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Matrix Fitting Approach to Direction of Arrival Estimation
with Imperfect Spatial Coherence of Wavefronts

Alex B. Gershman, Christoph F. Mecklenbräuker,
and Johann F. B̈ohme

Abstract—The performance of high-resolution direction of arrival
(DOA) estimation methods significantly degrades in several practical
situations where the wavefronts have imperfect spatial coherence. The
original solution to this problem was proposed by Paulraj and Kailath,
but their technique requires a priori knowledge of the matrix character-
izing the loss of wavefront coherence along the array aperture. In this
correspondence, a novel solution to this problem is proposed, which does
not require a priori knowledge of the spatial coherence matrix.

I. INTRODUCTION

The majority of high-resolution DOA estimation methods [1]–[3] is
model-based and, therefore, very sensitive to various types of model
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errors [4]. Usually, when implementing DOA estimation algorithms,
each wavefront is assumed to be perfectly coherent within the array
aperture, i.e., the amplitude and phase of any wavefront are supposed
to be fully correlated between any two sensors of the receiving array.
Such perfect coherence of the wavefront implies that it contributes
a rank-one component to the array covariance matrix. However, in
many practical situations, as, for example, in sonar and radar, wave-
front coherence suffers with increasing spatial separation between
array sensors [5]–[13]. Such wavefront decorrelation can result from
signal propagation through randomly inhomogeneous media [9], [10],
from scattering at randomly varying surfaces [8], [11], [12], and
from other types of stochastic model deviations [13]. As a result, the
high-resolution DOA estimation and detection methods are no longer
applicable. In their work [8], Paulraj and Kailath have developed a
statistical model for sources with partial wavefront coherence and
have studied how the performance of the MUSIC DOA estimator
degrades if spatial coherence is ignored in the signal model. They
also proposed the elegant technique that exploits the model developed
for improving the estimation performance of the MUSIC algorithm.

The main drawback of their algorithm is the requirement of full
a priori knowledge of spatial coherence matrix characterizing the
loss of wavefront coherence along the array aperture. In practical
situations, this matrix may be unknown.

In this correspondence, a new matrix fitting technique is proposed
as a solution to DOA estimation problem in the presence of im-
perfectly coherent wavefronts. Unlike the Paulraj–Kailath technique,
our algorithm does not requirea priori knowledge of the spatial
coherence matrix because the elements of this matrix are estimated
simultaneously with signal DOA’s.

II. PROBLEM FORMULATION

Consider a uniformly spaced linear array ofn sensors. Assume
that there areq <n narrowband stationary zero-mean mutually un-
correlated far-field sources with central frequency!0: In this cor-
respondence, we only address the source localization problem, i.e.,
the number of sources is assumed to be knowna priori. First of all,
consider the familiar case of perfect wavefront coherence. Theith
array vector snapshot can be modeled as [2]–[4]

rrr(i) = AAAsss(i) + nnn(i) (1)

where

AAA = [aaa(�1); � � � ; aaa(�q)]

is then � q matrix of the wavefront vectors of each source

aaa(�) = (1; e�j! d sin �=c
; � � � ; e

�j! (n�1)d sin �=c)T

is the n � 1 wavefront vector corresponding to the direction
�; f�lgl=1;2;���;q are the signal DOA’s,sss(i) is the q � 1 vector
of random source waveforms,nnn(i) is the n � 1 vector of random
sensor noise,d is the interelement spacing,c is the propagation
speed, and(�)T denotes the transpose. The array covariance matrix
is given by [1]–[3]

RRR = Efrrr(i)rrrH(i)g = AAASSSAAA
H + �

2
III (2)

where

SSS q � q covariance matrix of signal waveforms;
III n � n identity matrix,
�2 noise variance;
Ef�g expectation operator;
(�)H Hermitian transpose.
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Let us now assume that the wavefronts have imperfect coherence
within the array aperture and briefly revisit the underlying model [8].
Wavefront perturbation can be represented as multiplicative noise,
leading to the snapshot model

fff(i) = (GGG(i)�AAA)sss(i) + nnn(i) (3)

whereGGG(i) is then � q matrix of random wavefront perturbations,
and � denotes the Schur–Hadamard (element-by-element) matrix
product. The elements of matrixGGG(i) describe the amplitude and
phase fluctuations of wavefronts, i.e.,

[GGG(i)]lk = �lk(i)e
j� (i)

:

It should be noted that unlike (1), the vector process (3) is always
non-Gaussian. This is the main reason why one cannot exploit the
maximum likelihood technique [3] in the situation considered.

Following [8], we assume isotropic coherency loss, i.e., we con-
sider the case when the loss across the array is the same for all
wavefronts, irrespective of their DOA’s. The phase field of emitted
signals can often be modeled as a Wiener–Levy process in various
practical situations. In such cases, the stated isotropic coherency
loss is an exact result [12]. Random phase-velocity fluctuations in
a time-varying propagation medium may result in situations where
this assumption is a reasonable approximation. Typical situations
arise in long-range ocean acoustic propagation and electromagnetic
propagation in the lower troposphere. In addition, this assumption
may be reasonable when modeling stochastic array deviations [13].

The assumption of isotropic coherence loss means that the spatial
coherence function is independent of the wavefront indexk

blm =Ef[GGG(i)]lk[GGG(i)]
�
mkg

=Ef�lk(i)�mk(i)e
j(� (i)�� (i))g (4)

where(�)� denotes the complex conjugate. From isotropic model, it
follows that function (4) depends on the separation between thelth
andmth sensors only, i.e., for a uniform linear arrayblm = bl�m,
whereas the assumption of zero-mean phase fluctuations gives that
all bl�m have real values. Additionally, assume that the random
wavefront perturbations, the additive sensor noises, and the source
waveforms are all mutually statistically independent. Thus, the array
covariance matrix for the data model (3) can be expressed as

FFF = Effff(i)fffH(i)g = (AAASSSAAA
H
)�BBB + �

2
III (5)

where [BBB]lm = bl�m and, without loss of generality, we assume
that b0 = 1: This normalization of the matrixBBB is equivalent to
multiplying all snapshot vectors by a constant, and obviously, it does
not cause any change of the model. Therefore,III �BBB = III; and (5)
can be rewritten as

FFF = RRR�BBB: (6)

Summarizing, we conclude thatBBB can be modeled as a real-valued
symmetric Toeplitz positive definite matrix1 [8].

III. PAULRAJ–KAILATH METHOD

To improve the MUSIC algorithm in a situation of imperfect
wavefront coherence anda priori known spatial coherence matrix
BBB, Paulraj and Kailath [8] introduced and exploited the so-called
restored array covariance matrix

~RRR = F̂FF BBB (7)

1It should be pointed out that this is not a necessary requirement for the
proposed algorithm. Other models of the matrixBBB can be involved as well.

where

F̂FF =
1

N

N

i=1

fff(i)fff
H
(i) (8)

is the sample estimate of the matrixFFF ; N is the number of snapshots,
and denotes the inverse of Schur–Hadamard product, i.e.,

[CCC DDD]lm = [CCC]lm=[DDD]lm:

This preprocessing operation allows one to find a consistent estimate
of the matrixRRR: After that, the MUSIC algorithm can be applied
straightforwardly [8] to the restored covariance matrix~RRR:

The main drawback of this approach is the requirement of exacta
priori knowledge of the spatial coherence matrixBBB: In practice, this
condition may be unrealistic. With imprecise knowledge of matrix
BBB, serious problems can occur, especially when some elements of
this matrix are close to zero.

IV. PROPOSEDMATRIX-FITTING TECHNIQUE

The non-Gaussian array data vector model (3) does not allow for
applying the maximum likelihood algorithms for DOA estimation in
the situation of imperfect wavefront coherence. However, the natural
cost function whose global minimum corresponds to the required
estimates of parameters may be chosen as

Z(���) = k~RRR�RRRk2F = kF̂FF BBB �RRRk2F (9)

where the minimization is performed over the matricesRRR andBBB: The
minimizer of Z(���) can be rewritten as

min

���
trf(F̂FF BBB �RRR)

2g (10)

which corresponds to a least-squares fit and provides a statistically
consistent estimator of theM � 1 vector��� of unknown parameters
[3].

We need to estimateq DOA’s, q2 real independent parameters of
Hermitian matrixSSS, the noise variance�2, andn�1 real independent
parameters of the matrixBBB: Therefore, the total number of estimated
parameters isM = q(q + 1) + n: Taking into account that the
Hermitian array covariance matrix is defined byn2 real independent
parameters, we have that our estimation problem is well posed if
q(q + 1) � n(n � 1): This is, however, always fulfilled because
q <n:

Let us now reduce the dimension of the multidimensional search
implied by (10). For fixed DOA’s and matrixBBB, the optimum of
(10) is achieved for

ŜSS =AAA
y
(F̂FF BBB � �̂

2
III)AAA

yH (11)

�̂
2
=

1

n� q
trfPPP?AAA(F̂FF BBB)g (12)

AAA
y
=(AAA

H
AAA)

�1
AAA
H
; PPPAAA = AAAAAA

y
; PPP

?

AAA = III � PPPAAA: (13)

Using (11)–(13), we can rewrite the minimization problem (10) as

min

���
trf(F̂FF BBB � PPPAAA(F̂FF BBB �

1

n� q
trfPPP?AAA(F̂FF BBB)gIII)PPPAAA

�
1

n� q
trfPPP?AAA(F̂FF BBB)gIII)2g

= min

���
trf(F̂FF BBB � PPPAAA(F̂FF BBB)PPPAAA

�
1

n� q
trfPPP?AAA(F̂FF BBB)gPPP?AAA)

2g (14)

where the(q + n � 1) � 1 vector

��� = (���
T
; bbb
T
)
T (15)
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Fig. 1. Experimental RMSE of DOA estimation versus the number of snapshots. SNR= 20 dB. Three techniques are compared: the conventional MUSIC
algorithm, the Paulraj–Kailath modification of MUSIC, and the proposed matrix fitting technique. The exact Paulraj–Kailath technique corresponds to
precisea priori knowledge of the spatial coherence matrixBBB, whereas the approximate Paulraj–Kailath technique corresponds to the case where this
matrix is known with a small error.

contains the reduced set of estimated parameters

��� = (�1; �2; � � � ; �q)
T
; bbb = (b1; b2; � � � ; bn�1)

T
:

If the global minimization of (14) over��� is already performed,
then, according to (11), the final estimates of the source powers
�2l ; l = 1; 2; � � � ; q can be found as

�̂
2

l = [Â̂ÂA
y

(F̂FF B̂BB �
1

n� q
trfPPP?

Â̂ÂA
(F̂FF B̂BB)gIII)Â̂ÂA

yH
]ll (16)

whereÂ̂ÂA andB̂BB are the final estimates of the matricesAAA andBBB:

Unlike the Paulraj–Kailath algorithm, the presented technique does
not requirea priori knowledge of spatial coherence matrixBBB because
this matrix is estimated simultaneously with the source DOA’s.

V. SIMULATION RESULTS

Computer simulations have been carried out to compare the DOA
estimation performances of the matrix fitting technique, the conven-
tional MUSIC estimator, and the Paulraj–Kailath modification of
MUSIC. We assume a uniformly spaced linear array withn = 8

sensors and half-wavelength spacing and two mutually uncorrelated
equipower signal sources impinging on the array from the directions
�1 = 11� and�2 = 15�: The additive Gaussian noise is uncorrelated
with the sources and between array sensors and has the same variance
�2 in each sensor. We assume that wavefront amplitudes do not
fluctuate, whereas the wavefront phases have Gaussian independent
fluctuations with sensor-to-sensor phase increment variance�2�: In
other words, the spatial coherence function (4) is modeled as [6],
[8], [12]

bl�m = Efej(� (i)�� (i))g = e
�� jl�mj=2

: (17)

In all simulation examples,�2� = 0:25 has been taken corresponding
approximately to a�1.086 dB coherency loss at one-wavelength
separation.

Minimization of the cost function (14) has been performed over the
parameters (15) using the genetic algorithm (GA), which is known
to converge to a global minimum [14]. This algorithm seems to
be suitable for solving the multidimensional parameter estimation
problems in array processing [15]–[17]. At the same time, GA
is known to be computationally expensive. For reduction of the
computational burden, the domain of variation of the estimated
parametersbbb = (b1; b2 � � � ; bn�1)

T has been bounded between

bbb1 =(e
�� =2

; e
�2� =2

; � � � ; e�(n�1)� =2
)
T and

bbb2 = e
�� =2

; e
�2� =2

; � � � ; e�(n�1)� =2
)
T (18)

where�2� min = 0:09 and �2� max = 0:49, respectively. Similarly,
the estimated DOA’s have been bounded as well, i.e., they have
been assumed to belong to the interval6� � 20�: This corresponds
to the very rough pre-estimation of the DOA localization sector
by conventional beamformer, which is relatively insensitive to the
coherency loss compared with the high-resolution methods [5].

A total of 100 independent simulation runs have been performed
to compute the experimental root-mean-square error (RMSE) and the
bias of DOA estimation for each algorithm and simulated point. In all
examples, the Paulraj–Kailath method has been tested in two different
modes. The first one, which is referred to as theexactPaulraj–Kailath
method, corresponds to precisea priori knowledge of the coherence
matrix BBB: The second mode, which is referred to asapproximate
Paulraj–Kailath method, corresponds to the case where this matrix is
known with a small error that can easily occur in practice. Namely,
in the second mode, we assume that the restored array covariance
matrix (7) is calculated using the imprecisely known matrixBBB: In
turn, this matrix is calculated using the model (17) and the measured
value of�2�, i.e., ~�2� = 0:27 (recall that the true value of�2� is 0.25).
This corresponds to the 8% measurement error of�2�:
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Fig. 2. Experimental absolute value of bias of DOA estimation versus the number of snapshots. SNR= 20 dB. Three techniques are compared: the
conventional MUSIC algorithm, the Paulraj–Kailath modification of MUSIC, and the proposed matrix fitting technique. The exact Paulraj–Kailath technique
corresponds to precisea priori knowledge of the spatial coherence matrixBBB, whereas the approximate Paulraj–Kailath technique corresponds to the case
where this matrix is known with a small error.

Fig. 3. Experimental RMSE of DOA estimation versus SNR. The number of snapshotsN = 100: Three techniques are compared. The conventional
MUSIC algorithm, the Paulraj–Kailath modification of MUSIC, and the proposed matrix fitting technique. The exact Paulraj–Kailath technique corresponds
to precisea priori knowledge of the spatial coherence matrixBBB, whereas the approximate Paulraj–Kailath technique corresponds to the case where this
matrix is known with a small error.

Fig. 1 shows the comparison of experimental RMSE’s of DOA
estimation for the conventional MUSIC, Paulraj–Kailath, and matrix
fitting techniques versus the number of snapshots for the fixed signal
to noise ratio (SNR) equal to 20 dB for each source. SNR is defined as

10 log(�2S=�
2), where�2S is the power of each signal in single sensor.

Fig. 2 shows the same curves as in Fig. 1 but for the absolute value
of DOA estimation bias. Fig. 3 compares the experimental RMSE’s
of DOA estimation for the conventional MUSIC, Paulraj–Kailath,
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Fig. 4. Experimental absolute value of bias of DOA estimation versus SNR. The number of snapshotsN = 100: Three techniques are compared.
The conventional MUSIC algorithm, the Paulraj–Kailath modification of MUSIC, and the proposed matrix fitting technique. The exact Paulraj–Kailath
technique corresponds to precisea priori knowledge of the spatial coherence matrixBBB, whereas the approximate Paulraj–Kailath technique corresponds
to the case where this matrix is known with a small error.

and matrix fitting techniques versus SNR for the fixed number of
snapshotsN = 100: Fig. 4 shows the same curves as in Fig. 3 but
for the absolute value of DOA estimation bias.

It follows from Figs. 1 and 2 that for high SNR, the proposed ma-
trix fitting technique significantly outperforms both the conventional
MUSIC and Paulraj-Kailath algorithms in the case of a moderate
and a large number of snapshots. The exact Paulraj–Kailath method
has superior performance only in the case of a very large number
of snapshots (i.e.,N � 104). However, in the presence of the
small measurement error of the matrixBBB, the performance of the
Paulraj–Kailath technique degrades significantly. A surprising fact
following from Figs. 1 and 2 is that in the case of a moderate
and even a large number of snapshots (i.e., forN � 3000), the
conventional MUSIC algorithm can perform better than both the
exact and approximate Paulraj–Kailath techniques. This fact can be
explained by the weak statistical consistency of the estimate (7) based
on the inverse of Schur–Hadamard product. It should be noted that
this fact is pointed out in [8] as well, namely, it is mentioned there
that the Paulraj–Kailath method provides improved results relative to
conventional MUSIC only when the number of snapshots exceeds a
certain threshold.

Figs. 3 and 4 demonstrate that for a moderate number of snapshots
(N = 100), only the proposed matrix fitting technique can provide
satisfactory performance up to SNR' 0 dB, namely, in this
situation, the performances of conventional MUSIC and both the
exact and approximate Paulraj–Kailath techniques severely degrade
in the whole range of SNR.

Unfortunately, it is not possible to compare the computational
cost of our technique and the Paulraj–Kailath method in terms of
number of operations because the computational complexity of GA
severely depends on the optimization function profile as well as on
the internal parameters of algorithm and the choice of convergence

criterion [14]. In order to provide insights regarding the relative
complexity, we compared the computational time of the matrix
fitting and Paulraj–Kailath techniques in our simulations for typical
parameters of GA (the number of generations= 100, the number
of individuals in one generation= 30, the binlength= 20, the
probability of crossover= 0.75, and the probability of mutation=
0.001) and of MUSIC (the spectral function has been calculated with
the angular grid0:1� in the whole array field of view[�90�; 90�]).
Our comparison shows that the matrix fitting technique is more
expensive in the situation considered (approximately with the factor
10� 20). In fact, this is the payment for the improved performance.
However, it seems that the proposed technique can be used at least in
nonreal-time processing applications. This conclusion is based on the
positive experience when using GA in practical sonar and seismic
problems [15]–[17].

VI. CONCLUSIONS

A novel matrix fitting approach to the DOA estimation problem
with imperfect wavefront coherence is proposed. Unlike the well-
known Paulraj–Kailath method, our algorithm does not requirea
priori knowledge of the spatial coherence matrix because the elements
of this matrix are estimated simultaneously with signal DOA’s.
Moreover, computer simulations have shown significant improvement
of the DOA estimation performance of the proposed technique com-
pared with the conventional MUSIC and Paulraj–Kailath methods.
The payment for the improved performance is higher computational
complexity.
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