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Summary
The paper reviews computational models for analyzing the use of replicating oncolytic viruses as therapeutic agents
against cancers. The paper highlights viral and host paramters which are crucial for success, and discusses how
virus strains can be optimized in order to achieve maximial remission of cancers. The models consider three
mechansisms by which oncolytic virus therapy could work: (i) virus-mediated killing of tumor cells. (ii) Induction of
immune responses against the virus which can kill infected tumor cells. (iii) Induction of tumor specific immune
responses following the release of stimulatory signals as a result of the virus infection. The models further give rise
to insights into how virus variants should be tested in vitro in order to determine their therapeutic potential.

I. Introduction
Traditional therapy of tumors and cancers

(chemotherapy) is characterized by a relatively low
efficacy and high toxicty for the patient. While efforts are
under way to design more efficient drugs that target
genetic abnormalities only present in cancer cells,
advances in genetic engineering have opened up
possibilities to use replicating viruses as “biological
control agents” to combat tumors (Kirn and McCormick,
1996). Several viruses have been altered to selectively
infect cancer cells. Examples are HSV-1, NDV, and
adenoviruses (Kirn and McCormick, 1996). A specific
example that has drawn attention recently is ONYX-015,
an attenuated adenovirus which selectively infects tumor
cells with a defect in p53 (Kirn and McCormick 1996;
Oliff et al, 1996; Hall et al, 1998; Heise et al, 1999a, b;
Dix et al, 2000; Rogulski et al, 2000). This virus has been
shown to have significant anti-tumor activity and has
proven relatively effective at reducing or eliminating
tumors in clinical trials (Kirn et al, 1998; Ganly et al,
2000; Khuri et al, 2000). Yet challenges remain. In
particular, it is unclear which virus characteristics are most
optimal for such therapeutic purposes. Viruses have been
altered in a variety of ways by targeted mutations, but it is
not clear what types of mutants have to be produced in
order to achieve extinction of the cancer. If tumor
eradication does not occur, the outcome is the persistence
of both the tumor and the virus infection, and this would

be detrimental for patients. Persistence of both tumor and
virus has been seen in experiments with a mouse model
system by Harrison et al, (2001). The reason for the failure
to eradicate the tumor despite ongoing viral replication
was left open to speculation.

Mathematical models have been used to address this
question. Taking into account the complex interactions
between viruses, tumor cells, and immune responses, such
models have identified conditions under which oncolytic
virus therapy is most likely to result in successful
clearance of cancer. This review discusses these insights.
The models take into account a variety of mechanisms
which can contribute to cancer elimination. On the most
basic level, virus infection and the consequent virus-
induced death of the cancer cell can be responsible for
tumor eradication. On top of this, the immune system is
expected to have an effect. In particular, cytotoxic T
lymphocytes (CTL) are likely to be important. These are
immune cells which can kill cells which display foreign or
mutated proteins. They may act in two basic ways. They
can recognize the virus on infected cells and kill virus-
infected cells. Alternatively, the virus infection may
promote the establishment of a CTL response against
cancer proteins which would otherwise not develop.
Significant immune responses are not normally mounted
against cancers. A virus infection might alert the immune
system and activate an otherwise silent response. This is
known as the danger signal hypothesis in immunology.
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This review will discuss mathematical models which
consider all three scenarios and discuss optimal strategies
to achieve cancer extinction. The models also give
valuable insights regarding experimental tests of specific
virus mutants in order to evaluate them for treatment. The
review will finish with a discussion of these insights.

II. Virus-induced killing of tumor cells
This section investigates the basic dynamics between

a growing tumor population and a replicating virus
selective for the tumor cells. Various aspects of tumor
growth and inhibition have been modeled in a variety of
ways (Gatenby 1996; Gatenby and Gawlinski 1996; Adam
and Bellomo 1997; Kirschner and Panetta 1998). We
concentrate on a simple model, capturing the essential
assumptions for analyzing virus-mediated therapy. The
model contains two variables: uninfected tumor cells, x,
and tumor cells infected by the virus, y. It is explained
schematically in Figure 1. The tumor cells grow in a
logistic fashion at a rate r and die at a rate d. The
maximum size or space the tumor is allowed to occupy is
given by its carrying capacity k. The virus spreads to
tumor cells at a rate β (this parameter can be viewed as

summarizing the replication rate of the virus). Infected
tumor cells are killed by the virus at a rate a and grow in a
logistic fashion at a rate s. This assumes that division of
infected tumor cells results in both daughter cells carrying
the virus. This would certainly be the case with a virus that
integrates into the tumor cell genome, but with a non-
integrating virus, the chances of transmission upon cell
division should be sufficiently high to justify this
assumption. The model is given by the following set of
ordinary differential equations (Wodarz, 2001):

x = rx(1−
x+ y

k
)− dx − βxy

y = βxy+ sy(1−
x + y

k
)− ay

In the absence of the virus the trivial equilibrium is
attained and is given by E0:

x
(0) = k ( r− d ) r , y

(0) = 0
The virus can establish an infection in the tumor cell
population if [βk(r-d)+sd]/r>a. In this case, two types of
outcomes are possible. The virus can either attain 100%
prevalence in the tumor cell population (i.e. all tumor cells
are infected), or it may only infect a fraction of the tumor

Figure 1: Schematic representation of the assumptions underlying the mathematical models.  In the text, the model is built up gradually.
It starts with the interactions between the virus and the tumor cells. Then a virus-specific CTL responses is added, followed by including
a tumor-specific CTL response.
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cells (i.e. both uninfected and infected tumor cells are
observed). Hundred percent virus prevalence is described
by equilibrium E1:

x (1) = 0,y (1) = k ( s− a) s
Coexistence of infected and uninfected tumor cells is

described by equilibrium E2:
( )

( )srk

sdarsak
x

−+
−+−=

ββ
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rasddrk
y

−+
−+−=

ββ
β)2(

The virus infects all tumor cells (equilibrium E1) if
a<s(d+βk)/(r+βk). Otherwise, Equilibrium E2 is
observed.

With this result in mind, how does viral cytotoxicity
influence the size of the overall tumor? The tumor size is
defined as the sum of infected and uninfected tumor cells,
x+y, at equilibrium. Viral cytotoxicity has an opposing
influence on tumor load depending on which equilibrium
is attained (Figure 2a). If all tumor cells are infected, then
x+y=k(s-a)/s. An increase in viral cytotoxicity results in a
reduction in tumor load (Figure 2a). On the other hand, if
not all tumor cells are infected, then x+y=k(r–s+a-d)/(βk
+r–s). Now, an increase in the viral cytotoxicity increases
tumor load (Figure 2a). The reason is that increased rates
of tumor cell killing eliminate infected tumor cells before
the virus had a chance to significantly spread. This in turn
increases the pool of uninfected tumor cells and therefore
the tumor load.

Hence, there is an optimal cytotoxicity, aopt, at
which the tumor size reaches a minimum. This optimum is
the degree of cytotoxicity at which the system jumps from
the equilibrium describing 100% virus prevalence to the
equilibrium where uninfected tumor cells are also present
(Figure 2a). The optimal viral cytotoxicity is thus given
by aopt=s(d+βk)/(r+βk). At this optimal cytotoxicity the
tumor size is reduced maximally and is given by [x+y]mi

=k(r-d)/(r+βk).
There are a number of points worth noting about

this result. The minimum tumor size this therapy regime
can achieve is most strongly determined by the replication
rate of the virus, β (Figure 2a). The higher the replication
rate of the virus, the smaller the minimum size of the
tumor. In order to achieve this minimum, the viral
cytotoxicity must be around its optimum value. A major
determinant of the optimal viral cytotoxicity is the rate of
growth of uninfected and infected tumor cells (r and s
respectively).

i) If the infected tumor cells grow at a significantly
slower rate relative to uninfected cells (s << r), the
optimal cytotoxicity is low (Figure 3a). In the extreme
case where the virus abolishes the ability of the tumor cell
to divide, a non-cytotoxic virus is required to achieve
optimal treatment results. More cytotoxic viruses result in
tumor persistence (Figrue 3a).

ii) On the other hand, if the growth rate of infected
tumor cells is not significantly lower than that of
uninfected tumor cells, an intermediate level of virus
induced cell death is required to achieve minimum tumor
size (Figure 3b). If viral cytotoxicity is too weak, the
tumor persists. However, if the viral cytotoxicity is too
high, the tumor also persists because infected cells die too
fast for the virus to spread efficiently (Figrue 3b). In

general, the faster the replication rate of the virus, the
higher the optimal level of cytotoxicity.

III. Effect of virus-specific CTL
This section expands the above model to include a

population of virus-specific CTL, zv. The CTL recognize
viral antigen on infected tumor cells. Upon antigenic
encounter, the CTL proliferate with a rate cvyzv and kill the
infected tumor cells with a rate pvyzv. In the absence of
antigenic stimulation the CTL die with a rate bzv. The
model is given by the following set of differential
equations (Wodarz, 2001).

x = rx (1−
x+ y

k
)− dx − βxy ,

y = βxy+ sy(1−
x + y

k
)− ay− pvyz v

zv = cvyz v − bzv

First, we define the conditions under which an anti-
viral CTL response is established. This condition is
different depending on whether the virus attains 100%
prevalence in the tumor cell population in the absence of
the CTL. The strength of the CTL response, or CTL
responsiveness, is denoted by cv. If the virus has attained
100% prevalence in the absence of CTL, the CTL become
established if cv>bs/[k(s–a)]. On the other hand, if the
virus is not 100% prevalent in the tumor cell population in
the absence of CTL, the CTL invade if cv>bβ(βk+r-s)/
[r(βk-a)–d(βk-s)].

In the presence of the CTL, we again observe two
basic equilibria: we either observed 100% virus prevalence
in the tumor cell population, or the coexistence of infected
and uninfected tumor cells. Hundred percent virus
prevalence in the tumor cell population is described by
equilibrium E1:

x(1) = 0, y(1) = b/c, ( )
vv

v
v kcp

sbaskc
z

−−
=)1(

Coexistence of infected and uninfected cells is
described by equilibrium E2:

( ) ( )
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How do the CTL influence the outcome of treatment?
We distinguish between two scenarios.

i) If the virus has established 100% prevalence in the
tumor cell population in the absence of the CTL response,
the presence of CTL can both be beneficial and
detrimental to the patient (Figure 2b): the virus can
remain 100% prevalent in the tumor in the presence of
CTL. In this case, overall tumor size is given by x+y=b/cv.
At this equilibrium, an increase in the CTL responsiveness
against the virus decreases the tumor size (Figure 2b). On
the other hand, if the CTL responsiveness crosses a
threshold given by cv > b(βk+r)/[k(r-d)], the virus does
not maintain 100% prevalence in the tumor cell
population, and the overall tumor size is given by
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Figure 2: a) Dependence of overall tumor load on the cytotoxicity of the virus. There is an optimal cytotxocity at which tumor load is
smallest. This is also the point where the system switches from equilibrium describing 100% virus prevalence in the tumor population to
the equilibrium where infected and uninfected tumor cells coexist. The faster the rate of virus replication, the higher the optimal level of
cytotoxocity, and the smaller the minimum tumor load. Parameters were chosen as follows: k=10; r=0.2; s=0.2; d=0.1; for fast viral
replication, β=1; for slow viral replication β=0.1. b) Dependence of overall tumor load on the stength of the virus-specific CTL
response. There is an optimal CTL responsiveness at which tumor load is smallest. This is also the point where the system switches from
equilibrium describing 100% virus prevalence in the tumor population to the equilibrium where infected and uninfected tumor cells
coexist. The faster the rate of virus replication, the higher the optimal strength of the CTL response, and the smaller the minimum tumor
load. Parameters were chosen as follows: k=10; r=0.5; s=0.5; d=0.1; b=0.1; p=1; a=0.2; for fast viral replication, β=1; for slow viral
replication β=0.1.

x+y=k[cv(r-d)–bβ]/(cvr). In this case, an increase in the
CTL responsiveness to the virus increases tumor load and
is detrimental to the patient (Figure 2b). This is because
the CTL response kills the virus faster than it can spread.
Hence, the optimal CTL responsiveness is given by
copt=b(βk+r)/[k(r-d)]. At this optimal CTL responsiveness,
the tumor size is reduced maximally and is given by
[x+y]min=k(r-d)/(r+βk). The faster the replication rate of
the virus, the higher the optimal CTL responsiveness, and
the lower the minimum size of the tumor that can be
attained by therapy (Figure 2b). Note that the minimum
tumor size that can be achieved is the same as in the
previous case where viral cytotoxicity alone was

responsible for reducing the tumor. The effect of the CTL
response is to modulate the overall death rate of infected
cells with the aim of pushing it towards its optimum value.
Figure 4 shows a simulation of therapy where an
intermediate CTL responsiveness results in tumor
remission, while a stronger CTL response can result in
failure of therapy because virus spread is inhibited.

ii) If the virus is not 100% prevalent already in the
absence of the CTL response, a CTL-mediated increase in
the death rate of infected cells can only be detrimental to
the patient since it increases tumor load. The system
converges to an equilibrium tumor size described by
x+y=k[cv(r-d)-bβ/(cvr)].



Gene Therapy and Molecular Biology Vol 8, page 141

141

Figure 3:  Simulation of therapy using tumor cell infecting viruses in the absence of immunity. (a) The growth rate of infected tumor
cells is significantly slower than that of uninfected tumor cells. A non-cytotoxic virus now results in tumor eradiation. A more cytotoxic
virus results in tumor persistence. Parameters were chosen as follows: k=10; r=0.5; s=0; β=1; d=0.1; a= 0.1 for the non-cytotoxic
virus, and a=0.5 for the more cytotoxic virus. (b) The growth rate of infected tumor cells is not significantly reduced relative to that of
uninfected cells. An intermediate level of cytotoxicity results in tumor eradication. Weaker or stronger levels of cytotoxicity result in
tumor persistence.  Parameters were chosen as follows: k=10; r=0.5; s=0; β=1; d=0.1; a= 0.2 for the weakly cytotoxic virus, a=0.55
for intermediate cytotoxicity, and a=3 for strong cytotoxicity.

IV. Virus infection and the induction
of tumor-specific CTL

The above sections explored how virus infection and
the virus-specific CTL response can influence tumor load.
However, virus infection might not only induce a CTL
response specific for viral antigen displayed on the surface
of the tumor cells. In addition, active virus replication
could induce a CTL response specific for tumor antigens
(Fuchs and Matzinger, 1996; Matzinger, 1998). The
reason is that virus replication could result in the release of

substances and signals alerting and stimulating the
immune system. This could be induced by tumor antigens
being released and taken up by professional antigen
presenting cells (APC), and/or by other signals released
from the infected tumor cells. This is known as the danger
signal hypothesis in immunology. Normal tumor growth is
thought not to evoke such signals, whereas the presence of
viruses can does evoke danger signals. Here, such a tumor
specific CTL response is included in the model. It is
assumed that the responsiveness of the tumor-specific
CTL requires two signals: (i) the presence of the tumor
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Figure 4: Simulation of therapy using tumor cell infecting viruses in the presence of virus-specific lytic CTL. An intermediate CTL
responsiveness results in tumor eradication, while a stronger CTL response results in tumor persistence. Note that with the stronger CTL
response, the initial decay of the tumor is faster. However, subsequently the virus is removed from the tumor cell population before the
tumor has been driven extinct. Therefore, the tumor cells can start to grow back again. Parameters were chosen as follows: k=10; r=0.5;
s=0.5; β=0.1; a=0.2; p=1; b=0.1; b=0.1; d=0.1; The intermediate CTL responsiveness is characterized by cv=0.2625, while the
stronger CTL response is characterized by cv=2.

antigen, and (ii) the presence of infected tumor cells
providing immuno-stimulatory signals. In the following,
the interactions between the tumor, the virus, and the
tumor-specific CTL are investigated.

A model is constructed describing the interactions
between the tumor population, the virus population, and a
tumor-specific CTL response. It takes into account three
variables. Uninfected tumor cells, x, infected tumor cells,
y, and tumor specific CTL, zT. It is given by the following
set of differential equations (Wodarz, 2001).

x = rx(1−
x+ y

k
)− dx − βxy− pTxzT

y = βxy+ sy(1−
x + y

k
)− ay− pTyzT

z
T

= c
T

yz
T

x + y( )− bz
T

The basic interactions between viral replication and
tumor growth are identical to the models described above.
The tumor-specific CTL expand in response to tumor
antigen, which is displayed both on uninfected and
infected cells (x+y), at a rate cT. However, in accord with
the danger signal hypothesis, it is assumed that the tumor-
specific CTL response only has the potential to expand in
the presence of the virus, y. In the model virus load

correlates with the ability of the tumor-specific response to
expand, since high levels of viral replication result in
stronger stimulatory signals. The tumor-specific CTL kill
both uninfected and infected tumor cells at a rate pTyzT.

If the virus has reached 100% prevalence in the
absence of CTL, the tumor-specific CTL response
becomes established if cT>bs2/[k(a-s)]2. If infected and
uninfected tumor cells coexist in the absence of CTL, the
tumor specific CTL response becomes established if
cT>bβ (s–r–βk)2/{ k [βk(r-d)–ra+sd](r–s+a–d)}.

In the presence of the tumor-specific CTL, the virus
can again attain 100% prevalence in the tumor cell
population, or we may observe the coexistence of infected
and uninfected tumor cells. Hundred percent prevalence in
the tumor population is described by equilibrium E1:

x(1)=0, y(1)=(b/cT)
1/2, ( )

kp

syask
z

T
T

)1(
)1( −−

=

Coexistence of infected and uninfected tumor cells is
described by equilibrium E2:

Tac

b
y

β=)2( , zT
(2) =

1
pT

[ r ( 1−
x (2) + y (2)

k
)− d − βy

(2)
]

x(2) =
cTrk[r − 2 d+ s + a( )] + cTdk 2[d + 2 s− a( )]+ cTk2 [s s− 2a( ) + a2] + bβk[2 s− r( )− βk] − br2 + bs 2r− s( )

cT k βk+ r− s( ) r− d + a− s( )

We investigate how the responsiveness of the
tumor-specific CTL, cT, influences the size of the tumor,
x+y. The presence of the tumor specific CTL can have the
following effects. If the virus achieves 100% prevalence in
the tumor cell population, then x+y=(b/cT)

1/2. Thus, an

increase in the responsiveness of the tumor-specific CTL
results in a decrease in tumor load (Figure 5a). If cT >
b(βk+r–s)2/[k (r–s+a–d)]2, the virus is not 100% prevalent
in the tumor cell population. This switch is thus promoted
by a high responsiveness of the tumor-specific CTL
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relative to the replication rate of the virus (Figure 5a). In
this case, the size of the tumor is given by
x+y=k(r–s+a–d)/(βk+r–s). This is the minimum tumor
size that can be achieved. Thus, if the CTL responsiveness
against the tumor lies above a threshold, tumor load
reaches its minimum (Figure 5a). Note that it also
becomes independent of the strength of the CTL. Hence, a
CTL responsiveness that lies above this threshold is not
detrimental to the patient. In this situation, tumor size is
determined by the replication rate and the cytotoxicity of
the virus (Figure 5a). The higher the replication rate of the
virus and the lower the degree of viral cytotoxicity, the

smaller the tumor. The reason is that fast viral replication
and low cytotoxicity result in higher virus load which in
turn results in stronger signals to induce the tumor-specific
CTL. Figure 5b shows a simulation of treatment
underscoring this result.

A note of caution: the model assumes that the
production of immuno-stimulatory signals induced by the
virus is proportional to the amount of viral replication. If
cellular debris following virus-mediated destruction of
cells also contributes to these signals, then the effect of
viral cytotoxicity could be more complex.

Figure 5: (a) Dependence of overall tumor load on the strength of the tumor-specific CTL response. The higher the strength of the
tumor-specific CTL, the lower tumor load. If the strength of the tumor-specific CTL crosses a threshold, tumor load becomes
independent of CTL parameters. Instead it is determined by the replication rate and cytotoxicity of the virus. The faster the rate of virus
replication and the smaller the degree of viral cytotoxicity, the further the overall tumor load can be reduced. The CTL responsiveness at
which tumor load becomes independent of CTL parameters is also the point at which the system switches from equilibrium describing
100% virus prevalence in the tumor population to the equilibrium where infected and uninfected tumor cells coexist. Parameters were
chosen as follows:  k=10; r=0.5; s=0.5; d=0.1;  b=0.1; The fast replicating and weakly cytotoxic virus is characterized by β=1 and
a=0.2. The slower replicating and more cytotoxic virus is characterized by β=0.5 and a=0.5. (b) Simulation of therapy using a tumor
cell infecting virus in order to stimulate a tumor-specific CTL response. If the virus replicates at a fast rate and is weakly cytotoxic, the
level of immun-stimulatory signals is high. Hence the tumor-specific response is strong and drives the tumor extinct. If the virus
replicates slowly and is more cytotoxic, the level of stimulatory signals is lower. This compromises the efficacy of the tumor-specific
CTL which cannot drive the tumor into remission. Parameters were chosen as follows: k=10; r=0.5; s=0.5; d=0.1;  b=0.1; cT=0.2. The
fast replicating and weakly cytotoxic virus is characterized by β=0.5 and a=0.2. The slower replicating and more cytotoxic virus is
characterized by β=0.1 and a=0.6.
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However, the exact nature and concept of the so called
danger signals is still controversial. The model takes into
account the simple observation that presence of signals
typical of viral replication can enhance immunity to
tumors.

V. Interactions between virus- and
tumor-specific CTL

In this section, the two types of CTL responses
studied above are brought together. That is, both the virus-
and the tumor specific CTL responses are taken into
consideration. The model is explained schematically in
Figure 1 and given by the following set of differential
equations (Wodarz, 2001).

x = r x ( 1−
x+ y

k
)− dx − βxy− pTxzT

y = βxy+ sy(1−
x + y

k
)− ay− pvyz v− pTyzT

zv = cvyz v − bzv

zT = cT yzT x + y( ) − bzT

In this model the virus- and the tumor specific
CTL responses are in competition with each other, because
both can reduce tumor load and hence the strength of the
stimulus required to induce CTL proliferation. In the
following these competition dynamics are examined.
If the virus has reached 100% prevalence in the tumor cell
population in the absence of CTL, then virus- and tumor
specific CTL cannot coexist. If cv>(cTb)1/2, then the virus-
specific CTL response is established. On the other hand, if
cv<(cTb)1/2, then the tumor-specific CTL response becomes
established.

If both infected and uninfected tumor cells are
present in the absence of CTL, the situation is more
complicated. Now, three outcomes are possible. Either the
virus-specific response becomes established, or the tumor-
specific response becomes established, or both responses
can coexist. The virus-specific response persists if cv>
kcT(r–s+a–d)/(βk+r–s). The tumor-specific response
persists if cT>cv

2r/{k[cv(r-d)-bβ]}. Coexistence of both
CTL responses is only observed if both of these conditions
are fulfilled. This outcome is described by the following
equilibrium expressions.

Tv

Tv

cc
bcc

x
−=

2
)1( , y(1)=b/cv,,

zT
(1) =

1
pT

[r(1 −
x(1) + y (1)

k
)− d − βy

(1)
]

zv
(1) =

1
pv

[βx
(1) + s(1−

x (1) + y(1)

k
)− a − pT zT

(1) ]

If both responses coexist, then the size of the tumor
is given by x+y=cv/cT. Thus, a strong tumor-specific
response, cT, reduces tumor load. On the other hand, a
strong virus-specific response, cv, increases tumor load.
The reason is that a strong virus-specific response results
in low virus load and therefore in low stimulatory signals
promoting the induction of tumor-specific immunity. Note
that this last statement only applies to the parameter region
where both types of CTL responses co-exist.

VI. Treatment strategies
The above discussion has shown that the outcome of

therapy depends on a complex balance between host and
viral parameters. An important variable is the death rate of
infected tumor cells. In order to achieve maximum
reduction of the tumor, the death rate of the infected cells
must be around its optimum, defined by the mathematical
models. If the death rate of infected cells lies around its
optimum, a fast replication rate of the virus and a slow
growth rate of the tumor increase the chances of tumor
eradication. The death rate of infected tumor cells can be
influenced by a variety of factor: (i) Viral cytotoxicity
alone kills tumor cells. (ii) A CTL response against the
virus contributes to killing infected tumor cells. (iii) The
virus helps eliciting a tumor-specific CTL response
following the release of immuno-stimulatory signals.

The most straightforward way to use viruses as anti-
cancer weapons is in the absence of immunity. If the
cytotoxicity of the virus is around its optimum value,
minimum tumor size is achieved. It is important to note
that the highest rate of virus induced tumor cell killing
does not necessarily contribute to the elimination of the
tumor. The reason is that a very high rate of virus-induced
cell death compromises the overall spread of the infection
through the tumor. If a virus specific CTL response is
induced, the best strategy would be to use a fast replicating
and weakly cytotoxic virus. This is because the CTL will
increase the death rate of infected cells. If the overall death
rate of infected cells is too high, this is detrimental to the
patient, since virus spread is prevented. In addition, a
weakly cytotoxic and fast replicating virus may provide
the strongest stimulatory signals for the establishment of
tumor-specific immunity.

Because the model suggests that a fast growth rate of
the tumor decreases the efficacy of treatment, success of
therapy could be promoted by using a combination of
virus therapy and conventional chemo- or radiotherapy.
These suggestions are supported by recent experimental
data (Heise et al, 1997; Freytag et al, 1998; Rogulski et al,
2000; You et al, 2000). A combination of treatment with
the adenovirus ONYX-015 and chemotherapy or
radiotherapy has been shown to be significantly more
effective than treatment with either agent alone.

The principles of the mathematical modeling
approaches presented here can help to improve treatment
and to attain higher levels of success. In order to achieve
this, however, more work is needed. Basic parameters of
viruses and virus mutants need to be measured as a first
step. Because the optimal death rate of infected tumor
cells is crucial, it will be important to precisely measure
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the rate at which different viruses kill the tumor cells.
Equally important is the quantification of the viral
replication kinetics. Once such basic parameters have been
measured, it is important to re-consider some model
assumptions. The models discussed in this review are only
a first approach to use computational methods for the
analysis of oncolytic virus therapy, and the models will
probably need to be revised and improved. For example, it
is unclear whether and how the replication rate of the virus
correlates with the rate of virus-induced cell killing. Many
possibilities exist, and this is similar to the relationship
between pathogen spread and “virulence” in an
epidemiological context. Such more detailed information,
based on experimental measurements, will be important to
incorporate into the models in order to make more solid
and reliable predictions.

VII. Evaluating viruses in culture
A central result derived from the mathematical

models is that success is promoted by using a virus which
induces an optimal death rate of infected cells. Too high a

rate of virus-induced cell death is detrimental and leads to
the persistence of both tumor and virus, because overall
virus spread is impaired. This gives rise to important
insights for the methods used to evaluate potential viruses
in culture (Wodarz, 2003). The mathematical models
suggest that a low multiplicity of infection (MOI, i.e. the
initial abundance of the virus relative to the tumor cells) is
required to evaluate the virus. The reason is that in vivo,
the replicating virus has to spread through the cancer cell
population, and this has to be mimicked in culture. Using a
high MOI can lead to misleading evaluations. These
notions are illustrated in Figure 6 with computer
simulations. This figure depicts the dynamics in culture for
strongly and weakly cytopathic viruses, using different
MOIs. Figure 6i  shows the dynamics for a high MOI. In
this simulation, the strongly cytopathic virus results in
quick elimination of the tumor cells, while the weakly
cytopathic virus is much less effective. Thus, if viruses are
evaluated using a high MOI, the virus with the strongest
degree of tumor cell killing receives the highest grades.

Figure 6:  Simulation showing the evaluation of potential replicating viruses in culture. A weakly and a strongly cytopathic virus are
compared. Introduction of the virus is indicated by an arrow.  (i)  High multiplicity of infection. In this simulation, the strongly
cytopathic virus is more efficient at eradicating the cancer cells than the weakly cytopathic virus. This is a characteristic which will lead
to inefficient reduction of tumor load in vivo (Figure 3). (ii) Low multiplicity of infection. Now the less cytopathic virus results in
elimination of the tumor cell, while the virus with higher cytopathicity fails to eliminate the tumor cells. This is how viruses should be
tested in culture.  Parameters were chosen as follows. r=0.5; s=0; k=10; β=1.5; d=0.01; k=0.1; u=1;  For the strongly cytopahtic virus,
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a=0.4. For the weakly cytopathic virus, a=0.04. Virus inoculum was y=10 for high MOI and y=0.01 for low MOI. Note that the
replication kinetics of the virus are assumed to have a sufficiently high value so that cancer remission is possible. Obviously if the virus
replicates at a significantly slower rate (e.g. a lower value of β), tumor remission is not possible

Importantly, this is the virus which is predicted to be least
efficient at reducing tumor load in vivo. The situation is
different when viruses are evaluated in culture using a low
MOI (Figure 6ii). The less cytopathic virus results in
elimination of tumor cells in culture, while the more
cytopathic virus fails to eliminate tumor cells in culture.
Therefore, the less cytopathic virus gets the better marks,
and this is also the virus which is predicted to be more
efficient at reducing tumor load in vivo.
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