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Abstract—Many of today’s computing and communication
systems are based on FIFO queues whose performance, e.g., in
terms of throughput and fairness, is highly impacted by load
fluctuations, especially in the case of short-term overload. This
paper analytically proves that overloaded FIFO queues are fair
in the sense that each flow or aggregate of flows receives a
proportional fair share of the service rate. The convergence rate is
evaluated with respect to flow sizes and intensity of overutilization
for two broad and distinctive arrival classes: Markovian and
heavy-tailed/self-similar. For the former class the paper shows
smaller convergence times at higher utilizations, which is exactly
the opposite behavior characteristic to underloaded queueing
systems.

I. INTRODUCTION

FIFO queues is a commonly used system design choice
in various aspects of today’s computing and communication
systems, e.g., multi-core CPUs, computing clouds, or network
routers and switches. Such systems are often subject to short-
term fluctuation of their workloads which leads to overload and
consequently to performance degradation. Examples include
web servers experiencing severe transient overload [33], or
network links getting unavoidably congested. To optimize the
run-time/real-time performance of FIFO queue based systems,
it is thus important to understand the transient behavior of an
overloaded system with respect to its workload.

The workload typically consists of multiple
users/clients/applications/flows competing for resources
(e.g., CPU clock, threads, or bandwidth), and is modelled in
terms of arrival processes. In modern systems, these arrival
processes can be roughly categorized into two classes: (1)
light-tailed Markovian, here represented by the class of
Exponentially Bounded Burstiness (EBB) processes [34], and
(2) heavy-tailed and self-similar [23]. The key characteristic
of EBB processes is that deviations from the mean decay
in probability exponentially fast. In turn, heavy-tailed
and self-similar processes fundamentally differ from EBB
processes in that deviations from the mean increase in
time and decay in probability as a power law, i.e., more
slower than the exponential. While the EBB class is used
to model voice/video traffic [30], the class of heavy-tailed
and self-similar processes is particularly relevant because it
fits measurements of aggregate Internet traffic [22], [7], web
server, and modern CPU execution times [15].

FIFO queues with EBB arrival processes are well under-
stood mainly in terms of steady-state performance metrics and

in underloaded regimes; relevant tools include the classical
queueing theory [21] and the stochastic network calculus [3].
In turn, transient metrics are analyzed using various ordinary
differential equations based numerical methods [2] which do
however not scale in the size of the system, having thus limited
applicability. Transient metrics but in overloaded regimes are
studied in [16], [14] under the processor sharing scheduling,
and in [18] for a multi-class queueing system with one class
experiencing transient surge.

Compared to the analysis of the EBB class, the analysis
of heavy-tailed or self-similar arrivals is fundamentally more
difficult and has produced limited results mainly in large-buffer
and many-sources asymptotic regimes [27]. Since such asymp-
totic results may be inaccurate in finite regimes [1], approx-
imative non-asymptotic results were derived using numerical
inversion transforms [28], or fitting heavy-tailed distributions
with sums of exponentials [31]. The first non-asymptotic
results on end-to-end delays in networks with heavy-tailed
and self-similar traffic were recently obtained in [23]. To the
best of our knowledge, there has been no analytical transient
analysis for this class of traffic in overloaded regimes.

In this paper we provide a transient analysis of a FIFO queue
in overloaded regimes for both EBB and heavy-tailed and self-
similar processes. We follow the approach of the stochastic
network calculus [3], [17], which is a probabilistic extension
of the deterministic network calculus conceived by Cruz [8].
An attractive feature of the stochastic network calculus is that
it can account for a broad class of arrivals, including the no-
toriously difficult heavy-tailed and self-similar processes [23].
The central analytical tool used in this paper is a probabilistic
extension of the FIFO service curve [9], with a suitably chosen
time parameter, which models probabilistic lower bounds on
the service at FIFO schedulers, and in particular becomes
appropriate for analyzing overloaded queueing systems. In this
way we can show how each flow converges to the fair share
of the service rate, with respect to arrivals’ class, flow size,
and intensity of overload.

The main contribution consists in the derivation of the
convergence rates to fairness, i.e., the amount of time it takes
for a flow, or an aggregate of flows, to attain the fair share
in a FIFO queue when multiplexed with other flows and
resulting in overload. Concretely, for the two considered arrival
classes, we provide closed-form probabilistic lower bounds on
the departure processes at an overloaded queue. These results



determine the rates of convergence with respect to factors such
as flow sizes and overutilization factor, i.e., by how much the
queue is overloaded. An interesting behavior is that in the case
of the EBB class the convergence is faster when increasing the
utilization factor (e.g., from 1.01 to 1.25), which is exactly the
opposite behavior characteristic to underloaded regimes (e.g.,
it takes longer for output rates to converge to input rates by
increasing the utilization, e.g., from 0.75 to 0.99).

The rest of this paper is structured as follows. In Section II
we formally state the problem. In Section III we analyze
the case of EBB arrivals. The extension to heavy-tailed and
self-similar arrivals is then considered in Section IV. Several
numerical results are illustrated in Section V, and brief con-
clusions are given in Section VI.

II. PROBLEM STATEMENT

Consider the scenario from Figure 1 depicting a FIFO queue
serving two arrival (or aggregate of) flows A(t) and A′(t), with
corresponding departure flows D(t) and D′(t), respectively.
The service rate of the scheduler is R > 0, and the arrival
flows A(t) and A′(t) have the (long-term) average rates r
and r′, respectively. Denote the utilization factor u = r+r′

R .
It was conjectured in [24] that, depending on utilization, the
departure flow D(t) has the average rate rout given by

rout =

{
r , if u < 1
r

r+r′R , otherwise (i.e., overload) .

In other words, overloaded FIFO schedulers offer a propor-
tional fair share to each of the arrival flows.

Fig. 1. A scheduler with rate R serving two arrival (or aggregate of) flows
A(t) and A′(t) with the (long-term) average rates r and r′, respectively; the
departure flow D(t) has the average rate rout.

In this paper we focus on the overload regime and prove
that if u > 1, i.e., the overload condition r+ r′ > R, then the
departure flow D(t) satisfies for all t, σ ≥ 0

Pr

(
D(t) <

(
r

r + r′
− δ

)
Rt− σ

)
≤ ε(σ) , (1)

for two broad classes of arrival processes: EBB, and heavy-
tailed and self-similar1. Here, δ > 0 is a correction factor
and ε(σ) is an error function, non-increasing in σ and δ, and
satisfying limσ→∞ ε(σ) = 0. The limit δ → 0 can be taken
at the expense of a slower convergence of the error function.
When Eq. (1) holds we say that A(t) gets a probabilistic fair
share from the scheduler. In this paper, we evaluate Eq. (1) by
providing/deriving the specific error functions corresponding
to arrival processes in the next two sections. Note that as flows

1A proof in the special case of constant-rate arrivals, i.e., A(t) = rt and
A′(t) = r′t, appeared recently in [12].

here are broadly defined, i.e., single or aggregate of flows, the
analysis derived in this paper are applicable to any number of
flows.

III. SCENARIO 1: EBB ARRIVALS

We start out this section by introducing the model prelim-
inary used in the paper. We then review the class of EBB
arrivals, in particular the MGF upper and lower envelope
models. When A(t) and A′(t) from Figure 1 belong to the
EBB class we demonstrate that overloaded FIFO schedulers
guarantee a probabilistic fair share. To this end, we consider
scenarios depending on (1) the statistical independence of A(t)
and A′(t), and also (2) the independence of increments of A(t)
and A′(t).

The model considered is as follows. The time model is
continuous. The arrivals and departures at the FIFO sched-
uler from Figure 1 are given by non-decreasing and left-
continuous processes, defined on some joint probability space.
The scheduler is workconserving, has an infinite sized buffer,
and serves the arrivals in a fluid manner, i.e., the data service
units of A(t) and A′(t) are infinitesimally small. This fluid
representation of service can be extended to account for
packetization, i.e., the departure processes change once whole
packets are processed rather than once infinitesimally parts of
packets are processed. For the purpose of this paper we prefer
a fluid service representation because it simplifies notation and
the loss of generality is minimal, i.e., roughly in the order of
one packet size. We also assume the existence of (long-term)
average rates for the arrival processes, e.g., r = limt→∞

A(t)
t .

A. MGF Upper and Lower Envelopes

The class of EBB arrival processes can be described in terms
of bounds on their Moment Generating Functions (MGFs) [3],
[10]. Let us first introduce for convenience the bivariate
process A(s, t) = A(t)−A(s) for all s ≤ t.

An arrival process A(t) has an MGF upper envelope with
rate ru depending on some θ > 0, if for all s ≤ t

E
[
eθA(s,t)

]
≤ eθru(t−s) . (2)

A distinguishing feature of EBB arrivals is that the rate ru is
invariant to time parameters; this means that the characteri-
zation from Eq. (2) excludes fractional Brownian motion and
also heavy-tailed arrivals which have infinite MGFs.

To demonstrate the existence of probabilistic lower bounds
on a departure process as in Eq. (1), not only we need
probabilistic upper bounds on the arrivals as in Eq. (2),
but we also need probabilistic lower bounds on the arrivals.
More precisely, we additionally need an arrival model which
enforces lower bounds on the average arrival rates such that
sufficient conditions for the scheduler to be in an overloaded
regime can be given.

We enforce lower bounds on the average arrival rates by
assuming that the arrival processes have exponential bounds
on their Laplace transforms. Formally, we say that an arrival



process A(t) has an MGF lower envelope with rate rl depend-
ing on some θ > 0, if for all s ≤ t

E
[
e−θA(s,t)

]
≤ e−θrl(t−s) . (3)

Similar to the upper envelope, the rate rl in the lower envelope
is invariant to time parameters. Slightly more general bounds
can be considered in both Eqs. (2) and (3), e.g., Meθru(t−s)

in (2), where M ≥ 1 is the prefactor of the exponential;
such EBB characterization is equivalent to the original EBB
description from [34]. To keep notation simple, we consider
the models from Eqs. (2) and (3).

Given an arrival process A(t) with MGF upper and lower
envelopes with rates ru and rl, respectively, for some θ > 0,
we have from Jensen inequality for all t ≥ 0

rl ≤
E [A(t)]

t
≤ ru , (4)

which implies that the long-term average rate of the process
r = limt→∞

A(t)
t satisfies rl ≤ r ≤ ru. Therefore, the models

from Eqs. (2) and (3) can be used in conjunction to enforce
overloaded regimes for the scheduler, and also prevent trivial
situations of zero or infinite arrivals.

B. Examples: Compound Poisson and Markov-Modulated On-
Off (MMOO) Processes

We now briefly show how to construct MGF upper and
lower envelopes as in Eqs. (2) and (3). Consider first the
compound Poisson process, having independent increments,

A(t) =

N(t)∑
i=1

Xi , (5)

where N(t) is a Poisson process with rate λ, and Xi’s are
independent exponential random variables with mean 1/µ.
Using a conditioning argument, one can immediately derive
the MGF upper and lower envelopes of A(t) with the rates

ru =
λ

µ− θ
, rl =

λ

µ+ θ
,

for all θ > 0, with an additional constraint θ < µ for the upper
envelope.

Consider now the MMOO process which is characterized
by burstiness and lack of independent increments. Let a
continuous homogeneous Markov chain S(u) with two states
‘On’ and ‘Off’, and transition rates µ and λ between the
‘On’ and ‘Off’ states, and vice-versa, respectively. If a source
produces at some constant rate P > 0 while the chain is in
the ‘On’ state, then the MMOO process is

A(t) =

∫ t

0

PI{S(u)=‘On′}du , (6)

where I{·} is the indicator function. The corresponding MGF
upper and lower envelopes have the rates [6]

ru =
1

2θ

(
Pθ − µ− λ+

√
(Pθ − µ+ λ)

2
+ 4λµ

)
rl =

1

2θ

(
Pθ + µ+ λ−

√
(Pθ + µ− λ)

2
+ 4λµ

)
.

The case of Markov-modulated processes with more than two
states can be treated using results from [19].

C. Output Bounds in Eq. (1)

In addition to the two probabilistic arrival models described
earlier, we also need probabilistic models to describe the
service received by arrival flows at a scheduler. The network
calculus uses the concept of service curves, which model lower
bounds on the amount of service received by a flow, or an ag-
gregate of flows, at a server. The service curves are essentially
functions, or random processes, whose expressions depend on
the service rate, the arrival representation of the competing
flow, the scheduling algorithm, and even the packetization
model [11]. In this paper we use a probabilistic service curve
model from [3].

Formally, a bi-variate random process S(s, t) is a (prob-
abilistic) service curve for an arrival process A(t) if the
corresponding departure process D(t) satisfies for all s ≤ t

D(t) ≥ A ∗ S(t) , (7)

where A ∗ S(t) := inf0≤s≤t {A(s) + S(s, t)} denotes the
(min,+) convolution of A(t) and S(s, t). In other words,
the service curve S(s, t) models probabilistic lower bounds
on the service received by the arrival process A(t).

We are now ready to show that overloaded FIFO schedulers
yield probabilistic fair shares for the incoming EBB arrival
processes. The next theorem considers both the cases of sta-
tistically independent arrivals, and also of possibly statistically
correlated arrivals, without the assumption that the increments
of flows are independent.

Theorem 1: (OUTPUT BOUNDS: EBB ARRIVALS) Con-
sider a FIFO node with fixed capacity R > 0, and serving
two arrival flows A(t) and A′(t). Fix θ > 0 and assume that
A(t) is bounded by an MGF lower envelope with rate rl, and
A′(t) is bounded by MGF upper and lower envelopes with
rates r′u and r′l, respectively. If rl + r′l > R then the FIFO
scheduler offers the probabilistic fair share

Pr
(
D(t) <

rl
rl + r′u

Rt− σ
)
≤ ε(σ) , (8)

with the error function ε(σ). When A(t) and A′(t) are
statistically independent,

ε(σ) = e−θσ + 2

(
e(rl + r′l)

rl + r′l −R

) 1
2

e−
θ
2σ . (9)

Without the independence assumption the error function is

ε(σ) = e−θσ + 3

(
e(rl + r′l)

rl + r′l −R

) 2
3

e−
θ
3σ , (10)

where e is Euler’s constant.

Before deriving the proof, let us make some remarks. The
overload condition rl+r′l > R is critical for the error function
ε(σ) to be a real function. We also note that the theorem does
not need an MGF upper envelope for A(t); this is only needed



if one further seeks a probabilistic fair share for A′(t). By
denoting the average rates of A(t) and A′(t) by r and r′,
respectively, we can derive Eq. (1) from Eq. (8) by letting

δ =
rl

rl + r′u
− r

r + r′
,

and preserving the error function from Eq. (8). Note that δ >
0 according to the relationship between lower, average, and
upper rates from Eq. (4).

We also point out that the error function increases by
dispensing with the independence assumption, which means
that FIFO’s convergence in σ to the proportional share is
slower than in the case of independent arrivals. This is due to
the fact that large bursts in both A(t) and A′(t) are likely to
occur simultaneously, unless the assumption of independence
between A(t) and A′(t) is enforced.

PROOF. Denote by [a]+ = max {a, 0} the positive part of
a number a. From [9] we have that for any x > 0 the random
process

S(s, t) = [R(t− s)−A′(s, t− x)]+ 1{t−s>x}

is a probabilistic service curve for A(t), i.e., D(t) ≥ A∗S(t).
Let θ > 0, and rl, r′l, and r′u as in the theorem. Let us choose

x =

(
1− R

rl + r′u

)
t . (11)

We point out that this choice of the time parameter x, which
appears in the expression of the service curve S(s, t) above,
is the key to prove the relationship stated in Eq. (1) for
overloaded regimes.

Using the definition of the service curve from Eq. (7), we
can now bound the probability in Eq. (8) as follows

Pr

(
D(t) <

rl
rl + r′u

Rt− σ

)
≤ Pr

(
A ∗ S(t) < rl

rl + r′u
Rt− σ

)
≤ Pr

(
sup

0≤s≤t

{ rl
rl + r′u

Rt−A(s)

− [R(t− s)−A′(s, t− x)]+ 1{t−s>x}

}
> σ

)
By separating the supremum in two parts, i.e., s ≥ t− x and
s < t− x, we can further bound the probability by

Pr

(
rl

rl + r′u
Rt−A(t− x) > σ

)
+Pr

(
A′(t− x)− r′u

rl + r′u
Rt

+ sup
0≤s<t−x

{Rs−A(s)−A′(s)} > σ
)

≤ e−θσ + Pr

(
A′(t− x)− r′u

rl + r′u
Rt > σ1

)
+ Pr

(
sup

0≤s<t−x
{Rs−A(s)−A′(s)} > σ2

)
, (12)

where σ1 + σ2 = σ. the last inequality follows by applying
the Chernoff and Boole bounds.2

With the choice of x from Eq. (11) and the MGF upper
envelope for A′(t−x) from Eq. (2), the Chernoff bound yields
that the second term in the sum is bounded by

Pr

(
A′(t− x)− r′u

rl + r′u
Rt > σ1

)
≤ e−θσ1 .

To bound the third term in the sum we introduce a discretiza-
tion parameter τ0 > 0. Furthermore, for some s ≥ 0, we
denote j = ⌊ s

τ0
⌋ the integer part of s

τ0
. Assume now that

A(t) and A′(t) are statistically independent. Then the third is
bounded by

Pr

(
sup

0≤s<t−x
{Rs−A(s)−A′(s)} > σ2

)
≤

∞∑
j=0

Pr (R(j + 1)τ0 −A (jτ0)−A′(jτ0) > σ2)

≤ eθRτ0

∞∑
j=0

eθ(R−rl−r′l)jτ0e−θσ2

≤ eθRτ0
e−θ(R−rl−r′l)τ0

θ(rl + r′l −R)τ0
e−θσ2 ≤ e(rl + r′l)

rl + r′l −R
e−θσ2 .(13)

In the first inequality we used Boole inequality. Then we used
the independence between A(t) and A′(t), and the MGF lower
envelopes for A(jτ0) and A′(jτ0) from Eq. (3). Finally we
applied the inequality

∑
j≥0 e

−aj ≤ ea/a for any a > 0, and
optimized the resulted convex function with τ0 = 1

θ(rl+r′l)
.

Collecting terms yields

Pr

(
D(t) <

rl
rl + r′u

Rt− σ

)
≤ e−θσ + e−θσ1 +

e(rl + r′l)

rl + r′l −R
e−θσ2

Next we use the convex optimization for M > 0 [5]

inf
σ1+σ2=σ

{
e−θσ1 +Me−θσ2

}
≤ 2M

1
2 e−

θ
2σ .

The proof for statistically independent A(t) and A′(t) is thus
complete.

In turn, when A(t) and A′(t) are not necessarily statistically
independent, we can bound the probabilities in the sum from
the second line of Eq. (13) by a sum of two probabilities,
using Boole inequality, i.e.,

Pr

(
R

2
τ0 +

R− rl − r′l
2

jτ0 − (A (jτ0)− rljτ0) > σ3

)
+ Pr

(
R

2
τ0 +

R− rl − r′l
2

jτ0 − (A′ (jτ0)− r′ljτ0) > σ4

)
,

where σ3 + σ4 = σ2. The bound from Eq. (13) then becomes

Me−θσ3 +Me−θσ4 ,

2For a random variable X , the Chernoff bound states that Pr
(
eθX ≥ x

)
≤

E
[
eθX

]
/x for all θ, x > 0. For two events A and B, the Boole bound states

that Pr(A ∪B) ≤ Pr(A) + Pr(B).



where the value

M =
e(rl + r′l)

rl + r′l −R

is obtained exactly as in the last lines of Eq. (13). Finally, by
applying the inequality [5]

inf
σ1+σ3+σ4=σ

{
e−θσ1 +Me−θσ3 +Me−θσ4

}
≤ 3M

2
3 e−

θ
3σ ,

completes the proof. �

Now, we turn to the specialized case of EBB arrivals
with statistically independent increments, i.e., A(s1, s2) and
A(s3, s4) are statistically independent for all 0 ≤ s1 ≤
s2 ≤ s3 ≤ s4. Note that the Poisson or the compound
Poisson process considered earlier belong to this category. By
accounting for the independent increments property, we can
improve the bounds from Theorem 1 as follows.

Theorem 2: (OUTPUT BOUNDS: EBB ARRIVALS WITH IN-
DEPENDENT INCREMENTS) Consider the hypothesis from
Theorem 1. In addition, assume that both A(t) and A′(t)
have independent increments. If rl + r′l > R, then the FIFO
scheduler offers the probabilistic fair share

Pr
(
D(t) <

rl
rl + r′u

Rt− σ
)
≤ ε(σ) , (14)

with the error function, when A(t) and A′(t) are statistically
independent,

ε(σ) = e−θσ + 2e−
θ
2σ . (15)

Without the independence assumption between A(t) and
A′(t), the error function is

ε(σ) = e−θσ + 3e−
θ
3σ . (16)

We point out that the (over)utilization factor u =
rl+r′l
R plays

a critical role in the convergence. In marginally overloaded
regimes, i.e., when u ≈ 1, the bound from the theorem
considerably improves upon the bound from Theorem 1: the
second exponential in the error function from Theorem 1 is
reduced by a factor of as much as Ω

(
1

u−1

)
. In turn, in extreme

overloaded regimes, i.e., when u ≫ 1, the gain is almost
negligible: the second exponential is only reduced by a factor
of roughly

√
e.

PROOF. The proof of the theorem proceeds along the same
lines as the proof of Theorem 1, with the exception that the
sample path probability from Eq. (12), more exactly the third
term in the sum, is now evaluated using a supermartingale
argument [20], [4].

Consider first the case when A(t) and A′(t) are statistically
independent, and let us introduce the process

T (s) = eθ(Rs−A(s)−A′(s))

for all s ≥ 0. Consider also the filtration of σ-algebras

Fs = σ {(A(u), A′(u)) : 0 ≤ u ≤ s} ,

i.e., Fs ⊆ Ft for all s ≤ t. Note that T (s) is Fs-measurable for
all s ≥ 0. Then we can write for the conditional expectations
for all s, u ≥ 0

E [T (s+ u) ∥ Fs] = E
[
T (s)eθ(Ru−A(s,s+u)−A′(s,s+u)) ∥ Fs

]
= T (s)E

[
eθ(Ru−A(s,s+u)−A′(s,s+u)) ∥ Fs

]
= T (s)E

[
eθ(Ru−A(s,s+u)−A′(s,s+u))

]
= T (s)eθ(R−rl−r′l)u ≤ T (s) .

In the second line we applied that T (s) is Fs-measurable, and
then we used the independent increments property of A(t) and
A′(t), e.g., A(s, s+u) is independent of Fs. Finally we used
the MGF lower envelopes for A(s, s + u) and A′(s, s + u),
and the overload condition from the theorem. Therefore, the
process T (s) is a supermartingale, i.e., [13]

E [T (s+ u) ∥ Fs] ≤ T (s)

for all s, u ≥ 0. We can thus evaluate the third term in the
sum from Eq. (12) as

Pr

(
sup

0≤s<t−x
{Rs−A(s)−A′(s)} > σ2

)
≤ Pr

(
sup
s≥0

T (s) > eθσ2

)
≤ e−θσ2 .

In the last line we applied Doob inequality for the supermartin-
gale T (s) [13]. The rest of the first part of the proof follows
immediately by collecting terms.

When A(t) and A′(t) are not necessarily independent we
proceed as in the second part of the proof of Theorem 1. Con-
cretely, we bound the sample-path probability from Eq. (12)
with

Pr

(
sup
s≥0

{
R− rl − r′l

2
− (A(s)− rls)

}
> σ3

)
+Pr

(
sup
s≥0

{
R− rl − r′l

2
− (A′(s)− r′ls)

}
> σ4

)
,

where σ3 + σ4 = σ2. The rest of the proof then follows using
the same supermartingale argument as above. �

IV. SCENARIO 2: HEAVY-TAILED AND SELF-SIMILAR
ARRIVALS

In this section we extend the analysis from Section III to the
class of heavy-tailed and self-similar arrival processes. First we
describe two statistical envelope models, including a novel one
for enforcing overloaded regimes, and then present bounds on
the departure processes as in Eq. (1).

A. Upper and Lower Statistical Envelopes

To capture the properties of heavy-tailed and self-similar
arrivals A(t), we use the following (upper) statistical envelope
model for all 0 ≤ s ≤ t and σ ≥ 0 [23]

Pr
(
A(s, t) > r(t− s) + σ(t− s)H

)
≤ Kσ−α . (17)



Here, r is the long-term arrival rate. The tail index −α
describes the shape of the tail and smaller values of α indicate
heavier tails; we are interested in the case when α ∈ (1, 2),
i.e., arrivals with finite mean but infinite variance. The self-
similarity index H (or Hurst parameter) satisfies H ∈ [1/α, 1)
and describes the arrivals behavior when rescaling time. The
burst parameter σ captures the tail behavior, and K > 0
is a constant. The function G(t) = rt + σtH is called
a htss-envelope, i.e., heavy-tailed and self-similar (upper)
envelope [23].

The key characteristic of the htss-envelope is that the error
function ε(σ) = Kσ−α is given by a power law. This means
that the arrivals A(s, t) may deviate from the mean r(t − s)
by some very large values with non-negligible probabilities;
moreover, these deviations increase as a function of time due
to self-similarity.

Similar to the case of EBB arrivals, we also need to
introduce a lower envelope model for heavy-tailed and self-
similar arrivals in order to give sufficient conditions for
overloaded regimes. To this end we propose the following
(lower) statistical envelope model for an arrival process A(t),
such that for all 0 ≤ s ≤ t and σ ≥ 0

Pr
(
A(s, t) < r(t− s)− σ(t− s)H

)
≤ e−Lσ

α
α−1

. (18)

Here, r is the long-term arrival rate. The parameter α ∈ (1, 2]
defines the Weibull distribution for the error function, with
smaller values indicating heavier tails. The self-similarity
index H is as in Eq. (17), and describes the arrivals behavior
when rescaling time. Finally, L > 0 is a constant and the
function G(t) = rt + σtH is called a wss-envelope, i.e.,
Weibull and self-similar (lower) envelope.

In contrast to the htss-envelope, the wss-envelope has an
error function with a Weibull tail. An explanation for this
choice is that large deviations of the arrivals to the left of
the mean are much less likely to happen than to the right
of the mean, especially at small time scales, because A(t) is
non-negative. Moreover, the decay of the deviations is faster
than the exponential (note that α

α−1 > 1), yet the deviations
increase as a function of time due to self-similarity.

B. Example: Multiplexed Heavy-Tailed On-Off

Here we construct the htss and wss-envelopes from
Eqs. (17) and (18), respectively, for an aggregate of N inde-
pendent On-Off flows consisting of alternating and statistically
independent ‘On’ and ‘Off’ periods [25]. Each flow transmits
at a constant rate P during ‘On’ periods and is silent during
‘Off’ periods. Unlike the exponential distributions in the
states for the MMOO process from Section III, the right-tail
distribution of the ‘On’ periods is now given by

Pr
(
X > σ

)
= σ−α ,

where α ∈ (1, 2). The distribution of the ‘Off’ periods is given
similarly with tail index αoff > α. The means of the ‘On’
and ‘Off’ periods are µon and µoff, respectively. The per-flow
arrival rate is r = µonP

µon+µoff
.

The cumulative process A(t) generated by all flows can be
written for all t ≥ 0

A(t) =

∫ t

0

PM(s)ds , (19)

where M(s) denotes the number of active flows at time s.
To construct the htss-envelope for A(t) we first need to

introduce α-stable processes [26], which typically appear
as the limit of normalized sums of i.i.d. random variables,
e.g., by the generalized central limit theorem (GCLT) [32].
Explicit expressions for the densities of stable distributions
are known only in very special cases, e.g., the Gaussian.
However, all stable distributions have explicit descriptions for
their characteristic functions (see [32], pp. xvi) in terms of
four parameters: the stability index α ∈ (0, 2], the skewness
β ∈ [−1, 1], the scale a > 0, and the location µ ∈ R.
According to these parameters a stable random variable is
denoted by Sα(β, a, µ); its normalized version is denoted by

Sα(β) := Sα(β, 1, 0) =
Sα(β, a, µ)− µ

a
.

Now we look at the scaled process A(Tt) for large time
scale T , and show how to construct htss-envelopes for it.
By taking a suitable simultaneous limit in T and N , then
A(Tt) converges in distribution to an α-stable Lévy motion.
This is an α-stable process with stationary and independent
increments, càdlàg sample paths (i.e. right-continuous and
limits from the left exist), and self-similar with index 1/α [25].
Formally

Pr
(
A(Tt) > NTtr + (NT )

1
ασ
)

→T,N Pr
(
σ0Sα

(
1, cαt

1
α , 0
)
> σ

)
, (20)

where σ0 = µoff

(µon+µoff)
1+1/α , and cα =

(
2Γ(α) sin πα

2

π

)− 1
α

, and
Γ(·) is the Gamma function; we point out that here we rewrote
the result from [25] using Euler’s equality Γ(α)Γ(1 − α) =

π
2 sin(πα

2 ) cos(πα
2 ) .

Using the tail approximation of α-stable distributions [26]

Pr
(
Sα(1) > σ

)
∼ (cασ)

−α
, σ → ∞ , (21)

and arranging terms in Eq. (20), we obtain the htss-envelope
with parameters

Nr, α, η =
1

α
, K ≈ Nσα

0 . (22)

Next, to construct the wss-(lower)-envelope, we use the
Laplace transform of the α-stable process Sα(1, a, 0), i.e., for
all θ > 0 [29]

E
[
e−θSα(1,a,0)

]
= e

− aα

cos πα
2

θα

, (23)

which in particular holds for our choice of α ∈ (1, 2]. From
this and the Chernoff bound we obtain for some θ > 0

Pr
(
A(Tt) < NTtr − (Tt)

1
ασ
)
≤ e

− (σ0cα)αt

cos πα
2

θα

e−θ( t
N )

1
α σ

≤ e
−(α−1)

(
−

cos πα
2

N

) 1
α−1

(
1

αcασ0

) α
α−1 σ

α
α−1

.



In the second line we optimized θ =

(
− σ cos πα

2

α(σ0cα)α(N
t )

1
α

) 1
α−1

,

which eliminates the time parameter t in the exponent. There-
fore we get the wss-envelope with parameters

Nr, α, H =
1

α
, L = (α−1)

(
−
cos πα

2

N

) 1
α−1

(
1

αcασ0

) α
α−1

.

(24)
Finally, we note that for the construction from (24), if

A(t) and A′(t) are statistically independent and have the
same parameters except for the average rates, i.e., r and r′,
respectively, then the sum A(t) +A′(t) has the wss-envelope
with parameters

r + r′, α, H, L , (25)

with L from Eq. (24).

C. Output Bounds in Eq. (1)

The next theorem extends Theorem 1 to heavy-tailed and
self-similar arrivals. We now consider only the case of statisti-
cally independent arrivals; the case of not necessarily indepen-
dent arrivals can be also considered similarly by constructing
a wss-envelope for the sum, as in Eq. (25), but after using
the splitting argument from the proof of Theorem 1. On the
other hand, an extension of Theorem 2 is not possible, since
self-similar processes do not have statistically independent
increments.

Theorem 3: (OUTPUT BOUNDS: HEAVY-TAILED AND
SELF-SIMILAR ARRIVALS) Consider a FIFO node with fixed
capacity R > 0, and serving two statistically independent
arrival flows A(t) and A′(t). Assume that A(t) is bounded
by a htss-envelopes with parameters r, α,H,K, and a wss-
envelope with parameters r, α,H,L. Assume also that A′(t)
and A(t)+A′(t) are bounded by wss-envelopes with parame-
ters r′, α,H,L, and r+ r′, α,H,L, respectively, according to
Eq. (25). If r + r′ > R, then the FIFO scheduler offers the
probabilistic fair share for all t, σ ≥ 0

Pr
(
D(t) <

r

r + r′
Rt− σtH

)
≤ ε(σ) , (26)

with the error function

ε(σ) = e−Lσ
α

α−1
+ inf

σ1+σ2=σ

{
K1σ

−α
1 +K2e

−Lσ
α

α−1
2

}
,

where K1 and K2 are given in the proof.

The error function from the theorem is dominated by the
power function with tail index −α, which indicates that FIFO’s
convergence in σ to the proportional share is very slow.
This is due to the fact that the FIFO scheduler may have to
continuously serve extremely large bursts of A′(t), which can
occur with non-negligible probabilities. Let us also remark that
the theorem can be extended to the case when A(t) is an EBB
process, whereas A′(t) is a heavy-tailed and similar process.
In this case, the error function would be still dominated by
the power function with tail index −α, as in Eq. (26).

PROOF. Fix t, σ ≥ 0, and choose

x =

(
1− R

r + r′

)
t .

Similarly as in the proof of Theorem 1, this choice of the time
parameter x is critical for the proof. Following the proof of
Theorem 1, we can bound the probability in Eq. (26) by

Pr

(
r

r + r′
Rt−A(t− x) > σtH

)
+ Pr

(
A′(t− x)− r′

r + r′
Rt > σ1t

H

)
+ Pr

(
sup

0≤s<t−x
{Rs−A(s)−A′(s)} > σ2t

H

)
,

where σ1 + σ2 = σ.
According to the definition of the wss-envelope from

Eq. (18), the first term in the sum is bounded by

Pr

(
r

r + r′
Rt−A(t− x) > σtH

)
≤ e−Lσ

α
α−1

.

Next, from the definition of the htss-envelope from Eq. (17),
the second term in the sum is bounded by

Pr

(
A′(t− x)− r′

r + r′
Rt > σ1t

H

)
≤ K ′

 σ1(
R

r+r′

)H


−α

,

such that we can set

K1 = K

(
r + r′

R

)Hα

. (27)

Finally, to bound the third probability in the sum, we
introduce a discretization parameter τ0 > 0. For some s ≥ 0
we denote j = ⌊ s

τ0
⌋ the integer part of s

τ0
. Then the probability

is bounded, using Boole inequality, by∑
j≥0

Pr
(
(A+A′) (jτ0) < (r + r′) jτ0

−(jτ0)
H
(
σ2 + (r + r′ −R)(jτ0)

1−H −Rτ1−H
0 j−H

) )
.

Setting τ0 =
(
1
R

) 1
1−H , we can ignore the term Rτ1−H

0 j−H

which becomes negligible relative to the second term in the
sum, for sufficiently large j. Let us now introduce the positive
parameter γ = (r+ r′−R)/R. Applying the definition of the
wss-envelope from Eq. (18), the sum is further bounded by∑
j≥0

e−L(σ2+γj1−H)
α

α−1 ≤ e−Lσ
α

α−1
2

∑
j≥0

e−Lγ
α

α−1 j
α(1−H)

α−1

Since the string in the sum is non-increasing, the sum is
bounded by [?]

1 +

∫ ∞

0

e−axb

dx = 1 +
Γ
(
1
b

)
ba

1
b

,

with the parameters a = Lγ
α

α−1 and b = α(1−H)
α−1 ≤ 1.

Therefore, the parameter K2 from the error function is K2 =
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Fig. 2. Probabilistic lower bounds on the output rate of D(t) in Eq. (1), for a compound Poisson process from Eq. (5) (E[Xi] = 400 (Bytes), independent
(Eq. (15)) and not independent (Eq. (16)) arrivals), MMOO process from Eq. (6) ( 1

µ
= .4 s, 1

λ
= .6 s, P = 64 Kb/s [30], independent (Eq. (9)) and

not independent (Eq. (10)) arrivals), and Heavy-tailed On-Off process from Eq. (19) (α = 1.75, αoff = 1.95, P = 64 Kb/s) (server rate R = 100 Mb/s,
(over)utilization factors (u = 1.01, u = 1.25 and u = 2.0), violation probability ε = 10−3)

1+
Γ( 1

b )
ba

1
b

. In the special case when H = 1
α (see Eq. (24)), we

have that b = 1 and the expression of K2 becomes

K2 = 1 +
1

L

(
R

r + r′ −R

) α
α−1

. (28)

The proof is thus complete. �

V. NUMERICAL RESULTS

In this section we illustrate the convergence of the output
rates from Eq. (1) to the fair shares with respect to different
arrival processes, flow sizes and intensity of overload. We con-
sider both EBB and heavy-tailed/self-similar arrival processes.
For the EBB case, we show both cases of independent and not
necessarily independent arrivals.

We present numerical examples mainly characteristic to
Internet traffic, so that the rates of arrival processes and output
processes are measured in Mb/s. Note that the numerical
units can be adjusted according to the application of queueing
systems, e.g., web services or CPU cores. Fig. 2 depicts the
lower bounds on the output rates for arrivals of (1) compound
Poisson as in Eq. (14), with and without the independence

assumption of flows, (2) MMOO as in Eq. (8), with and with-
out the independence assumption of flows, and (3) Multiplexed
Heavy-Tailed On-Off as in Eq. (26). Specific numerical values
used to compute rl, r′l , and ru in the lower bounds for all
three arrival processes are given in the caption. Two flow sizes
of A(t), i.e., 25% and 75%, corresponding to r

r′ = 1
3 and

r
r′ = 3, are considered in Fig. 2 (a,b,c) and (d,e,f), respectively.
Also, three intensities of overutilization, u = 1.01, u = 1.25
and u = 2.0 are considered in Fig. 2 (a,d), (b,e), and (c,f),
respectively.

Besides the expected behavior that burstier sources take
longer to converge, one can observe that increasing the load of
A(t) (in (d,e,f), as opposed to (a,b,c)) significantly increases
the convergence speed to the fair share, which indicates
that FIFO biases proportional fairness towards larger flows.
Moreover, the independence assumption for EBB flows has
a significant impact on the convergence rates, especially at
barely overutilizations (i.e., u = 1.01). The immediate impli-
cation is that statistical multiplexing strongly manifests itself
in overloaded queues, as it is known for underloaded queues.

An interesting observation from Fig. 2 is on how the
utilization factor influences the convergence speed. Namely,



for the EBB case, higher utilizations lead to faster convergence
speeds to the fair shares, and also a stabilization effect after
u = 1.25 (further increasing the utilization does not change
the convergence speed). Note that this behavior is exactly the
opposite as in underloaded queues, where higher utilizations
lead to slower convergence rates (of the output rates to the
input rates). This observation can be analytically explained
by the error functions (e.g., in Eq. (9)) which roughly in-
crease as O

(
1

u−1

)
; in contrast, in underloaded queues, the

error functions roughly increase as O
(

1
1−u

)
[5]. However,

heavy-tailed self-similar traffic preserves the nondecreasing
convergence time behavior from underloaded queues, which
can be explained by the interplay between K1 = O(u) from

Eq. (27) and K2 = O
(

1
u−1

) α
α−1

in Eq. (28), both appearing
in the error function from Eq. (26). Note that K1 and K2 have
opposite monotonicity, i.e., the former increasing in u and the
latter decreasing in u.

VI. CONCLUSIONS

In this paper we have analyzed a FIFO queue in overloaded
regimes, i.e., when the total arrival rate exceeds the service
rate. We have considered both the class of EBB arrivals
(including Markovian) and also the class of heavy-tailed and
self-similar arrivals, which is adequate to model the char-
acteristics of modern workloads. For both classes we have
shown that FIFO guarantees probabilistic proportional fair
shares in overloaded regimes, proving thus a conjecture from
the literature in great generality. Specifically, we showed that
the convergence rate to the fair share is nondecreasing in flow
sizes. Most interestingly, we also showed that for EBB arrivals,
the convergence rate is nonincreasing in the utilization factor
for the overloaded regime; in turn, for heavy-tailed and self-
similar arrivals, the corresponding convergence rate is nonde-
creasing, as it is generally the case for the underloaded regime.
To conclude, our results indicate the need for sophisticated
system oriented solutions for overload management, especially
in the likely situation of highly varying load fluctuations in
short term.

REFERENCES

[1] J. Abate, G. L. Choudhury, and W. Whitt. Waiting-time tail probabilities
in queues with long-tail service-time distributions. Queueing Systems,
16(3-4):311–338, Sept. 1994.

[2] G. Bolch, S. Greiner, H. Meer, and K. Trivedi. Queueing Networks and
Markov Chains: Modeling and Performance Evaluation With Computer
Science Applications. Wiley, 2006.

[3] C.-S. Chang. Performance Guarantees in Communication Networks.
Springer Verlag, 2000.

[4] F. Ciucu. Network calculus delay bounds in queueing networks with
exact solutions. In International Teletraffic Congress (ITC), pages 495–
506, 2007.

[5] F. Ciucu, A. Burchard, and J. Liebeherr. A network service curve
approach for the stochastic analysis of networks. In ACM Sigmetrics,
volume 33, pages 279–290, 2005.

[6] C. Courcoubetis and R. Weber. Buffer overflow asymptotics for a
buffer handling many traffic sources. Journal of Applied Probability,
33(3):886–903, Sept. 1996.

[7] M. Crovella and A. Bestavros. Self-similarity in World Wide Web
traffic: evidence and possible causes. IEEE/ACM Transactions on
Networking, 5(6):835–846, Dec. 1997.

[8] R. Cruz. A calculus for network delay, parts I and II. IEEE Transactions
on Information Theory, 37(1):114–141, Jan. 1991.

[9] R. L. Cruz. SCED+: Efficient management of quality of service
guarantees. In IEEE Infocom, pages 625–634, 1998.

[10] M. Fidler. An end-to-end probabilistic network calculus with moment
generating functions. In IEEE International Workshop on Quality of
Service (IWQoS), pages 261–270, 2006.

[11] M. Fidler. A survey of deterministic and stochastic service curve models
in the network calculus. To appear in IEEE Communications Surveys
and Tutorials, 12(1), 2010.

[12] Y. Ghiassi-Farrokhfal and J. Liebeherr. Output characterization of
constant bit rate traffic in FIFO networks. IEEE Communications Letters,
13(8):618–620, Aug. 2009.

[13] G. Grimmett and D. Stirzaker. Probability and Random Processes.
Oxford University Press, 2001.

[14] R. C. Hampshire, M. Harchol-Balter, and W. A. Massey. Fluid and
diffusion limits for transient sojourn times of processor sharing queues
with time varying rates. Queueing Systems: Theory and Applications,
53(1-2):19–30, June 2006.

[15] M. Harchol-Balter and A. Downey. Exploiting process lifetime distri-
butions for dynamic load balancing. ACM Transactions on Computer
Systems, 15(3):253–285, 1997.

[16] A. Jean-Marie and P. Robert. On the transient behavior of the processor
sharing queue. Queueing Systems, 17(1-2):129–136, Mar. 1994.

[17] Y. Jiang and Y. Liu. Stochastic Network Calculus. Springer, 2008.
[18] M. Jonckheere, R. Nunez-Queija, and B. Prabhu. Performance analysis

of traffic surges in multi-class communication networks. In 22nd
International Teletraffic Congress (to appear), 2010.

[19] G. Kesidis, J. Walrand, and C. Chang. Effective bandwidths for multi-
class Markov fluids and other ATM sources. IEEE/ACM Transactions
on Networking, 1(4):424–428, Aug. 1993.

[20] J. F. C. Kingman. A martingale inequality in the theory of queues.
Cambridge Philosophical Society, 60(2):359–361, Oct. 1964.

[21] L. Kleinrock. Queueing Systems, volume 1. John Wiley and Sons, 1975.
[22] W. E. Leland, M. S. Taqqu, W. Willinger, and D. V. Wilson. On

the self-similar nature of Ethernet traffic. IEEE/ACM Transactions on
Networking, 2(1):1–15, Feb. 1994.

[23] J. Liebeherr, A. Burchard, and F. Ciucu. Non-asymptotic delay bounds
for networks with heavy-tailed traffic. In IEEE Infocom, 2010.

[24] B. Melander, M. Bjorkman, and P. Gunningberg. First-come-first-served
packet dispersion and implications for TCP. In IEEE Globecom, volume
1-3, pages 2170–2174, 2002.

[25] T. Mikosch, S. Resnick, H. Rootzn, and A. Stegeman. Is network traffic
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