
ar
X

iv
:0

90
1.

15
04

v1
 [

st
at

.M
L

]
 1

2
Ja

n
20

09

The Sparse Eigenvalue Problem

Bharath K. Sriperumbudur bharathsv@ucsd.edu

Department of Electrical and Computer Engineering
University of California, San Diego
La Jolla, CA 92093-0407, USA

David A. Torres datorres@cs.ucsd.edu

Department of Computer Science and Engineering
University of California, San Diego
La Jolla, CA 92093-0407, USA

Gert R. G. Lanckriet gert@ece.ucsd.edu

Department of Electrical and Computer Engineering

University of California, San Diego

La Jolla, CA 92093-0407, USA

Editor:

Abstract

In this paper, we consider the sparse eigenvalue problem wherein the goal is to obtain a
sparse solution to the generalized eigenvalue problem. We achieve this by constraining the
cardinality of the solution to the generalized eigenvalue problem and obtain sparse prin-
cipal component analysis (PCA), sparse canonical correlation analysis (CCA) and sparse
Fisher discriminant analysis (FDA) as special cases. Unlike the ℓ1-norm approximation
to the cardinality constraint, which previous methods have used in the context of sparse
PCA, we propose a tighter approximation that is related to the negative log-likelihood
of a Student’s t-distribution. The problem is then framed as a d.c. (difference of con-
vex functions) program and is solved as a sequence of convex programs by invoking the
majorization-minimization method. The resulting algorithm is proved to exhibit global
convergence behavior. The performance of the algorithm is empirically demonstrated on
both sparse PCA (finding few relevant genes that explain as much variance as possible in
a high-dimensional gene dataset) and sparse CCA (cross-language document retrieval and
vocabulary selection for music retrieval) applications.

Keywords: Generalized eigenvalue problem, Principal component analysis, Canonical
correlation analysis, Fisher discriminant analysis, D.c. program, Majorization-minimization,
Global convergence analysis, Music annotation, Cross-language document retrieval.

1. Introduction

The generalized eigenvalue (GEV) problem for the matrix pair (A,B) is the problem of
finding a pair (λ,x) such that

Ax = λBx, (1)

where A, B ∈ C
n×n, C

n ∋ x 6= 0 and λ ∈ C. When B is an identity matrix, the problem in
Eq. (1) is simply referred to as an eigenvalue problem. Eigenvalue problems are so funda-

1

http://arXiv.org/abs/0901.1504v1

mental that they have applications in almost every area of science and engineering (Strang,
1986).

In multivariate statistics, GEV problems are prominent and appear in problems dealing
with high-dimensional data analysis, visualization and pattern recognition. In these appli-
cations, usually x ∈ R

n, A ∈ S
n (the set of symmetric matrices of size n×n defined over R)

and B ∈ S
n
++ (set of positive definite matrices of size n×n defined over R). The variational

formulation for the GEV problem in Eq. (1) is given by

λmax(A,B) = max
x

xT Ax

s.t. xT Bx = 1, (2)

where λmax(A,B) is the maximum generalized eigenvalue associated with the matrix pair,
(A,B). The x that maximizes Eq. (2) is called the generalized eigenvector associated with
λmax(A,B). Some of the well known and widely used data analysis techniques that are
specific instances of the GEV problem in Eq. (2) are:

(a) Principal component analysis (PCA) (Hotelling, 1933; Jolliffe, 1986), a classic tool
for data analysis, data compression and visualization, finds the direction of maximal
variance in a given multivariate data set. This technique is used in dimensionality
reduction wherein the ambient space in which the data resides is approximated by a
low-dimensional subspace without significant loss of information. The variational form
of PCA is obtained by choosing A to be the covariance matrix (which is a positive
semidefinite matrix defined over R) associated with the multivariate data and B to
be the identity matrix in Eq. (2).

(b) Canonical correlation analysis (CCA) (Hotelling, 1936), similar to PCA, is also a data
analysis and dimensionality reduction method. However, while PCA deals with only
one data space X (from which the multivariate data is obtained), CCA proposes a way
for dimensionality reduction by taking into account relations between samples from
two spaces X and Y. The assumption is that the data points from these two spaces
contain some joint information that is reflected in correlations between them. Direc-
tions along which this correlation is high are thus assumed to be relevant directions
when these relations are to be captured. The variational formulation for CCA is given
by

max
wx 6=0, wy 6=0

wT
x Σxywy

√
wT

x Σxxwx

√
wT

y Σyywy

, (3)

where wx and wy are the directions in X and Y along which the data is maximally
correlated. Σxx and Σyy represent the covariance matrices for X and Y respectively
and Σxy = ΣT

yx represents the cross-covariance matrix between X and Y. Eq. (3) can
be rewritten as

max{wT
x Σxywy : wT

x Σxxwx = 1, wT
y Σyywy = 1}, (4)

which in turn can be written in the form of Eq. (2) with A =

(
0 Σxy

Σyx 0

)
, B =

(
Σxx 0
0 Σyy

)
and x =

(
wx

wy

)
.

2

(c) In the binary classification setting, Fisher discriminant analysis (FDA) finds a one
dimensional subspace, w ∈ R

n, the projection of data onto which leads to maximal
separation between the classes. Let µi and Σi denote the mean vector and covariance
matrix associated with class i. The variational formulation of FDA is given by

max
w6=0

(wT (µ1 − µ2))
2

wT (Σ1 + Σ2)w
, (5)

which can be rewritten as

max
w

wT (µ1 − µ2)(µ1 − µ2)
T w

s.t. wT (Σ1 + Σ2)w = 1. (6)

Therefore, the FDA formulation is similar to Eq. (2) with A = (µ1 − µ2)(µ1 −
µ2)

T , called the between-cluster variance and B = Σ1 + Σ2, called the within-cluster
variance. For multi-class problems, similar formulations lead to multiple-discriminant
analysis.

With advances in kernel methods (Schölkopf and Smola, 2002), the above mentioned tech-
niques are even more popular as they can be kernelized (Schölkopf et al., 1998; Kuss and
Graepel, 2003; Mika et al., 1999). Interestingly, the kernel version of these algorithms is
also a GEV problem as in Eq. (2).1

Despite the simplicity and popularity of these data analysis and modeling methods, one
key drawback is the lack of sparsity in their solution. They suffer from the disadvantage
that their solution vector, i.e., x is a linear combination of all input variables, which often
makes it difficult to interpret the results. In the following, we point to different applications
where PCA/CCA/FDA is used and motivate the need for sparse solutions.

In many PCA applications, the coordinate axes have a physical interpretation; in bi-
ology, for example, each axis might correspond to a specific gene. In these cases, the
interpretation of the principal components would be facilitated if they contained only few
non-zero entries (or, loadings) while explaining most of the variance in the data. Moreover,
in certain applications, e.g., financial asset trading strategies based on PCA techniques, the
sparsity of the solution has important consequences, since fewer non-zero loadings imply
fewer transaction costs. Consider a document translation application where two copies of a
corpus of documents, one written in English and the other in German are given. The goal
is to extract a low dimensional representation for each of the documents that explains most
of the variation in the documents while providing a good translation between them. This is
equivalent to representing the documents with a set of fewer words, which can be achieved by
using sparse CCA. A similar motivation for sparse solutions can be provided for other CCA
applications like music annotation, information retrieval, etc. In a classification setting like
FDA, feature selection aids generalization performance by promoting sparse solutions. To
summarize, sparse representations are generally desirable as they aid human understanding,
reduce computational and economic costs and promote better generalization.

1. In addition to PCA, CCA and FDA, the popular spectral clustering algorithm also reduces to solving
an eigenvalue problem. However, in this setting, one is interested in the eigenvector corresponding to
the second smallest eigenvalue of the graph-Laplacian whereas in this paper, we focus on the generalized
maximum eigenvalue problem shown in Eq. (2).

3

In this paper, we consider the problem of finding sparse solutions while explaining the
statistical information in the data, which can be written as

max
x

xT Ax

s.t. xT Bx = 1, ‖x‖0 ≤ k, (7)

where 1 ≤ k ≤ n and ‖x‖0 denotes the cardinality of x, i.e., the number of non-zero el-
ements of x. The above program can be solved either as a discrete optimization problem
or as a continuous optimization problem after relaxing the cardinality constraint. In this
paper, we follow the latter approach. The first step in solving Eq. (7) as a continuous
optimization problem is to relax the cardinality constraint. One usual heuristic is to ap-
proximate ‖x‖0 by ‖x‖1 (see Section 2 for the details on notation), while another method
is to approximate Eq. (7) by a semidefinite program (see Section 4 for details). Building on
the earlier version of our work (Sriperumbudur et al., 2007), we approximate the cardinality
constraint in Eq. (7) as the negative log-likelihood of a Student’s t-distribution, which has
been used earlier in many different contexts (Weston et al., 2003; Fazel et al., 2003; Candes
et al., 2007). We then formulate this approximate problem as a d.c. (difference of convex
functions) program and solve it using the majorization-minimization (MM) method (Hunter
and Lange, 2004) resulting in a sequence of quadratically constrained quadratic programs
(QCQP). Since, the proposed algorithm is an iterative procedure, using results from global
convergence theory (Zangwill, 1969), we show that it is globally convergent. Since the idea
behind the MM algorithm is very similar to that of the expectation-maximization (EM)
algorithm (in fact, MM algorithm is a generalization of the EM algorithm), the above men-
tioned convergence result is similar to that of the EM algorithm (Wu, 1983). We would
like to mention that the algorithm presented in this paper is more general than the one
in Sriperumbudur et al. (2007) as it holds for any A ∈ S

n unlike in Sriperumbudur et al.
(2007), where A is assumed to be positive semidefinite.

As applications, we demonstrate the performance of the proposed algorithm on sparse
PCA and sparse CCA problems. On the sparse PCA front, we compare our results to those
of SPCA (Zou et al., 2006) and DSPCA (d’Aspremont et al., 2007) in terms of sparsity vs.
explained variance on the “pit props” benchmark dataset and two high-dimensional gene
datasets where the goal is to find relevant genes (as few as possible) while explaining the
maximum possible variance. The proposed algorithm is used in two sparse CCA applica-
tions, one dealing with cross-language document retrieval and the other with vocabulary
selection in music annotation. The cross-language document retrieval application involves a
collection of documents with each document in different languages, say English and French.
The goal is, given a query string in one language, retrieve the most relevant document(s)
in the target language. We experimentally show that the proposed sparse CCA algorithm
performs similar to the non-sparse version, however using only 10% of non-zero loadings
in the canonical components. In the vocabulary selection application, we show that sparse
CCA improves the performance of a statistical musical query system by selecting only those
words (i.e., pruning the vocabulary) that are correlated to the underlying audio features.

The paper is organized as follows. We establish the mathematical notation in Section 2.
In Section 3, the related literature, which mostly deals with the sparse PCA problem is
discussed. In Section 4, we present the convex semidefinite program (SDP) (Vandenberghe

4

and Boyd, 1996) approximation and our proposed d.c. program formulation for the sparse
GEV problem in Eq. (7). A brief introduction to MM algorithms and the solution to our
d.c. program is presented in Section 5. We present the global convergence analysis of
the proposed algorithm in Section 6. Finally, in Sections 7 and 8, we apply the proposed
algorithm to sparse PCA and sparse CCA problems and present experimental results to
demonstrate the performance of our method, while in Section 9, we discuss the applicability
of our proposed algorithm to the sparse FDA problem.

2. Notation

S
n (resp. S

n
+, S

n
++) denotes the set of symmetric (resp. positive semidefinite, positive

definite) n × n matrices defined over R. For X ∈ S
n, X ≻ 0 (resp. X � 0) means that X

is positive definite (resp. semidefinite). We denote a vector of ones and zeros by 1 and 0
respectively. Depending on the context, 0 will also be treated as a zero matrix. |X| is the
matrix whose elements are the absolute values of the elements of X. [X]ij denotes the (i, j)th

element of X. For x = (x1, x2, . . . , xn)T ∈ R
n, x � 0 denotes an element-wise inequality.

‖x‖0 denotes the number of non-zero elements of vector x, ‖x‖p := (
∑n

i=1 |xi|p)1/p, 1 ≤
p < ∞ and ‖x‖∞ := max1≤i≤n |xi|. In denotes an n× n identity matrix. D(x) represents
a diagonal matrix formed with x as its principal diagonal.

3. Prior Work

The problem of sparsity in eigenvalue problems has mostly been addressed in the context
of PCA, i.e., A ∈ S

n
+ and B = In. While PCA is numerically easy, sparse PCA is a hard

combinatorial problem. The earliest attempts at “sparsifying” PCA consisted of simple
axis rotations and component thresholding (Cadima and Jolliffe, 1995) for subset selection,
often based on the identification of principal variables (McCabe, 1984). The first true
computational technique, called SCoTLASS (Jolliffe et al., 2003), provided an optimization
framework using LASSO (Tibshirani, 1996) by enforcing a sparsity constraint on the PCA
solution by bounding its ℓ1-norm, leading to a non-convex procedure. Zou et al. (2006)
proposed a ℓ1-penalized regression algorithm for PCA (called SPCA) using an elastic net
(Zou and Hastie, 2005) and solved it very efficiently using least angle regression (Efron et al.,
2004). Currently, this method seems to be the only viable option for handling very high-
dimensional data sets (on the order of n = 10, 000). Subsequently, d’Aspremont et al. (2007)
proposed a convex relaxation to the non-convex cardinality constraint for PCA (called
DSPCA) leading to a semidefinite program (SDP) (Vandenberghe and Boyd, 1996). Though
this method shows comparable performance to SPCA on a small-scale benchmark data set,
it is not scalable for high-dimensional data sets, even possibly with Nesterov’s first-order
method (Nesterov, 2005). Moghaddam et al. (2007a) proposed a combinatorial optimization
algorithm (called GSPCA) using greedy search and branch-and-bound methods to solve the
sparse PCA problem.

Moghaddam et al. (2007b) addressed the problem of sparse FDA using similar tools as
in Moghaddam et al. (2007a). We show in Section 4 that the sparse FDA program can be
approximated as a convex SDP, which has poor scalability as DSPCA. However, a quadratic
program (QP) relaxation can be obtained for sparse FDA by using the QP formulation for

5

FDA (in Eq. (6)) as proposed by Mika et al. (2001) along with an ℓ1-norm relaxation of the
cardinality constraint. Therefore, it is appropriate to use the QP formulation for solving
sparse FDA rather than using the SDP formulation that is presented in Section 4. See
Section 9 for more details.

On sparse CCA, we are not aware of any related work. Recently, we built on our earlier
work of sparse PCA (Sriperumbudur et al., 2007) and extended it to sparse CCA while
applying it to a music annotation problem (Torres et al., 2007a,b).

4. Sparse Generalized Eigenvalue Formulation

Let us consider the GEV problem in Eq. (2) with A � 0 and B ≻ 0. It has to be
noted that Eq. (2) is not a canonical convex program as it deals with maximizing (instead
of minimizing) the convex function over a set that is not convex (because of the equality
constraint). However, replacing the constraint set {x : xTBx = 1} by {x : xT Bx ≤ 1} does
not change the optimality conditions because by Theorem 32.1 of Rockafellar (1970), the
optimum lies on the boundary of the constraint set. Though this makes the constraint set
to be convex, the problem is still not a canonical convex program for the reason mentioned
before. As remarked by Rockafellar (1970, p. 342), “The theory of the maximum of a
convex function relative to a convex set has an entirely different character from the theory
of the minimum.” In fact, finding the global maximum of a convex function over a convex
set is computationally hard. On the other hand, when A and B are indefinite (which means
neither positive semidefinite nor negative semidefinite), then the objective and constraint
functions in Eq. (2) are not convex. This means, irrespective of the positive definite behavior
of A and B, the program in Eq. (2) is not a canonical convex formulation and therefore
can be computationally hard to solve. However, it is well known that polynomial time
algorithms (e.g., QR algorithm) exist to solve Eq. (2), which makes the GEV problem
special. The specialty of the GEV problem will be better understood when we consider the
ℓ1-norm relaxation of the sparse GEV problem. This is discussed in detail in the following
paragraphs and is also shown diagrammatically in Figure 1.

Now, let us consider the variational formulation for the sparse generalized eigenvalue
problem given in Eq. (7). From now on, we assume that A ∈ S

n and B ∈ S
n
++. Eq. (7)

is non-convex, NP-hard and therefore intractable. The intractability of Eq. (7) is due
to: (a) maximization of the non-concave objective and (b) intractability of the cardinality
constraint. To get a handle on the cardinality constraint, usually the ℓ1-norm approximation
is used. To make the constraint set convex, the equality constraint is replaced by the
inequality constraint.2 Though these relaxations make the constraint set convex, they do
not simplify the problem any further as the additional ℓ1-norm constraint destroys the

2. Note that the GEV problem in Eq. (2) and max{xT Ax : xT Bx ≤ 1} are not equivalent for all A ∈ S
n

and B ≻ 0, i.e., the maximizers and the optimal values are not the same. This is because if A � 0, then
xT Ax is concave in x and so the program max{xT Ax : xT Bx ≤ 1} is the maximization of a concave
function over a convex set and clearly the optimum value is zero which occurs at x∗ = 0. However,
suppose A and B are such that λmax(A, B) > 0. Then max{xT Ax : xT Bx ≤ 1} = λmax(A, B),
i.e., the equality and inequality constrained programs are the same. This can be seen by solving the
Lagrangian of max{xT Ax : xT Bx ≤ 1}, which gives Ax = µBx where µ ≥ 0 is the Lagrangian
multiplier. It is clear that xT Ax = µ(xT Bx − 1) + µ = µ, where we have invoked the complementary
slackness. So, xT Ax can be maximized by choosing x ∈ {x : xT Bx = 1} rather than x ∈ {x :

6

special nature of Eq. (2) that we discussed in the last paragraph. In the following, we
elaborate this behavior through Figure 1.

Figure 1 shows the geometry of the constraint set for the sparse GEV problem in Eq. (7)
with n = 2 where the cardinality constraint is replaced with ‖x‖1 ≤ k. Figure 1(a) shows
the level sets of xT Ax (black curves) and the quadratic constraint set xT Bx = 1 (red
curve). Figure 1(b-d) show the constraints xT Bx = 1 and ‖x‖1 ≤ k for different ranges of
k. Since ‖x‖1 ≤ k is relaxing ‖x‖0 ≤ k, k can take values between 1 and 2 (the maximum
cardinality for n = 2). It has to be noted that

√
2 ≤ k ≤ 2 is not an interesting range as

the sparse GEV problem reduces to the GEV problem in Eq. (2). The interesting range
for k is 1 < k <

√
2, whose corresponding ℓ1-norm constraint (green curve) is shown in

Figure 1(c) along with the effective constraint (red curve) of the sparse GEV problem in
Figure 1(d). Since the maximizer of a convex function over a convex set lies on the boundary
of the constraint set, it can be seen from Figure 1(d) that the solution to the approximate
problem will most likely be at one of the kinks in the red curve. However, characterizing
these kinks in high dimensions is not straightforward, which therefore makes the problem
hard unlike in the GEV problem where the constraint set is very easily characterized. So
replacing the cardinality constraint in Eq. (7) by ‖x‖1 ≤ k does not simplify the problem
any further. However, using this relaxation, in the following subsection, we provide a convex
relaxation to Eq. (7) which is a little different from the one proposed by d’Aspremont et al.
(2007).

4.1 Semidefinite relaxation

We start with the following program obtained by relaxing the cardinality constraint with
an ℓ1-norm constraint on x,

max
x

xT Ax

s.t. xT Bx ≤ 1, ‖x‖1 ≤ k. (8)

Note that the quadratic equality constraint in Eq. (7) is replaced with an inequality con-
straint in Eq. (8) so that the constraints forms a convex set. As mentioned before, the above
program is computationally hard to solve because of the maximization of a convex function
over a convex set. Since, the Lagrangian dual of Eq. (8) is always convex irrespective of the
primal, we solve for the Lagrangian of Eq. (8) resulting in the following dual program:

min
µ,β,r

1

4
rT (µB − A)†r + µ+ βk

s.t. −β1 � r � β1, µ ≥ 0, β ≥ 0

µB − A � 0

r ∈ R(µB − A), (9)

where R(T) denotes the range space of T and T † denotes the Moore-Penrose pseudoinverse
of T . For a derivation of the dual in Eq. (9), we refer the reader to Appendix A. By invoking

xT Bx < 1}. This means at the optimum µ∗ = xT
∗ Ax∗ > 0. Therefore, if λmax(A, B) > 0, then

µ∗ = max{xT Ax : xT Bx = 1} = λmax(A,B).

7

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Level sets of xTAx

(a)

−1.5 −1 −0.5 0 0.5 1 1.5

−1.5

−1

−0.5

0

0.5

1

1.5
k>sqrt(2)

(b)

−1.5 −1 −0.5 0 0.5 1 1.5

−1.5

−1

−0.5

0

0.5

1

1.5

1<k<sqrt(2)

(c)

−1.5 −1 −0.5 0 0.5 1 1.5

−1.5

−1

−0.5

0

0.5

1

1.5

1<k<sqrt(2)

(d)

Figure 1: (a) Level sets of the objective function, xT Ax (black curves), and the quadratic
equality constraint, xT Bx = 1 (red curve). (b) The blue curve represents the
constraint ‖x‖1 =

√
2. It is clear that for k ≥

√
2, the sparse GEV problem is

same as that of the GEV problem. (c) The interesting case occurs when 1 <
k <

√
2 where the constraint ‖x‖1 ≤ k is shown by the green curve. (d) The

effective constraint set (intersection of {x : xT Bx = 1} and {x : ‖x‖1 ≤ k}) for
1 < k <

√
2, is shown in red. Characterizing the optimum, most likely at one

of the kinks in the red curve, is not straightforward in high dimensions, which
makes the problem hard.

the Schur’s complement lemma, Eq. (9) reduces to the following SDP,

min
µ,β,r,t

t+ µ+ βk

s.t. −β1 � r � β1, µ ≥ 0, β ≥ 0(
µB − A −1

2r

−1
2rT t

)
� 0. (10)

The SDP in Eq. (10) can be related back to the primal in Eq. (8) by dualizing the dual,
called the bi-dual (Lemaréchal and Oustry, 1999, Section 4.3), given as

max
X,x

tr(XA)

s.t. tr(XB) ≤ 1, ‖x‖1 ≤ k
(

X x

xT 1

)
� 0, (11)

8

which is also an SDP. The bi-dual in Eq. (11) (for a derivation, see appendix A) can be
directly obtained from Eq. (8) by a method called lifting (Lemaréchal and Oustry, 1999,
Section 4.4). With X = xxT in Eq. (8)3, we get the lifted version given by

max
X,x

tr(XA)

s.t. tr(XB) ≤ 1, ‖x‖1 ≤ k

X = xxT . (12)

The above program is non-convex because X = xxT ⇔ X � 0, rank(X) = 1, where
rank(X) = 1 is not a convex constraint. Relaxing X = xxT to X − xxT � 0 results
in Eq. (11) which is an SDP. Therefore, the program in Eq. (11) is the convex relaxation
of the lifted version of Eq. (8). The ℓ1-norm constraint in Eq. (11) can be replaced with
‖x‖2

1 ≤ k2 ⇒ 1T |X|1 ≤ k2 so that the problem reduces to solving only for X. d’Aspremont
et al. (2007) applied the lifting technique to Eq. (7) where the cardinality constraint is
replaced by ‖x‖2

1 ≤ kxT x and B by In, resulting in the sparse PCA algorithm called
DSPCA.

Though Eq. (11) is a convex approximation to the sparse GEV problem, it is computa-
tionally very intensive as the general purpose interior-point methods scale as O(n6 log ǫ−1),
where ǫ is the required accuracy on the optimal value. For large-scale problems, first-
order methods (Nesterov, 2005; d’Aspremont et al., 2007) can be used which scale as
O(ǫ−1n4

√
log n). So, the only4 convex approach possible is through SDP relaxation which

is prohibitively expensive for large n. Alternatives, for large n, are either locally convergent
methods (converging to some local optima of Eq. (7)) that are computationally efficient or
expensive global optimization programs. In the following subsection, we consider a non-
convex approximation to the cardinality constraint and propose a d.c. (difference of convex
functions) formulation to the sparse GEV problem, which is then solved efficiently as a
sequence of QCQPs using the majorization-minimization algorithm.

4.2 Non-convex approximation and d.c. formulation

The proposed method is motivated by the following observations.

• Because of the non-concave maximization of Eq. (7), the ℓ1-norm relaxation of the
cardinality constraint does not simplify Eq. (7). So, a better approximation to the
cardinality constraint can be explored to improve sparsity.

• Since the SDP approximation to Eq. (7) scales badly in n, different approximations
that yield better scalability should be explored.

3. xT Ax = tr(xT Ax) = tr(AxxT) = tr(AX).
4. As discussed before, the hardness of the problem in Eq. (8) is due to the maximization of a non-concave

objective over a convex set. Since a linear function is both concave and convex, Eq. (8) can be turned
into a convex program by making the objective linear through lifting and neglecting the rank constraint.
Though this procedure gives a unique global optimum, it has to be noted that the solution obtained
is only an approximation to the true solution. Ideally, the obtained solution should be projected back
onto the true (unrelaxed) constraint set to achieve a feasible solution, which is usually done by random
projection.

9

To this end, we consider the regularized5 (penalized) version of Eq. (7) given by

max
x

xT Ax − ρ̃ ‖x‖0

s.t. xT Bx ≤ 1, (13)

where ρ̃ > 0 is the regularization (penalization) parameter. Different approximations to
‖x‖0 have been proposed other than the ℓ1-norm relaxation. Weston et al. (2003) replaced6

‖x‖0 by
∑n

i=1 log(ε + |xi|), where ε > 0, while Bradley and Mangasarian (1998) used∑n
i=1(1 − e−α|xi|) for α > 0.7 These approximations were used in the context of feature

selection using support vector machines. Candes et al. (2007) used an approximation similar
to that of Weston et al. (2003) in the context of sparse signal recovery, which is also used by
Fazel et al. (2003) in matrix rank minimization. In this paper, we use this approximation
because of its interesting connection to sparse priors that are studied in Bayesian inference.8

This approximation can be interpreted as defining a limiting Student’s t-distribution prior
over x, an improper prior given by p(x) ∝ ∏n

i=1
1

|xi|+ε and computing its negative log-

likelihood. Tipping (2001) showed that this choice of prior leads to a sparse representation
and demonstrated its validity for sparse kernel expansions in the Bayesian framework.

Before proceeding further, we show that the approximation (to ‖x‖0) considered in

this paper, i.e.,
∑n

i=1
log(1+|xi|ε−1)

log(1+ε−1)
, ∀ ε > 0, is tighter than the ℓ1-norm approximation. To

this end, let us define aε := log(1+aε−1)
log(1+ε−1)

, where a ≥ 0 so that ‖x‖ε :=
∑n

i=1 |xi|ε. It is

easy to check that ‖x‖0 = limε→0 ‖x‖ε and ‖x‖1 = limε→∞ ‖x‖ε. In addition, we have
a > aε1 > aε2 > . . . > 1 for a > 1 and 1 > . . . > aε2 > aε1 > a for 0 < a < 1, where
ε1 > ε2 > Therefore, it is easy to see that ‖x‖ε for any 0 < ε < ∞ is a better
approximation to ‖x‖0 than ‖x‖1 to ‖x‖0.

Starting from Eq. (13) and replacing ‖x‖0 by the equality in footnote 6, the approximate
sparse GEV problem can be written as

max
x

xT Ax − ρε

n∑

i=1

log(ε+ |xi|)

s.t. xT Bx ≤ 1, (14)

where ρε = ρ̃/ log(1 + ε−1). In Appendix B, we provide a derivation of the above claim.

Let us define Q(x) := xT Ax − ρ̃‖x‖0, Qε(x) := xT Ax − ρε
∑n

i=1 log(1 + |xi|ε−1) and
Ω := {x : xT Bx ≤ 1}. Suppose that x̂ denotes a maximizer of Q(x) over Ω and xε denotes
a maximizer of Qε(x) over Ω. Now, one would like to know how good is the approximate
solution, xε compared to x̂. In general, it is not straightforward to either bound ‖xε − x̂‖

5. Note the quadratic inequality constraint in Eq. (13) instead of the equality constraint. By footnote 2,
we assume λmax(A,B) > 0 so that for ρ̃ = 0, the equality and inequality constrained programs are the
same. When A � 0 and B = In, El Ghaoui (2006) has derived sufficient conditions on ρ̃ so that the
programs max{xT Ax − ρ̃‖x‖0 : xT x = 1} and max{xT Ax − ρ̃‖x‖0 : xT x ≤ 1} are equivalent. One of
the open problems in this work is to derive such a condition for any A ∈ S

n and B ≻ 0.

6. ‖x‖0 =
Pn

i=1 1{|xi|6=0} = limε→0

Pn
i=1

log(1+|xi|/ε)
log(1+1/ε)

.

7. ‖x‖0 = limα→∞

Pn
i=1(1 − e−α|xi|)

8. Another approximation one could use is
Pn

i=1 tan−1(|xi|/ε) as ‖x‖0 = limε→0

Pn
i=1

tan−1(|xi|/ε)

tan−1(1/ε)
.

10

in terms of ε or to show that ‖xε − x̂‖ → 0 as ε → 0 because Q(x) may be quite flat near
its maximum over Ω. However, the following proposition shows that the difference between
Q(x̂) and Qε(xε) goes to 0 as ε→ 0. In addition, it provides a bound on the cardinality of
x̂ in terms of the limiting value Q(xε).

Proposition 1 Let x̂ and xε be the maximizers of Eq. (13) and Eq. (14) respectively for
fixed ρ̃ and ε. Then, the following claims hold:

(i) As ε→ 0, |Qε(x) −Q(x)| → 0 uniformly on Ω.

(ii) |Qε(xε) −Q(x̂)| → 0 as ε→ 0.

(iii) Suppose limε→0Q(xε) exists. Then Q(x̂) = limε→0Q(xε). In addition, if λmax(A,B) >
0 and λmin(A,B) < 0, then

λmin(A,B) − limε→0Q(xε)

ρ̃
≤ ‖x̂‖0 ≤ λmax(A,B) − limε→0Q(xε)

ρ̃
. (15)

Proof
(i) Consider

max
x∈Ω

|Qε(x) −Q(x)| = ρ̃max
x∈Ω

∣∣∣∣∣

n∑

i=1

log(1 + |xi|ε−1)

log(1 + ε−1)
− ‖x‖0

∣∣∣∣∣

= ρ̃max
x∈Ω

∣∣∣∣∣

n∑

i=1

[
log(1 + |xi|ε−1)

log(1 + ε−1)
− 1{|xi|6=0}

]∣∣∣∣∣

≤ ρ̃max

{∣∣∣∣∣

n∑

i=1

[
log(1 + |xi|ε−1)

log(1 + ε−1)
− 1{|xi|6=0}

]∣∣∣∣∣ : xT x ≤ λ−1
min(B)

}

≤ ρ̃max

{
n∑

i=1

∣∣∣∣
log(1 + |xi|ε−1)

log(1 + ε−1)
− 1{|xi|6=0}

∣∣∣∣ : |xi| ≤ λ
−1/2
min (B), ∀ i

}

= ρ̃

n∑

i=1

max

{∣∣∣∣
log(1 + |xi|ε−1)

log(1 + ε−1)
− 1{|xi|6=0}

∣∣∣∣ : |xi| ≤ λ
−1/2
min (B)

}

= nρ̃

∣∣∣∣∣
log(1 + λ

−1/2
min (B)ε−1)

log(1 + ε−1)
− 1

∣∣∣∣∣ . (16)

(i) therefore follows by taking limits on both sides of Eq. (16).

(ii) |Qε(xε) − Q(x̂)| = |maxx∈ΩQε(x) − maxx∈ΩQ(x)| ≤ maxx∈Ω |Qε(x) − Q(x)|. The
result therefore follows from (i).

(iii) Consider

Q(x̂) −Q(xε) = Q(x̂) −Qε(x̂) +Qε(x̂) −Qε(xε) +Qε(xε) −Q(xε)

≤ Q(x̂) −Qε(x̂) +Qε(xε) −Q(xε)

≤ |Q(x̂) −Qε(x̂)| + |Qε(xε) −Q(xε)|
≤ 2max

x∈Ω
|Qε(x) −Q(x)|. (17)

11

Taking limits on both sides of Eq. (17), we have Q(x̂) ≤ limε→0Q(xε), which follows from
(i) and our assumption that limε→0Q(xε) exists. Since x̂ is a maximizer of Q(x) over Ω,
we also have Q(x̂) ≥ Q(x), ∀x ∈ Ω and therefore Q(x̂) ≥ Q(xε). Taking limits on both
sides leads to the result in (iii). The bound on ‖x̂‖0 in Eq. (15) follows from bounding
x̂T Ax̂ as

λmin(A,B) = min
x∈Ω

xT Ax ≤ x̂T Ax̂ ≤ max
x∈Ω

xT Ax = λmax(A,B)

in ‖x̂‖0 =
bxT Abx−limε→0 Q(xε)

ρ̃ where x̂ ∈ Ω (since Q(x̂) = x̂T Ax̂ − ρ̃ ‖x̂‖0 = limε→0Q(xε)).
Note that we need the assumption of λmax(A,B) > 0 and λmin(A,B) < 0. Otherwise, the
programs λmin(A,B) = min{xT Ax : xT Bx = 1} and minx∈Ω xT Ax need not be equiva-
lent. Similar is the case with λmax(A,B). See footnote 2 for details.

Remark 2 (a) Suppose limε→0Qε(xε) exists. Then, by (ii), we have

Q(x̂) = lim
ε→0

Qε(xε). (18)

Eq. (71) shows that Q(x̂) = max{limε→0Qε(x) : x ∈ Ω}, whereas by Eq. (18) we
have Q(x̂) = limε→0 max{Qε(x) : x ∈ Ω}. Therefore, assuming limε→0Qε(xε) to
exist is equivalent to interchanging the limit process and maximization in Eq. (71). In
this case, a bound similar to Eq. (15) can be given as

λmin(A,B) − limε→0Qε(xε)

ρ̃
≤ ‖x̂‖0 ≤ λmax(A,B) − limε→0Qε(xε)

ρ̃
. (19)

(b) Suppose x∗ is a limit point of the sequence {xε}ε→0. If Q were continuous, then by
(iii), x∗ is a maximizer of Q(x).

As mentioned in Remark 2, we cannot claim that any limit point of the sequence {xε}ε→0

is a maximizer of Q(x). However, informally speaking, choosing a small value for ε gives a
solution xε such that |Q(x̂) −Q(xε)| is small. So, one can think of xε as a solution to the
sparse GEV problem in Eq. (13). The task therefore reduces to solving the approximate
sparse GEV problem in Eq. (14) with a small value of ε. In the discussion so far, we have
fixed ρ̃ to some constant. If we knew a priori for what value of ρ̃ we would get the desired
sparsity in Eq. (13), we could compute the corresponding ρε to solve Eq. (14). Since we
usually don’t know the best ρ̃ a priori, the final choice of ρε will mainly depend on achieving
the desired sparsity in Eq. (14), for a fixed ε, making its dependence on ε less explicit. We
therefore represent ρε by ρ, a constant chosen to achieve the desired sparsity in Eq. (14).
From now on, we consider two programs as equivalent if their optimizers are the same. So,
the program in Eq. (14) is equivalent to

max
x,y

xT Ax − ρ

n∑

i=1

log(yi + ε)

s.t. xT Bx ≤ 1, −y � x � y. (20)

12

Since A ∈ S
n is not assumed to be positive definite, let us choose τ ∈ R such that A +

τIn � 0. If A � 0, such a τ exists trivially (choose τ ≥ 0). If A is indefinite, choosing
τ ≥ −λmin(A) ensures that A+ τIn � 0.9 So choosing τ ≥ max(0,−λmin(A)) ensures that
A + τIn � 0 for any A ∈ S

n. Therefore, Eq. (20) can be written as

−min
x,y

τ‖x‖2
2 −

[
xT (A + τIn)x − ρ

n∑

i=1

log(yi + ε)

]

s.t. xT Bx ≤ 1, −y � x � y. (21)

Since τ ≥ 0, the term τ‖x‖2
2 is convex in x. By construction, xT (A+τIn)x−ρ∑n

i=1 log(yi+
ε) is jointly convex in x and y. So, the above program is a minimization of the difference
of two convex functions over a convex set and is usually referred to as a d.c. program.10

Global optimization methods like branch and bound, cutting planes can be used to solve
d.c. programs (Horst and Thoai, 1999), but are not scalable to large-scale problems. Since
Eq. (21) is a constrained nonlinear optimization problem, it can be solved by methods like
sequential quadratic programming, augmented Lagrangian or reduced-gradient (Bonnans
et al., 2006). In Sriperumbudur et al. (2007), we solved Eq. (21) with τ = 0 (assuming
A � 0) using the d.c. programming algorithm called DCA proposed by Tao and An (1998).
We recently realized that solving via DCA is equivalent to using majorization-minimization
(MM) algorithms. Since MM methods are much easier to understand, in this paper, we
derive our sparse GEV algorithm by solving Eq. (21) using the MM method. It has to
be noted that SCoTLASS in Eq. (8) can also be formulated as a d.c. program similar to
Eq. (21) by replacing

∑n
i=1 log(yi + ε) with yT1. In the following section, we present our

sparse GEV algorithm along with its convergence analysis.

5. Solution by Majorization-Minimization

Before proceeding to solve the d.c. program in Eq. (21), we briefly discuss the idea behind
MM algorithms.

5.1 MM algorithms

MM algorithms can be thought of as a generalization of the well-known EM algorithm
(Dempster et al., 1977). The general principle behind MM algorithms was first enunci-
ated by the numerical analysts Ortega and Rheinboldt (1970) in the context of line search
methods. The MM principle appears in many places in statistical computation, including
multidimensional scaling (deLeeuw, 1977), robust regression (Huber, 1981), correspondence
analysis (Heiser, 1987), variable selection (Hunter and Li, 2005), sparse signal recovery
(Candes et al., 2007), etc. We refer the interested reader to a tutorial on MM algorithms
(Hunter and Lange, 2004) and the references therein.

9. One can pose this as an optimization problem, “Find the minimum value of τ for which A + τIn � 0?”,
i.e., τ∗ = min{τ : A+τIn � 0}. The dual program is given by τ∗ = −min{tr(ΛA) : tr(Λ) = 1, Λ � 0}.
It is easy to verify that τ∗ = −λmin(A).

10. Let Ω be a convex set of R
n. A real valued function f : Ω → R is called a d.c. function on Ω, if there exist

two convex functions g, h : Ω → R such that f can be expressed in the form f(x) = g(x)− h(x), x ∈ Ω.
Optimization problems of the form minx {f0(x) : x ∈ Ω, fi(x) ≤ 0, i = 1, . . . , m}, where fi = gi−hi, i =
0, . . . , m, are d.c. functions are called d.c. programs.

13

The general idea of MM algorithms is as follows. Suppose we want to minimize f over
Ω ⊂ R

n. The idea is to construct a majorization function g over Ω × Ω such that

f(x) ≤ g(x, y), ∀x, y ∈ Ω and f(x) = g(x, x), ∀x ∈ Ω. (22)

Thus, g as a function of x is an upper bound on f and coincides with f at y. The ma-
jorization algorithm corresponding with this majorization function g updates x at iteration
l by

x(l+1) ∈ arg min
x∈Ω

g(x, x(l)), (23)

unless we already have
x(l) ∈ arg min

x∈Ω
g(x, x(l)),

in which case the algorithm stops. The majorization function, g is usually constructed by
using Jensen’s inequality for convex functions, the first-order Taylor approximation or the
quadratic upper bound principle (Böhning and Lindsay, 1988). However, any other method
can also be used to construct g as long as it satisfies Eq. (22). It is easy to show that the
above iterative scheme decreases the value of f monotonically in each iteration, i.e.,

f(x(l+1)) ≤ g(x(l+1), x(l)) ≤ g(x(l), x(l)) = f(x(l)), (24)

where the first inequality and the last equality follows from Eq. (22) while the sandwiched
inequality follows from Eq. (23).

Note that MM algorithms can be applied equally well to the maximization of f by simply
reversing the inequality sign in Eq. (22) and changing the “min” to “max” in Eq. (23). In
this case, the word MM refers to minorization-maximization, where the function g is called
the minorization function. To put things in perspective, the EM algorithm can be obtained
by constructing the minorization function g using Jensen’s inequality for concave functions.
The construction of such a g is referred to as the E-step, while Eq. (23) with the “min”
replaced by “max” is referred to as the M-step. The algorithm in Eqs. (22-23) is used in
machine learning, e.g., for non-negative matrix factorization (Lee and Seung, 2001), under
the name auxiliary function method. Lange et al. (2000) studied this algorithm under the
name optimization transfer while Meng (2000) referred to it as the SM algorithm, where
“S” stands for the surrogate step (same as the majorization/minorization step) and “M”
stands for the minimization/maximization step depending on the problem at hand. g is
called the surrogate function. In the following, we consider an example that is relevant
to our problem where we construct a majorization function, g, which will later be used in
deriving the sparse GEV algorithm.

Example 1 (Linear Majorization) Let us consider the optimization problem, minx∈Ω f(x)
where f = u − v, with u and v both convex, with v continuously differentiable. Since v is
convex, we have v(x) ≥ v(y) + (x − y)T∇v(y), ∀x,y ∈ Ω. Therefore,

f(x) ≤ u(x) − v(y) − (x − y)T∇v(y) =: g(x,y). (25)

It is easy to verify that g is a majorization function of f . Therefore, we have

x(l+1) ∈ arg min
x∈Ω

g(x,x(l)) = arg min
x∈Ω

u(x) − xT∇v(x(l)). (26)

14

If Ω is a convex set, then the above procedure solves a sequence of convex programs. Note
that this is the same idea that is being used in the concave-convex procedure (CCCP) (Yuille
and Rangarajan, 2003).

Suppose u and v are strictly convex, then a strict descent can be achieved in Eq. (24)
unless x(l+1) = x(l), i.e., if x(l+1) 6= x(l), then

f(x(l+1)) < g(x(l+1),x(l)) < g(x(l),x(l)) = f(x(l)). (27)

The first strict inequality follows from Eq. (25). Since u is strictly convex, g is strictly
convex and therefore g(x(l+1),x(l)) < g(x(l),x(l)) unless x(l+1) = x(l). This strict monotonic
descent property will be helpful to analyze the convergence of the sparse GEV algorithm that
is presented in the following subsection.

5.2 Sparse GEV algorithm

Let us return to the sparse GEV program in Eq. (21), which is of the form minx,y(u(x,y)−
v(x,y)) where u(x,y) = IΩ(x,y)+ τ‖x‖2

2 and v(x,y) = xT (A+ τIn)x−ρ∑n
i=1 log(yi +ε)

with Ω = {(x,y) : xT Bx ≤ 1, −y � x � y}. Here IΩ represents the indicator function of
the convex set Ω given by

IΩ(x,y) =

{
0, (x,y) ∈ Ω
∞, otherwise

. (28)

It is easy to check that u and v are convex. Therefore, by Eq. (26) in Example 1, the MM
algorithm gives

(x(l+1),y(l+1)) = arg min
x,y

τ‖x‖2
2 − 2xT (A + τIn)x(l) + ρ

n∑

i=1

yi

y
(l)
i + ε

s.t. xTBx ≤ 1, −y � x � y, (29)

resulting in a sequence of QCQPs. It is clear that (x(l+1),y(l+1)) is the unique optimal
solution of Eq. (29) irrespective of whether τ is zero or not.11 The above program can be
equivalently written as

x(l+1) = arg min
x

τ‖x‖2
2 − 2xT (A + τIn)x(l) + ρ

n∑

i=1

|xi|
|x(l)

i | + ε

s.t. xT Bx ≤ 1. (30)

11. Suppose τ 6= 0. The objective function in Eq. (29) is jointly strictly convex in (x, y) and therefore
(x(l+1), y(l+1)) is the unique optimal solution. When τ = 0, the objective function is linear in (x,y) and
the unique optimum lies on the boundary of the constraint set.

15

In Appendix C, we provide another derivation for Eq. (30). Assuming τ 6= 0 12 and defining

w
(l)
i := 1

|x
(l)
i |+ε

, w(l) := (w
(l)
1 , . . . , w

(l)
n) and W (l) := diag(w(l)), Eq. (30) reduces to

x(l+1) = arg min
x

‖x − (τ−1A + In)x(l)‖2
2 +

ρ

τ
‖W (l)x‖1

s.t. xT Bx ≤ 1. (32)

Eq. (32) is very similar to LASSO (Tibshirani, 1996) except for the weighted ℓ1-penalty and
the quadratic constraint. When x(0) is chosen such that x(0) = a1, then the first iteration
of Eq. (32) is a LASSO minimization problem except for the quadratic constraint. Let us
analyze Eq. (32) to get an intuitive interpretation.

(a) ρ = 0: Eq. (32) reduces to min{‖x−s(l)‖2
2 : xT Bx ≤ 1}, where s(l) = (τ−1A+In)x(l).

So, if s(l) ∈ {x : xT Bx ≤ 1}, then x(l+1) = s(l), else x(l+1) = (In + µ(l+1)B)−1s(l),
where µ(l+1) satisfies [s(l)]T (In +µ(l+1)B)−1B(In +µ(l+1)B)−1s(l) = 1. The first term
in the objective of Eq. (32) computes the best approximation to s(l) in the ℓ2-norm
so that the approximation lies in the ellipsoid xT Bx ≤ 1. We show in Corollary 10
that the iterative algorithm in Eq. (32) with ρ = 0 converges to the solution of the
GEV problem in Eq. (2) and therefore, the solution x is non-sparse.

(b) ρ = ∞: In this case, Eq. (32) reduces to min{‖W (l)x‖1 : xT Bx ≤ 1}, which is a

weighted ℓ1-norm minimization problem. Intuitively, it is clear that if x
(l)
i is small,

its weighting factor, w
(l)
i = (|x(l)

i |+ ε)−1 in the next minimization step is large, which

therefore pushes x
(l+1)
i to be small. This way the small entries in x are generally

pushed toward zero as far as the constraints on x allow, therefore yielding a sparse
solution.

From the above discussion, it is clear that Eq. (32) is a trade-off between the solution to
the GEV problem and the solution to the weighted ℓ1-norm problem. Eq. (32) can also be

written as follows. Define U (l) :=
[
W (l)

]−1
= diag(|x(l)| + ε1). Then, we have

x(l+1) = U (l)z(l+1), (33)

where

z(l+1) = arg min
z

‖(τ−1A + In)x(l) − U (l)z‖2
2 +

ρ

τ
‖z‖1

s.t. zT U (l)BU (l)z ≤ 1. (34)

If we ignore the convex quadratic constraint in the above program, it reduces to a least
squares formulation with an ℓ1-norm regularizer, which is exactly the LASSO program.13

12. When τ = 0 (this means A � 0), the program in Eq. (30) reduces to

x
(l+1) = arg max

x
x

T
Ax

(l) −
ρ

2
‖W (l)

x‖1

s.t. x
T
Bx ≤ 1. (31)

13. The objective function in Eq. (34) is special because its minimizer can be obtained very easily if it lies

in the constraint set. If this minimizer lies in the constraint set, then z
(l+1)
i =

sign(q
(l)
i

)

p
(l)
i

“

|q
(l)
i | − ρ

2τ

”

+

where p
(l)
i = [U (l)U (l)]ii, q

(l)
i = [q(l)]i with q(l) = U (l)(In + τ−1A)x(l) and (x)+ := max(0, x).

16

Note that the update rule in Eq. (33) has a multiplicative nature, which means, if x
(l)
i

is small, then the corresponding z
(l+1)
i is small and therefore pushes x

(l+1)
i towards zero

for increasing l. So, at the termination, where x(l+1) = x(l), we will have z(l) ∈ {0, 1}n

according to Eq. (33), providing the (locally) optimal sparsity pattern. Given a sparsity
pattern, z, the variational re-normalization14 (Moghaddam et al., 2007a, Proposition 2) can
be applied to x(l) (the solution at convergence) and almost certainly improve it, by solving
the cardinality unconstrained problem,

max
x

xT D(z)AD(z)x

s.t. xT Bx = 1, (35)

which guarantees that the optimum value of Eq. (35) is at least the optimum value of
Eq. (14) and ‖z‖0 = ‖x̃‖0 where x̃ is the maximizer of Eq. (35). Here D(z) := diag(z).

One can make the algorithm in Eq. (32) or Eqs. (33-34) conservative by choosing ε = 0

which means ‖x‖0 is approximated as
∑

{i:xi 6=0} log |xi| and therefore, w
(l)
i = 1/|x(l)

i | for

x
(l)
i 6= 0 and w

(l)
i = ∞ for x

(l)
i = 0. Hence, it is clear from Eq. (32) or Eq. (34) that if

x
(l)
i = 0, then x

(m)
i = 0, ∀m > l, which means once an element of x is set to zero, it remains

zero in all the future iterations.

We refer to either Eq. (32) or Eqs. (33-34) as the Sparse GEV algorithm, which is
detailed in Algorithm 1. Algorithm 1 requires the knowledge of ρ, which controls sparsity.
In a supervised learning setup like FDA, ρ can be chosen by cross-validation whereas, in
an unsupervised setup like PCA/CCA, Algorithm 1 has to be solved for various ρ and
the solution with required cardinality is selected. In addition, τ and ε have to be chosen
beforehand. Since ρ is a free parameter, τ and ε can be set to any value (that satisfies the
constraints in Algorithm 1) and ρ can be tuned to obtain the desired sparsity. However,
it has to be noted that for a fixed value of ρ, increasing τ or ε reduces sparsity.15 So,
in practice τ is chosen to be max(0,−λmin(A)), ε to be close to zero and ρ is set by
searching for a value that provides the desired sparsity. In Algorithm 1, we mentioned that
the iterative scheme is continued until convergence. The same holds for Eq. (58). What
does convergence mean here? Does the algorithm really converge? If it converges, what
does it converge to? Does it converge to an optimal solution of Eq. (14)? To address these
questions, in the following section, we provide the convergence analysis of Algorithm 1 using
tools from global convergence theory (Zangwill, 1969).

14. The variational re-normalization suggests that given a continuous (approximate) solution (in our case,
x(l) at the termination), it is almost certainly better to discard the loadings, keep only the sparsity
pattern (in our case, z(l)) and solve the smaller unconstrained subproblem shown in Eq. (35) to obtain
the final loadings, given the sparsity pattern. This procedure never decreases the variance and surely
improves any continuous algorithm’s performance.

15. Increasing ε increases the approximation error between ‖x‖0 and
Pn

i=1
log(1+|xi|ε

−1)

log(1+ε−1)
and therefore re-

duces sparsity. From Eq. (32), it is clear that increasing τ reduces the weight of the term ‖W (l)x‖1. So,
more importance is given to reducing the approximation error, ‖x− (τ−1A + In)x(l)‖2

2, leading to a less
sparse solution.

17

Algorithm 1 Sparse Generalized Eigenvalue Algorithm

Require: A ∈ S
n, B ≻ 0, ε > 0 and ρ > 0

1: Choose τ ≥ max(0,−λmin(A))
2: Choose x(0) ∈ {x : xT Bx ≤ 1}
3: if τ = 0 then
4: repeat
5: U (l) = diag(|x(l)| + ε1)
6:

z(l+1) = arg max
z

zT U (l)Ax(l) − ρ

2
‖z‖1

s.t. zT U (l)BU (l)z ≤ 1 (36)

7: x(l+1) = U (l)z(l+1)

8: until convergence
9: else

10: repeat
11: U (l) = diag(|x(l)| + ε1)
12: t(l) = (τ−1A + In)x(l)

13:

z(l+1) = arg min
z

‖U (l)z − t(l)‖2
2 +

ρ

τ
‖z‖1

s.t. zT U (l)BU (l)z ≤ 1 (37)

14: x(l+1) = U (l)z(l+1)

15: until convergence
16: end if
17: return x(l), z(l)

6. Convergence Analysis

For an iterative procedure like Algorithm 1 to be useful, it must converge to point solutions
from all or at least a significant number of initialization states and not exhibit other non-
linear system behaviors, such as divergence or oscillation. Global convergence analysis is
used to investigate this behavior. We mention up front that this does not deal with proving
convergence to a global optimum. To summarize the result in this section, we first show
in Proposition 3 that every fixed point of Algorithm 1 is a stationary point of Eq. (14).
We then show in Proposition 6 that all limit points of the sequence of iterates generated
by Algorithm 1 are fixed points of Algorithm 1. These results are combined in Theorem 9
that guarantees the global convergence of Algorithm 1. As a special case with ρ = 0, in
Corollary 10, we show that Algorithm 1 is equivalent to the GEV problem in Eq. (2). In
the following, we introduce some notation and terminology and proceed with the derivation
of the above mentioned results.

To understand the convergence of an iterative procedure like Algorithm 1, we need to
understand the notion of a set-valued mapping, or point-to-set mapping, which is central to

18

the theory of global convergence. A point-to-set map Ψ from a set X into a set Y is defined
as Ψ : X → P(Y), which assigns a subset of Y with each point of X, where P(Y) denotes
the power set of Y . We introduce few definitions related to the properties of point-to-set
maps that will be used later in proving the results. Suppose X and Y are two topological

spaces. A point-to-set map Ψ is said to be closed at x ∈ X if xk
k→∞→ x, xk ∈ X and

yk
k→∞→ y, yk ∈ Ψ(xk), imply y ∈ Ψ(x). This concept of closure generalizes the concept of

continuity for ordinary point-to-point mappings. A point-to-set map Ψ is said to be closed
on S ⊂ X if it is closed at every point of S. A fixed point of the map Ψ : X → P(X) is
a point x for which {x} = Ψ(x). Ψ is said to be uniformly compact on X if there exists
a compact set H independent of x such that Ψ(x) ⊂ H for all x ∈ X. Note that if X is
compact, then Ψ is uniformly compact on X. Let φ : X → R+ be a continuous function.
Ψ is said to be monotonic w.r.t. φ whenever y ∈ Ψ(x) implies that φ(y) ≤ φ(x). If, in
addition, y ∈ Ψ(x) and φ(y) = φ(x) imply that y = x, then we say that Ψ is strictly
monotonic.

Many iterative algorithms in mathematical programming can be described using the
notion of point-to-set maps. Let X be a set and x0 ∈ X a given point. Then an algorithm,
A, with initial point x0 is a point-to-set map A : X → P(X) which generates a sequence
{xk}∞k=1 via the rule xk+1 ∈ A(xk), k = 0, 1, A is said to be globally convergent if for any
chosen initial point x0, the sequence {xk}∞k=0 generated by xk+1 ∈ A(xk) (or a sub-sequence)
converges to a point for which a necessary condition of optimality holds: the Karush-Kuhn-
Tucker (KKT) conditions in the case of constrained optimization and stationarity in the case
of unconstrained optimization. The property of global convergence expresses, in a sense,
the certainty that the algorithm works, and it corresponds, in general, to the minimum
condition (i.e., the conditions that characterize the minimality) which can be formulated
for any solution methods in mathematical programming. It is very important to stress
the fact that it does not imply (contrary to what the term might suggest) convergence to
a global optimum for all initial points x0. With the previously defined concepts, in the
following, we present the global convergence analysis of a particular class of algorithms of
which Algorithm 1 is a special case.

Let us consider the following d.c. program,

min
x

f(x) = u(x) − v(x)

s.t. ci(x) ≤ 0, ∀ i ∈ [p]

dj(x) = 0, ∀ j ∈ [q], (38)

where [p] := {0, 1, . . . , p}, u, v and {ci} are continuously differentiable convex and moreover,
u and v are also strictly convex while {dj} are affine. Following Example 1, we propose to
solve Eq. (38) by the following iterative procedure,

x(l+1) = arg min
x

u(x) − xT∇v(x(l))

s..t ci(x) ≤ 0, ∀ i ∈ [p]

dj(x) = 0, ∀ j ∈ [q]. (39)

It is easy to see that the iterative procedure in Eq. (29) is exactly of the same form as in
Eq. (39). We now analyze the global convergence behavior of the algorithm in Eq. (39). To

19

start with, in the following proposition, we show that the fixed points of Eq. (39) (assuming
they exist) are the stationary points16 of Eq. (38).

Proposition 3 Suppose x∗ is a fixed point of the point-to-set map in Eq. (39). Then x∗

is a stationary point of the program in Eq. (38).

Proof The convexity assumption on u, v, {ci} and {dj} makes Eq. (39) a convex program.
Since x(l+1) is its unique minimizer (because of strict convexity), there exist Lagrange

multipliers {η(l+1)
i }p

i=0 ⊂ R+ and {µ(l+1)
j }q

j=0 ⊂ R such that the following KKT conditions
hold:

∇u(x(l+1)) −∇v(x(l)) +
∑p

i=1 η
(l+1)
i ∇ci(x(l+1)) +

∑q
j=1 µ

(l+1)
j ∇dj(x

(l+1)) = 0

ci(x
(l+1)) ≤ 0, η

(l+1)
i ≥ 0, ci(x

(l+1))η
(l+1)
i = 0, ∀ i ∈ [p]

dj(x
(l+1)) = 0, µ

(l+1)
j ∈ R, ∀ j ∈ [q].

(40)

Since x∗ = A(x∗), where A is the point-set-map in Eq. (39), we have that there exists
unique {η∗i }

p
i=0 ⊂ R+ and {µ∗j}

q
j=0 ⊂ R such that the KKT conditions in Eq. (40) hold with

x(l+1) = x(l) = x∗, η
(l+1)
i = η∗i , ∀ i ∈ [p] and µ

(l+1)
i = µ∗j , ∀ j ∈ [q] and therefore x∗ is a

stationary point of the program in Eq. (38).

The problem now reduces to analyzing the fixed points of Eq. (39). This is performed
by invoking the following global convergence theorem due to Zangwill (1969, Convergence
theorem A, page 91).

Theorem 4 (Zangwill (1969)) Let A : X → P(X) be a point-to-set map (an algorithm)
that given a point x0 ∈ X generates a sequence {xk}∞k=0 through the iteration xk+1 ∈ A(xk).
Also let a solution set17 Γ ⊂ X be given. Suppose

(1) All points xk are in a compact set S ⊂ X.

(2) There is a continuous function φ : X → R such that:

(a) x /∈ Γ ⇒ φ(y) < φ(x), ∀ y ∈ A(x),

(b) x ∈ Γ ⇒ φ(y) ≤ φ(x), ∀ y ∈ A(x).

(3) A is closed at x if x /∈ Γ.

Then the limit of any convergent subsequence of {xk}∞k=0 is in Γ. Furthermore, limk→∞ φ(xk) =
φ(x∗) for all limit points x∗.

We also need one more result (Gunawardana and Byrne, 2005, Proposition 7) which is useful
to test the closure of A.

16. x∗ is said to be a stationary point of a constrained optimization problem if it satisfies the corresponding
KKT conditions (Bonnans et al., 2006, Section 13.3). Assuming constraint qualification, KKT conditions
are necessary for the local optimality of x∗.

17. The general idea in showing the global convergence of an algorithm, A is to invoke Theorem 4 by
appropriately defining φ and Γ. For an algorithm A that solves the minimization problem, min{f(x) :
x ∈ Ω}, the solution set, Γ is usually chosen to be the set of corresponding stationary points and φ can
be chosen to be the objective function itself, i.e., f .

20

Lemma 5 (Gunawardana and Byrne (2005)) Given a real-valued continuous function
h on X × Y , define the point-to-set map Ψ : X → P(Y) by

Ψ(x) = arg min
y′∈Y

h(x, y′)

= {y : h(x, y) ≤ h(x, y′), ∀ y′ ∈ Y }. (41)

Then, Ψ is closed at x if Ψ(x) is nonempty.

The following proposition is a direct application of Theorem 4, which establishes the link
between the limit points of {x(l)}∞l=0 and the fixed points of Eq. (39).

Proposition 6 Let {x(l)}∞l=0 be any sequence generated by the point-to-set map, A defined
by Eq. (39). Assume that A is uniformly compact on Ω := {x : ci(x) ≤ 0, i ∈ [p], dj(x) =
0, j ∈ [q]}18 and A(x) is nonempty for any x ∈ Ω. Then all the limit points of {x(l)}∞l=0

are fixed points of A. In addition liml→∞ f(x(l)) = f(x∗), where x∗ is some fixed point of
A.

Proof The assumption that A is uniformly compact ensures that the condition (1) in
Theorem 4 is satisfied. Let Γ be the set of all fixed points of A and let φ = f . Because
of the strict descent property in Eq. (27), the condition (2) in Theorem 4 is satisfied. By
Lemma 5, the assumption of non-emptiness of A(x) for any x ∈ Ω ensures that A is closed
on Ω and therefore satisfies the condition (3) in Theorem 4. So the result follows from
Theorem 4.

Remark 7 As mentioned in Example 1, the program in Eq. (39) is referred to as the
concave-convex procedure (CCCP), which is used to solve Eq. (38). By combining Proposi-
tion 3 and Proposition 6, it is clear that all limit points of any sequence generated by the
point-to-set map associated with Eq. (39) converges to some stationary point of Eq. (38).
This shows that CCCP is globally convergent, which we believe has not been shown before.

In the above result, the convergence of f(x(l)) to f(x∗) does not automatically imply the
convergence of x(l) to x∗. Note that Proposition 6 provides sub-sequence convergence
and does not guarantee the convergence of x(l) to x∗. However, Proposition 6 can be
strengthened by using the following result due to Meyer (1976, Theorem 3.1, Corollary
3.2).

Theorem 8 (Meyer (1976)) Let A : X → P(X) be a point-to-set map such that A is
uniformly compact, closed and strictly monotone on X, where X is a closed subset of R

n.
If {xk}∞k=0 is any sequence generated by A, then all limit points will be fixed points of A,
φ(xk) → φ(x∗) =: φ∗, where x∗ is a fixed point, ‖xk+1 − xk‖ → 0, and either {xk}∞k=0

converges or the set of limit points of {xk}∞k=0 is connected. Define F (a) := {x ∈ F :
φ(x) = a} where F is the set of fixed points of A. If F (φ∗) is finite, then any sequence
{xk}∞k=0 generated by A converges to some x∗ in F (φ∗).

18. Instead of uniform compactness, one can assume that every for x ∈ Ω, the set H(x) := {y|f(y) ≤
f(x), y ∈ A(Ω)} is bounded and the result still holds.

21

Note that Theorem 4 does not require A to be strictly monotone, while this additional
property provides a strong result in Theorem 8. A mentioned in Proposition 6 is strongly
monotonic and therefore the result can be strengthened by simply invoking Theorem 8.
Now, using the results in Proposition 3, Proposition 6 and Theorem 8, the following result
regarding the global convergence behavior of the sparse GEV algorithm can be obtained.

Theorem 9 (Global convergence of sparse GEV algorithm) Let {x(l)}∞l=0 be any se-
quence generated by the sparse GEV algorithm in Algorithm 1. Then all the limit points of
{x(l)}∞l=0 are stationary points of the program in Eq. (14),

ρε

n∑

i=1

log(ε+ |x(l)
i |) − [x(l)]T Ax(l) → ρε

n∑

i=1

log(ε+ |x∗i |) − [x∗]T Ax∗ := L∗, (42)

for some stationary point x∗, ‖x(l+1) −x(l)‖ → 0, and either {x(l)}∞l=0 converges or the set
of limit points of {x(l)}∞l=0 is a connected and compact subset of S (L∗), where S (a) :=
{x ∈ S : xT Ax − ρε

∑n
i=1 log(ε + |xi|) = −a} and S is the set of stationary points of

Eq. (14). If S (L∗) is finite, then any sequence {x(l)}∞l=0 generated by Algorithm 1 converges
to some x∗ in S (L∗).

Proof Since Algorithm 1 and the iterative procedure in Eq. (30) are equivalent, let A

correspond to the point-to-set map in Eq. (30). Clearly Ω := {x : xT Bx ≤ 1} is compact
and therefore A is uniformly compact. By Weierstrass theorem19 (Minoux, 1986), it is clear
that A(x) is nonempty for any x ∈ Ω and therefore is closed on Ω. The strict descent
property in Eq. (27) ensures that A is strictly monotonic. So by Theorem 8, all the limit
points of {x(l)}∞l=0 are fixed points of A, which either converge or form a connected compact
set. From Proposition 3, the set of fixed points of A are already in the set of stationary
points of Eq. (14) and the desired result follows from Theorem 8.

The following corollary shows that when ρ = 0, the sparse GEV algorithm (Algorithm 1)
matches with the GEV problem in Eq. (2).

Corollary 10 Let ρ = 0 and λmax(A,B) > 0.20 Then, any sequence {x(l)}∞l=0 generated
by Algorithm 1 converges to some x∗ such that λmax(A,B) = [x∗]T Ax∗ and [x∗]T Bx∗ = 1.

Proof The stationary points of Eq. (14) with ρ = 0 are the generalized eigenvectors of
(A,B). Therefore the set S as defined in Theorem 9 is finite and so any sequence {x(l)}∞l=0

generated by Algorithm 1 converges to some x∗ in S (L∗) where L∗ = −[x∗]T Ax∗. We need
to show that L∗ = −λmax(A,B). Note that x∗ is a fixed point of Algorithm 1. Consider
Eq. (30) which is equivalent to Algorithm 1. With ρ = 0, solving the Lagrangian yields
x(l+1) = (µ(l+1)B + τIn)−1(A + τIn)x(l), where µ(l+1) ≥ 0 is the Lagrangian dual variable
for the constraint [x(l+1)]T Bx(l+1) ≤ 1. At the fixed point, x∗, we have (µ∗B + τIn)x∗ =
(A + τIn)x∗ which implies

Ax∗ = µ∗Bx∗. (43)

19. Weierstrass theorem states: If f is a real continuous function on a compact set K ⊂ R
n, then the problem

min{f(x) : x ∈ K} has an optimal solution x∗ ∈ K.
20. See footnote 2 for the need to impose this condition.

22

Multiplying both sides of Eq. (43) by [x∗]T , we have

[x∗]T Ax∗ = µ∗[x∗]T Bx∗ = µ∗([x∗]T Bx∗ − 1) + µ∗

= µ∗, (44)

where we have invoked the complementary slackness condition, µ∗([x∗]T Bx∗− 1) = 0. The
optimum value of Eq. (30) at the fixed point is given by ψ∗ := −2[x∗]T Ax∗−τ‖x∗‖2

2, which
by Eq. (44) reduces to ψ∗ = −2µ∗ − τ‖x∗‖2

2. It is easy to see that making µ∗ > 0, and
therefore [x∗]T Bx∗ = 1 minimizes ψ∗ instead of choosing µ∗ = 0 and [x∗]T Bx∗ < 1. Since
ψ∗ is minimized by choosing the maximum µ∗ that satisfies Eq. (43), (µ∗,x∗) is indeed the
eigen pair that satisfies the GEV problem in Eq. (2).

Based on the result in Corollary 10 and the discussion regarding ρ = 0 below Eq. (32), it is
clear that the following algorithm converges to the solution of the GEV problem in Eq. (2),

x(l+1) =

{
(τ−1A + In)x(l), [x(l)]T (τ−1A + In)B(τ−1A + In)x(l) ≤ 1

(In + µ(l+1)B)−1(τ−1A + In)x(l), otherwise
,

(45)
where µ(l+1) > 0 satisfies [x(l)]T (τ−1A + In)(In + µ(l+1)B)−1B(In + µ(l+1)B)−1(τ−1A +
In)x(l) = 1 and τ > 0. To elaborate a bit, the above algorithm is obtained by solving
the Lagrangian associated with Eq. (32) for ρ = 0, where µ(l+1) ≥ 0 is the corresponding
Lagrangian multiplier. At convergence, x(l) is the generalized eigenvector associated with
λmax(A,B). However, solving Eq. (32) with ρ = 0 through the algorithm in Eq. (45) is not
straightforward as µ(l+1) has to be defined for each iteration. However, when A � 0 and
τ = 0, one can obtain a simple iterative algorithm to compute the generalized eigenvector
associated with λmax(A,B), which is shown in the following corollary.

Corollary 11 Let A � 0, τ = 0 and ρ = 0. Then, any sequence {x(l)}∞l=0 generated by the
following algorithm

x(l+1) =
B−1Ax(l)

√
[x(l)]T AB−1Ax(l)

(46)

converges to some x∗ such that λmax(A,B) = [x∗]T Ax∗ and [x∗]T Bx∗ = 1.

Proof Consider Eq. (30) with τ = 0 and ρ = 0. Since the objective is linear in x, the
minimum occurs at the boundary of the constraint set, i.e., {x : xT Bx = 1}. Solving the
Lagrangian, we get Eq. (46). The result therefore follows from Corollary 10 which holds for
any τ ≥ 0.

For a regular eigenvalue problem, i.e., B = In, the iterative procedure in Eq. (46) reduces
to the power method as shown by the following corollary.

Corollary 12 Let A � 0, τ = 0, ρ = 0 and B = In. Then, Algorithm 1 is the power
method for computing λmax(A).

Proof Eq. (46) in Corollary 11 is obtained by setting A � 0, ρ = 0 and τ = 0 in Algo-
rithm 1. Now, setting B = In in Eq. (46) yields x(l+1) = Ax(l)/‖Ax(l)‖2, which is the
power iteration for the computation of λmax(A).

23

So far, we have proposed a sparse GEV algorithm and proved its global convergence
behavior. In the following sections (Sections 7-9), we consider applications of the sparse
GEV problem and use the proposed algorithm (Algorithm 1) to address them.

7. Sparse Principal Component Analysis

In this section, we consider sparse PCA as a special case of the sparse GEV algorithm that
we presented in Section 5. Based on the sparse GEV algorithm in Algorithm 1, we propose
our sparse PCA algorithm (DC-PCA) with A being the covariance matrix, B = In and
τ = 0. This algorithm computes the sparse eigenvector of A corresponding to λmax(A).
In the following, we discuss how the DC-PCA formulation relates to SCoTLASS (Jolliffe
et al., 2003) and SPCA (Zou et al., 2006) and present experiments to empirically compare
different approaches to sparse PCA.

7.1 Comparison to SCoTLASS

As mentioned before, the SCoTLASS program is obtained by approximating ‖x‖0 with
‖x‖1 in Eq. (7) given by

max
x

xT Ax

s.t. ‖x‖2
2 = 1, ‖x‖1 ≤ k, (47)

where A � 0. Let us consider the regularized version of the above program given by

max
x

xT Ax − ρ‖x‖1

s.t. ‖x‖2
2 ≤ 1. (48)

It is clear that Eq. (48) is not a canonical convex program because of convex maximization.
So applying the MM algorithm to Eq. (48), we obtain an iterative algorithm which is the
same as Algorithm 1 except that Eq. (36) is replaced by

z(l+1) = arg max
x

zT Ax(l) − ρ

2
‖z‖1

s.t. ‖z‖2
2 ≤ 1, (49)

with x(l+1) = z(l+1). Mainly, this differs from DC-PCA in the multiplicative update. Let

us assume that x
(l)
i = 0 for some l. For DC-PCA, this ensures that x

(m)
i = 0, ∀m > l which

is not guaranteed for SCoTLASS. The multiplicative update in DC-PCA ensures faster
convergence of an irrelevant feature to zero than that in SCoTLASS, thus providing better
sparsity. This is not surprising as a better approximation to the cardinality constraint is
used in DC-PCA. When ρ = 0, like DC-PCA, SCoTLASS also reduces to the power iteration
algorithm.

7.2 Comparison to SPCA

Let Q be a r× n matrix, where r and n are the number of observations and the number of
variables respectively, with the column means being zero. Suppose Q has an SVD given by

24

Q = UΛV T , where U are the principal components of unit length and the columns of V

are the corresponding loadings of the principal components. Let yi = [UΛ]i, ∀ i. Zou et al.
(2006, Theorem 1) posed PCA as a regression problem and showed that [V]i = x⋆/‖x⋆‖2,
where

x⋆ = arg min
x

‖yi − Qx‖2
2 + λ‖x‖2

2, (50)

where λ > 0. This is equivalent to solving for an eigenvector of QT Q. Therefore, solving
for the eigenvectors of a positive semi-definite matrix is posed as a ridge regression problem
in Eq. (50). To solve for sparse eigenvectors, Zou et al. (2006) introduced an ℓ1-penalty
term in Eq. (50) resulting in the following elastic net called SPCA,

x′ = arg min
x

‖yi − Qx‖2
2 + λ‖x‖2

2 + λ1‖x‖1, (51)

where λ1 > 0. This problem can be treated in the Bayesian setting as: given the likelihood
on yi, yi|x, σ2 ∼ G(Qx, σ2I), which is a circular normal random variable with mean Qx

(conditioned on x), and a prior distribution on x, x|β2, γ ∼ G(0, β2I)
∏

i exp(−γ|xi|), which
is the product of circular Gaussian and product of Laplacian densities, compute the maxi-
mum a posteriori (MAP) estimate of x. The parameters λ and λ1 are the hyper-parameters
of the prior distribution on x and are related to σ2, β2 and γ. As aforementioned, our
method can be interpreted as defining an improper prior over x, which promotes spar-
sity (Tipping, 2001). We use p(x) ∝ ∏

i
1

|xi|+ε (instead of
∏

i exp(−γ|xi|)) as the prior so

that x|ε, γ ∼ G(0,2 I)p(x) and therefore our formulation results in

min
x

||yi − Qx||22 + λ||x||22 + λ1

∑

i

log(|xi| + ε). (52)

Since the problem in Eq. (52) is equivalent to Eq. (14) with B = In, it is clear that DC-PCA
provides sparser solutions than SPCA. It is to be noted that the SPCA framework is not
extendible to other settings like FDA or CCA unlike our formulation which is generic.

7.3 Experimental results

In this subsection, we illustrate the effectiveness of DC-PCA in terms of sparsity and scal-
ability on different real-life datasets. Since SPCA21 and DSPCA22 have demonstrated
improved performance over simple thresholding and SCoTLASS, we choose these methods
as baselines to compare the performance of our method against. Also, based on the dis-
cussion in Section 7.1, it should be clear that DC-PCA performs better than SCoTLASS.
The results show that our method has better scalability and achieves more sparsity than
SPCA and DSPCA, while explaining at least as much variance. Based on the discussion in
Section 4.2, it is clear that we would like to solve the approximate sparse GEV problem in
Eq. (14) with a small value of ε. Therefore, in all our experiments, we fixed ε to 10−4.

7.3.1 Pit props data

The pit props dataset (Jeffers, 1967) has become a standard benchmark example to test
sparse PCA algorithms. The first 6 principal components (PCs) capture 87% of the total

21. LARS-based Elastic-net SPCA MATLAB toolbox (Sjöstrand, 2005) was used to solve for SPCA.
22. DSPCA software is available at http://www.prince ton.edu/~aspremon/DSPCA.htm.

25

Table 1: Loadings for first three principal components (PCs) of the pit props data. Original
SPCA and DSPCA loadings are taken from Zou et al. (2006) and d’Aspremont
et al. (2007) respectively.

PC x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13

1 -.48 -.48 0 0 .18 0 -.25 -.34 -.42 -.40 0 0 0
SPCA 2 0 0 .79 .62 0 0 0 -.02 0 0 0 .01 0

3 0 0 0 0 .64 .59 .49 0 0 0 0 0 -.02

1 -.56 -.58 0 0 0 0 -.26 -.10 -.37 -.36 0 0 0
DSPCA 2 0 0 .71 .71 0 0 0 0 0 0 0 0 0

3 0 0 0 0 0 -.79 -.61 0 0 0 0 0 .01

1 .45 .46 0 0 0 0 .37 .33 .40 .42 0 0 0
DC-PCA 2 0 0 .71 .71 0 0 0 0 0 0 0 0 0

3 0 0 0 0 0 .82 .58 0 0 0 0 0 0

variance, so other methods compare their explanatory power using 6 sparse PCs.23 Table 1
shows the first 3 PCs and their loadings for SPCA, DSPCA and DC-PCA. SPCA captures
75.8% of the variance with a cardinality pattern of (7, 4, 4, 1, 1, 1) (total of 18 non-zero
loadings) while DSPCA captures 75.5% with a sparsity pattern of (6, 2, 3, 1, 1, 1), totaling
14 non-zero loadings. We used a sparsity pattern of (6, 2, 2, 1, 1, 1) with a total of only
13 non-zero loadings and capture 77.1% of the total variance. In addition, when SPCA’s
sparsity pattern of (7, 4, 4, 1, 1, 1) is used, DC-PCA (shown as DC-PCA∗ in Figure 2(a))
performs significantly better than SPCA and DSPCA. Comparing the cumulative variance
and cumulative cardinality, Figure 2(a–b) show that DC-PCA explains more variance with
fewer non-zero loadings than SPCA and DSPCA. For the first PC, Figure 2(c) shows that
DC-PCA consistently explains more variance with better sparsity than SPCA and DSPCA.
Figure 2(d) shows the variation of sparsity and explained variance w.r.t. ρ for the first PC
for DC-PCA. This plot summarizes the method for setting ρ wherein the algorithm is run for
various ρ. The value of ρ that achieves the required sparsity is chosen and its corresponding
variance is calculated.

7.3.2 Colon Cancer Data

The colon cancer data (Alon et al., 1999) consists of 62 tissue samples (22 normal and
40 cancerous) with the gene expression profiles of n = 2000 genes extracted from DNA
micro-array data. The high-dimensionality of the dataset makes it a suitable candidate

23. The discussion so far dealt with computing the sparse eigenvector corresponding to λmax(A). To compute
the subsequent eigenvectors that are sparse, usually the sparse PCA algorithm is applied to a sequence
of deflated matrices (for example, see d’Aspremont et al. (2007)) given by {A0 = A; Ai+1 = Ai −
(uT

i Aiui)uiu
T
i }, where ui is the output of a sparse PCA algorithm with A = Ai. This is appropriate

only when uT
i uj = 0, i 6= j. Otherwise, there is a possibility that Ai ≺ 0, for some i. So, one

should be careful in computing the cumulative variance explained by ui’s as
P

i uT
i Aiui. Instead, the

sequence of deflated matrices should be computed as {A0 = A; Ai+1 = Ai − (vT
i Aivi)viv

T
i }, where

vi = ui−PSi−1ui. PSi−1ui represents the orthogonal projection of ui onto the subspace, Si−1, spanned

by {v0, v1, . . . , vi−1} with v0 = u0. The cumulative variance is then calculated as
P

i vT
i Aivi. This

formulation is used in the experiments in Section 7.3 where the performance of DC-PCA is compared to
other algorithms in terms of the sparsity vs. cumulative variance explained.

26

1 2 3 4 5 6

30

40

50

60

70

80

Number of principal components

C
um

ul
at

iv
e

va
ria

nc
e

(%
)

DC−PCA
DSPCA
SPCA
PCA
DC−PCA*

(a)

1 2 3 4 5 6
6

8

10

12

14

16

18

Number of principal components

C
um

ul
at

iv
e

ca
rd

in
al

ity

DC−PCA
DSPCA
SPCA

(b)

2 4 6 8 10 12
15

20

25

30

Number of nonzero loadings

P
er

ce
nt

ag
e

of
 v

ar
ia

nc
e

ex
pl

ai
ne

d

DC−PCA
DSPCA
SPCA

(c)

0 0.5 1 1.5
0

5

10

15

20

25

30

35

P
er

ce
nt

ag
e

of
 v

ar
ia

nc
e

ex
pl

ai
ne

d

ρ
0 0.5 1 1.5

0

2

4

6

8

10

12

14

N
um

be
r

of
 n

on
ze

ro
 lo

ad
in

gs

(d)

Figure 2: Pit props: (a) cumulative variance (b) cumulative cardinality for first 6 sparse
principal components (PCs) (c) percentage of explained variance (PEV) vs. spar-
sity for the first PC (d) dependence of sparsity and PEV on ρ for the first PC
for DC-PCA. DC-PCA∗ in (a) represents DC-PCA evaluated at SPCA’s sparsity
pattern of (7, 4, 4, 1, 1, 1).

for studying the performance of sparse PCA algorithms where feature selection is needed
to get interpretable results. Its first 10 PCs explain 80% of the total variance. Due to
computational reasons, we consider only the first 5 PCs in our study, which explain 70%
of the total variance. By comparing the cumulative variance and cumulative cardinality
for the first 5 PCs, Figure 3(a–b) show that DC-PCA explains significantly more variance
with fewer non-zero loadings than SPCA. For 8% loss in the explained variance w.r.t. PCA
(from 70% to 62%), DC-PCA requires ∼ 40% fewer genes to sufficiently reconstruct the first
5 PCs. Because of the poor scalability of DSPCA for large matrix sizes (see Section 7.3.4),
experiments for DSPCA could not be completed in reasonable time. So, the results do not
include a comparison with DSPCA.

7.3.3 Leukemia Data

Leukemia data (Golub et al., 1999) consists of a training set of 38 samples (27 ALL and 11
AML, two variants of leukemia) from bone marrow specimens and a test set of 34 samples
(20 ALL and 14 AML). This dataset has been used widely in a classification setting where
the goal is to distinguish between two variants of leukemia. We chose this dataset because of
its large dimensionality. All samples have 7129 features, corresponding to some normalized

27

1 2 3 4 5

40

45

50

55

60

65

70

Number of principal components

C
um

ul
at

iv
e

va
ria

nc
e

(%
)

PCA
DC−PCA
SPCA

(a)

1 2 3 4 5
2

4

6

8

10

Number of principal components

C
um

ul
at

iv
e

ca
rd

in
al

ity
 (

in
 1

03)

PCA
SPCA
DC−PCA

(b)

0 1000 2000 3000
0

2

4

6

8

10

12

Number of nonzero loadings

P
er

ce
nt

ag
e

of
 v

ar
ia

nc
e

ex
pl

ai
ne

d

DC−PCA
SPCA

(c)

10
1

10
2

10
3

10
−2

10
0

10
2

10
4

Problem size, n

C
P

U
 ti

m
e

(s
ec

)

SPCA
DC−PCA
DSPCA

(d)

Figure 3: Colon cancer: (a) cumulative variance (b) cumulative cardinality for first 5 sparse
principal components (PCs). Leukemia: (c) percentage of variance explained vs.
sparsity for the first PC. (d) CPU time vs. problem size for randomly chosen
problems. (a–c) show that DC-PCA explains more variance with fewer non-zero
loadings than SPCA.

gene expression value extracted from the micro-array image. We test the performance of DC-
PCA and SPCA on this high-dimensional dataset. Again, for scalability reasons, DSPCA
is not considered for the performance comparison. Figure 3(c) shows the comparative
performance (explained variance vs. sparsity) of DC-PCA and SPCA for the first PC. In
this case, too, DC-PCA explains more variance (though marginal) with fewer variables
compared to SPCA. Though this dataset is not as interesting as the colon cancer dataset
because the amount of variance explained by the first PC is just 15%, we used it to show
that our algorithm is scalable to high-dimensional datasets, while still outperforming SPCA.

7.3.4 Computing Time vs. Problem Size

DC-PCA is a sequence of QCQPs with theoretical worst-case complexity of O(mn3), which
is the same as for SPCA and better than the O(n5.5) for DSPCA. Here, m is the number of
iterations before convergence and n the dimensionality of the data. To empirically compute
the running time complexity of these methods, we ran24 these algorithms on randomly
chosen problems of size n ranging from 10 to 2000 for 5 different values of ρ and k (similar
to the setup in d’Aspremont et al. (2007, Section 6.4)). Figure 3(d) shows the plot of

24. The experiment was carried out on a Linux 3 GHz, 4 GB RAM workstation.

28

average CPU time vs. n for these methods with the empirical complexity growing as O(np)
where p = 1.46 for DC-PCA, p = 1.91 for SPCA and p = 3.92 for DSPCA. This shows
that DC-PCA scales better to large-dimensional problems than SPCA and DSPCA and
is thus preferred over these methods as it also has better sparsity vs. explained variance
performance.

8. Sparse Canonical Correlation Analysis

In this section, we consider sparse CCA as a special case of the sparse GEV algorithm and
present two CCA applications where sparsity is helpful. We call our sparse CCA algorithm
DC-CCA, where A and B are determined from the covariance and cross-covariance matri-
ces as shown below Eq. (4). Note that A is indefinite and therefore in our experiments,
we choose τ = −λmin(A) in Algorithm 1. In the following, we present two sparse CCA
applications, one related to the task of cross-language document retrieval and the other
dealing with semantic annotation and retrieval of music (Torres et al., 2007a,b). We believe
that this is the first time a sparse CCA algorithm has been proposed. d’Aspremont et al.
(2007, Section 2.3) presents a semi-definite relaxation of a variation of CCA, where B is
assumed to be an identity matrix. In Section 4, we presented a SDP relaxation for sparse
CCA. However, in this section, we use DC-CCA (based on Algorithm 1) to perform sparse
CCA (as it scales better for large problem sizes) and show its performance in the above
mentioned applications.

8.1 Cross-language document retrieval

The problem of cross-language document retrieval involves a collection of documents, {Di}N
i=1

with each document being represented in different languages, say English and French. The
goal of the task is, given a query string in one language, retrieve the most relevant docu-
ment(s) in the target language. The first step is to obtain a semantic representation of the
documents in both languages, which models the correlation between translated versions, so
we can detect similarities in content between the two document spaces (one for English and
the other for French). This is exactly what CCA does by finding a low-dimensional rep-
resentation in both languages, with maximal correlation between them. Vinokourov et al.
(2003) used CCA to address this problem and showed that the CCA approach performs
better than the latent semantic indexing approach used by Littman et al. (1998). CCA
provides an efficient basis representation (that captures the maximal correlation) for the
two document spaces.

Using a bag-of-words representation for the documents, sparse CCA would allow to find
a low-dimensional model based on a small subset of words in both languages. This would
improve the interpretability of the model and could identify small subsets of words that
are used in similar contexts in both languages and, possibly, are translations of one an-
other. Representing documents by their similarity to all other documents (e.g., by taking
inner products of bag-of-word vectors, as explained below), sparse CCA would create a low-
dimensional model that only requires to measure similarity for a small subset of the training
documents. This would immediately improve storage requirements and the efficiency of re-
trieval computations. In this study, we follow the second approach, representing documents
by their similarity to all other training documents by applying a linear kernel function to

29

a binary bag-of-words representation of the documents, as proposed in Vinokourov et al.
(2003). This will illustrate how we can achieve significant sparsity without significant loss
of retrieval performance.

More specifically, each version of a document (English or French) is modeled using a
bag-of-words feature vector. Within a feature vector, we associate an element in {0, 1}
with each word wi in its language vocabulary. A value of 1 indicates that wi is found in
the document. We collect the feature vectors into the N × P matrix E, where we collect
the English feature vectors, and the N ×Q matrix F , where we collect the French feature
vectors. N is the number of documents and P and Q are the vocabulary sizes of E and
F respectively. Computing similarity between English documents as the inner product
between their binary bag-of-words vectors (i.e., the rows of E) results in computing an
N ×N data matrix EET . Similarly, we compute an N ×N data matrix F F T and obtain
two feature spaces which are both N -dimensional.

By applying sparse CCA, we effectively perform simultaneous feature selection across
two vector spaces and characterize the content of and correlation between English and
French documents in an efficient manner. We use the DC-CCA algorithm, using covariance
and cross-variance matrices associated with the document matrices EET and F F T and
obtain successive pairs of sparse canonical components which we stack into the columns
of VE and VF . (Subsequent pairs of these sparse canonical components are obtained by
deflating EET and F F T with respect to previous canonical components. For a detailed
review on deflation, we refer the reader to Shawe-Taylor and Christianini (2004).) Then,
given a query in an input language, say English, we convert the query into the appropriate
feature vector, qE . We project qE into the subspace spanned by the canonical components
of the English language by computing V T

E qE
25. Similarly, we project all the French training

documents onto the subspace spanned by the canonical components, VF associated with
the French language. Finally we perform document retrieval by selecting those French
documents whose projections are closest to the projected query, where we measure similarity
in a nearest neighbor sense.

8.1.1 Experimental Details

The data set used was the Aligned Hansards of the 36th Parliament of Canada (Germann,
2001), which is a collection of 1.3 million pairs of text chunks (sentences or smaller frag-
ments) aligned into English and French translations. The text chunks are split into docu-
ments based on ∗ ∗ ∗ delimiters. Then, stop words and rare words (those that occur less
than 3 times) are removed and we are left with an 1800× 26328 English document-by-term
matrix and a 1800 × 30167 French matrix. Computing EET and F F T results in matrices
of size 1800 × 1800.

To generate a query, we select English test documents from a test set not used for
training. The appropriate retrieval result is the corresponding French language version of
the query document. To perform retrieval, the query and the French test documents are
projected onto the canonical components and retrieval is performed as described before.

25. Notice how this projection, onto the sparse canonical components, only requires to compute a few
elements of qE, i.e., the ones corresponding to the non-zero loadings of the canonical components;
differently said, we only need to compute the similarity of the query document to a small subset of all
training documents.

30

Table 2: Average area under the ROC curve (in %) using CCA and sparse CCA (DC-CCA)
in a cross-language document retrieval task. d represents the number of canonical
components and sparsity represents the percentage of total number of zero loadings
in the canonical components.

d 100 200 300 400 500

CCA 99.92 99.93 99.96 99.95 99.93
DC-CCA 95.72 97.57 98.45 98.75 99.04
Sparsity 87.15 87.56 87.95 88.21 88.44

Table 2 shows the performance of DC-CCA (sparse CCA) against CCA. We measure our
results using the average area under the ROC curve (average AROC). The results in Table 2
are shown in percentages. To go into detail, for each test query we generate an ROC curve
from the ranked retrieval results. Results are ranked according to their projected feature
vector’s Euclidean distance from the query. The area under this ROC curve is used to
measure performance. For example, if the first returned document was the most relevant
(i.e., the corresponding French language version of the query document) this would result
in an ROC with area under the curve (AROC) of 1. If the most relevant document came
in above the 75th percentile of all documents this would lead to an AROC 0.75, and so
on. So, we’re basically measuring how highly the corresponding French language document
ranks in the retrieval results. For a collection of queries we take the simple average of each
query’s AROC to obtain the average AROC. An average AROC with value of 1 is best, a
value of 0.5 is as good as chance.

In Table 2, we compare retrieval using sparse CCA to regular CCA. For sparse CCA
we used a sparsity parameter that led to loadings that were approximately 10% of the
full dimensionality, which means the canonical components are approximately 90% sparse.
We see that we are able to achieve good retrieval rates using sparse CCA, only slightly
sacrificing performance compared to regular CCA. This is the key result of this section:
we can achieve performance close to regular CCA, by using only about 12% of the number
of loadings (i.e., documents) required by regular CCA. This shows that sparse CCA can
narrow in on the most informative dimensions exhibited by data and can be used as an
effective dimensionality reduction technique.

8.2 Vocabulary selection for music information retrieval

In this subsection we provide a short summary of the results in Torres et al. (2007a), which
nicely illustrate how sparse CCA can be used to improve the performance of a statistical
musical query application, by identifying problematic query words and eliminating them
from the model. The application involves a computer audition system (Turnbull et al.,
2008) that can annotate songs with semantically meaningful words or tags (such as rock
or mellow), or retrieve songs from a database, based on a semantic query. This system is
based on a joint probabilistic model between words and acoustic signals, learned from a
training data set of songs and song tags. “Noisy” words, that are not or only weakly related
to the musical content, will decrease the system’s performance and waste computational

31

180 140 100 60 20

0.68

0.7

0.72

0.74

0.76

A
ve

ra
ge

 A
R

O
C

Vocabulary size

DC−CCA
Human agreement
Random

Figure 4: Comparison of vocabulary selection techniques for music retrieval.

resources. Sparse CCA is employed to prune away those noisy words and improve the
system’s performance.

The details of this experiment are beyond the scope of this work and can be found in
Torres et al. (2007a). In short, each song from the CAL-500 data set26 is represented in
two different spaces: a semantic space based on a bag-of-words representation of a song’s
semantic tags and an audio space based on Mel-frequency cepstral coefficients (Mckinney,
2003) extracted from a song’s audio content. This representation allows sparse CCA to
identify a small subset of words spanning a semantic subspace that is highly correlated with
audio content. In Figure 4, we use sparse CCA to generate a sequence of vocabularies of
progressively smaller size, ranging from full size (containing about 180 words) to very sparse
(containing about 20 words), depicted on the horizontal axis. For each vocabulary size, the
computer audition system is trained and the average area under the receiver operating char-
acteristic curve (AROC) is shown on the vertical axis, measuring its retrieval performance
on an independent test set. The AROC (ranging between 0.5 for randomly ranked retrieval
results and 1.0 for a perfect ranking) initially clearly improves, as sparse CCA (DC-CCA)
generates vocabularies of smaller size: it is effectively removing noisy words that are detri-
mental for the system’s performance. Also shown in Figure 4 are the results of training
based on two alternative vocabulary selection techniques: random selection (offering no
improvement) and a heuristic that eliminates words exhibiting less agreement amongst the
human subjects that were surveyed to collect CAL-500 (only offering a slight improvement,
initially).

In summary, Torres et al. (2007a) illustrates that vocabulary selection using sparse
CCA significantly improves the retrieval performance of a computer audition system (by
effectively removing noisy words), outperforming a random baseline and a human agreement
heuristic.

26. The CAL-500 data set consists of a set of songs, annotated with semantic tags, by conducting human
surveys. More details can be found in Turnbull et al. (2008).

32

9. Sparse Fisher Discriminant Analysis

In this section, we show that the FDA problem is an interesting special case of the GEV
problem and that the special structure of A allows the sparse FDA problem to be solved
more efficiently than the general sparse GEV problem.

Let us consider the GEV problem in Eq. (2) with A ∈ S
n
+, B ∈ S

n
++ and rank(A) = 1.

This is exactly the FDA problem as shown in Eq. (6) where A is of the form A = aaT ,
with a = (µ1 − µ2) ∈ R

n. The corresponding GEV problem is written as

λmax(A,B) = max
x

(aT x)2

s.t. xT Bx = 1, (53)

which can also be written as λmax(A,B) = maxx6=0

(aT x)2

xT Bx
. Since we are primarily inter-

ested in the maximizer of Eq. (53), we can rewrite it as

min
x6=0

xT Bx

(aT x)2
≡ min{xT Bx : aTx = 1}. (54)

The advantage of Eq. (54) will become clear when we consider its sparse version, i.e., after
introducing the constraint {x : ‖x‖0 ≤ k} in Eq. (54). Clearly, introducing the sparsity
constraint makes the problem NP-hard. However, introducing an ℓ1-norm relaxation in this
formulation gives rise to a convex program,

min{xT Bx : aTx = 1, ‖x‖1 ≤ k} ≡ min{xT Bx + ν‖x‖1 : aTx = 1}, (55)

more specifically a QP. The equivalence to the regularized version with ν > 0 as the regu-
larization parameter has been shown previously.

Note that a transformation similar to the one leading to Eq. (54) can be performed for
the GEV problem with any, general A ∈ S

n, i.e., writing the GEV problem as a minimization
problem,

min
x

xT Bx

s.t. xT Ax = 1. (56)

This formulation, however, is not useful to simplify solving a GEV problem in general.
Indeed, consider the sparse version of the problem in Eq. (56) with the sparsity constraint
{x : ‖x‖0 ≤ k} relaxed to {x : ‖x‖1 ≤ k}. Because of the quadratic equality constraint,
the resulting program is non-convex for any A. Suppose say that the constraint set {x :
xT Ax = 1} is relaxed to {x : xT Ax ≤ 1}. If A /∈ Sn

+, the program is still non-convex as the
constraint is a non-convex set. If A ∈ S

n
+, then the optimum occurs at x = 0. Therefore,

the minimization formulation of the GEV problem in Eq. (56) is not useful, unlike the case
where A ∈ S

n
+ and rank(A) = 1.

Based on the discussion so far, it is clear that the sparse FDA problem can be solved
as a convex QP, unlike sparse PCA or sparse CCA, whose convex relaxation results in a
SDP as discussed in Section 4.1. Suppose that one would like to use a better approximation

33

to ‖x‖0 than ‖x‖1, for sparse FDA. Using the approximation we proposed in this work,
Eq. (55) reduces to

min
x

xT Bx + νε

n∑

i=1

log(ε+ |xi|)

s.t. aT x = 1, (57)

where νε := ν/ log(1 + ε−1). Applying the MM method to the above program results in the
following iterative scheme,

x(l+1) = arg min
x

xT Bx + νε

n∑

i=1

|xi|
|x(l)

i | + ε

s.t. aTx = 1, (58)

which is a sequence of QPs unlike Algorithm 1, which is a sequence of QCQPs. Therefore,
the nice structure of A makes the corresponding sparse GEV problem computationally
efficient. So, one should solve the sparse FDA problem by using Eq. (55) or Eq. (58)
instead of using the convex SDP in Eq. (11) or Algorithm 1.

Suykens et al. (2002, Chapter 3) and Mika et al. (2001, Proposition 1) have shown
connections between the FDA formulation in Eq. (54) with a = µ1 −µ2 and B = Σ1 +Σ2

(see the paragraph below Eq. (6) for details) and least-squares support vector machines
(classifiers that minimize the squared loss). Therefore, sparse FDA is equivalent to feature
selection with a squared loss objective, i.e., the sparse FDA formulation in Eq. (55) is
equivalent to LASSO, while the formulation in Eq. (57) is similar to the one considered
in Weston et al. (2003). Since these are well studied problems, we do not pursue further
showing the numerical performance of sparse FDA.

10. Conclusion and Discussion

We study the problem of finding sparse eigenvectors for generalized eigenvalue problems.
After proposing a non-convex but tight approximation to the cardinality constraint, we
formulate the resulting optimization problem as a d.c. program and derive an iterative
solution algorithm, based on the majorization-minimization method. This results in solving
a sequence of quadratically constrained quadratic programs, an algorithm which exhibits
global convergence behavior, as we show. We also derive sparse PCA (DC-PCA) and sparse
CCA (DC-CCA) algorithms as special cases of our proposed algorithm. Empirical results
demonstrate the performance of the proposed algorithm for sparse PCA and sparse CCA
applications. In the case of sparse PCA, we experimentally demonstrate on real-life data
of varying dimensionality that the proposed algorithm (DC-PCA) explains more variance
with sparser features than SPCA (Zou et al., 2006) and DSPCA (d’Aspremont et al., 2007)
at better computational speed (low CPU time). Although many algorithms have been
proposed for sparse PCA, we believe that this is the first time a sparse CCA algorithm
has been proposed. We illustrate its practical relevance for two applications, cross-language
document retrieval and vocabulary selection for music information retrieval.

The proposed algorithm does not allow to set the regularization parameter a priori, to
guarantee a given sparsity level. This is similar for SPCA. Semidefinite relaxation methods,

34

on the other hand (e.g., DSPCA in the context of sparse PCA) are better suited to achieve
a given sparsity level in one shot, by incorporating an explicit constraint on the sparsity
of the solution (although, eventually, through relaxation, an approximation of the original
problem is solved). Since the algorithm we propose solves a LASSO problem in each step
but with a quadratic constraint, one can use a modified version of path following techniques
like least angle regression (Efron et al., 2004) to learn the entire regularization path.

Acknowledgments

Bharath Sriperumbudur thanks Suvrit Sra for constructive discussions while the former was
an intern at the Max Planck Institute for Biological Cybernetics, Tübingen. The authors
wish to acknowledge the support from the National Science Foundation (grant DMS-MSPA
0625409), the Fair Isaac Corporation and the University of California MICRO program.

Appendix A. Derivation of the Dual and Bi-dual Programs for Eq. (8)

Consider the ℓ1-norm relaxed sparse GEV problem in Eq. (8), which we reproduce here for
convenience.

max
x

xT Ax

s.t. xT Bx ≤ 1, ‖x‖1 ≤ k. (59)

The above problem can be re-written as

max
x, y

xT Ax

s.t. xT Bx ≤ 1, −y � x � y

yT1 ≤ k. (60)

The corresponding Lagrangian dual problem is given by

min
β≥0,µ≥0
u�0,s�0

max
x, y

L(x,y, β, µ,u, s),

where

L(x,y, β, µ,u, s) = xT Ax − µ(xT Bx − 1) − β(yT 1− k) − uT (x − y) + sT (x + y). (61)

Let us first maximize L over x. By Lemma 3.6 of Lemaréchal and Oustry (1999), the
necessary and sufficient condition for Q(x) = xT (A − µB)x + xT (s − u) to have a finite
upper bound over R

n is µB − A � 0 and s − u ∈ R(µB − A). Differentiating L w.r.t.
x yields x = 1

2(µB − A)†(s − u). Similarly, while maximizing L w.r.t. y, the necessary
and sufficient condition for R(y) = yT (s + u− β1) to have a finite upper bound over R

n is
s + u = β1. Therefore, the dual program can be written as

min
u,s,β,µ

1

4
(u − s)T (µB − A)†(u − s) + βk + µ

s.t. µB − A � 0, u − s ∈ R(µB − A)

s + u = β1, β ≥ 0, µ ≥ 0, u � 0, s � 0, (62)

35

which is equivalent to

min
r,β,µ

1

4
rT (µB − A)†r + βk + µ

s.t. µB − A � 0, r ∈ R(µB − A)

−β1 � r � β1, β ≥ 0, µ ≥ 0, (63)

resulting in Eq. (9). By invoking the Schur’s complement lemma, the dual can be written
as

min
r,t,β,µ

t+ βk + µ

s.t. −β1 � r � β1, β ≥ 0, µ ≥ 0(
µB − A −1

2r

−1
2rT t

)
� 0. (64)

The bi-dual associated with Eq. (59) is given by

max
φ∈R,α≥0,θ≥0
τ�0,η�0,x�0

X�0

min
r�0,t∈R

β≥0,µ≥0

L̃(r, t, β, µ, φ, α, θ, τ ,X,x,η), (65)

where L̃ is the Lagrangian associated with Eq. (64) given by

L̃(r, t, β, µ, φ, α, θ, τ ,X,x,η) = t+ βk + µ+ ηT (r − β1) − τT (r + β1) − αµ− θβ

−tr

[(
X x

xT φ

)(
µB − A −1

2r

−1
2rT t

)]

= tr(XA) + µ(1 − α− tr(XB)) + t(1 − φ)

+β(k − ηT1 − τT 1 − θ) + rT (η − τ + x). (66)

Minimizing the above Lagrangian results in

max
α,θ,τ,η,x,X

tr(XA)

s.t. α+ tr(XB) = 1, x + η = τ , (η + τ)T 1 + θ = k
(

X x

xT 1

)
� 0, (67)

which is equivalent to

max
x,X

tr(XA)

s.t. tr(XB) ≤ 1, ‖x‖1 ≤ k
(

X x

xT 1

)
� 0, (68)

as shown in Eq. (11).

36

Appendix B. Derivation of the approximate sparse GEV program in
Eq. (14)

Starting from the sparse GEV program in Eq. (13), the approximate sparse GEV program in

Eq. (14) can be obtained as follows. Replacing ‖x‖0 by limε→0
∑n

i=1
log(1+|xi|/ε)
log(1+1/ε) in Eq. (13),

we have

max
x

xT Ax − ρ̃ lim
ε→0

n∑

i=1

log(1 + |xi|/ε)
log(1 + 1/ε)

s.t. xT Bx ≤ 1. (69)

Consider the objective function in the above program, given by

φ(x, ρ̃) := xT Ax − ρ̃ lim
ε→0

n∑

i=1

log(1 + |xi|/ε)
log(1 + 1/ε)

= xT Ax − ρ̃ lim
ε→0

n∑

i=1

log(ε+ |xi|)
log(1 + 1/ε)

+ ρ̃ lim
ε→0

n∑

i=1

log ε

log(1 + 1/ε)

= xT Ax − ρ̃ lim
ε→0

n∑

i=1

log(ε+ |xi|)
log(1 + 1/ε)

− nρ̃

= lim
ε→0

[

xTAx − ρ̃ε

n∑

i=1

log(ε+ |xi|) − nρ̃

]

, (70)

where ρ̃ε := ρ̃/ log(1 + ε−1). Therefore, Eq. (69) reduces to

max
x

lim
ε→0

[

xT Ax − ρ̃ε

n∑

i=1

log(ε+ |xi|)
]

− nρ̃

s.t. xT Bx ≤ 1, (71)

and is equivalent to the sparse GEV program in Eq. (13). The approximate sparse GEV
program in Eq. (14) is obtained by neglecting the limit in Eq. (71) and choosing ε > 0.

Appendix C. Derivation of Eq. (30)

Eq. (30) can be derived differently as follows. Let

f(x) = ρ
n∑

i=1

log(ε+ |xi|) − xT Ax

= τ‖x‖2
2 + ρ

n∑

i=1

log(ε+ |xi|) − xT (A + τIn)x, (72)

where τ ≥ max(0,−λmin(A)). Using the inequality log(z) ≤ z−1, ∀ z ∈ R+ with z = |xi|+ε
|yi|+ε ,

we have

log(ε+ |xi|) ≤ log(ε+ |yi|) +
|xi| − |yi|
|yi| + ε

, ∀x,y.

37

Since A+ τIn � 0, we have xT (A+ τIn)x ≥ yT (A+ τIn)y +2(x−y)T (A+ τIn)y, ∀x,y.
It is easy to check that

g(x,y) = τ‖x‖2
2−2xT (A+τIn)y+yT (A+τIn)y+ρ

n∑

i=1

log(ε+|yi|)+ρ
n∑

i=1

|xi| − |yi|
|yi| + ε

(73)

majorizes f over R
n × R

n and therefore over Ω × Ω where Ω = {x : xT Bx ≤ 1}. In
addition, the inequalities are strict unless x = y. Eq. (14) is equivalent to minimizing f
over Ω and therefore the minimization step in Eq. (23) with g in Eq. (73) results in Eq. (30).
Note that g is strictly convex in x and so g(x′,y) < g(x,y), ∀x ∈ Ω unless x = x′ where
x′ = arg min{g(x,y) : x ∈ Ω}. Therefore, f(x′) < g(x′,y) < g(y,y) = f(y) unless x′ = y

where the equality holds.

References

U. Alon, N. Barkai, D. A. Notterman, K. Gish, S. Ybarra, D. Mack, and A. J. Levine.
Broad patterns of gene expression revealed by clustering analysis of tumor and normal
colon cancer tissues. Cell Biology, 96:6745–6750, 1999.

D. Böhning and B. G. Lindsay. Monotonicity of quadratic-approximation algorithms. Annals
of the Institute of Statistical Mathematics, 40(4):641–663, 1988.

J. F. Bonnans, J. C. Gilbert, C. Lemaréchal, and C. A. Sagastizábal. Numerical Optimiza-
tion: Theoretical and Practical Aspects. Springer-Verlag, 2006.

P. S. Bradley and O. L. Mangasarian. Feature selection via concave minimization and
support vector machines. In Proc. 15th International Conf. on Machine Learning, pages
82–90. Morgan Kaufmann, San Francisco, CA, 1998.

J. Cadima and I. Jolliffe. Loadings and correlations in the interpretation of principal com-
ponents. Applied Statistics, 22:203–214, 1995.

E. J. Candes, M. Wakin, and S. Boyd. Enhancing sparsity by reweighted ℓ1 minimization.
J. Fourier Anal. Appl., 2007. To appear.

A. d’Aspremont, L. El Ghaoui, M. I. Jordan, and G. R. G. Lanckriet. A direct formulation
for sparse PCA using semidefinite programming. SIAM Review, 49(3):434–448, 2007.

J. deLeeuw. Applications of convex analysis to multidimensional scaling. In J. R. Barra,
F. Brodeau, G. Romier, and B. Van Cutsem, editors, Recent advantages in Statistics,
pages 133–146, Amsterdam, The Netherlands, 1977. North Holland Publishing Company.

A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete data
via the EM algorithm. J. Roy. Stat. Soc. B, 39:1–38, 1977.

B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani. Least angle regression. Annals of
Statistics, 32(2):407–499, 2004.

L. El Ghaoui. On the quality of a semidefinite programming bound for sparse principal
component analysis, 2006. http://arxiv.org/PS cache/math/pdf/0601/0601448.pdf.

38

M. Fazel, H. Hindi, and S. Boyd. Log-det heuristic for matrix rank minimization with
applications to Hankel and Euclidean distance matrices. In Proc. American Control
Conference, Denver, Colorado, 2003.

U. Germann. Aligned Hansards of the 36th parliament of Canada, 2001.
http://www.isi.edu/natural-language/download/hansard/.

T. R. Golub, D. K. Slonim, P. Tamayo, C. Huard, M. Gaasenbeek, J.P. Mesirov, H. Coller,
M. K. Loh, J. R. Downing, M. A. Caligiuri, C. D. Bloomfield, and E.S. Lander. Molecular
classification of cancer: Class discovery and class prediction by gene expression monitor-
ing. Science, 286:531–537, October 1999.

A. Gunawardana and W. Byrne. Convergence theorems for generalized alternating mini-
mization procedures. Journal of Machine Learning Research, 6:2049–2073, 2005.

W. J. Heiser. Correspondence analysis with least absolute residuals. Comput. Stat. Data
Analysis, 5:337–356, 1987.

R. Horst and N. V. Thoai. D.c. programming: Overview. Journal of Optimization Theory
and Applications, 103:1–43, 1999.

H. Hotelling. Analysis of a complex of statistical variables into principal components.
Journal of Educational Psychology, 24:417–441, 1933.

H. Hotelling. Relations between two sets of variates. Biometrika, 28:321–377, 1936.

P. J. Huber. Robust Statistics. John Wiley, New York, 1981.

D. R. Hunter and K. Lange. A tutorial on MM algorithms. The American Statistician, 58:
30–37, 2004.

D. R. Hunter and R. Li. Variable selection using MM algorithms. The Annals of Statistics,
33:1617–1642, 2005.

J. Jeffers. Two case studies in the application of principal components. Applied Statistics,
16:225–236, 1967.

I. Jolliffe. Principal component analysis. Springer-Verlag, New York, USA, 1986.

I. T. Jolliffe, N. T. Trendafilov, and M. Uddin. A modified principal component technique
based on the LASSO. Journal of Computational and Graphical Statistics, 12:531–547,
2003.

M. Kuss and T. Graepel. The geometry of kernel canonical correlation analysis. Technical
report 108, Max Planck Institute for Biological Cybernetics, Tübingen, Germany, 2003.

K. Lange, D. R. Hunter, and I. Yang. Optimization transfer using surrogate objective
functions with discussion. Journal of Computational and Graphical Statistics, 9(1):1–59,
2000.

39

D. D. Lee and H. S. Seung. Algorithms for non-negative matrix factorization. In T.K.
Leen, T.G. Dietterich, and V. Tresp, editors, Advances in Neural Information Processing
Systems 13, pages 556–562. MIT Press, Cambridge, 2001.

C. Lemaréchal and F. Oustry. Semidefinite relaxations and Lagrangian duality with appli-
cation to combinatorial optimization. Technical Report RR3710, INRIA, 1999.

M. L. Littman, S. T. Dumais, and T. K. Landauer. Automatic cross-language informa-
tion retrieval using latent semantic indexing. In G. Grefenstette, editor, Cross-Language
Information Retrieval, pages 51–62. Kluwer Academic Publishers, 1998.

G. McCabe. Principal variables. Technometrics, 26:137–144, 1984.

M. F. Mckinney. Features for audio and music classification. In Proc. of the International
Symposium on Music Information Retrieval, pages 151–158, 2003.

X.-L. Meng. Discussion on “optimization transfer using surrogate objective functions”.
Journal of Computational and Graphical Statistics, 9(1):35–43, 2000.

R. R. Meyer. Sufficient conditions for the convergence of monotonic mathematical program-
ming algorithms. Journal of Computer and System Sciences, 12:108–121, 1976.

S. Mika, G. Rätsch, J. Weston, B. Schölkopf, and K.-R. Müller. Fisher discriminant analysis
with kernels. In Y.-H. Hu, J. Larsen, E. Wilson, and S. Douglas, editors, Neural Networks
for Signal Processing IX, pages 41–48. IEEE, 1999.

S. Mika, G. Rätsch, and K.-R. Müller. A mathematical programming approach to the
kernel Fisher algorithm. In T.K. Leen, T.G. Dietterich, and V. Tresp, editors, Advances
in Neural Information Processing Systems 13, Cambridge, MA, 2001. MIT Press.

M. Minoux. Mathematical Programming: Theory and Algorithms. John Wiley & Sons Ltd.,
1986.

B. Moghaddam, Y. Weiss, and S. Avidan. Spectral bounds for sparse PCA: Exact and
greedy algorithms. In B. Schölkopf, J. Platt, and T. Hoffman, editors, Advances in
Neural Information Processing Systems 19, Cambridge, MA, 2007a. MIT Press.

B. Moghaddam, Y. Weiss, and S. Avidan. Generalized spectral bounds for sparse LDA. In
Proc. of International Conference on Machine Learning, 2007b.

Y. Nesterov. Smooth minimization of non-smooth functions. Mathematical Programming,
Series A, 103:127–152, 2005.

J. M. Ortega and W. C. Rheinboldt. Iterative Solution of Nonlinear Equations in Several
Variables. Academic Press, New York, 1970.

R. T. Rockafellar. Convex Analysis. Princeton University Press, Princeton, NJ, 1970.

B. Schölkopf and A. J. Smola. Learning with Kernels. MIT Press, Cambridge, MA, 2002.

40

B. Schölkopf, A. Smola, and K.-R. Müller. Nonlinear component analysis as a kernel eigen-
value problem. Neural Computation, 10:1299–1319, 1998.

J. Shawe-Taylor and N. Christianini. Kernel Methods for Pattern Analysis. Cambridge
University Press, 2004.

K. Sjöstrand. Matlab implementation of LASSO, LARS, the Elastic Net and SPCA. Tech-
nical report, Informatics and Mathematical Modelling, Technical University of Denmark,
2005.

B. K. Sriperumbudur, D. A. Torres, and G. R. G. Lanckriet. Sparse eigen methods by
d.c. programming. In Proc. of the 24th Annual International Conference on Machine
Learning, 2007.

G. Strang. Introduction to Applied Mathematics. Wellesley-Cambridge Press, 1986.

J. A. K. Suykens, T. Van Gestel, J. De Brabanter, B. De Moor, and J. Vandewalle. Least
Squares Support Vector Machines. World Scientific Publishing, Singapore, 2002.

Pham Dinh Tao and Le Thi Hoai An. D.c. optimization algorithms for solving the trust
region subproblem. SIAM Journal of Optimization, 8:476–505, 1998.

R. Tibshirani. Regression shrinkage and selection via the LASSO. Journal of Royal Statis-
tical Society, Series B, 58(1):267–288, 1996.

M. E. Tipping. Sparse Bayesian learning and the relevance vector machine. Journal of
Machine Learning Research, 1:211–244, 2001.

D. Torres, D. Turnbull, L. Barrington, and G. R. G. Lanckriet. Identifying words that are
musically meaningful. In Proc. of International Symposium on Music Information and
Retrieval, 2007a.

D. A. Torres, D. Turnbull, B. K. Sriperumbudur, L. Barrington, and G. R. G. Lanckriet.
Finding musically meaningful words using sparse CCA. In Music, Brain & Cognition
Workshop, NIPS, 2007b.

D. Turnbull, L. Barrington, D. Torres, and G. R. G. Lanckriet. Semantic annotation and
retrieval of music and sound effects. IEEE Trans. on Audio, Speech and Language Pro-
cessing, 16:467–476, 2008.

L. Vandenberghe and S. Boyd. Semidefinite programming. SIAM Review, 38:49–95, 1996.

A. Vinokourov, J. Shawe-Taylor, and N. Cristianini. Inferring a semantic representation
of text via cross-language correlation analysis. In S. Becker, S. Thrun, and K. Ober-
mayer, editors, Advances in Neural Information Processing Systems 15, pages 1473–1480,
Cambridge, MA, 2003. MIT Press.

J. Weston, A. Elisseeff, B. Schölkopf, and M. Tipping. Use of the zero-norm with linear
models and kernel methods. Journal of Machine Learning Research, 3:1439–1461, March
2003.

41

C. F. J. Wu. On the convergence properties of the EM algorithm. Annals of Statistics, 11
(1):95–103, 1983.

A. L. Yuille and A. Rangarajan. The concave-convex procedure. Neural Computation, 15:
915–936, 2003.

W. I. Zangwill. Nonlinear Programming: A Unified Approach. Prentice-Hall, Englewood
Cliffs, N.J., 1969.

H. Zou and T. Hastie. Regularization and variable selection via the elastic net. J. R. Statist.
Soc. B, 67:301–320, 2005.

H. Zou, T. Hastie, and R. Tibshirani. Sparse principal component analysis. Journal of
Computational and Graphical Statistics, 15:265–286, 2006.

42

