow coverage to functional (logic)
programming, we present a novel coverage criterion for this pro-
gramming paradigm. A particular difficulty of the adaption is the
handling of laziness.

Categories and Subject Descriptors D.2.5 [Software Engineer-
ing]: Testing and Debugging

General Terms Languages

Keywords Testing, Declarative Programming, Code Coverage

1. Introduction

Curry [14] is a programming language that aims at integrating dif-
ferent declarative programming paradigms into a single program-
ming language. Its syntax is similar to Haskell [20] but it uses
a different evaluation mechanism [2] and supports free variables
and nondeterministic computations like logic languages. Declar-
ative programming languages offer a high degree of abstraction
which eases the development of complex systems. They help to
write more readable and re-usable code [15] which, however, can
still contain errors. Ultimate confidence in the correctness of a pro-
gram can only be achieved by proofs with regard to a complete
and formal specification. Declarative languages are usually based
on a formal semantics, which helps to formally certify some prop-
erties of declarative programs. However, proving complex systems
correct turns out to be too difficult and time consuming, even in
the context of declarative programming. Therefore, heuristic ap-
proaches to expose errors gain importance also in this area. Re-
cently, techniques have been proposed to systematically debug pro-
grams that are known to be erroneous [11, 8, 6, 5, 10]. However,
little can be found in the literature about the systematic testing of
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functional logic programs. This paper intends to help filling this
gap. As the functional part of Curry is basically Haskell98 without
type classes, we can also apply our tool to generate test cases for
Haskell programs.

1.1 Testing

Approaches to software testing can be divided into black-box test-
ing, where test cases are deduced from a specification without tak-
ing the concrete implementation into account, and glass-box test-
ing!, which aims at a systematic coverage of the code. Both ap-
proaches do not exclude each other, but can be combined. Black-
box testing is often used to evaluate larger parts of an application.
Glass-box testing is preferred for testing small program units with
a complex algorithmic structure, which makes it hard to deduce
all possible behaviors from the specification. Since declarative pro-
grams typically consist of a sequence of small function definitions,
glass-box testing is even more suited for declarative languages than
for imperative languages. Moreover, the lack of side effects renders
it possible to test parts of an algorithm independently. We will focus
on glass-box testing in this paper.

Regardless of the way test cases have been generated, they can
not only be used for testing a program unit once. More importantly,
they can be used for so-called regression testing, i.e., the suite of
collected test cases is automatically processed in order to check
whether some change in the program affects the already imple-
mented functionality.

1.2 Related Work

Existing tools for testing functional programs generate random test
cases or deduce them from a specification [12, 16], i.e., they are
based on black-box testing. Since they do not take the implementa-
tion into account, they cannot ensure that all parts of the program
are actually executed by the test cases. Hence, errors in uncovered
parts of the program may remain undetected.

In [18, 17] an approach for generating glass-box test cases for
Java is presented. Techniques known from logic programming are
incorporated into a symbolic Java virtual machine for code-based
test-case generation. A similar approach based on a Prolog simu-
lation of a Java Virtual Machine is presented in [1]. A related ap-
proach to test-case generation for logic programs is discussed in
[19]. Here, test cases are not generated by executing the program
but by first computing constraints on input arguments that corre-
spond to an execution path and then solving these constraints to
obtain test inputs that cover the corresponding path.

We transfer the approach for Java presented in [18, 17] to the
functional logic programming language Curry. However, instead of

! Glass-box testing is often called white-box testing, although one can of
course not look inside a white box.



extending an abstract machine by components for backtracking and
handling logic variables, we can just employ the usual execution
mechanism of Curry, since it already provides these features. Actu-
ally, this approach to test-case generation seems to be tailor-made
for functional logic languages. Our approach is based on a trans-
formation of Curry programs and, hence, not restricted to a specific
Curry implementation.

Besides testing, there are different approaches for debugging
functional logic programs, which are remotely related to testing.
Trace debuggers [4, 8, 6] record information about a specific (usu-
ally erroneous) program run and present it to the user in a struc-
tured way. Different kinds of views can be employed to analyze
the recorded program trace. Algorithmic debuggers ask the user
a sequence of questions about the correctness of subcomputations
in order to find an error in a program [10]. Algorithmic debugging
can be implemented as an interactive view on a program trace. With
tools for observational debugging [4, 5] the programmer can anno-
tate her code with observer functions to record parts of the com-
putation. With this approach, only selected parts considered inter-
esting by the programmer are recorded, which saves memory. Both
tracing and observational debugging are approaches to locate an al-
ready present error. They are not aiming at but can be combined
with testing.

The remainder of this paper is structured as follows. In Section 2
we recall the functional logic programming language Curry. In
Section 3 we discuss our approach in detail. We consider two
different code-coverage criteria and explain the generation of test
cases. In Section 4 we discuss a prototypical implementation of our
test tool. In Section 5 we report on practical experience before we
conclude and point out directions for future work in Section 6.

2. The Curry Language

Curry [14] is a declarative programming language that aims at in-
tegrating the most important declarative programming paradigms
— functional and logic programming. Due to the lack of space, we
only sketch it here. Details can be found in [14]. Curry extends
Haskell [20] by partial data structures and uses a different evalu-
ation mechanism. For each function the user can fix (by using an
annotation) either needed narrowing [2] or residuation as evalua-
tion mechanism. Needed narrowing corresponds to lazy evaluation
in Haskell, except for the fact that unification rather than pattern
matching is used for parameter passing. If an argument of a func-
tion contains free variables that are required by a pattern, this may
cause them to be bound to some term. Residuation will suspend
the computation in such a situation until some concurrent compu-
tation has bound the variable. If no free variable is required by a
pattern during the computation, both needed narrowing and residu-
ation will behave just as lazy evaluation in functional languages.

2.1 Datatypes and Function Declarations

Curry supports algebraic datatypes that can be defined by the key-
word data followed by the newly introduced type and a list of con-
structor declarations separated by the symbol “|”. For example, the
following two declarations introduce the predefined datatypes for
boolean values and polymorphic lists, respectively. The latter has a
special syntax in Curry and is usually written as [a].

data Bool = True | False
data List a 0 | a : List a

Type synonyms can be declared with the keyword type. For ex-
ample, sets of natural numbers can be represented as sorted lists of
pairwise distinct numbers represented as lists of integers:

type NumSet = [Int]

Curry offers the usual primitive functions on integers and compar-
ison operators defined in terms of a primitive function compare:

(+), (=), (%), div, mod :: Int -> Int -> Int
(), (k=),(==),(/=),(=),>) Int -> Int -> Bool

data Ordering = LT | EQ | GT
compare Int -> Int -> Ordering

In fact, compare is (ad hoc) polymorphic in Curry. However, for
the purpose of this description, we consider it to be only defined on
integers.

Curry functions are defined by rules that are selected nondeter-
ministically. If more than one rule matches a call to a defined func-
tion, one matching rule is applied nondeterministically — not nec-
essarily the topmost one. Depending on the implementation other
rules are tried after backtracking (as in most Curry implementa-
tions) or in parallel. Like Haskell, Curry also supports case ex-
pressions that are evaluated top down.

As an example of a function declaration in Curry, consider an
operation that inserts an integer into a set represented as a sorted
list of pairwise distinct integers:

insert :: Int -> NumSet -> NumSet
insert n [] = [n]
insert n (x:xs) = case compare n x of {
LT -> n:x:xs;
EQ -> x:xs;
GT -> x:insert n xs }

The first line of the function declaration is an optional type signa-
ture. If it is omitted, it is inferred by a type inference algorithm.

2.2 Narrowing

As mentioned above, Curry supports partial data structures that
contain free variables. If an argument of a function call contains
free variables, the unification of the left-hand side of a rule with the
function call can cause each to be bound to the corresponding term
of the left-hand side of the rule. Consider the function size that
computes the cardinality of a finite set of numbers:

size [] =0
size (x:xs) =1 + size xs

If we call size with a free variable as argument, it nondetermin-
istically computes any cardinality by binding the argument to a set
of corresponding size:

> let xs free in size xs

Free variables in goal: xs
Result: O, Bindings: xs=[]
Result: 1, Bindings: xs=[x0]
Result: 2, Bindings: xs=[x0,x1]

Note that there are infinitely many solutions to the goal and that the
elements of xs are introduced as fresh variables. A solution consists
of a constructor term as result and a substitution binding each free
variable of the initial function call to a constructor term.

2.3 The Core Language FlatCurry

Every Curry program can be translated into a simplified core lan-
guage FlatCurry, that is commonly preferred over Curry for analyt-
ical purposes because of its simplicity. The syntax of FlatCurry is
depicted in Figure 1. We will describe our approach in terms of flat
programs. A flat program is a list of function declarations and func-
tions are defined by a single rule with pairwise distinct variables as
arguments. The body of a function is an expression, which can be a
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Figure 1. Syntax of FlatCurry Programs

variable, a constructor or function application, a /et expression, an
or expression or a case expression. Or expressions nondetermin-
istically evaluate to one of the arguments. The translation of the
function insert introduced above into FlatCurry is:

insert n 1 = case 1 of {
[0 -> [n];
(x:xs) -> case compare n x of
{ LT -> n:x:xs;
EQ -> x:xs;
GT -> x:insert n xs }}

The different rules of insert are combined into a single rule with
variables as arguments.

Readers who are familiar with FlatCurry may miss the intro-
duction of free variables. In fact we use a simplified version of
FlatCurry which assumes that free variables have been eliminated
by a transformation recently developed by Antoy and Hanus [3].
The main idea of this transformation is that free variables are re-
placed by generators for all values of the corresponding type.

3. Test-Case Generation

Before we explain our approach to generate test cases for Curry,
let us briefly recall the basics of glass-box testing for imperative
languages. For testing a function one collects a set of test cases
which covers the possible behaviors of the function in a reasonable
way. A test case is a pair of a function call and a corresponding
expected result.

Since there are often infinitely many possible inputs and corre-
sponding computation paths through a program, it is impossible to
test all of them. But even if the number of paths was finite, many of
them would cover the same control and data flow and would hence
be equivalent from the point of view of testing. For cost effective
testing, one is interested in a minimal set of test cases covering the
code according to a selected coverage criterion.

Classical criteria known from testing imperative programs are
coverage of the (nodes and) edges of the control-flow graph and the
so-called def-use chain coverage [21]. The latter requires that each
sequence of statements is covered, which starts with a statement
computing a value and ends with a statement, where this value is
used and where this value is not modified in between.

It is important to understand that no coverage criterion guaran-
tees the absence of errors, including the criteria presented in this
paper. They rather try to detect as many errors as possible with lim-
ited effort. It is always possible to find examples where a given
coverage criterion fails to expose an error. Nevertheless coverage
criteria are useful in order to find the majority of the errors, in par-
ticular in algorithmically complex code. Remaining errors can be
eliminated, e.g., by black-box testing.

3.1 Code Coverage

Lazy declarative languages like Curry have no assignments and
a rather complicated control-flow (due to laziness), which cannot
easily be represented by a control-flow graph. Therefore, we can-
not simply transfer the notions of code coverage from the imper-
ative to the declarative world, but need adapted notions. Here, we
will present two different coverage criteria: Global Branch Cov-
erage (GBC) and Function Coverage (FC) which correspond both
to variants of control-flow coverage in imperative languages. How-
ever, let us point out that our approach works with any coverage
criterion. We only require that the coverage can be described by a
set of coverable items. These items can represent control- and/or
data-flow information.

3.1.1 Global Branch Coverage

In glass-box testing for imperative languages, typically only code
sequences that are part of a single function or procedure declaration
are considered. Due to control structures like loops present in
imperative languages, there is often no need to consider more than
one function to obtain interesting test cases.

In declarative programming, (recursive) function calls are used
to express control structures and to replace loops. Since the func-
tions in a declarative program are typically very small and consist
of a few lines only, it is not sufficient in practice to cover only the
branches of the function to be tested. Thus, we will aim at covering
the branches of all the directly and indirectly called functions, too.

The main idea of this approach is that we label all the alter-
natives in or and case expressions with pairwise different labels
and that we try to make sure that every labelled alternative will be
executed at least once by some test case. This means that each al-
ternative of an or expression and each e; in a case expression

caseeof {p1 — e1;...;pn — €n}

will be evaluated to head normal form. We extend the syntax of
FlatCurry by labeled expressions that are written as

(D) e

Here, [ is alabel and e an arbitrary FlatCurry expression. The label-
ing transformation o depicted in Figure 2 shows how the labeling
is done by a straightforward homomorphism on flat expressions.
Initially, the transformation o can be called with distinct labels for
each defined function in order to obtain globally unique labels in a
program. When applying o to the empty sequence () and the right-
hand side of the insert function, we get:

insert n 1 = case 1 of {

0 -> (1) [nl;

(x:x8) -> (2) case compare n x of {
LT -> (2.1) n:x:xs;
EQ -> (2.2) x:xs;
GT -> (2.3) x:insert n xs }}



o({l),2) = @

o((l),cer en) =co({l.1),e1) ... o({I.n),en)
o({l),fer ... en) = fo({(l.l),e1) ... o({l.n),en) )
o((l),letx =cine') =letx=0c({.0),e)ino((l.1),€)
o((l),e1 0r e2) = (I.1) o({l.1),e1) or (1.2) o({1.2), e2)
o(( . pn s en)

Figure 2. Labeling Transformation

To test the definition of a function £, we can now compute the set
of all functions reachable from £ and generate test cases that cover
all branches of these functions.

3.1.2 Function Coverage

Covering all branches of all reachable functions may produce a lot
of overhead. Moreover, it may be impossible to cover all branches
of the called functions, since the parameters passed to them do not
permit this. If, for instance, the body of the considered function
f contains a call insert 1 [J, only branch (1) of insert can
be executed. Thus, we are interested in a criterion which focuses
on the code of the function to be tested. As mentioned, a simple
coverage of all branches of the considered function will expose
too few errors in practice. Thus, we extend this approach slightly.
We will ensure that in addition to all branches of the original call
to the considered function, also all branches of all recursive calls
to that function have to be executed. As shown in Section 5, the
resulting criterion called Function Coverage (FC) works quite well
in practice. If we assume that all functions called by the considered
function £ have been tested before, FC allows to find strictly more
errors than GBC, since FC will then not only ensure that every
branch is executed once, but that every branch will be checked in
every call to the considered function.

As for GBC, it may be sometimes impossible to cover all
branches for each recursive call, since the actual parameters do
not permit this. In this case, we will confine ourselves to execute
the reachable branches.

As a simple example consider the labeled definition of the
append function (++) for lists:

1 ++ ys = case 1 of {
0 -> (1) ys;
(x:x8) => (2) x :

Here, the test case [0] ++ [] = [0] suffices to reach global
branch coverage without exposing the error in branch (2) (xs++xs
should be xs++ys).

On the other hand, there are two calls of (++) to be covered
with FC, the initial call and the recursive call in branch (2). We
require both calls to execute all branches of (++). With the above
test case, the recursive call does not execute branch (2) and our
tool also generates the test case [0] ++ [1] = [0] that exposes
the error.

If we fail to fix the error and write ys ++ xs, then the test
cases [1 ++ [1 = [land [0] ++ [1] = [0,1] suffice to fulfill
both GBC and FC. None of the coverage criteria exposes this error
which hints at the incomplete nature of every coverage criterion
discussed at the beginning of this section.

In Section 5, we will compare the presented criteria experimen-
tally. The following subsection describes our approach to generat-
ing test cases informally before we present its implementation in
Section 4.

(xs++xs) }

3.2 Generating Test Cases

Let us now consider, how we can generate a system of test cases
for some coverage criterion. For each test case, we need to find
a sequence of parameters with a corresponding expected result.
Moreover, we would like the set of test cases to cover all coverable
items according to the selected criterion.

A naive way of producing a set of test cases in a functional logic
language is to call the function f to be tested with a sequence of
unbound logic variables x1, . . . ,xn as parameters and to compute
all possible solutions of £ x1...xn. Each computation will bind
the logic variables to some terms such that the function called with
these terms as parameters causes the desired coverage. The result
of this computation will be the desired expected result for the test
case. Note, that we do not need to integrate a constraint solver
like [17] because in a functional-logic language free variables can
be bound by the built-in narrowing mechanism. In order to obtain a
list of test cases for a function £, we could collect the results of the
test-case generation with the primitive function allValues using
encapsulated search [7]:

allValues (let x1,...,xn free
in ((x1,...,xn), £ x1 ... xn))

Unfortunately, this naive approach will in general fail to produce
the desired minimal set of test cases. Typically, it will even generate
an infinite number of them. This does not mean that this narrowing-
based generation of test cases cannot be used at all. We rather have
to make sure that the computation is controlled in such a way that
not too many test cases are generated.

In our approach, we record the set of covered items during
the computation along with every computed result. Note that this
approach is independent of the selected coverage criterion. Given
this additional information, we can demand further results until we
obtain the desired coverage. Thus, we need to be able to compute
the result of encapsulated search lazily. Moreover we have to rely
on a fair search strategy, as, e.g., offered by KiCS [9], that ensures
that all results are eventually computed.

With a non-fair depth-first search, the overall computation
would try to find an infinite amount of solutions for some subex-
pression before considering an alternative which causes the missing
items to be covered. In particular in situations, where the desired
coverage cannot be achieved (as explained in Subsubsection 3.1.2),
additional means for controlling the computation are required. One
possibility is to limit the recursion depth based on an additional
parameter which keeps track of it. Alternatively, the computation
could be stopped, if the last n generated test cases do not cover
any new coverable item (n has to be configured appropriately).
The simplest means for controlling the computation is to limit the
amount of generated test cases to some fixed n (which has to be
configured appropriately). Our system can be combined with any
of these alternatives.

In the case of the insert function shown above, our tool will
compute the following (not yet minimal) set of test cases with GBC
(ignoring the built-in function compare):

function call expected result | covered branches
insert 0 [] [o] (1)

insert 1 [] [1] (1)

insert -1 [] [-1] (1)

insert 0 [1] [0,1] (2),(2.1)
insert 0 [0] (o] (2), (2.2
insert 0 [-1] | [-1,0] (2), (2.3), (1)

The program transformation leading to these test cases will be
explained in the next section. The reader may wonder, why we need
to use the generated test cases at all for testing, since they reflect
the actual behavior of the system and one can hence observe an



erroneous behavior by just looking at a generated test case. The
reason is that the test cases are needed for regression testing, i.e.,
in order to check whether a change of the system does not destroy
the already working functionality.

We can observe that the approach described so far does not
ensure a minimal set of test cases. Here, the first three test cases
are redundant, since their sets of covered items are contained in the
corresponding sets of the other test cases (in fact they are already
subsumed by the last test case). In order to get a minimal set of test
cases, we need an additional step which removes redundant test
cases. Obviously, this problem is the set covering problem which
is known to be NP-complete [13]. Since it is not essential in our
context that we really find a minimal solution, we are happy with
any heuristic producing a small solution. Sometimes, a larger set
of smaller test cases may be preferred over a smaller set of larger
test cases because small test cases are usually easier to verify by
humans. However, for regression testing the smaller set is always
cheaper to check.

Not all Curry implementations support the guessing of num-
bers in arithmetic operations. Currently only KiCS [9] does it — by
implementing numbers as algebraic datatype (cf. Section 5). In or-
der to be able to handle guessing in arithmetic operations in other
Curry implementations as well, we employ the system of constraint
solvers presented in [17]. During the computation, generated con-
straints are checked for consistency against other already gener-
ated constraints in order to select valid computation paths. After
the computation, we solve the generated constraints and instantiate
numerical variables according to the computed solution in order
to produce a test case. We do not describe the integration of the
constraint solver in detail, because it is not an essential part of our
approach to generating test cases. Using KiCS, we do not have to
integrate a constraint solver at all.

3.3 Custom Input Data

The approach presented so far may produce some test cases which
the user does not expect. Some of them are helpful, since they show
a possible behavior which the user has not carefully thought about.
Others are less helpful, since they use parameters which do not
meet preconditions of the corresponding function. For instance, the
following predicate subset assumes its arguments to be sorted lists
of pairwise distinct integers.

subset [] _ = True

subset (_:_) [] = False

subset (x:xs) (y:ys) = case compare x y of {
LT -> False;
EQ -> subset xs ys;
GT -> subset (x:xs) ys }

Applied to subset, our tool will deliver besides a couple of de-
sired test cases the following uninteresting one consisting of the
call subset [0] [0,0] and expected result True. The second
argument of the function call is invalid as it contains the value O
twice. In order to eliminate such test cases, custom generators can
be supplied by the user and are then used as arguments instead of
free variables. These generators should only produce values that
meet the specification. In our example, we would replace the initial
calllet xs,ys free in subset xs ysby

let xs = numSet; ys = numSet in subset xs ys

where numSet computes valid list representations of sets of inte-
gers:

numSet = []
numSet = insert x numSet where x free

Using a call to numSet instead of a free variable, effectively pre-
vents the generation of the invalid test case.

4. Program Transformation

In this section, we discuss the implementation of our approach to
test-case generation. We first motivate the ideas behind our program
transformation in Subsection 4.1 and then present an algorithm
that transforms FlatCurry programs in Subsection 4.2. We consider
higher-order functions in Subsection 4.3 and show how to extend
the algorithm to different coverage criteria in Subsection 4.4.

As mentioned in Subsection 3.2, we transform a labelled pro-
gram such that the computation collects information w.r.t. a cov-
erage criterion. Hence, the transformed program needs to record
which of its parts have been reached during the execution. To de-
termine which parts of the program really have been executed is a
subtle task due to laziness. If the program transformation changes
the evaluation order of the original program, the collected informa-
tion might not correspond to the original execution. Even worse, a
computation of the transformed program may not even terminate,
if the transformation destroys laziness.

4.1 Tracking Computations

In this subsection we will develop a program transformation to
collect information about lazy computations. We start with a simple
monadic approach, identify its problems and refine it to preserve
laziness. We will observe that a transformation into monadic code
has a strong influence on the evaluation order and is therefore not
suited for our purposes. Nevertheless, we present the approach to
point out the importance of preserving laziness.

4.1.1 A Too Simple Approach

We aim at transforming a program such that it computes a list of
items covered by the computation along with the original result.
We can even generalize this aim and compute information that can
be mapped to items that correspond to different coverage criteria
instead of computing specific items for a single coverage criterion.
For now, we will restrict us to collect labels that represent branches
taken by a computation. As labels are represented as lists of num-
bers, we define the type Info of collected information as [Int].
The result of a computation should be augmented with such infor-
mation, so we define a type

data I a = I a [Info]

that represents an augmented original result of some type a. We can
easily define a monad that hides the collection of information:

return :: a -> I a
return x = I x []

(>>=) :: ITa->(@->Ib)>1Ihb
I aia>»>=f=1et I bib=FfainI b (ia++ib)

>> ::TITa->Ib->1Ib
ia >> ib = ia >>= \_ -> ib

ap :: I (a->b) >Ia->Ib
ig ‘ap‘ ix
= ig >>= \g -> ix >>= \x -> return (g x)

Using these monad operations we could transform each function
of a program into a monadic version that collects the branches
that were taken during its execution. For this purpose, we define
a monad operation collect that adds a value of type Info to the
collected information:

collect Info > I ()
collect 1 =TI () [1]

To demonstrate the shortcomings of this approach, we will present
a program along with its transformed version and observe for some



computations whether the collected information reflects the origi-
nal program behavior. The transformation performs every subcom-
putation that is given as argument to another function inside the
monad to collect the covered items and supplies the computed re-
sult in the original argument position. Every label of a labeled ex-
pression is transformed into a call to collect. The result of the
collect-operation is always discarded. We use the operation only
to collect the covered items in the background. Consider the fol-
lowing definitions:

test :: Bool
test = isIn 1 (interval 1 3)

interval Int -> Int -> NumSet
interval n m = case n == m of {
True -> [n];
False -> n : interval (n+1) m }
isIn :: Int -> NumSet -> Bool
isIn n ns = case ns of {
[1 -> False;
(m:ms) -> case n == m of {
True -> True;
False -> isIn n ms }}

In the monadic version of this program additional calls to collect
are used to record the executed branches:

test :: I Bool
test = interval 1 3 >>= isIn 1

interval :: Int -> Int -> I NumSet
interval nm = case n == m of {
True -> collect [1,1] >> return [n];
False -> collect [1,2] >>
return (n:) ‘ap‘ interval (n+1) m }

isIn :: Int -> NumSet -> I Bool
isIn n ns = case ns of {
[ -> collect [2,1] >> return False;
(m:ms) -> collect [2,2] >> case n == m of {
True -> collect [2,2,1] >> return True;
False -> collect [2,2,2] >> isIn n ms }}

The result of executing the transformed version of test is:
I True [[1,2],[1,2],[1,1],[2,2],[2,2,1]]

The computed result is True since 1 is an element of the set
{1, 2, 3} and every but the first and the last branch of isIn has been
collected by the monadic version of the program. In particular, all
branches of the function interval have been collected although
the first is never executed in a lazy computation of the original pro-
gram. If we test whether 1 is an element of the infinite set of positive
numbers? by evaluating interval 1 0 >>= isIn 1,the compu-
tation loops forever. The evaluation of isIn 1 (interval 1 0)
in the original program would terminate due to lazy evaluation.

The presented monad is not suited to compute information cov-
ered by a lazy computation. Originally uncovered items are col-
lected and programs that rely on lazy evaluation may not termi-
nate in the transformed version. In the remainder of this section
we present a more elaborate program transformation without the
presented drawbacks.

2 computed by (mis-)use of the function interval where the first argument
is greater than the second

4.1.2 Preserving Laziness

The key to preserving laziness is to associate a set of covered items
with every constructor instead of computing one set for the result
of the computation. If each constructor has an associated set of
items, then exactly this set can be discarded, if the corresponding
constructor is not demanded by the evaluation. With this approach,
only items attached to demanded constructors are computed which
is essential to obtain coverage information for a lazy computation.
One possibility to store information at every constructor is to ex-
tend every constructor of the program with an additional argument.
However, with this approach it would be difficult to obtain the
original value from a value augmented with coverage information,
which is useful for two reasons: 1. the generated test case should
be presented to the user without attached coverage information and
2. external functions cannot be called with augmented values. In
the monadic approach, we could just remove the attached list from
the computed result. This is an advantage we do not want to dismiss
in our adapted approach.

Therefore, instead of a list of items we store a tree of them along
with every value. At the root of this tree, we store the items that
are covered to compute the head-normal form of the corresponding
value. A subtree of items is added to the root for every argument of
the head-constructor. We redefine a type I a to collect (unranked)
trees of information next to an arbitrary value.

data I a = I a (Tree [Info])
data Tree a = Tree a [Tree a]

We define an operation wrap to wrap values with an empty tree of
items and redefine the operations collect and ap. The function
collect will be used to collect covered items and ap to apply
constructors to wrapped arguments:

wrap :: a -> I a
wrap x = I x (Tree [1 [1)

collect [Info] -> T a > 1 a
collect xs (I a (Tree ys ts))
= I a (Tree (xs++ys) ts)

ap :: I (a->b) >Ia->1Ib
ic ‘ap‘ ix = I (c x) (Tree xs (ts++[t]))
where

I ¢ (Tree xs ts) = ic

Ixt=1x

Note that the type of collect has changed in two respects: the
first argument is of type [Info] instead of Info and we add a
second argument of type I a whose root information is augmented
with the information given as first argument. The function ap is
used to apply a constructor to an additional argument. Therefore,
we add the tree of items from the argument to the child trees of
the constructor. We use lazy pattern matching for the definition
of ap: the pattern matching on the arguments is performed in a
local declaration and therefore not performed until the matched
components are demanded. For example, the argument ix is not
evaluated until x or t is demanded by the computation. To enhance
readability, we use local where-declarations that are not allowed in
FlatCurry but are legal Curry syntax and can be easily eliminated.
We can use the functions wrap and ap to construct complex data
structures from simpler ones. For example, the list [1,2] - which
is equivalentto 1:2: [T or ((:) 1 ((:) 2 []1)) -isrepresented
by the expression

wrap (:) ‘ap‘ wrap 1
‘ap‘ (wrap (:) ‘ap‘ wrap 2
‘ap‘ wrap [1)



This expression evaluates to

I [1,2] (Tree [] [Tree [1 [I
,Tree [1 [Tree [] [
,Tree [1 [11]

The term structure of the value [1,2] is reflected by the structure
of the attached tree.

We now describe our program transformation using the exam-
ple introduced in Subsubsection 4.1.1. In contrast to the monadic
approach, not only the result types but also the argument types of
the functions are modified. The definition of test is transformed
as follows:

test :: I Bool
test = isIn (wrap 1) (interval (wrap 1) (wrap 3))

The result of the call to interval can be directly passed to the
function isIn, which takes a value of type I NumSet as second
argument. We first discuss the transformation of interval. The
call to (==) in the original definition is replaced by a call to the
(omitted) functioneq :: I Int -> I Int -> I Bool. Analo-
gously, the call to (+) is replaced by a call to add.

1 interval :: I Int -> I Int -> I NumSet
> interval n m =
3 let I b (Tree xs ts) =eqnm

4 in collect xs

5 (case b of {

6 True -> collect [[1,1]]

7 (wrap (:) ‘ap‘ n ‘ap‘ wrap [1);

8 False -> collect [[1,2]]

9 (wrap (:)

10 ‘ap‘ n

1 ‘ap¢ interval (add n (wrap 1)) m)
12 b

To match the result of the equality test n == m, we select it as b

from the result of eq n m in line 3. As the pattern matching de-
mands the evaluation of the head-normal form of b, the items that
were collected to compute this head-normal form are covered to
compute the head-normal form of the result of the current com-
putation. Therefore, we collect the items xs at the root of the tree
corresponding to b in line 4. The list of child trees ts is not de-
manded. In fact, it will always be empty, because neither True nor
False have arguments. We will see how to proceed with child trees
later, when we transform the function isIn. The two branches of
the function interval are augmented with calls to collect in
lines 6 and 8. The functions wrap and ap are employed to wrap
and apply the constructors. Functions are applied directly without
a special combinator.
Consider the transformation of the function isIn:

1 isIn :: I Int -> I NumSet -> I Bool

2 isIn n ns

3 = let I ns’ (Tree xs ts) = ns

4 in collect xs (case ns’ of {

5 [1 -> collect [[2,1]] (wrap False);
6 (m’>:ms’) > letm =1Im’ (ts!!0)
7 ms = I ms’ (ts!!l) in
8 collect [[2,2]]

9 (let T b (Tree ys us) =eqnum
10 in collect ys (case b of {

1 True -> collect [[2,2,1]]

12 (wrap True);

13 False -> collect [[2,2,2]]

14 (isIn n ms)}))})

The lines 3 and 4 and the lines 9 and 10 are similar to the lines
3,4 and 5 in the transformation of interval: a value is selected

to be matched in a case expression and the items at the root of
the matched value are collected for the current computation. Also,
every branch is augmented with an adequate call to collect. In
line 6, the variables m’ and ms’ are selected as arguments of the
constructor (:). They are employed to build the wrapped values
m and ms which are later used in this branch. These values are
wrapped with the corresponding child trees that were attached to
ns. We use the function (!'!) :: [a] -> Int -> ato selectthe
correct tree using its position in the list ts of child trees. Note that
if the branch in line 11 is taken, then the items attached to ms are not
collected for the result of the call to isIn. Therefore, they can be
discarded which is essential to prevent the collection of uncovered
items and avoid infinite loops. The tree of items that reflects the
term structure of every value allows us to collect exactly those items
that are covered by a lazy execution of the original program.

4.2 Formalization

In this section, we formalize our program transformation as map-
ping on labeled FlatCurry expressions. Each function of a program
is transformed into another function by applying a mapping 7 to
its body. Each labeled expression is replaced by a call to collect
applied to information computed from the label and the recursively
transformed expression:

7((l) €) = collect [info(l)] 7(e)

The term info(1)® denotes collected information that is computed
from a label. In the previous example, we just collected the labels
themselves.

We have already seen that the most interesting part of the trans-
formation is concerned with constructor applications and case ex-
pressions. In fact, everything else is left unchanged:

(x variable)
(f function)

T(z)=2
T(fer...en)=fT1(er) ... 7(en)
T(let T, =e€;ine)=let z; = 7(e;) in 7(e)
7(e1 or e2) =7(e1) or T(e2)

In case of an or expression, both arguments will have an attached
label. Therefore, their transformation will introduce corresponding
calls to the function collect.

Since constructors do not take wrapped values as arguments,
they are applied using the wrap and ap combinators:

T(cei ... en) =ap (...(ap (wrap c) 7(e1))...) 7(en)
Note that a constructor ¢ without arguments is just represented as
(wrap c).

To complete the definition of 7 we now show how to transform
case expressions. Since case expressions demand evaluation, we
have to carefully associate collected labels with the computed re-
sult. The transformation of case expressions is made up of different
parts. We need to

1. select the value to be matched from its wrapped representation,

2. collect the items that were covered to compute its head-normal
form, and

3. wrap the arguments of the matched constructor with the corre-
sponding item trees taken from the matched value.

The last rule of our transformation performs all these tasks. We do
not strictly adhere to the syntax defined in Subsection 2.3 and use
pattern matching in a local declaration to enhance readability. This
can be easily eliminated — in fact, we could as well use additional
case-expressions to decompose the wrapped value. However, this
would bloat further the already quite complex rule.

3 In Subsection 4.4 we will collect information that is not only computed
from the label.



T(caseeof {...(cimiy ... Ti) — €5;...}) =
let I €' (Tree wsts) =ein
collect xs (case e’ of {

/ !
Cimil e Ty, —

let xi, = I i, (ts!10)

)

In this definition, €', zs,ts, 7, , ..., «;, are fresh variable names.
The first let binding selects the value e’ to be matched by the case
expression, the items xs covered to compute the head normal form
of ¢’ and the item trees ts corresponding to the arguments of the
head-constructor of €’. The call to collect collects the items xs
because the head-normal form of e’ is demanded by the following
case expression. In each branch of this case expression the original
argument variables are defined in terms of fresh ones together with
the corresponding item trees selected from t¢s. Finally the result
of the case branch is transformed recursively. As each branch has
an attached label, this will result in another call to the function
collect.

The formal definition of our program transformation can be di-
rectly transferred into an implementation. In fact, we have extended
our approach to support higher-order functions and primitive oper-
ations and implemented this extension. However, its formalization
is not within the scope of this description. We informally explain
the extension of our approach to higher-order functions in the next
subsection.

4.3 Higher-Order Functions

In FlatCurry there are no lambda abstractions. Every lambda ab-
straction in a Curry program is replaced by a newly introduced
function by so called lambda lifting. Furthermore, applications of
variables are eliminated using a primitive function

apply :: (@ =>b) -=>a > b
For example, the following definition of function composition

(.) :: (b->c) >(a->b) >a->c
f.g=\x—>1f (gx

is transformed into*

f.g=auxfg

aux :: (b ->c) -> (a->b) ->a->c
aux f g x = apply f (apply g x)

The primitive function apply evaluates its first argument to a par-
tial application and extends this partial application with the addi-
tional argument. A partial application can be seen as constructor
term. For each function or constructor of arity n there are n con-
structor symbols of arity 0, ...,n — 1 to construct partial applica-
tions. The arity of a function (constructor) is the number of argu-
ment variables (type arguments) in its definition, respectively. For
example, the arity of the function (.) is two and the arity of the
function aux is three, although both functions have the same type.

In the approach presented in the previous subsections, the
argument- and result-types of functions are wrapped with the type

40f course, a Curry compiler does not use aux as name for the auxiliary
function as we did but takes care of name conflicts.

constructor I. Functional argument types have to be transformed in
the same way to allow transformed functions to be passed to other
functions. To illustrate this, we transform the following program:

inclist :: [Int] -> [Int]
inclist = map (1+)

map :: (a -> b) -> [a] -> [b]
map £ 1 = case 1 of {
0 ->10;

x:xs -> apply f x : map f xs }

The function inclist is defined as partial application of the func-
tion map to a partial application of the function (+). In the defini-
tion of map the application of £ to x is expressed using apply.

The function (+) Int -> Int -> Int is transformed
into a function of type I Int -> I Int -> I Int. The trans-
formed version of map has a type that is slightly surprising:
I (Ia->IDb)->1II[al -> I [bl.The functional type of
the first argument of map is wrapped by I which enables to collect
items that are covered to compute this argument. The argument and
result type of the first argument of map are also wrapped with I as
functions passed to map have such types.

If we take a closer look at the involved types, we see that in the
transformed program the partial application (wrap 1 +) would
have the type I Int -> I Int which does not match the type
I (I a -> I b) of the first argument of map. We need to wrap
partial applications using wrap:

wrap (wrap 1 +) I (I Int -> I Int)

Now we can apply the transformed version of map to this wrapped
partial application. The result is a partial application of map which
therefore has to be wrapped with wrap itself:

inclist I (I [Int] -> I [Int])
inclist = wrap (map (wrap (wrap 1 +)))

We use the function app to apply such wrapped functions:

app :: I (Ia->Ib)->Ia->Ib
app ig ix = I y (Tree (xs++ys) ts)
where

I g (Tree xs _) = ig

Iy (Tree ys ts) = g ix

The items covered to compute the function g are added to the items
covered to compute the head-normal-form of the result y of the
application.

The transformation of the definition of map is as follows:

map :: I (I a->Ib)->1IT[a]l ->1I [b]
map £ 1
=let I 1’ (Tree _
in case 1’ of {
[0 -> wrap [1;
x’:xs’ -> let x =1 x’ (ts!!0)
xs = I xs’ (ts!!l)
in wrap (:) ‘ap‘ app f x
‘ap‘ map f xs }

ts) =1

In general, all calls to apply are replaced with calls to app and
all partial applications are wrapped using wrap. In the previous
example, we have only seen partial applications with one missing
argument. How do we have to wrap partial applications with more
of them? For example, the partial application (+) without any
arguments has two missing arguments and needs to be transformed
into something of type I (I Int -> I (I Int -> I Int)).A

5 We omit all calls to collect for brevity.



simple application of wrap is not sufficient here — the resulting
typeis I (I Int -> I Int -> I Int). We need to stack calls
to wrap using function composition (.) to get a wrapper of the
correct type’:

wrap :: (Ia->Ib) ->I(Ia->1IDb)
wrap. (wrap.)

(Ia->Ib->

> I (Ta->1IC(I

wrap. (wrap.) . ((wrap.

2 (Ia->Ib->

> I(Ta->1IC(C

Ic)

b ->1Ic))

).

Ic->1I4d

b->I (Tc->1Id))

We can use this scheme to wrap partial applications of functions
with any number of missing arguments. Constructors initially do
not take wrapped arguments like functions do. The following fam-
ily of functions corrects this for constructors of arbitrary arity
greater than zero:

ap :: I (a->b) >Ia->Ib
(ap.).ap :: I (@->b->c) >Ta->Ib->Ic
((ap.).).(ap.) .ap
:: I (a->b->c->4d)
>Ia->Ib->Ic->1d

If we first apply such a combination of ap and (.) and then a simi-
lar combination of wrap and (.), we can wrap partial applications
of constructors of any arity.

We could only briefly explain how we transform higher-order-
functions. Space restrictions prevent us from formally presenting
the approach. For the same reason, we omit the discussion of
functional arguments of data constructors.

4.4 Different Coverage Criteria

In Section 3 we have introduced GBC to cover all branches of
reachable functions and FC to cover the branches of a considered
function for every reachable call to it. The transformation presented
so far collects the labels that are attached to the branches in a
FlatCurry expression. This information is sufficient to implement
GBC. The set of covered labels is enough to decide which of the
reachable branches have been executed.

However, our approach is not restricted to collecting branch la-
bels. As an example, we show how to extend the collected infor-
mation in order to support the implementation of FC. It turns out
that this extension suffices to implement many variations of the pre-
sented coverage criteria. We only describe this extension informally
by examples because it is far less complicated than the transforma-
tion presented so far.

GBC collects branch labels without keeping track of the func-
tion call which caused the execution of the branch. In order to check
FC, we need to associate a call position to each collected branch.
We can represent a call position of a function g by the name of
the calling function (e.g., £) together with a number that distin-
guishes multiple calls to g in £. The new type of collected informa-
tion stores a call position together with a label:

type CallPos = (String,Int)

type Info = (CallPos, [Int])

We can add a new parameter of type CallPos to every defined
function and use this parameter to collect values of the adjusted
Info type. We only show the transformation of the function
interval to clarify the idea. The other functions can be trans-
formed similarly.

6 Note that the real types are more general then the presented types.

1 interval :: CallPos -> I Int -> I Int -> I NumSet
2 interval cp n m =
3 let I b (Tree xs ts) = eq ("interval",1) n m
in collect xs
(case b of {

True -> collect [(cp,[1,11)]

(wrap (:) ‘ap‘ n ‘ap‘ wrap [1);
False -> collect [(cp,[1,2])]

© ® N9 o o A

(wrap (:)
10 ‘ap‘ n
1 ‘ap‘ interval ("interval",1)
12 (add ("interval",1)
13 n (wrap 1))
14 m)

Every function called by interval is extended with a call position
that consists of the name "interval" and a number enumerating
different calls of the same function (here lines 3, 11 and 12). As
no function is called twice, this number is always 1. The calls to
collect in the branches of the case expression are modified such
that the parameter cp is attached to every collected label (lines 6
and 8).

Using the extended version of the program transformation, the
transformed program collects items that specify which branches
have been executed due to which calls of the corresponding func-
tion. This information can be used to check GBC and FC. How-
ever, also modified versions of these coverage criteria could be
checked. For example, we could check the coverage of any sub-
set of all reachable branches. Or we could check for an arbitrary set
of functions whether every call to one of these functions is covered
separately by the generated test cases.

5. Practical Experience

We have implemented a prototype of our approach to evaluate its
applicability and usefulness. Our benchmarks were run on an AMD
Athlon™ XP 3000+ with 2 GHz, 512 KB cache and 3 GB main
memory. We used KiCS [9] for our experiments, because it is the
only Curry system that supports fair encapsulation on demand and
guessing in arithmetic operations. The latter is due to the fact that
values of type Int are represented by an algebraic datatype:

data Int = Neg Nat | Zero | Pos Nat

The datatype Nat defines positive integers in binary notation with
the least significant bit first. The most significant bit is always 1 to
avoid ambiguities and therefore denoted IHi:

data Nat = IHi | O Nat | I Nat

In this representation, e.g., the number 42 is represented as
Pos (0 (I (0 (I (0 IHi)))))

and —4 as
Neg (0 (0 IHi))

Defining the usual arithmetic operations on the Int and Nat
datatypes is error prone because the binary notation is not very
appealing to a human eye. On the other hand, a correct implementa-
tion is crucial here as it lies at the heart of every Curry program that
involves arithmetic operations. As these operations are not yet for-
mally verified, we wanted to gain confidence in their correctness by
generating test cases for them. Binary arithmetic operations serve
well to evaluate the usefulness of the presented coverage criteria
because they can be implemented as small but complex functions.
As mentioned in Section 1.1 this is a typical situation to apply
Glass-Box Testing.



GBC FC

# test # test

cases seconds cases seconds
add 6 (15 | 0.04+0.01 | 20 (>219) | 0.71+0.24
sub 7 (20) | 0.09+0.03 | 17 (137) | 0.62+0.13
mul 2 (>141) | 0.75+0.17 5 (17) | 0.03+0.01
cmpNat 8 (38) | 0.08+0.05 | 33 (294) | 1.30+1.10
(+) 18 (184) | 0.83+0.51 | 11  (42) | 0.06+0.02
) 15 (>280) | 1.51+0.94 3 (3) | 0.01+0.01
(*) 7(>171) | 0.39+0.14 7 (1) | 0.01+0.01
cmpInt | 15 (178) | 0.41+0.18 9 (15) | 0.02+0.01

Figure 3. Number of test cases generated and required runtimes
for both considered coverage criteria, GBC and FC, for selected
operations of the arithmetic library.

5.1 Applicability

We will introduce some of the arithmetic operations in order of
increasing complexity. First we will introduce simple operations
on Nat values and later proceed with Int operations which are
built upon the simpler ones. We will always generate test cases
using the different coverage criteria introduced in Subsection 3.1 to
evaluate these criteria. We do not yet aim at finding bugs but want
to measure how expensive our approach to generating test cases is
for the presented functions.
The addition on positive integers is defined as follows:

add :: Nat -> Nat -> Nat

add THi y = succ y

add (0 x) IHi =1 x

add (0 x) (0 y) =0 (add x y)

add (0 x) (Iy) =1 (add x )

add (I x) IHi = 0 (succ x)

add (I x) (0y) =1 (add x y)

add (I x) (I y) =0 (add (succ x) y)
succ :: Nat -> Nat

succ IHi = 0 IHi

succ (0 bs) = I bs
succ (I bs) = 0 (succ bs)

Six test cases suffice to cover all branches in the functions add and
succ:

add (I IHi) IHi =0 (0 IHi) -- 3+1 =4
add IHi (I (0 IHi)) =0 (I IHi) -- 1+5 =6
add (I IHi) (0 IHi) =1 (0 IHi) -- 3+2 =5
add (0 IHi) (I IHi) =1 (0 IHi) --2#43 =5
add (0 IHi) (0 IHi) =0 (0 IHi) --2+2 =4
add (I IHi) (I IHi) =0 (I IHi) -- 3+3 =6

The test cases were selected by our tool out of a set of 15 gener-
ated test cases that were computed in about 40 milliseconds. Nine
redundant test cases were eliminated which took even less time.
Note that it is not possible to cover all branches of add in every
call to it. The recursive call to add in the last rule never executes the
first rule since the result of succ x in the first argument can never
be IHi. Trying to generate a set of covering test cases according to
FC (cf. Subsubsection 3.1.2), reveals exactly this information. Our
tool generated 219 test cases in approximately one second before it
gave up to satisfy the coverage criterion because 100 test cases were
generated without additional coverage. After eliminating redundant
test cases, which took less than half a second, a set of 20 test
cases remained, which cover all reachable branches. With FC,
the function add was tested more thoroughly than with GBC. 20

non-equivalent test-cases remain, compared to 6 using GBC. The
function add only depends on one other function and it contains
four recursive calls. Therefore, it is not surprising that it is more
difficult to satisfy FC in this example.

Let us now consider the function (+) on Int values which is
defined in terms of add, sub and cmpNat. We will not discuss the
subtraction function sub :: Nat -> Nat -> Nat in detail. The
results of generating test cases for sub are comparable to the results
obtained with add although it is possible to satisfy FC. We will
discuss the comparison function

cmpNat :: Nat -> Nat -> Ordering

later and proceed with the definition of (+):

(+) :: Int -> Int -> Int
Zero + X =X
Pos x + Zero = Pos x

Pos x + Pos y = Pos (add x y)
Pos x + Neg y = case cmpNat x y of
LT -> Neg (sub y x)

EQ -> Zero
GT -> Pos (sub x y)
Neg x + Zero = Neg x

Neg x + Neg y = Neg (add x y)

Neg x + Pos y = case cmpNat x y of
LT -> Pos (sub y x)
EQ -> Zero
GT -> Neg (sub x y)

Here, the situation is different compared to the first example: the
function (+) does not contain any recursive call but it depends
on a number of other functions some of which depend on other
functions themselves. Consequently, 18 test cases are required to
satisfy GBC, while 11 suffice to satisfy FC.

The function mul on positive integers is an example of a recur-
sive function that also depends on other functions:

mul :: Nat -> Nat -> Nat

mul THi y =1y

mul (0 x) y = 0 (mul x y)

mul (I x) y = add y (0 (mul x y))

Not all branches of add can be covered by a call to mul: the second
argument of add is never IHi (even in recursive calls of add),
because in the call to add in mul the second argument is always
bigger than the first. As GBC cannot be obtained, 141 test cases
are generated where the last 100 do not cover additional branches.
Our system selects two test cases that suffice to cover all reachable
branches:

mul (I (I IHi)) (I (I IHi)) = I(0(0(O(I IHi))))
mul (0 IHi) THi = 0 IHi

If the coverage criterion cannot be satisfied, the stopping criterion
determines which test cases will be (generated and) selected. For
example, one single test case suffices to cover all branches reach-
able from mul:

mul (0 (I (I IHi))) (I (I IHi)) -- 14%7
=0 (I (0 (0 (0O (T IHiN))) -- =98

This test case is only generated, when our system generates larger
and larger test cases trying to satisfy the coverage criterion. Here,
the larger set of smaller test cases is preferable if it should be
verified by a human.

Covering only the branches of mul in every single call is easily
possible. Only 17 test cases need to be generated and 5 of them can
be selected to satisfy FC.



The results of all our experiments are depicted in Figure 3. The
two coverage criteria are compared w.r.t. the number of generated
test cases and the time necessary to compute them. We show the
number after eliminating redundant test cases along with the to-
tal number of generated test cases after which the coverage crite-
rion was satisfied in parentheses. A greater sign (>) indicates that
the coverage criterion could not be satisfied due to the actual pa-
rameters of the called functions and that the computation has been
stopped, since a previously set limit” of (here) 100 test cases with-
out covering new branches was reached. If this limit is big enough,
these test cases will cover the reachable branches. The presented
times are split in order to distinguish the time needed to compute
all test cases (first number) from the time used for redundancy elim-
ination (second number).

We can see that it is more difficult to satisfy GBC for functions
that depend on other complex functions. FC could be satisfied eas-
ier. Here, the number of test cases generated to cover all calls to the
considered function generally corresponds to the complexity of its
definition, regardless whether it depends on other complex func-
tions or not. FC leads to a more thorough testing of the branches
of a function than GBC, provided that all other reachable functions
have been tested separately.

Because we chose small functions that serve well to compare
the presented coverage criteria, we can see little about the applica-
bility of our approach to larger applications. To check whether our
tool is useful in practice, we need to apply it to code that combines
library functions from different modules. Therefore we generated
test cases for the function that we use for redundancy elimination.
We implemented a heuristic for the set-covering problem that uses
standard libraries for list processing and balanced search trees. Our
tool needs almost 30 seconds to generate 227 test cases for GBC
and about 10 seconds to select 10 non-equivalent test cases. We
also generated test cases for FC but aimed at covering separately all
reachable functions in the same module instead of only the tested
function. Here, 192 test cases were generated in 15 seconds and two
of them were selected in almost 2 seconds. The measured times are
significantly larger than those for the arithmetic functions. Never-
theless, they are acceptable and the number of generated test cases
is manageable. We suspect that we introduce significant overhead
by the way we collect coverage information that is not yet tuned for
performance. Without monitoring coverage, thousands of test cases
for this function can be generated within a few seconds. Therefore
we are optimistic to be able to achieve better performance also for
large applications in the future.

5.2 Usefulness

Until now, we have only compared, how expensive it is to satisfy
the different coverage criteria. In this subsection, we will show, how
effectively the criteria can expose errors.

We have introduced bugs into some of the arithmetic functions
and checked whether the test cases generated w.r.t the different
coverage criteria exposed them. In order to obtain more reliable
results, we have not only introduced the same bugs at different
positions but have chosen from three different kinds of bugs:

1. We have replaced a constructor in the right-hand side of a rule
by another constructor of the same type. For example, the term
0 x could be replaced by I x to introduce a bug of this kind.

2. We have replaced variables in the right-hand side of a rule
by another variable of the same type. For example, the term
add x y could be replaced by add x x to introduce a bug of
this kind.

7 specified by the user

3. We have swapped the arguments in applications of operations
that are not commutative. For example, the term cmpNat x y
could be replaced by cmpNat y x to introduce a bug of this
kind.

Some bugs have been introduced only into a function that is called
by the tested function. From a total number of 20 introduced bugs,
15 were detected by GBC and 19 by FC. The bug not exposed by
FC has been introduced in a function called by the tested function
which therefore did not have to be covered according to FC. FC
exposes the bug, if we generate test cases for the buggy function.
However, this does not mean that FC detects all bugs in general. We
have already seen an example for a bug that is not detected by FC in
Subsubsection 3.1.2. GBC failed to expose four introduced bugs of
kind (2) and one introduced bug of kind (3). In order to explain the
difference between GBC and FC and to understand why FC tests a
function more thoroughly, we will discuss the test-case generation
for one example in more detail.

According to GBC, the covered branches are not distinguished
by the call that caused its execution. If one recursive call executes
the first rule of the tested function, all other recursive calls do not
need to execute this rule in order to satisfy GBC. According to
FC, every recursive call needs to execute every branch of the tested
function. Consider the following definition of the comparison func-
tion cmpNat:

cmpNat :: Nat -> Nat -> Ordering

cmpNat IHi IHi = EQ
cmpNat IHi (0 _) = LT
cmpNat IHi (I _) = LT
cmpNat (0 _) IHi = GT

cmpNat (0 x) (0 y) = cmpNat x y
cmpNat (0 x) (I y)

| cmpxy == EQ = LT
| otherwise = cmpxy
where cmpxy = cmpNat x y
cmpNat (I _) IHi = GT
cmpNat (I x) (0 y)
| cmpxy == EQ = GT
| otherwise = cmpxy

where cmpxy = cmpNat x y
cmpNat (I x) (I y) = cmpNat y x

The test cases that satisfy GBC do not expose an error:

cmpNat (0 (I IHi)) (0 IHi) =GT --6>2
cmpNat (0 IHi) IHi =GT --2>1
cmpNat IHi (I 1Hi) =LT --1<3
cmpNat (I IHi) (I IHi) =EQ --3==23
cmpNat (I IHi) (0 IHi) =GT --3>2
cmpNat (0 IHi) (I IHi) =1LT --2<3
cmpNat (I IHi) (0 (0 THi)) =LT --3< 4
cmpNat (0 (I IHi)) (I IHi) =GT --6>3

But is the definition correct? The function cmpNat is quite com-
plex: there are 9 rules with 4 recursive calls. Covering all these
calls individually requires 33 test cases. Among them are eight that
expose an error:

cmpNat (I (0 IHi)) (I IHi) = LT -- 5<3
cmpNat (I IHi) (I (I IHi)) = GT -- 3>7
cmpNat (I IHi) (I (0 IHi)) = GT -- 3>5
cmpNat (I (I IHi)) (I (0 IHi)) = LT -- 7<5
cmpNat (I (0 IHi)) (I (I IHi)) =GT -- 5>7
cmpNat (I (I IHi)) (I (0 (O IHi))) = GT -- 7>9
cmpNat (I (0 (0 IHi))) (I (I IHi)) = LT -- 9<7

cmpNat (0 (I (I IHi))) (I (I IHi)) = LT -- 14<7



We can observe that all of them use the last rule of cmpNat which
is indeed faulty: we have flipped the arguments in the recursive
call. GBC did not expose the error, since the last rule was only
executed with equal arguments. In fact, it was only executed once
with the arguments I IHi and I IHi. The recursive call in the
last rule was not covered completely. It was only executed with the
arguments IHi and THi. Swapping these two arguments obviously
has no effect.

6. Conclusions and Future Work

We have shown how glass-box testing based on systematic cov-
erage of the code can be adapted from the imperative world to a
functional logic programming language.

We have developed two coverage criteria for the functional
(logic) programming paradigm and presented a tool which gener-
ates a system of test cases automatically according to a selected
coverage criterion. This tool employs the narrowing-based execu-
tion mechanism of Curry in order to generate test-cases. The com-
putation is controlled by the set of items to be covered and redun-
dant test cases are eliminated by a heuristic for the set covering
problem.

The implementation of our tool is based on a program transfor-
mation which adds labels and additional parameters to the functions
to be tested in order to compute the coverable items along with the
result. Special care had to be taken to handle laziness properly and
we have shown that it is not necessary to introduce impure features
in order to compute the coverage information.

Practical experiments show that our approach is applicable to
realistic algorithms and useful to expose bugs in their definition.
Complete sets of test cases could be generated within a few sec-
onds. Even for small but complex applications as the considered
arithmetic library, it is very unlikely that a human could sucess-
fully generate such complete sets of test cases for a given coverage
by hand, taking into account that these sets consist of up to 33 el-
ements. This shows the value of our tool for the development of
software of high quality. We have demonstrated that Function Cov-
erage exposes errors that can remain undetected in test cases that
satisfy Global Branch Coverage. On the other hand, it usually does
not expose errors in reachable functions, so these need to be tested
separately.

As future work, we plan to investigate the notion of data-flow
coverage in the context of declarative programming. Section 5 in-
dicates that it is sometimes hard to tell whether the generated test
cases for a function correspond to its intended meaning. Therefore,
we plan to integrate specifications that are employed to automati-
cally verify the generated test cases.
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