
Path Query Processing on Very Large RDF Graphs

Andrey Gubichev
Technische Universität München

Germany
gubichev@in.tum.de

Thomas Neumann
Technische Universität München

Germany
neumann@in.tum.de

ABSTRACT
Finding the shortest path between two nodes in an RDF
graph is a fundamental operation that allows to discover
complex relationships between entities. In this paper we
consider the path queries over graphs from a database per-
spective. We provide the full-fledge database solution to ex-
ecute path queries over very large RDF graphs. We present
low-level techniques to speed-up shortest paths algorithms,
and a robust method to estimate selectivities of path queries.
We perform extended experiments on several large RDF
collections, including the UniProt collection, demonstrating
that our approach outperforms the path query capabilities
of modern systems by a large margin.

1. INTRODUCTION
The RDF data format, designed to represent data for the

Semantic Web, has become a common format for building
large data collections. In particular, biological and knowl-
edge management communities use RDF-based represen-
tation of their data. RDF provides certain flexibility for
querying that the relational model does not offer: the RDF
dataset is queried by matching patterns in the RDF graph,
where property names, the RDF counterparts of relational
attributes, can be left unspecified in a schema-agnostic, ’pay
as you go’ manner.

However, even with such expressive capabilities, the stan-
dard RDF query language SPARQL does not support dis-
covery of complex relations between RDF objects. One of
the commonly needed types of relationships is reachability.
Object A is reachable from object B in the RDF graph if
there exists a path from B to A. We refer to the queries
that return reachable objects together with corresponding
shortest paths as path queries.

The need for path queries is easily identifiable in many
applications and has been investigated in several contexts
ranging from national security [19] to genome biology [16].
Here we present a common scenario of path query usage in
the area of knowledge management.

Copyright is held by the author/owner.
Fourteenth International Workshop on the Web and Databases (WebDB
2011),
June 12, 2011 - Athens, Greece
.

Let us consider the information about two scientists that
is presented in the (subject, predicate, object)-triple form:

(Albert Einstein, bornIn, Ulm)
(Alexander von Humboldt, bornIn, Berlin)
(Ulm, locatedIn, Baden-Württemberg)
(Baden-Württemberg, locatedIn, Germany)
(Berlin, locatedIn, Germany)
Here, the relation between Albert Einstein and Germany

can be expressed with the path (Albert Einstein, bornIn,
Ulm, locatedIn, Baden-Württemberg, locatedIn, Germany),
and the natural query to ask is Find all the scientists that
were born in Germany. This query requires matching all
entities–places that can reach Germany via several locatedIn
predicates, and then finding the entities–persons that are
related with the bornIn predicate to that entities–places.

Note that, in principle, we would be able to translate this
query into the standard SPARQL disjunctive query (with
union and several potentially long chain joins), if we knew
the length of the paths and the exact schema in advance.
However, this assumption contradicts the schema-free or
schema-later nature of RDF data, since it requires a priori
knowledge about the path structure.

Path queries help to investigate complex relationships be-
tween entities in a variety of cases, starting from the simple
question How is Thomas Mann related to Leo Tolstoy? to
the quite sophisticated Find all South-European born scien-
tists that became known for any physics-related discoveries.
In the first case the related to connection can be expressed as
the path in the graph, while in the second case we have two
such relations: place of birth to South Europe, and specific
discovery to physics.

Apart from knowledge management, path queries are par-
ticularly useful for biological applications. The reachability
via the path in the biological datasets corresponds to bio-
logical interactions, for example between genes or pathways.
Here, researchers are interested not only in reachable ob-
jects, but also in the paths as such (interaction networks).

Path query processing on large-scale data includes several
technical challenges. First, extremely efficient execution of
physical operators (simple path queries) is required, since
later they are used as building blocks for complex star- and
chain-shaped join queries. Second, optimization of complex
join queries per se calls for accurate estimation of selectivi-
ties for the path queries.

The main contributions of this paper are:
• At a low level, we introduce techniques allowing us

to significantly (by a factor of 10) speed up Dijkstra’s
shortest path algorithm (and also other shortest path
algorithms) by carefully choosing the physical layout

of the graph and graph-based operations.

• At a higher level, we present a simple yet powerful
way to estimate the selectivity of queries with paths,
enabling cost-based query optimization.

• We provide an integrated solution that puts all these
techniques together for RDF path query processing.

• We give an extensive experimental analysis of our tech-
niques using the very large RDF graphs of UniProt
and YAGO2. We demonstrate that our solution out-
performs the Jena system [1] by several orders of mag-
nitude.

We implemented our techniques in the open-source system
RDF-3X [2].

The rest of the paper is organized as follows. In Section 2
we overview the previous approaches to path query process-
ing. Then, in 3.1, we briefly describe the SPARQL extension
with path query patterns, and review the RDF query pro-
cessing system that we build upon in 3.2. We present our
fast shortest path algorithm based on Dijkstra’s algorithm
in 3.3. We proceed with low-level techniques for dictionary
organization in the RDF engine (3.4), and selectivity estima-
tions of path queries (3.5). We present the implementation
details of the RDF-path query system and the experimental
results in Section 4.

2. RELATED WORK
There are several lines of work related to path queries on

graphs.
Reachability and shortest path problems have been inten-

sively studied in the database community. A survey of this
research can be found in [5]. Approximate shortest paths
were also considered in the prior work [18, 11]. The approach
pursued in this paper is orthogonal to this line of work. We
take the classical Dijkstra’s shortest path algorithm, and
build a full-fledged path query processing system on it. Be-
sides, we propose low level database techniques which speed
up Dijkstra’s algorithm on disk-resident graphs, that can be
applied to other shortest-path algorithms as well.

The languages for path queries over graph-structured data
have been the subject of much investigation in the theoreti-
cal community. The most recent survey was done by Barcelo
et al.[9]. In this work we use a query language similar to
SPARQ2L [8].

Several frameworks and prototypes for RDF path queries
have been proposed. Namely, Anyanwu et al. [8] propose a
path query evaluation framework, that relies on expensive
matrix decomposition for the precomputation step (O(n3),
where n is the number of nodes in the RDF graph) and there-
fore cannot scale to real-world big graphs. The GRIN engine
[20] concentrates on providing an index for graph queries uti-
lizing graph partitioning, but the construction time for such
an index is also prohibitively long (O(n4 logn)). BRAHMS
[14] is another example of an engine that supports graph
traversal queries. However, it only finds the paths with
a predefined (fixed) length. DOGMA [10] is a disk-based
graph pattern matching index, but it does not support path
query processing. Note that all past work on RDF path
query processing has the following limitations: (i) algorithms
for query processing are all main-memory based, and do
not include any implementation details or large-scale exper-
iments, (ii) there is no work on selectivity estimation and
path query optimization.

Finally, to the best of our knowledge, Jena [1] is the only
mature RDF engine that supports path queries on disk-
resident graphs as an extension to the standard SPARQL.
However, as we show in the experiments section, the perfor-
mance of the system is very poor.

3. PATH QUERY PROCESSING

3.1 Extension of SPARQL
In this section we describe the extension of the SPARQL

query language that allows us to query paths in RDF
database. Let I, L, B be the pairwise disjoint sets of
URIs, literals and blank nodes, respectively. A dataset G
is a set of triples 〈s, p, o〉, where s is the Subject, p is the
Predicate, and o is the Object. A subject can be a unique
identifier from I ∪ B, a predicate can only be a URI from
I, an object can be an identifier from I ∪ B or a literal
L. The set of triples naturally forms a directed edge la-
beled RDF graph, where nodes correspond to subjects and
objects, and edges are labeled with predicates. An RDF
path (or simply a path) of length n from a node x to a
node y in an RDF graph is an ordered sequence of triples
〈x, p1, o1〉〈s2, p2, o2〉 · · · 〈sn+1, pn+1, y〉, where oi = sj+1 for
1 ≤ i ≤ n− 1.

A basic SPARQL query has the form

select ?var1 ?var2...

where {pattern1. pattern2...}

where each pattern is an 〈s, p, o〉 triple, and each of s,p
and o is either a variable, or a constant from the correspond-
ing domain. Following W3C recommendations, we start the
names of the variables with ’?’.

In tune with previous work [7, 8, 15], we enrich the SPARQL
syntax with a path triple pattern. Path triple patterns resem-
ble the standard SPARQL triple pattern, but they contain a
path variable in the predicate position. We will distinguish
between regular and path variables by starting the latter
with ’??’. A path variable in the path triple matches the
shortest path from a subject to an object in the RDF graph.
For example, the path pattern

<Athens> ??path ?var2

matches all the objects reachable from <Athens> and the
shortest paths from <Athens> to all such objects.

Multiple triple patterns are combined in a conjunctive
manner and can share regular variables, thus implying joins.
We recursively define any (regular or path) triple pattern as
bounded, if (i) either subject or object is constant, or (ii)
it shares at least one variable with a bounded pattern. For
example, the path pattern in the following group of patterns
is bounded:

?person ??path ?city.

?city <isLocatedIn> ?country.

?country <isMemberOf> <European_Union>

In this work we restrict ourselves to bounded path pat-
terns. Informally this means that the query engine always
knows the set of values of either subject or object in the path
triple and thus does not have to consider all-to-all shortest
paths during query execution.

Similarly to [8], we also allow the specification of filter
conditions on path variables. The filter condition can be
constructed from several built-in functions, arithmetic and
boolean operators (=,≤, & ,∨). Let V R and V P be the set
of regular and path variables correspondingly. We added the

Algorithm 1: Join-based Dijkstra’s algorithm

Input: s, d - start and destination nodes in the graph
Result: path p from s to d

1 begin
2 Q← {s}
3 Vcur ← {s}
4 Vprev ← ∅
5 while Q is not empty do
6 node← Q.dequeue
7 node.status← processed
8 if node = d then
9 p← reconstruct path from s to d

10 if Vprev is empty then
11 S ← getNeighbors(Vcur)
12 Vprev ← Vcur
13 clear Vcur
14 Remove node from Vprev
15 Relax nodes from S[node]
16 foreach n ∈ S[node],n.status 6=processed do
17 Add node to Vcur

1

2

3

4

5

6

7

8

Figure 1: Dijkstra’s algorithm

function containsAny(path, element), where path ∈ V P
and element ∈ V R, that checks whether path contains
node or edge element. The function containsOnly(path,

element) with the same domains checks whether path con-
sists only of element. In this case path can be seen as
sequence of zero or more element. Finally, the function
length(path) returns the length of path, and together with
comparison operations it allows us to restrict the length of
the path. Syntactically, the path filter conditions are used
in the same way as filter in SPARQL.

3.2 RDF query processor
We assume a system architecture, where each Subject,

Predicate and Object from every RDF triple is mapped to
an integer and stored in a global dictionary. All six pos-
sible permutations of S, P and O should be indexed in six
separate B+-trees. This indexes contain the triples them-
selves instead of references to the triples. Each index can be
significantly compressed by delta-coding of triples. More-
over, there are merge and hash joins that operate directly
on triple indexes. Finally, the query optimizer chooses a
cost-model-based execution plan. All this is available in the
RDF-3X engine [17]. Other RDF engines provide some of
these features, the rest can be implemented with reason-
able programming effort. In order to support our extended
SPARQL, we need to provide a system with ability to find
paths and reachable nodes and to estimate the selectivity of
the queries.

3.3 Join-based Dijkstra’s algorithm
We build our path query processor upon the classical Dijk-

stra’s algorithm [12]. The algorithm finds the shortest path

3

2

3

4

2

2

2

1

3

3

4

0

0

0

0

0

0

0

4

5

6

4

6

7
...

...
S P O

30

0

0

0

0

0

4

5

6

6

7

⇒

Edge Succ

Figure 2: Join-based getNeighbors

between two nodes by traversing nodes in the graph in a
breadth-first manner. Trivial modifications to Dijkstra’s al-
gorithm allow us to find the paths from the source to every
other node in the graph, or to construct shortest path trees
with several sources. Since the graph is disk-resident, for
every visited node the algorithm needs to retrieve the list
of its successors from disk. We will call this operation get-
Neighbors. A naive approach to perform getNeighbors
for all visited nodes is to execute it independently for every
node. Namely, for every visited node u we initiate a scan on
the SPO index, look up the position of u in the correspond-
ing B+-tree, read the leaf and decompress it, and extract
all triples that have u as a subject from the decompressed
leaf. We can get the reverse Dijkstra’s algorithm simply by
scanning the OPS index, in this case at every step we get
the predecessors of each processed node.

However, this multiple-lookup based implementation be-
comes the bottleneck of the algorithm for disk-resident graphs.
Consider, for example, the graph in Figure 1. The start node
is 1, and we enqueue all its successors. Then, we issue three
different requests to disk to get the successors of the nodes
2,3,and 4. This results in three B+-tree lookups. Even if all
three nodes reside on the same leaf page, we will read and
decompress it three times. Caching the page would solve
this particular problem, but it does not scale well since the
number of nodes (and pages) grows exponentially.

We can speed up this process by getting the successors of
all three nodes in one database request. Namely, let us think
of a pseudo-scan operator that iterates over nodes 2, 3 and
4. If we join this operator with an SPO-index scan of the
whole database, we will get all the triples that start with 2,
3 and 4 respectively, i.e. exactly the successors of the nodes
in consideration. Figure 2 gives an illustration of this idea.
We join on the S-column and return values from P and O
columns (labels of the edges and successors, respectively).
The join (actually, the merge join) is faster than the mul-
tiple lookups due to several reasons: First, while merging,
the RDF engine locates the B+-tree leaf containing the first
node, and then scans the sequence of leaves, occasionally
skipping those that a priori can not contain nodes of inter-
est. Second, if the input nodes are located on the same leaf
page, we will read and decompress this page only once, as
opposed to the multiple extractions done by multiple-lookup
approach. Third, by combining several nodes in one request,
we significantly reduce the number of total requests to disk.

Our join-based getNeighbors operation takes the set of
nodes as an input, therefore we need to accumulate several
visited nodes prior to calling it. This idea is leveraged by
Join-based Dijkstra’s algorithm, sketched in Algorithm 1.
The algorithm alters the standard Dijkstra’s algorithm in
the following way:

1. We collect visited nodes in Vcur and later use them as
an input for the getNeighbors operation. The nodes
that were used for the previous call of getNeighbors,

are kept in Vprev.

2. As the traversal proceeds, the new nodes are added to
Vcur, and the scanned nodes are deleted from Vprev.

3. Once Vprev becomes empty, we need to get the new
portion of neighbors. The nodes that were queued in
Q since the last getNeighbors operation (we store
them in Vcur) become an input for the new join-based
getNeighbors operation.

Consider, for example, the graph in Figure 1. We start the
computation with Vcur = {1}. Since we do not have any
nodes in our buffer S, we get the successors for the nodes
in Vcur. Nodes 2, 3 and 4 are now enqueued and added to
Vcur, and node 1 is removed from Vprev (indicating that for
the next loop we need to load new portion of successors).
Now, we request the successors for Vcur = {2, 3, 4} and con-
tinue the usual Dijkstra processing until we reach node 4
and delete it from Vprev. After that we again request the
successors for Vcur = {5, 6, 7}, and so on. Every time the
set of nodes that are processed in the getNeighbors is a
new layer of the graph depicted with dashed lines in Figure
1. Naturally, these additional operations on Vprev and Vcur
can be done in O(logn), thus leaving the overall complexity
O(n logn + m), where n and m is the number of nodes and
edges, respectively. As shown later, however, the join-based
Dijkstra’s algorithm is an order of magnitude faster than the
original one.

It is worth pointing out that the join-based technique of
getting successors of several nodes can be employed by other
shortest paths algorithms, including A∗, reach and land-
mark -based approaches [6, 13]. There are two main advan-
tages of the Dijkstra’s algorithm: (i) it finds shortest paths
and not only reachable nodes, and (ii) it does not incur any
preprocessing overhead. We therefore employ it as the main
physical operator for path queries and leave the investiga-
tions of more efficient algorithms for the future work.

3.4 Dictionary
RDF-3X assigns an integer ID to every URI and string

constant, and operates on triples of integers. The ID-to-
literal mapping is maintained in the global dictionary, which
can be implemented as a B+-tree or a directed mapping
index [17]. In both cases, strings with close IDs reside on
adjacent pages, or even within one page.

The assignment of IDs is done during the data loading on
a First-Come, First-Served basis. In this case, the succes-
sors of one node can get IDs that are far away from each
other. It can happen, for example, when the triples with
the same subject are scattered in the input file. Recall the
example in Figure 1. Suppose that the graph depicted there
is a subgraph of a much larger graph, such that the nodes 2,
3, 4 were assigned internal ids 20, 50, and 100 respectively.
Suppose also that every leaf of the B+-tree SPO index con-
tains 10 entries (every entry is a triple). In this case, entries
corresponding to the 2, 3, 4 nodes are far away from each
other in the SPO index, and the getNeighbors operation
will be likely to read three different leaves from disk when
applied to {2, 3, 4}. The problem will become worse in the
next iterations, when the number of input nodes increases.

Another problem with First-Come, First-Served assign-
ment is mapping the results of the path query execution
back from IDs to strings. If the successors of the same node
have IDs far away from each other, we are likely to read an-
other page for every next node. This leads to almost random

Algorithm 2: Dictionary

Result: new mapping id[n] for every node in the graph
1 begin
2 Sources← set of nodes with no incoming edges
3 curId = 0
4 foreach s ∈ Sources do
5 id[s] = curId
6 curId = curId+ 1
7 Q← {s}
8 while Q is not empty do
9 node = Q.dequeue

10 if node does not have an id then
11 id[node] = curId
12 curId = curId+ 1

13 get and relax neighbors
14 add unprocessed neighbors to Q

ID-to-string lookups from disk, which becomes extremely in-
efficient for unselective queries.

Both of these problems can be escaped by assigning IDs
to nodes in the breadth-first order. Initially, we generate the
temporary dictionary in a First-Come,First-Served manner,
then we can still operate on triples of integers. We propose
the procedure, presented in Algorithm 2, which operates on
top of the temporary dictionary. It starts with finding all
root nodes of the graph, i.e. nodes without incoming edges.
From every root node s we run a breadth-first-search, assign-
ing new IDs in the order of the search. If the node already
has an ID, we skip it. This may happen if this node was pro-
cessed during the breadth-first-search from a previous root.

Final assignment of IDs is done before the strings are
loaded, and before any index is created so that created in-
dexes already contain triples with new, breadth-first-based
IDs.

3.5 Cardinality estimation
Regardless of the path query processing on the physical

level, advanced path queries over huge RDF graphs require
cardinality (and thus selectivity) estimation for path triples
for query optimization. In this section we discuss estimators
for individual path triples, which can be indexed when the
data is loaded. Then, the runtime selecitivity estimation
merely requires one or two lookups in a small-sized B+-tree,
which is neglible compared to the actual query execution
time.

We first consider the case when the path triple pattern
(s, p, o) contains one constant node (subject s or object o).
Then, the cardinality estimation of such a triple pattern
boils down to computing the number of nodes visited by
Dijkstra’s algorithm starting from s or reversed Dijsktra’s
algorithm starting from o. The procedure estimating this
number is given in Algorithm 3. We start from the nodes
in RDF graph that do not have any successors (’leaves’).
Then, we run breadth-first-traversal in the reversed edges
direction (lines 3-8), that is, going ’up’ the graph. For every
visited node, we already know the forward selectivity of all
its successors since we visited them before processing the
current node, so we just sum up their estimations with the
number of successors and get the estimation forward[node]
(lines 6-8). We proceed with the backward estimation in the
same manner (lines 9-15). The results of this procedure are
materialized in the B+-tree indexed by the constant included
in the pattern.

Algorithm 3: Cardinality estimation

Result: forward[n], backward[n] - cardinality of Dijkstra
and reversed Dijkstra for every node

1 begin
2 S ← set of nodes with literal-only successors or without

successors
3 while do reversed Breadth-First Traversal from S do
4 foreach node visited do
5 Succ← list of successors for node
6 foreach i ∈ Succ do
7 forward[node]+ = forward[i]

8 forward[node]+ = Succ.size

9 F ← set of nodes with no predecessors
10 while do Breadth-First Traversal from F do
11 foreach node visited do
12 Pred← list of predecessors for node
13 foreach p ∈ Pred do
14 backward[node]+ = backward[s]

15 backward[node]+ = Pred.size

Table 1: Path triple selectivity estimation error for the YAGO2
dataset

Direction min error 5% quantile median error 95% quantile max error mean error

forward 0 0 0.5 4.02 70534 170.6
backward 0 0.039 0.16 4.25 20.78 0.87

If both subject s and object o are constant, we approxi-
mate the cardinality with |forward[s]− backward[o]|.

The last scenario is a triple pattern P1 with three vari-
ables. According to our restriction from Section 3.1, such a
triple should be bounded. This implies that there exists a
(possibly long) join chain in the query from P1 to a triple P2

with a constant subject or object. If we start breadth-first
traversal from the constant subject (object) of P2, it will
naturally reach the subject (object) of our triple. There-
fore, the cardinality of P2 can serve as an approximation
of the cardinality of P1, and this scenario is reduced to the
previous one.

We measured the accuracy of Algorithm 3 by using the
YAGO2 dataset from Section 4 and comparing the estimated
cardinalities with the real cardinalities. The test workload
contains 1000 random triple patterns with one constant el-
ement (subject or object), the error of the approximation is
relative error = max(real cardinality,estimation)

min(real cardinality,estimation)
−1. The results

are shown in Table 1. On average (median error) we mis-
estimate the backward selectivity by 16% and the forward
selectivity by 50%. It takes 5 minutes to compute the new
indexes, and they occupy 320 Mb on disk. This extra cost is
just 10% of the database build time (45 minutes) and 12%
of the disk space (2.5 Gb). On the other hand, as a result,
cardinality estimation allows us to incorporate path query
processing into RDF-3X cost model and query optimization
[17].

4. IMPLEMENTATION AND EVALUATION
We used the open-source system RDF-3X as a testbed for

our techniques and augmented the query execution system
to support path triple patterns. After parsing the query, ev-
ery path triple pattern is translated into the special operator
DijkstraScan that corresponds to the join-based Dijkstra
algorithm with one or several start/stop nodes. This special
operator is included into the query plan, and its selectivity
is estimated according to Section 3.5. After that the query
optimizer chooses the cheapest plan similarly to the pure

SPARQL case. If the subject or the object of the path triple
is constant, then DijkstraScan is executed as join-based Di-
jkstra (reversed Dijkstra) in an asynchronous manner, like
any other operator in RDF-3X. If both the subject and the
object are query variables, the optimizer picks one of them
depending on the selectivity. In this case the DijkstraScan

operator starts with computing the set of subjects (objects),
and then performs Dijkstra’s algorithm from this set.

All experiments were performed on a 2-core Dell laptop
with 4 Gb of memory using 64-bit Linux 2.6.35 kernel. We
performed cold cache experiments by dropping all file-system
caches and running the queries. We repeated this five times
and measured the average response time for every query.
For warm cache results we ran queries five times without
dropping the caches. The SPARQL queries are given in the
appendix. As the competitor for our system, we used the
regular path processing in Jena [1] (GRIN and BRAHMS
are not publicly available). We had to modify the syntax of
queries to meet the syntax requirements of Jena.

For the first experiment, we used the YAGO2 dataset [4]
which consists of 80 million facts extracted from Wikipedia
and integrated with the WordNet thesaurus. First, we eval-
uated the performance of the getNeighbors operation. We
took 1000 random nodes, and for every node computed its
successors and ran getNeighbors with the successors as the
input, thereby getting all nodes that are 2 hops away from
the random seed. We compared four different approaches:
join-based algorithm vs. multiple lookup algorithm with two
types of dictionary – the traditional RDF-3X dictionary and
the one proposed in this paper. We also divide results into
two groups, depending on how many nodes were returned
by the operation. The obtained running times are provided
in Table 3. It clearly identifies that the combination of the
new dictionary and the join-based procedure yields the best
running time for both scenarios. For the large output, this
combination outperforms the naive approach (lookup with
the old dictionary) by the factor of 10. However, if the
number of nodes obtained from disk is relatively small, the
difference between different techniques is not that big due to
the join execution overhead. We also measured the runtimes
of Dijkstra’s algorithm in the same four scenarios. Table 4
gives evidence that the proposed combination of clustered
dictionary and join-based getNeighbors yields the best
performance, outperforming the rest by an order of mag-
nitude when the number of visited nodes is large.

Then, we ran 5 different queries starting from the geo-
graphical hierarchy of Ulm (Q1) to all people from Germany
that died somewhere in France(Q4) and all Mediterranean-
born European scientists that are known for some physical
phenomenon(Q5). In general, the performance of Jena sig-
nificantly degrades as the number of joins in the query in-
creases. As reflected in Table 2, our approach outperforms
Jena by a large margin, improving cold cache times by a
factor of 32, and warm cache times by a factor of 27 in
the geometric mean. RDF-3X was consistently better for
all queries, gaining a factor of 1400 speed-up for the last
query. To quantify how our individual techniques affect per-
formance, we ran the experiments with the variants where
only join-based Dijkstra and only new dictionary are used.
The results are also presented in Table 5. As we see, both
techniques play a significant role in ensuring high perfor-
mance, gaining the speedup of a factor of 4.7 and 3 corre-
spondingly in the cold cache case.

YAGO2 UniProt
Q1 Q2 Q3 Q4 Q5 geom. mean Q1 Q2 Q3 geom. mean

cold cache (warm cache)
RDF-3X 0.18 (0.004) 1.09 (0.19) 1.21 (0.09) 1.12 (0.18) 2.49 (1.39) 0.92 (0.11) 0.52 (0.01) 4.01 (3.21) 11.54 (4.61) 2.88 (0.53)
Jena 0.45 (0.1) 34.54 (1.31) 28.17 (1.07) 29.98 (0.95) >30min (>30min) >29.83 (>2.99) >30min (>30min)

Table 2: Query run-times in seconds for the YAGO2 and UniProt datasets

Table 3: Runtime of getNeighbors operation
less than 1000 nodes returned more than 1000 nodes returned

Dictionary join lookup join lookup

new dict 4 ms 12 ms 32 ms 201 ms
old dict 18 ms 13 ms 78 ms 228 ms

Table 4: Runtime of Dijkstra algorithm
less than 1000 nodes visited more than 1000 nodes visited

Dictionary join lookup join lookup

new dict 5 ms 8 ms 120 ms 1052 ms
old dict 12 ms 8 ms 458 ms 1169 ms

For the second experiment, we used the UniProt dataset
[3], which contains 57 GB of protein information. This
dataset consists of 845 million unique triples. We ran three
different queries with increasing number of joins in them.
The results are given in Table 2. Jena also performs very
poorly in this scenario. In fact, Jena was not able to evalu-
ate any of the queries in 30 min., as opposed to the average
response time of 2.88 seconds of RDF-3X.

5. CONCLUSIONS
In this work we extended the RDF-3X system to support

path queries over RDF. We significantly speeded up the clas-
sical Dijkstra’s algorithm by leveraging extremely fast join
query processing in RDF-3X and by reorganizing the phys-
ical layout of the system’s dictionary. We pursued, for the
first time, the query optimization approach for path queries
and gave the algorithm for selectivity estimation of path
triples. Our contributions achieve efficient performance on
real datasets with 80 and 845 million triples. The proposed
techniques are general and can be implemented in any RDF
engine.

6. REFERENCES
[1] Jena. http://jena.sourceforge.net/.

[2] RDF-3X. http://code.google.com/p/rdf3x/.

[3] Uniprot. http://dev.isb-sib.ch/projects/uniprot-rdf/.
[4] YAGO2. http://www.mpi-inf.mpg.de/yago-naga/yago/.

[5] C. C. Aggarwal and H. Wang. Managing and Mining
Graph Data. Springer, 2010.

[6] R. Agrawal and H. V. Jagadish. Algorithms for searching
massive graphs. IEEE Trans. on Knowl. and Data Eng.,
pages 225–238, 1994.

[7] K. Anyanwu. ρ-Queries: Enabling Querying for Semantic
Associations on the Semantic Web. In WWW, 2003.

[8] K. Anyanwu, A. Maduko, and A. Sheth. SPARQ2L:
Towards Support for Subgraph Extraction Queries in RDF
Databases. In WWW, 2007.

[9] P. Barcelo et al. Expressive languages for path queries over
graph-structured data. In PODS. ACM, 2010.

Table 5: Individual techniques (sec), YAGO2 dataset
Direction Q1 Q2 Q3 Q4 Q5 geom mean

cold cache
baseline 0.18 1.09 1.21 1.12 2.49 0.92
only new dict 0.69 4.85 5.20 8.63 11.03 4.40
only join-based Dijkstra 0.18 7.71 3.82 3.86 8.64 2.81

warm cache
baseline 0.004 0.19 0.09 0.18 1.39 0.11
only new dict 0.04 0.99 0.75 0.54 5.87 0.62
only join-based Dijkstra 0.004 0.41 0.29 0.36 4.86 0.24

[10] M. Bröcheler, A. Pugliese, and V. S. Subrahmanian.
Dogma: A disk-oriented graph matching algorithm for RDF
databases. ISWC ’09.

[11] A. Das Sarma et al. A sketch-based distance oracle for
web-scale graphs. In WSDM. ACM, 2010.

[12] E. W. Dijkstra. A note on two problems in connexion with
graphs. Numerische Mathematik, 1(1):269–271, Dec. 1959.

[13] A. V. Goldberg et al. Reach for A∗: Efficient Point-to-Point
Shortest Path Algorithms. In ALENEX, pages 129–143,
2006.

[14] M. Janik and K. Kochut. BRAHMS: A WorkBench RDF
Store and High Performance Memory System for Semantic
Association Discovery . In ISWC, 2005.

[15] K. J. Kochut and M. Janik. SPARQLeR: Extended
SPARQL for Semantic Association Discovery. In ESWS,
2007.

[16] W.-J. Lee et al. Using annotations from controlled
vocabularies to find meaningful associations. DILS’07, 2007.

[17] T. Neumann and G. Weikum. The RDF-3X engine for
scalable management of RDF data. The VLDB Journal,
19:91–113, February 2010.

[18] M. Potamias et al. Fast shortest path distance estimation
in large networks. In CIKM, pages 867–876. ACM, 2009.

[19] A. Sheth et al. Semantic association identification and
knowledge discovery for national security applications.
Journal of Database Management, 16:33–53, 2005.

[20] O. Udrea, A. Pugliese, and V. S. Subrahmanian. GRIN: a
graph based RDF index. In AAAI, 2007.

APPENDIX
YAGO2

Q1. select ?loc ??path where {<Ulm> ??path ?loc. pathfilter(
containsOnly(??path, <isLocatedIn>)) }

Q2. select ?obj where {?obj ??loc <Germany>. ?obj <type>
<wordnet mountain 109359803>. pathfilter(containsOnly(
??loc,<isLocatedIn>))}

Q3. select ?person where {?place ??loc <Germany>. ?per-
son <wasBornIn> ?place. ?person <diedIn> ?place. pathfil-
ter(containsOnly(??loc,<isLocatedIn>)) }

Q4. select ?person where {?place1 ??loc1<Germany>. ?place2
??loc2<France>. ?person<wasBornIn> ?place1. ?person<diedIn>
?place2. pathfilter(containsOnly(??loc1,
<isLocatedIn>) && containsOnly(??loc2,<isLocatedIn>))}

Q5. select ?person where {?person <isKnownFor> ?smth.
?smth ??related <wordnet physical phenomenon>. ?place ??loc
?country. ?country<type><wikicategory European countries>.
?country<type><wikicategory Mediterranean>. ?person<was-
BornIn>?place.pathfilter(containsOnly(??loc, <isLocatedIn>)) }

UniProt
Q1. select ?a ?mod ??inf where ?a <mnemonic> ?vo. ?a

<replacedBy> <P62965>. ?a <type> <Protein>. ?a <mod-
ified> ?mod. ?b <modified> ”2005-08-30”. ?b <replacedBy>
<P62964>. ?b <type> <Protein>. ?a <replacedBy> ?ab. ?ab
??inf ?b .

Q2. select ?a ?vo where {?a <mnemonic> ?vo. ?a <re-
placedBy> <P62965>. ?a <type> <Protein>. ?a <modified>
”1990-11-01”. ?a <replacedBy> <P62966>. ?a ??p ?b. ?b
<modified> ”2005-08-30”. ?b <replacedBy> <P62964>. ?b <re-
viewed> ”false”. ?b <obsolete> ”true”. ?b <type> <Protein>}

Q3. select ?a ?vo where {?a <annotation> ?vo. ?a <seeAlso>
<interpro/IPR000842>. ?a<annotation><540A71>. ?a<seeAlso>
<geneid/945772>. ?a <annotation> <540A7D>. ?a <citation>
<9298646>. ?b<obsolete> ”true”. ?b<replacedBy><P0A718>.
?b <reviewed> ”true”. ?b <mnemonic> ”KPRS ECOLI”. ?b
<type> <Protein>.?a ??p ?b }

http://jena.sourceforge.net/
http://code.google.com/p/rdf3x/
http://dev.isb-sib.ch/projects/uniprot-rdf/
http://www.mpi-inf.mpg.de/yago-naga/yago/

	Introduction
	Related work
	Path query processing
	Extension of SPARQL
	RDF query processor
	Join-based Dijkstra's algorithm
	Dictionary
	Cardinality estimation

	Implementation and evaluation
	Conclusions
	References

