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Abstract—The performance of high-resolution direction of arrival A=la(br),---.a(8,)]
(DOA) estimation methods significantly degrades in several practical
situations where the wavefronts have imperfect spatial coherence. The is then x ¢ matrix of the wavefront vectors of each source
original solution to this problem was proposed by Paulraj and Kailath,
but their technique requires a priori knowledge of the matrix character-

izing the loss of wavefront coherence along the array aperture. In this 5 the n x 1 wavefront vector corresponding to the direction
correspondence, a novel solution to this problem is proposed, which does97 {61}1=12....., are the signal DOA'ss(i) is the ¢ x 1 vector

not require a priori knowledge of the spatial coherence matrix. O
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Let us now assume that the wavefronts have imperfect coherendeere
within the array aperture and briefly revisit the underlying model [8]. Lo
Wavefront perturbation can be represented as multiplicative noise, F== Zf(,’,)fH(i) 8)
. N
leading to the snapshot model i=1

F() = (G(i) © A)s(i) + n(i) (3) isthe sample estimate of the mat#x N is the number of snapshots,

) and< denotes the inverse of Schur-Hadamard product, i.e.,
whereG(7) is then x ¢ matrix of random wavefront perturbations,
(L) " ! p [CQD]I‘HI = [C]lm/[D]hn-

and & denotes the Schur—-Hadamard (element-by-element) matrix

product. The elements of matri&(:) describe the amplitude and Thjs preprocessing operation allows one to find a consistent estimate
phase fluctuations of wavefronts, i.e., of the matrix R. After that, the MUSIC algorithm can be applied
[G(i)]i = C.lk(i)ejélk(i)_ straightforwardly [8] to the _restored cov_ariance ms_niix
‘ > The main drawback of this approach is the requirement of exact

It should be noted that unlike (1), the vector process (3) is alwap&ori knowledge of the spatial coherence mathxIn practice, this

non-Gaussian. This is the main reason why one cannot exploit §@ndition may be unrealistic. With imprecise knowledge of matrix

maximum likelihood technique [3] in the situation considered. B, serious problems can occur, especially when some elements of
Following [8], we assume isotropic coherency loss, i.e., we coffis matrix are close to zero.

sider the case when the loss across the array is the same for all

wavefronts, irrespective of their DOA’s. The phase field of emitted IV. PROPOSEDMATRIX-FITTING TECHNIQUE

signals can often be modeled as a Wiener—Levy process in variougyq on_Gaussian array data vector model (3) does not allow for

lpract!cal situations. IT such cascejs, theh statedl |sptro|[)|c cohere applying the maximum likelihood algorithms for DOA estimation in
oss is an exact result [12]. Random phase-velocity fluctuations situation of imperfect wavefront coherence. However, the natural

a time-varying propagation medium may_resu_lt In situations Wh_ef:%st function whose global minimum corresponds to the required
this assumption is a reasonable approximation. Typical situatiofSmates of parameters may be chosen as
arise in long-range ocean acoustic propagation and electromagnetic

propagation in the lower troposphere. In addition, this assumption Z(©)=|R-R|} =|FZB - R|% 9)
may be reasonable when modeling stochastic array deviations [13]. L .
The assumption of isotropic coherence loss means that the spalffre the minimization is performed over the matriéeand B. The

coherence function is independent of the wavefront index minimizer of Z(©) can be rewritten as
bim = E{[G(D]ie[G()] .}

— L (D (D) (P1(D) = Do ()
= E{Gk ()i ()18 T (4) which corresponds to a least-squares fit and provides a statistically
?fnsistent estimator of th&/ x 1 vector@ of unknown parameters

].

ngn tr{(FZB — R)} (10)

where(-)* denotes the complex conjugate. From isotropic model,
follows that function (4) depends on the separation betweeritthe . .
(4) dep b We need to estimatg DOA’s, ¢ real independent parameters of

and mth sensors only, i.e., for a uniform linear arréy, = b;—p, i trixS. th . ; 2 andn—1 real ind dent
whereas the assumption of zero-mean phase fluctuations gives {-rl'%E[mI lah matrixs, the noise variance- , andn —  real independen

all b, have real values. Additionally, assume that the rando;;}ﬁrameters of the matriB. Therefore, the total number of estimated
wavefront perturbations, the additive sensor noises, and the so géanjt(_aters M = q.(q +1) t?l'.Tzklpg ('jng%, acclqugt thatd th?
waveforms are all mutually statistically independent. Thus, the arr rmitian array covariance matrix is define real independen

covariance matrix for the data model (3) can be expressed as parameters, we have that our estimation problem is well posed if
qg(g+ 1) < n(n = 1). This is, however, always fulfilled because

F=E{f(0)f (i)} = (ASA")o B+ "I (B) a<n.

Let us now reduce the dimension of the multidimensional search
where [B];,, = b, and, without loss of generality, we assumémplied by (10). For fixed DOA’s and matriB, the optimum of
that bo = 1. This normalization of the matrid3 is equivalent to (10) is achieved for
multiplying all snapshot vectors by a constant, and obviously, it does

_ At(# ~2 0\ AtH

not cause any change of the model. Therefdre, B = I, and (5) S=A"FOB-51)A 11)
can be rewritten as 2 1 13

6" = — qtr{PA(FQB)} (12)

F=ROB. © AT =" AT, Py=AAT, PY=I-P, (13)

Summari_zing, we concl_u_de thdif can be modeled asa real'Vf"‘luqusing (11)—(13), we can rewrite the minimization problem (10) as
symmetric Toeplitz positive definite mattif8].

tr{P4(FZB)}I)P 4

min tr{(F@B — P 4(FZB -
e n—gq
IIl. PAULRAJ-KAILATH METHOD

To improve the MUSIC algorithm in a situation of imperfect n—gq
wavefront coherence anal priori known spatial coherence matrix . - -
. : . . = FJZB — P 4(FZB)P
B, Paulraj and Kailath [8] introduced and exploited the so-called “5“ r{( Al P4
restored array covariance matrix

tr{ P4 (FOB)}I)}

S —— tr{P4(FOB)}Py)"} (14)
R=FoB @) 1
where the(q + n — 1) x 1 vector
LIt should be pointed out that this is not a necessary requirement for the PR
proposed algorithm. Other models of the matBxcan be involved as well. 0=(6".,b) (15)
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Fig. 1. Experimental RMSE of DOA estimation versus the number of snapshots =SR®RdB. Three techniques are compared: the conventional MUSIC
algorithm, the Paulraj—Kailath modification of MUSIC, and the proposed matrix fitting technique. The exact Paulraj-Kailath technique cormsponds t
precisea priori knowledge of the spatial coherence mat#ix whereas the approximate Paulraj—Kailath technique corresponds to the case where this
matrix is known with a small error.

contains the reduced set of estimated parameters Minimization of the cost function (14) has been performed over the
0= (61,06, 79q)1” b= (by, b, - ) parameters (15) using the ge_netlc algorlthm_ (GA), \_/vhlch is known
to converge to a global minimum [14]. This algorithm seems to
If the global minimization of (14) ove® is already performed, be suitable for solving the multidimensional parameter estimation
then, according to (11), the final estimates of the source powgiimblems in array processing [15]-[17]. At the same time, GA
of.1 =1,2,---,¢ can be found as is known to be computationally expensive. For reduction of the
JCR S P TP ~tH computational burden, the domain of variation of the estimated

o0 =[A(FOB w{P(FOB)H)A Ju - (16) parameter$ = (by,by--+,b,_1)" has been bounded between

n—gq
where A and B are the final estimates of the matricdsand B.

Unlike the Paulraj—Kailath algorithm, the presented technique does
not requirea priori knowledge of spatial coherence matfxbecause by = ¢~ 7¢ max/? ¢ 7270 max/? ... o~ hmax/2)T (1)
this matrix is estimated simultaneously with the source DOA's.

2 . 2 : 2
by = (¢ 7% nlin/z, e~ 278 nlin/25 e o (n g min/2)T and

wheres? i, = 0.09 and oy .. = 0.49, respectively. Similarly,
V. SIMULATION RESULTS the estimated DOA’s have been bounded as well, i.e., they have
Computer simulations have been carried out to compare the Dd&en assumed to belong to the interGal:- 20°. This corresponds

estimation performances of the matrix fitting technique, the convet@ the very rough pre-estimation of the DOA localization sector
tional MUSIC estimator, and the Paulraj—Kailath modification ofy conventional beamformer, which is relatively insensitive to the
MUSIC. We assume a uniformly spaced linear array with= 8§ coherency loss compared with the high-resolution methods [5].
sensors and half-wavelength spacing and two mutually uncorrelated® total of 100 independent simulation runs have been performed
equipower signal sources impinging on the array from the directiofs compute the experimental root-mean-square error (RMSE) and the
#, = 11° and#s = 15°. The additive Gaussian noise is uncorrelateiias of DOA estimation for each algorithm and simulated point. In all
with the sources and between array sensors and has the same varigxa@ples, the Paulraj—Kailath method has been tested in two different
o? in each sensor. We assume that wavefront amplitudes do maedes. The first one, which is referred to aselactPaulraj-Kailath
fluctuate, whereas the wavefront phases have Gaussian indepeng@ibhod, corresponds to preciagoriori knowledge of the coherence
fluctuations with sensor-to-sensor phase increment variajcdn matrix B. The second mode, which is referred to @sproximate
other words, the spatial coherence function (4) is modeled as [Blaulraj—Kailath method, corresponds to the case where this matrix is
[8], [12] known with a small error that can easily occur in practice. Namely,
in the second mode, we assume that the restored array covariance
matrix (7) is calculated using the imprecisely known matBx In
In all simulation examplesaﬁ, = (.25 has been taken correspondingurn, this matrix is calculated using the model (17) and the measured
approximately to a—1.086 dB coherency loss at one-wavelengtialue ofai, i.e.,&i = (.27 (recall that the true value of?, is 0.25).
separation. This corresponds to the 8% measurement error Jof

b = E{ej(d‘lk(i)*d’mk(i))} — 6*05,\1*"4/2_ (17)
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Fig. 2. Experimental absolute value of bias of DOA estimation versus the number of snapshotss ERIB. Three techniques are compared: the
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Fig. 3. Experimental RMSE of DOA estimation versus SNR. The number of snapshots 100. Three techniques are compared. The conventional
MUSIC algorithm, the Paulraj—Kailath modification of MUSIC, and the proposed matrix fitting technique. The exact Paulraj—Kailath techniquendsrresp
to precisea priori knowledge of the spatial coherence matix whereas the approximate Paulraj—Kailath technique corresponds to the case where this
matrix is known with a small error.

Fig. 1 shows the comparison of experimental RMSE's of DOAOlog(s%/0?), whereo is the power of each signal in single sensor.
estimation for the conventional MUSIC, Paulraj—Kailath, and matrikig. 2 shows the same curves as in Fig. 1 but for the absolute value
fitting techniques versus the number of snapshots for the fixed sign&IDOA estimation bias. Fig. 3 compares the experimental RMSE'’s
to noise ratio (SNR) equal to 20 dB for each source. SNR is definedasDOA estimation for the conventional MUSIC, Paulraj—Kailath,
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Fig. 4. Experimental absolute value of bias of DOA estimation versus SNR. The number of snapshetsi00. Three techniques are compared.

The conventional MUSIC algorithm, the Paulraj—Kailath modification of MUSIC, and the proposed matrix fitting technique. The exact Paulraj—Kailath
technique corresponds to preciaepriori knowledge of the spatial coherence mati whereas the approximate Paulraj—Kailath technique corresponds

to the case where this matrix is known with a small error.

and matrix fitting techniques versus SNR for the fixed number @fiterion [14]. In order to provide insights regarding the relative
snapshotsV = 100. Fig. 4 shows the same curves as in Fig. 3 butomplexity, we compared the computational time of the matrix
for the absolute value of DOA estimation bias. fitting and Paulraj—Kailath techniques in our simulations for typical

It follows from Figs. 1 and 2 that for high SNR, the proposed mgparameters of GA (the number of generatieasl00, the number
trix fitting technique significantly outperforms both the conventiondf individuals in one generatios= 30, the binlength= 20, the
MUSIC and Paulraj-Kailath algorithms in the case of a moderafgobability of crossover= 0.75, and the probability of mutatios
and a large number of snapshots. The exact Paulraj—Kailath metff@01) and of MUSIC (the spectral function has been calculated with
has superior performance only in the case of a very large numi§e@ angular grid).1° in the whole array field of view—90°, 90°]).
of snapshots (i.e.N > 10%). However, in the presence of theOur comparison shows that the matrix fitting technique is more
small measurement error of the matdX, the performance of the expensive in the situation considered (approximately with the factor
Paulraj—Kailath technique degrades significantly. A surprising fatt = 20). In fact, this is the payment for the improved performance.
following from Figs. 1 and 2 is that in the case of a moderatléjoweverj it seems th_at the pr_opo_sed technlque can bg used at least in
and even a large number of snapshots (i.e., ¥or< 3000), the non_n_eal-tlme p_rocessmg appll_catlons. _Thls conclusmn is based c_)n t_he
conventional MUSIC algorithm can perform better than both tHRositive experience when using GA in practical sonar and seismic
exact and approximate Paulraj—Kailath techniques. This fact can FHQb'emS [151-{17].
explained by the weak statistical consistency of the estimate (7) based
on the inverse of Schur-Hadamard product. It should be noted that VI. CONCLUSIONS
this fact is pointed out in [8] as well, namely, it is mentioned there A novel matrix fitting approach to the DOA estimation problem
that the Paulraj—Kailath method provides improved results relativewdth imperfect wavefront coherence is proposed. Unlike the well-
conventional MUSIC only when the number of snapshots exceed&mown Paulraj—Kailath method, our algorithm does not requaire
certain threshold. priori knowledge of the spatial coherence matrix because the elements

Figs. 3 and 4 demonstrate that for a moderate number of snapstaftshis matrix are estimated simultaneously with signal DOA's.
(N = 100), only the proposed matrix fitting technique can providéloreover, computer simulations have shown significant improvement
satisfactory performance up to SNR: 0 dB, namely, in this of the DOA estimation performance of the proposed technique com-
situation, the performances of conventional MUSIC and both thered with the conventional MUSIC and Paulraj-Kailath methods.
exact and approximate Paulraj-Kailath techniques severely degradie payment for the improved performance is higher computational
in the whole range of SNR. complexity.

Unfortunately, it is not possible to compare the computational
cost of our technique and the Paulraj—Kailath method in terms of REFERENCES
number of operations becaus.'e .the. computa_ltlonal gompIeXIty of G'ffl.] R. O. Schmidt, “Multiple emitter location and signal parameter estima-
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the internal parameters of algorithm and the choice of convergence 234-258.
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