
M.I.T Media Laboratory Perceptual Computing Section Technical Report No. 386Appears in: The Workshop on Applications of Computer Vision, December 1996 (WACV'96)Real-time Recognition of ActivityUsing Temporal TemplatesAaron F. Bobick and James W. Davis(bobick | jdavis@media.mit.edu)AbstractA new view-based approach to the represen-tation and recognition of action is presented.The basis of the representation is a motion-history image (MHI) | a static image whereintensity is a function of the recency of mo-tion in a sequence. We develop a recognitionmethod which uses both binary and scalar-valued versions of the MHI as temporal tem-plates to match against stored instances ofactions. The method automatically performstemporal segmentation, is invariant to linearchanges in speed, and runs in real-time on astandard platform. The applications we havebegin to develop include simple room moni-toring and an interactive game.1 IntroductionThe recent shift in computer vision from static imagesto video sequences has focused research on the under-standing of action or behavior. In particular, the lureof wireless interfaces (e.g. [9]) and interactive environ-ments [7] has heightened interest in understanding hu-man actions. Recently a number of approaches haveappeared attempting the full three-dimensional recon-struction of the human form from image sequences, withthe presumption that such information would be usefuland perhaps even necessary to understand the actiontaking place (e.g. [13]). This paper presents an alterna-tive to the three-dimensional reconstruction proposal.We develop a view-based approach to the representationand recognition of action that is designed to support thedirect recognition of the motion itself.In previous work [3] we described how people caneasily recognize action in even extremely blurred imagesequences such as shown in Figure 1. Such capabilitiesargue for recognizing action from the motion itself, asopposed to �rst reconstructing a 3-dimensional model ofa person, and then recognizing the action of the modelas advocated in [1, 4, 10, 13, 14, 6, 17]. In [3] we pro-posed a representation and recognition theory that de-composed motion-based recognition into �rst describingwhere there is motion (the spatial pattern) and then de-scribing how the motion is moving. The approach is anatural extension of Black and Yacoob's work on facialexpression recognition [2].In this work we continue to develop this approach.We review the construction of a motion-energy image(MEI) which is a binary representation of where motion

Frame 5 25 40Figure 1: Selected frames from video of someone per-forming an action. Even with almost no structurepresent in each frame people can trivially recognize theaction as someone sitting.has occurred in an image sequence. We next introducemotion-history images (MHI) which is a scalar-valuedimage where intensity is a function of recency of mo-tion. These motion-history images will serve as view-speci�c temporal templates which are matched againstthe stored representations of known actions. Finallywe present a recognition method which automaticallyperforms temporal segmentation, is invariant to linearchanges in speed, and runs in real-time on a standardplatform.2 Prior workThe number of papers on and approaches to recogniz-ing motion and action has recently grown at a tremen-dous rate. For an excellent review on the machine un-derstanding of motion see [5]. We divide the relevantprior work into two areas: human action recognitionand motion-based recognition.The �rst and most obvious body of relevant workincludes all the approaches to understanding action,and in particular human action. Some recent exam-ples include [1, 4, 10, 13, 14, 6, 17]. Some of thesetechniques assume that a three-dimensional reconstruc-tion precedes the recognition of action, while others useonly the two-dimensional appearance. However, under-lying all of these techniques is the requirement thatthere be individual features or properties that can beextracted from each frame of the image sequence. Theseapproaches accomplish motion understanding by recog-nizing a sequence of static con�gurations.Alternatively, there is the work on direct motionrecognition [12, 15, 16, 2, 8]. These approaches attempt



Frame 0 20 40Figure 2: Example of someone sitting. Top row con-tains key frames; bottom row is cumulative motion im-ages starting from Frame 0.to characterize the motion itself without any referenceto the underlying static images. Of these techniques,the work of Black and Yacoob [2] is the most relevantto the results presented here. The goal of their researchis to recognize human facial expressions as a dynamicsystem, where it is the motion that is relevant; their ap-proach does not represent motion as a sequence of posesor con�gurations, nor does it use any underlying modelof the geometry to interpret the results.3 Temporal templatesIn this section we de�ne a dual component representa-tion of action based upon the observed motion. In [3]we performed this division by using a binary image torepresent where motion occurred and a patch model ofhow the motion moves. Here, we replace the dynamicpatch tracking with a static representation of the mo-tion. This new static representation forms the basis ofthe temporal templates.3.1 Motion-energy imagesConsider the example of someone sitting, as shown inFigure 2. The top row contains key frames in a sittingsequence. The bottom row displays cumulative binarymotion images | to be described momentarily | com-puted from the start frame to the corresponding frameabove. As expected the sequence sweeps out a partic-ular region of the image; our claim is that the shapeof that region can be used to suggest both the actionoccurring and the viewing condition (angle).We refer to these binary cumulative motion imagesas motion-energy images (MEI). Let I(x; y; t) be an im-age sequence, and let D(x; y; t) be a binary image se-quence indicating regions of motion; for many appli-cations image-di�erencing is adequate to generate D.

0� 20� 40�50� 70� 90�Figure 3: MEIs of sitting action over 90� viewing an-gle. The smooth change implies only a coarse samplingof viewing direction is necessary to recognize the actionfrom all angles.Then the MEI E� (x; y; t) is de�nedE� (x; y; t) = ��1[i=0 D(x;y; t� i)We note that the duration � is critical in de�ning thetemporal extent of an action. Fortunately, in the recog-nition section we derive a backward-looking (in time)algorithm which can dynamically search over a range of� . In Figure 3 we display the MEIs of viewing a sittingaction across 90�. In [3] we exploited the smooth vari-ation of motion over angle to compress the entire viewcircle into a low order representation. Here we simplynote that because of the slow variation across angle, weonly need to sample the view sphere coarsely to recog-nize all directions.3.2 Motion-history imagesTo represent how motion is moving we enhance the MEIto form a motion-history image (MHI). In an MHI, pixelintensity is a function of the motion history at thatpoint. For the results presented here we use a simplereplacement and decay operator:H� (x; y; t) = ( � if D(x; y; t) = 1max (0; H(x;y; t� 1)� 1)otherwiseThe result is a scalar-valued image where more recentlymoving pixels are brighter. Examples of MHIs are pre-sented in Figure 4. Note that unlike MEIs, the MHIsare sensitive to direction of motion. Also note that theMHI can be generated by thresholding the MEI abovezero.2



4 Recognition of action4.1 Matching temporal templatesTo construct a recognition system, we need to de�nea matching algorithm for the the MEI and the MHI.Because we are using an appearance-based approach, wemust �rst de�ne the desired invariants for the matchingtechnique. Because we are interested in actions whoseorientations (in the image plane) are relatively �xed butwhich can occur anywhere in the image at arbitraryscale, we have selected a technique which is scale andtranslation invariant.We �rst collect training examples of each actionfrom a variety of viewing angles. Given a set of MEIsand MHIs for each view/action combination, we com-pute statistical descriptions of the these images usingmoment-based features. Our current choice are 7 Humoments [11] which are known to yield reasonable shapediscrimination in a translation- and scale-invariant man-ner. For each view of each action a statistical model(mean and covariance matrix) is generated for both theMEI and MHI. To recognize an input action, a Ma-halanobis distance is calculated between the momentdescription of the input and each of the known actions.Note that we have no fundamental reason for select-ing this method of scale- and translation-invariant tem-plate matching. The approach outlined has the advan-tage of not being computationally taxing; one disadvan-tage is that the Hu moments are di�cult to reason aboutintuitively. Also, we note that the matching methods forthe MEI and MHI need not be the same; in fact, giventhe distinction we make between where there is motionfrom how the motion is moving one might expect di�er-ent matching criteria.4.2 Real-time segmentation and recognitionThe �nal element of performing recognition is the tem-poral segmentation and matching. During the trainingphase we measure the minimum and maximum durationthat an action may take, �min and �max. However, if thetest actions are performed at varying speeds, we need tochoose the right � for the computation of the MEI andthe MHI. Our current system uses a backward lookingvariable time window. Because of the simple nature ofthe replacement operator we can construct a highly e�-cient algorithm for approximating a search over a widerange of � .The algorithm is as follows: At each time step a newMHI H� (x; y; t) is computed setting � = �max, where�max is the longest time window we want the system toconsider. Because of the recursive nature of the MHIH� (x; y; t) is trivially computable from H� (x; y; t � 1).We choose �� to be (�max � �min)=(n � 1) where nis the number of temporal integration windows to beconsidered.1 A simple thresholding and scaling operatorallows the computation of H(����) from H� . Iteratingwe compute all nMHIs at each time step. Thresholdingthe MHI yields the corresponding MEI.1Ideally n = �max � �min + 1 resulting in a completesearch of the time window between �max and �min.Only computational limitations argue for a smallern.

sit-down sit-down MHIarms-wave arms-wave MHIcrouch-down crouch-down MHIFigure 4: Action moves along with their MHIs used ina real-time systemAfter computing the various MEIs and MHIs, wecompute the Hu moments for each image. We thencheck the Mahalanobis distance of the MEI parametersagainst the known view/action pairs. Any action foundto be within a threshold distance of the input is testedfor agreement of the MHI. If more than one action ismatched, we select the action with the smallest distance.Currently the system recognizes 180� views of the ac-tions sitting, arm waving, and crouching (See Figure 4).Except for the head-on view of crouching and sittingdiscussed in the next section, the system performs well,rarely misclassifying the actions. However, because weare only using a small number of actions it seems prema-ture to present statistics of recognition rates. The errorswhich do arise are mainly caused by problems with im-age di�erencing and also due to our approximation ofthe temporal search window n < (�max � �min + 1).The system runs at approximately 10 Hz using acolor CCD camera connected to a Silicon Graphics Indy.The images are digitized to a size of 160x120, �max=19(approximately 2 seconds), �min = 11 (approximately 1second), and n = 6. The comparison operation is virtu-ally no cost in terms of computational load, so addingmore actions does not a�ect the speed of the algorithm,only the accuracy of the recognition.5 Extensions, problems, and applica-tionsWe have presented a novel representation and recogni-tion technique for identifying actions. The approachis based upon temporal templates and their dynamic3



matching in time.There are, of course, some di�culties in the ap-proach. Some of these are easily recti�ed. For exam-ple, we currently assume all motion present in the im-age should be incorporated into the temporal templates.This approach fails miserably when two people are in the�eld of view. Clearly a bounding window would be re-quired. A worse condition is when one person partiallyoccludes another, making separation di�cult, if not im-possible. Here multiple cameras is an obvious solution.Since occlusion is view angle speci�c, multiple camerasreduces the chance the occlusion is present in all views.Multiple cameras also alleviates the di�culty whencertain views are easily confused. For example, con-sider the actions of sitting and squatting when viewedfrom the front. The observed motions are almost identi-cal, and the coarse temporal template solution proposeddoes not well distinguish them. However, if one also hasa side view then the action are easily discerned.A more serious di�culty arises when the motion ofpart of the body is not speci�ed during an action. Con-sider, for example, throwing a ball. Whether the legsmove is not determined by the action itself, inducinghuge variability in the statistical description of the tem-poral template. To extend this paradigm to such actionsrequires some mechanism to automatically mask awayregions of motion. We have not yet addressed this prob-lem.In this paper we have introduced a new core tech-nology with many potential applications to monitoring,surveillance, and human-computer interaction. Systemssuch as Alive [7] require good understanding of action.Currently most such systems use sequences of static con-�gurations to identify action and are therefore subjectto the same brittleness that static modeling approachessu�er. By using the motion itself we hope to improvethe robustness of such interaction. In the same veinwe have started developing a \Simon-says" game wherethe machine watches the player, checking the actions forcompliance.References[1] Akita, K. Image sequence analysis of real worldhuman motion. Pattern Recognition, 17, 1984.[2] Black, M. and Y. Yacoob. Tracking and recognizingrigid and non-rigid facial motion using local para-metric models of image motion. In ICCV, 1995.[3] Bobick, A. and J. Davis. An appearance-based rep-resentation of action. In ICPR, August 1996.[4] Campbell, L. and A. Bobick. Recognition of hu-man body motion using phase space constraints.In ICCV, 1995.[5] Cedras, C. and M. Shah. Motion-based recognition:A survey. Image and Vision Computing, 1995.[6] Cui, Y., D. Swets, and J. Weng. Learning-basedhand sign recognition using shoslif-m. In ICCV,1995.[7] Darrell, T., P. Maes, B. Blumberg, and A. Pent-land. A novel environment for situated vision and
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