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Abstract

A new view-based approach to the represen-
tation and recognition of action is presented.
The basis of the representation is a motion-
history image (MHI) — a static image where
intensity is a function of the recency of mo-
tion in a sequence. We develop a recognition
method which uses both binary and scalar-
valued versions of the MHI as temporal tem-
plates to match against stored instances of
actions. The method automatically performs
temporal segmentation, is invariant to linear
changes in speed, and runs in real-time on a
standard platform. The applications we have
begin to develop include simple room moni-
toring and an interactive game.

1 Introduction

The recent shift in computer vision from static images
to video sequences has focused research on the under-
standing of action or behavior. In particular, the lure
of wireless interfaces (e.g. [9]) and interactive environ-
ments [7] has heightened interest in understanding hu-
man actions. Recently a number of approaches have
appeared attempting the full three-dimensional recon-
struction of the human form from image sequences, with
the presumption that such information would be useful
and perhaps even necessary to understand the action
taking place (e.g. [13]). This paper presents an alterna-
tive to the three-dimensional reconstruction proposal.
We develop a view-based approach to the representation
and recognition of action that is designed to support the
direct recognition of the motion itself.

In previous work [3] we described how people can
easily recognize action in even extremely blurred image
sequences such as shown in Figure 1. Such capabilities
argue for recognizing action from the motion itself, as
opposed to first reconstructing a 3-dimensional model of
a person, and then recognizing the action of the model
as advocated in [1, 4, 10, 13, 14, 6, 17]. In [3] we pro-
posed a representation and recognition theory that de-
composed motion-based recognition into first describing
where there is motion (the spatial pattern) and then de-
scribing how the motion is moving. The approach is a
natural extension of Black and Yacoob’s work on facial
expression recognition [2].

In this work we continue to develop this approach.
We review the construction of a motion-energy image
(MET) which is a binary representation of where motion
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Figure 1: Selected frames from video of someone per-
forming an action. Even with almost no structure
present in each frame people can trivially recognize the
action as someone sitting.

has occurred in an image sequence. We next introduce
motion-history images (MHI) which is a scalar-valued
image where intensity is a function of recency of mo-
tion. These motion-history images will serve as view-
specific temporal templates which are matched against
the stored representations of known actions. Finally
we present a recognition method which automatically
performs temporal segmentation, is invariant to linear
changes in speed, and runs in real-time on a standard
platform.

2 Prior work

The number of papers on and approaches to recogniz-
ing motion and action has recently grown at a tremen-
dous rate. For an excellent review on the machine un-
derstanding of motion see [5]. We divide the relevant
prior work into two areas: human action recognition
and motion-based recognition.

The first and most obvious body of relevant work
includes all the approaches to understanding action,
and in particular human action. Some recent exam-
ples include [1, 4, 10, 13, 14, 6, 17]. Some of these
techniques assume that a three-dimensional reconstruc-
tion precedes the recognition of action, while others use
only the two-dimensional appearance. However, under-
lying all of these techniques is the requirement that
there be individual features or properties that can be
extracted from each frame of the image sequence. These
approaches accomplish motion understanding by recog-
nizing a sequence of static configurations.

Alternatively, there is the work on direct motion
recognition [12, 15, 16, 2, 8]. These approaches attempt
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Figure 2: Example of someone sitting. Top row con-
tains key frames; bottom row is cumulative motion im-
ages starting from Frame 0.

to characterize the motion itself without any reference
to the underlying static images. Of these techniques,
the work of Black and Yacoob [2] is the most relevant
to the results presented here. The goal of their research
is to recognize human facial expressions as a dynamic
system, where it is the motion that is relevant; their ap-
proach does not represent motion as a sequence of poses
or configurations, nor does it use any underlying model
of the geometry to interpret the results.

3 Temporal templates

In this section we define a dual component representa-
tion of action based upon the observed motion. In [3]
we performed this division by using a binary image to
represent where motion occurred and a patch model of
how the motion moves. Here, we replace the dynamic
patch tracking with a static representation of the mo-
tion. This new static representation forms the basis of
the temporal templates.

3.1 Motion-energy images

Consider the example of someone sitting, as shown in
Figure 2. The top row contains key frames in a sitting
sequence. The bottom row displays cumulative binary
motion images — to be described momentarily — com-
puted from the start frame to the corresponding frame
above. As expected the sequence sweeps out a partic-
ular region of the image; our claim is that the shape
of that region can be used to suggest both the action
occurring and the viewing condition (angle).

We refer to these binary cumulative motion images
as motion-energyimages (MEI). Let I(z,y,t) be an im-
age sequence, and let D(z,y,t) be a binary image se-
quence indicating regions of motion; for many appli-
cations image-differencing is adequate to generate D.
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Figure 3: MEIs of sitting action over 90° viewing an-
gle. The smooth change implies only a coarse sampling

of viewing direction is necessary to recognize the action
from all angles.

Then the MEI E,(z,y,t) is defined

1
D(z,y,t—1)

0

E-(z,y,t)=

B

We note that the duration 7 is critical in defining the
temporal extent of an action. Fortunately, in the recog-
nition section we derive a backward-looking (in time)
algorithm which can dynamically search over a range of
T.

In Figure 3 we display the MEIs of viewing a sitting
action across 90°. In [3] we exploited the smooth vari-
ation of motion over angle to compress the entire view
circle into a low order representation. Here we simply
note that because of the slow variation across angle, we
only need to sample the view sphere coarsely to recog-
nize all directions.

3.2 Motion-history images

To represent how motion is moving we enhance the MEI
to form a motion-history image (MHI). In an MHI, pixel
intensity is a function of the motion history at that
point. For the results presented here we use a simple
replacement and decay operator:

r if D(z,y,t)=1
max (0, H(z,y,t —1)—1)
otherwise

H-(z,y,t)=

The result is a scalar-valued image where more recently
moving pixels are brighter. Examples of MHIs are pre-
sented in Figure 4. Note that unlike MEIs, the MHIs
are sensitive to direction of motion. Also note that the

MHI can be generated by thresholding the MEI above

Zero.



4 Recognition of action
4.1 Matching temporal templates

To construct a recognition system, we need to define
a matching algorithm for the the MEI and the MHI.
Because we are using an appearance-based approach, we
must first define the desired invariants for the matching
technique. Because we are interested in actions whose
orientations (in the image plane) are relatively fixed but
which can occur anywhere in the image at arbitrary
scale, we have selected a technique which is scale and
translation invariant.

We first collect training examples of each action
from a variety of viewing angles. Given a set of MEIs
and MHIs for each view/action combination, we com-
pute statistical descriptions of the these images using
moment-based features. Our current choice are 7 Hu
moments [11] which are known to yield reasonable shape
discrimination in a translation- and scale-invariant man-
ner. For each view of each action a statistical model
(mean and covariance matrix) is generated for both the
MEI and MHI. To recognize an input action, a Ma-
halanobis distance is calculated between the moment
description of the input and each of the known actions.

Note that we have no fundamental reason for select-
ing this method of scale- and translation-invariant tem-
plate matching. The approach outlined has the advan-
tage of not being computationally taxing; one disadvan-
tage is that the Hu moments are difficult to reason about
intuitively. Also, we note that the matching methods for
the MET and MHI need not be the same; in fact, given
the distinction we make between where there is motion
from how the motion is moving one might expect differ-
ent matching criteria.

4.2 Real-time segmentation and recognition

The final element of performing recognition is the tem-
poral segmentation and matching. During the training
phase we measure the minimum and maximum duration
that an action may take, Tymin and Tmaes. However, if the
test actions are performed at varying speeds, we need to
choose the right T for the computation of the MEI and
the MHI. Our current system uses a backward looking
variable time window. Because of the simple nature of
the replacement operator we can construct a highly effi-
cient algorithm for approximating a search over a wide
range of T.

The algorithm 1is as follows: At each time step a new
MHI H;(z,y,t) is computed setting 7 = Tyas, where
Tmaz 18 the longest time window we want the system to
consider. Because of the recursive nature of the MHI
H-(z,y,t) is trivially computable from H.(z,y,t —1).
We choose AT to be (Tmaz — Tmin)/(n — 1) where n
is the number of temporal integration windows to be
considered.’ A simple thresholding and scaling operator
allows the computation of H(,_a,) from H.. Iterating
we compute all n MHIs at each time step. Thresholding
the MHI yields the corresponding MEI.

1Icleally N = Tmaz — Tmin + 1 Tesulting in a complete

search of the time window between 7Timar and Tmin.
Only computational limitations argue for a smaller
n.
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Figure 4: Action moves along with their MHIs used in
a real-time system

After computing the various MEIs and MHIs, we
compute the Hu moments for each image. We then
check the Mahalanobis distance of the MEI parameters
against the known view/action pairs. Any action found
to be within a threshold distance of the input is tested
for agreement of the MHI. If more than one action is
matched, we select the action with the smallest distance.

Currently the system recognizes 180° views of the ac-
tions sitting, arm waving, and crouching (See Figure 4).
Except for the head-on view of crouching and sitting
discussed in the next section, the system performs well,
rarely misclassifying the actions. However, because we
are only using a small number of actions it seems prema-
ture to present statistics of recognition rates. The errors
which do arise are mainly caused by problems with im-
age differencing and also due to our approximation of
the temporal search window n < (Tmaz — Tmin + 1).

The system runs at approximately 10 Hz using a
color CCD camera connected to a Silicon Graphics Indy.
The images are digitized to a size of 160x120, Tmaz=19
(approximately 2 seconds), Tmin = 11 (approximately 1
second), and n = 6. The comparison operation is virtu-
ally no cost in terms of computational load, so adding
more actions does not affect the speed of the algorithm,
only the accuracy of the recognition.

5 Extensions, problems, and applica-
tions

We have presented a novel representation and recogni-
tion technique for identifying actions. The approach
is based upon temporal templates and their dynamic



matching in time.

There are, of course, some difficulties in the ap-
proach. Some of these are easily rectified. For exam-
ple, we currently assume all motion present in the im-
age should be incorporated into the temporal templates.
This approach fails miserably when two people are in the
field of view. Clearly a bounding window would be re-
quired. A worse condition is when one person partially
occludes another, making separation difficult, if not im-
possible. Here multiple cameras is an obvious solution.
Since occlusion is view angle specific, multiple cameras
reduces the chance the occlusion is present in all views.

Multiple cameras also alleviates the difficulty when
certain views are easily confused. For example, con-
sider the actions of sitting and squatting when viewed
from the front. The observed motions are almost identi-
cal, and the coarse temporal template solution proposed
does not well distinguish them. However, if one also has
a side view then the action are easily discerned.

A more serious difficulty arises when the motion of
part of the body is not specified during an action. Con-
sider, for example, throwing a ball. Whether the legs
move 1s not determined by the action itself, inducing
huge variability in the statistical description of the tem-
poral template. To extend this paradigm to such actions
requires some mechanism to automatically mask away
regions of motion. We have not yet addressed this prob-
lem.

In this paper we have introduced a new core tech-
nology with many potential applications to monitoring,
surveillance, and human-computer interaction. Systems
such as ALIVE [7] require good understanding of action.
Currently most such systems use sequences of static con-
figurations to identify action and are therefore subject
to the same brittleness that static modeling approaches
suffer. By using the motion itself we hope to improve
the robustness of such interaction. In the same vein
we have started developing a “Simon-says” game where
the machine watches the player, checking the actions for
compliance.
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