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Abstract. In this paper we present a comparison of numerical methods for the
solution of single term fractional differential equations. We review five available
methods and use a graphical technique to compare their relative merits. We
conclude by giving recommendations on the choice of efficient methods for any
given single term fractional differential equation.

1. Introduction. Over the past decade the development of numerical methods for
the solution of equations containing derivatives and integrals of non-integer order
has become a hot topic. There have been several simple algorithms published for
producing approximate solutions for fractional differential equations. Despite the
interest these algorithms have generated among mathematical modellers and applied
scientists from several fields there seems to have been no systematic comparison of
their relative merits from an applications viewpoint to date. Much theoretical work
has been completed already, but as the recent paper [9] indicates, there can be a
considerable gap between methods that perform well in theory and those whose
practical implementations are effective. For existing theoretical work we refer to
the recent works by authors such as Diethelm, Ford, Luchko and Podlubny (see [7],
[10], [11], [12], [14], [21], [23].)

The difficulty of transferring the theoretical good properties of a method to actual
performance in practice is reviewed more thoroughly later. In this paper we have
chosen to assess the performance of the methods through actual implementation to
solve certain fractional differential equations (whose exact solutions are known, thus
facilitating the desired comparisons to be made). In a sequel to the present paper
we shall present corresponding conclusions relating to multi-term equations. For the
present we simply draw attention to the following conclusion from our experiments:
it is not reasonable to assume that a method that is best for a single term equation
is necessarily also best for solving an apparently similar multi-term problem.

To be precise, this paper uses the single-term fractional differential equation

Dαy(t) = λy(t) + g(t) (1.1)

as the basis for our experiments. In line with recent work [10], [11], the differ-
ential operator D is assumed to be of the Caputo type, because this seems to be
more widely applicable in modern modelling applications. Inhomogeneous initial
conditions then can be specified, if desired, in terms of integer order derivatives.
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2. Basic Ideas and Definitions. Single term fractional differential equations take
the general form

Dαy(t) = f(t, y(t)), D(k)(y0) = y
(k)
0 (k = 0, 1, . . . , dαe − 1), (2.1)

where α is some positive non-integer number. Here the notation Dα is used for the
Caputo type fractional derivative, defined by

Dαy(t) :=
1

Γ(m− α)

∫ t

0

(t− τ)m−α−1y(m)(τ) dτ

where m := dαe.
One can also define the Caputo fractional derivative based on classical Riemann-

Liouville differential operators of fractional order α > 0 which are defined by,

Dα
∗ y(t) :=

1
Γ(m− α)

dm

dtm

∫ t

0

y(u)
(t− u)α−m+1

du

where m is the integer defined by m − 1 < α < m. The standard (Riemann-
Liouville) approach, is then to define the initial conditions for solving the fractional
differential equation in the form

dα−k

dtα−k
y(t)|t=0+ = bk, k = 1, 2, . . . ,m = bα + 1c,

with given values bk. This means we need to specify initial values in terms of
(inconvenient) fractional derivatives of the function y. To avoid this inconvenience,
Caputo [4] suggested incorporating the classical derivatives (of integer order) of the
function y, as they are commonly used in initial value problems with integer-order
equations, into the fractional-order equation, giving the alternative (equivalent)
formulation of the Caputo fractional differential equation as

Dαy(t) := Dα
∗ (y − Tm−1[y])(t) = f(t, y(t)), (2.2)

where Tm−1[y] is the Taylor polynomial of order (m− 1) for y, centered at 0.

3. How Should We Judge a Good Numerical Method? The effectiveness
of numerical methods is classically considered using ideas such as the convergence,
consistency and stability of the method. Of these, the consistency order of the
method is often regarded as a benchmark for comparing methods. The so-called
order of the method (we talk about methods of order p when the error can be shown
to haveO(hp) as h → 0 for step length h > 0) helps inform the user about the rate at
which the error in an application of a fixed step length method over a fixed interval
[0, T ] will decrease as a result of decreasing the step length. Thus a method of order
1 should (speaking loosely) see a halving of the error when the step length is halved,
while the use of a method of order 2 would lead to the error being multiplied by a
factor of 1

4 as the step length is halved. However the orders quoted are asymptotic
results and apply only as the step length h → 0 so the errors observed in practice
may be better or worse than the errors predicted. As a further observation one needs
to understand that the order of the method gives an error bound over some fixed
time interval. There is a constant that depends on the method and the equation
(and that grows rapidly as the length T of the interval increases) that determines
the size of the actual error. Therefore two methods with the same order could have
extremely different errors when they are applied. (This would happen if the two
constants were quite different). There is also a further complication: the order of a
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method will typically only be obtained subject to sufficient smoothness conditions
imposed either on the function f(t, y(t)) on the right hand side of the equation,
or on the solution y itself. Obviously it is more convenient for the conditions to
be imposed on the equation, rather than on its solution, but the analysis often
becomes tractable only with conditions on the smoothness of the solution. See [12]
for a fuller discussion of this.

In this paper we shall use examples whose solutions are twice continuously dif-
ferentiable. This is motivated by the desire to choose problems for analysis where
the standard convergence results already available apply for each of the algorithms
under comparison.

Alongside the effectiveness of the numerical method is a requirement to keep the
computational cost low. Traditionally computer time itself was expensive. However
now that is no longer the case and cost needs to be measured more in terms of
how long it will take for an algorithm to be implemented (programmed) and then
(usually more significantly) how long one must wait for the computations before
the solution is available. This last point can be really important if the application
involves a lot of computation. Sometimes the results are available too late to be of
use.

One measures the computational cost of a method in terms either of the actual
time spent completing the calculation or in terms of the number of FLOPS (Floating
Point Operations) needed to complete the calculation. Both methods of calculating
have their advantages and disadvantages. Measurement of time depends on other
loading on the computer system and therefore may vary from run to run, while
the counting of FLOPS does not (for the same reason) allow a direct conversion to
predict the time that the program will take to run. In this paper we have chosen to
use FLOPS as the more consistent method of counting the work required in running
the program. We talk about a method having computational cost O(nq) to show
the effect of changing n = 1

h on the work required by the algorithm. Of course it
comes as no surprise to find that high order methods typically also require more
work!

Surprisingly little has been done in the past to try to calculate the true efficiency
of the numerical methods. Obviously the user wants a reliable method that produces
the lowest errors in the shortest run time. In other words we need to compare the
errors with the computational cost.

We introduce a graphical representation of efficiency by plotting the ‘log of Error’
against the ‘log of FLOP count’, for a sequence of decreasing step lengths. This
produces a line for each method, which we have found can be extrapolated with
reasonable accuracy. Where the lines representing two methods cross, this highlights
a critical combination of error and work where the more efficient method for the
problem changes.

The results of our experiments show that the critical values where these changes
occur depend upon the order of the problem α and the function g. We show how,
for a particular equation, one could use our approach to ensure the appropriate
method was selected. However, probably more usefully, we are able to make general
recommendations on the choice of usually optimal or nearly optimal methods.

4. The Methods. We have chosen to compare the merits of 5 methods that have
attracted attention recently. None of the methods are high order and this might
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arouse some suspicion. However the conclusions of the recent paper [9] cast consid-
erable doubt on the value of implementing high order methods for problems such
as these. Indeed, in our experience, applications experts generally apply one of the
numerical schemes we have considered here in preference to any available higher
order scheme. We therefore consider the following methods:

1. The Implicit Quadrature method, introduced by Diethelm [7] (see also [5])
2. The Predictor Corrector method, more fully discussed by Diethelm, Ford and

Freed [11]
3. The Approximate Mittag-Leffler method, considered by Diethelm and Luchko

[14]
4. A Collocation method, described by Blank [1]
5. The Finite Differences method, discussed by Gorenflo [15]
The pseudo-code implementation of methods 1-3 can be found in [13]. All cal-

culations were performed using double precision arithmetic in Matlab.

Remark 4.1. There have been several alternative methods proposed over the years
for the solution of fractional differential equations. Two such approaches are the
use of product quadratures (see [3],pp. 366 ff. and the references contained therein)
and Galerkin-type methods (see, for example, [16]). For our purposes here we have
confined ourselves to those methods that we know have been adopted recently in
applications. For further reading and a discussion of several alternative approaches,
we would recommend [25, 17, 20, 2, 26]

4.1. Implicit Quadrature, K. Diethelm [7]. Diethelm [7] introduced a numer-
ical scheme which appears to use the Riemann-Liouville fractional derivative in
defining a backward difference formula method. Upon closer inspection, by incor-
porating the initial condition y(0) = y0 into the equation, the problem has been
transformed into a fractional differential equation of Caputo type (2.2).

By interchanging differentiation and integration of the Riemann-Liouville Frac-
tional Derivative we obtain,

Dαy(t) =
1

Γ(−α)

∫ t

0

y(u)
(t− u)α+1

du, (4.1)

where the integral is interpreted in a Hadamard finite-part sense.
We introduce some notation that we shall use for each numerical scheme. We

set a fixed step length h > 0 and use yj as a representation of the approximation
of y(jh) at integer multiples of the step length. An equispaced grid tj = j/n = nh
on the solution interval is set. For j = 1, 2, . . . , n, we obtain,

g(tj) + λy(tj) =
1

Γ(−α)

∫ tj

0

y(u)− y(0)
(tj − u)α+1

du =
t−α
j

Γ(−α)

∫ 1

0

y(tj − tjw)− y(0)
wα+1

dw.

Replacing the integral by a compound quadrature formula [8] with equispaced
nodes 0, 1/j, 2/j, . . . , 1 for each j, gives

Qj [v] =
j∑

i=0

wijv(i/j) ≈
∫ 1

0

v(u)u−α−1du

with remainder term

Rj [v] =
∫ 1

0

v(u)u−α−1du−Qj [v].
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The following implicit formula gives Diethelm’s numerical scheme for the solution
of equation (1.1):

yj =
1

w0j − (j/n)αΓ(−α)λ

((
j

n

)α

Γ (−α) g (tj)−
j∑

i=1

wijyj−i − 1
α

y0

)
, (4.2)

where the weights wij are given by

α (1− α) j−αwij =




−1 for i = 0,
2i1−α − (i− 1)1−α − (i + 1)1−α for i = 1, 2,. . . ,j-1,
(α− 1)iα − (i− 1)1−α + i1−α for i = j.

Diethelm gives the result that when using functions that are sufficiently smooth
the error behaves as O(h2−α) (see, for example, [7], [11]).

4.2. Predictor Corrector, K. Diethelm, N. J. Ford and A. D. Freed [11].
Diethelm et al. [11] introduced an algorithm of P (EC)ME (Predict-Evaluate-
Correct-Evaluate) type, for the solution of the non-linear FDE,

Dαy(t) = f(t, y(t)), 0 ≤ t ≤ 1, (4.3)

where 0 < α < m, m = dαe subject to the initial conditions,

y(k)(0) = y
(k)
0 , k = 0, . . . , m− 1.

The algorithm can be used to solve equation (1.1), although obviously these
predictor-corrector schemes are particularly appropriate for nonlinear equations.
Later we will compare the computational efficiency of the P (EC)ME algorithm
directly with the other single-term FDE methods.

The method is derived as follows: Equation (4.3) is equivalent to the Volterra
Integral Equation

y(t) =
m−1∑

k=0

tk

k!
y
(k)
0 +

1
Γ(α)

∫ t

0

(t− u)α−1f(u, y(u))du (4.4)

We can replace the integral in equation (4.4) by the product rectangle rule
∫ tj+1

0

(tj+1 − u)α−1f(u)du ≈
j∑

i=0

bi,j+1f(ti)

where,

bi,j+1 =
hα

α
((j + 1− i)α − (j − i)α). (4.5)

The predictor yP
j+1 is determined by the fractional Adams-Bashforth method,

yP
j+1 =

m−1∑

k=0

tkj+1

k!
y
(k)
0 +

1
Γ(α)

j∑

i=0

bi,j+1f(ti, yi). (4.6)

with weights (4.5).
The corrector formula is the fractional version of the Adams-Moulton method,

which can be single or multi-step. Using standard results from quadrature theory
the integral in equation (4.4) can be approximated by

∫ tj+1

0

(tj+1 − u)α−1f(u)du ≈ hα

α(α + 1)

j+1∑

i=0

ai,j+1f(ti)
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where,

ai,j+1 =





(jα+1 − (j − α)(j + 1)α) if i = 0,(
(j − i + 2)α+1 + (j − i)α+1 − 2(j − i + 1)α+1

)
if 1 ≤ i ≤ j,

1 if i = j + 1.
(4.7)

Thus the corrector yj+1 is determined by

yj+1 =
m−1∑

k=0

tkj+1

k!
x

(k)
0 +

1
Γ(α)

(
j∑

i=0

ai,j+1f(ti, yi) + aj+1,j+1f(ti+1, y
P
i+1)

)
. (4.8)

with weights (4.7).
An approximate solution to equation (1.1) or (4.3) can be obtained using the

predictor (4.6) and the corrector (4.8) with the relevant weights.

4.2.1. A note on multiple corrector iterations. The Predictor Corrector order of
convergence depends first upon the Predictor order of convergence and then on the
number of corrector iterations, which generally raise the order towards the order
of the Corrector. In this case the Predictor is a fractional generalization of the
Euler method, and it is widely known that the error of the Euler method behaves
(for ordinary differential equations) as O(h). The error of the Adams-Bashford
algorithm for ordinary differential equations is well known to be O(h2). Indeed, it
is known that, in the ordinary differential equation case, if the corrector is iterated
repeatedly to convergence then the scheme has order O(h2).

For the Fractional Differential Equation, when α < 1 and no additional corrector
iterations are applied Diethelm and Ford [12] proved that the error in the fractional
Predictor Corrector algorithm behaves as

max
j=0,1,...,n

|y(tj)− yj | = O(hp)

where p = min(2, 1 + α).

4.3. Approximate Mittag-Leffler, K. Diethelm and Y. Luchko [14]. Di-
ethelm and Luchko use the observation that a linear fractional differential equation
has an exact solution, which can be expressed in terms of Mittag-Leffler type func-
tions. They then use convolution quadrature [8] and discretized operational calculus
[18] to produce an approximation to this expression.

The numerical scheme for the solution of equations of the form (1.1) is given by,

yj = ỹj +
N∑

i=1

ŷj . (4.9)

This is achieved by considering the solution as being made up of two parts:
the homogeneous problem (i.e. g = 0) with non-zero initial conditions, and the
inhomogeneous problem (i.e. g 6= 0) with zero initial conditions.

For the homogeneous equation we define

ỹj :=
m−1∑

k=0

x
(k)
0

(
(tj)k

k!
+ uh(k; tj)

)
, j = 1, . . . , n, (4.10)

where
uh(k; tj) := ωj(k;h)/h.
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Here ωi(k; h), k = 0, 1, . . . , m− 1, i = 0, 1, . . . , n are the coefficients of the power
series

Fk(δ(ζ)/h) =
∞∑

i=0

ωi(k; h)ζi, (4.11)

and δ(ζ) =
∑∞

i=0 δiζ
i is the quotient of the generating polynomials of a linear

multistep method,

Fk(s) :=
λsα−k−1

sα − λsα

and the natural numbers lk, k = 0, . . . , m− 1 are determined from the condition
{

mlk ≥ k + 1
mlk+1 ≤ k

.

For the inhomogeneous equation Luchko and Gorenflo [19] showed that the an-
alytical solution ỹ of equation (1.1) could be represented as

ỹ =
∫ t

0

E(µ; t)g(t− τ)dτ. (4.12)

Then using the numerical scheme described in Lubich [18], the convolution integral
(4.12) at the point tj , is approximated by,

ỹj =
∑

0≤i≤j

ωj(h)g(tj−i), j = 1, . . . n. (4.13)

Where ωi(h) is given by

F (α; δ(ζ)/h) =
∞∑

i=0

ωi(h)ζi.

A simple modification obtains the required convergence order, thus the inhomo-
geneous case is given by,

ỹj = ŷj +
q−1∑

i=i0

wji(h)g(ti) , q − 1 < p− γ ≤ q ∈ N. (4.14)

Here the quadrature weights and starting weights need to be calculated in accor-
dance with the methods described in [9], [18]. This means that the weights wji(h),
i = i0, . . . , q − 1 are determined from the ill-conditioned Vandermonde system dis-
cussed in [9] which restricts the order of method that can be applied successfully.

In principle one can use a convolution quadrature of arbitrarily high order by the
methods in [18]. In our practical experiments we have restricted ourselves to orders
1 and 2. p = 1, represents a method based upon Euler’s rule. p = 2 represents a
method based upon a trapezoidal rule. The recent paper [9] indicates that a third
order method might also be competitive.

In the following example we can see how the experimental orders of convergence
of the method match the theoretical orders.

We let the exact analytical solution, for a fixed interval T be y(T ) and the
approximation at T using n step lengths be yn(T ). Here, and subsequently, EOC,
represents the experimental order of convergence evaluated using the formula

EOC = log2

( | y(T )− yn(T ) |
| y(T )− y2n(T ) |

)
. (4.15)
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For our experiment, we solved

D0.5y + y = t2 +
2t1.5

Γ(2.5)
, (4.16)

with,
y(0) = 0.

All time values are given in seconds. KFlops = 1000× Flops.

p=1 p=2
h error y(1) KFlops Time EOC error y(1) KFlops Time EOC
1/8 3.43e-02 5.7 0.00 1.90e-03 5.9 0.00
1/16 1.73e-02 21.4 0.00 0.99 5.00e-04 22.3 0.00 1.93
1/32 8.66e-03 89.7 0.05 1.00 1.23e-04 92.9 0.05 1.96
1/64 4.34e-03 395.8 0.11 1.00 3.29e-05 404.8 0.11 1.97
1/128 2.17e-03 1758.4 0.22 1.00 8.40e-06 1797.9 0.22 1.98

Table 1. How the order of the convolution quadrature method
effects convergence

It can be seen from Table 1 that the second order method involves no extra
work and produces much smaller errors. In this paper we shall compare the order
2 method with the competitors.

4.4. Collocation, L. Blank [1]. Blank used the Riemann-Liouville definition of
the fractional derivative D∗. However, as we remarked in Section 2, by subtracting
the leading terms of the Taylor series expansion of the solution about zero from
the function y, the Riemann-Liouville definition becomes equivalent to the Caputo
definition.

Assuming an equidistant mesh tj = jh, and a r-times globally continuously
differentiable polynomial spline solution y, a collocation method with polynomial
splines can be implemented. For the reader unfamiliar with collocation techniques,
a spline on each subinterval [tj , tj+1] is described by,

y(tj + vh) =
s+r∑

l=0

a
(j)
l vl, v ∈ [0, 1],

then by choosing s collocation parameters, 0 < c1 < . . . < cs < 1, y is constructed
to satisfy (1.1) at the collocation points tj,i = tj + cih for i = 1, . . . , s. In other
words

Dα

(
y(tj , i)−

m−1∑

k=0

1
k!

tkj,iy
(k)(0)

)
= λy(tj,i) + g(tj,i) (4.17)

It was shown by Blank that if (m − 1)-times continuously differentiable splines
(i.e. r = m− 1) were chosen, the above approximation can be expressed as,

[
Dα

(
y(t)−

m−1∑

k=0

1
k!

tky(k)(0)

)
|t=tj,i

]

i=1,...,s

=
h−α

Γ(1− α)

j∑

i=0

V (j−i)b(i) (4.18)

with suitable weight matrices V (i).
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The numerical solution y of (4.17), given by the collocation approximation, is
determined by the following systems of equations. We use the notation of [1] to
which we refer for further details.

On the first subinterval [0, t1],

a(0) =




. . . 0
hk 1

k!

0
. . .




k=0,...,m−1

(
y(k)(0)

)
k=0,...,m−1

b(0) = INV
{

λCa(0) + g(0)
}

(4.19)

while on [tj , tj+1] for j ≥ 1,

a(j) = Diff
(

a(j−1)

b(j−1)

)

b(j) = INV

(
λ1/αCa(j) + g(j) − h−α

Γ(1− α)

j−1∑

i=0

V (j−i)b(i)

)

with the matrices K, V (j), V, P , defined by,

K(j) = ((j + ci)m−1+l−α) i = 1, . . . , s
l = 1, . . . , s

Pk,l =

{
(l+m−1)!

(l−k)! Πm−1+k
p=1

1
p−α

0
for k ≤ l
for k > l

P = (Pk,l)

V (0) = K(0)Pdiag
V (j) = K(j)Pdiag −K(j−1)P, (j ≥ 1)

Also,
g(j) = (g(tj + cih))i=1,...,s,

Diff = (Diffk,l) k = 1, . . . , s
l = 1, . . . , s

(4.20)

where

Diffk,l =
{ l!

k!(l−k)! for k ≤ l

0 for k > l
(4.21)

and

INV =

[
h−α

Γ(1− α)
K(0)Pdiag − λ(cm−1+l

i ) i = 1, . . . , s
l = 1, . . . , s

]−1

(4.22)

In our experiments, reported here, we solved

D0.5y + y = t2 +
2t1.5

Γ(2.5)
, (4.23)

with,
y(0) = 0.
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4.4.1. Choice of collocation points for Blank’s method. In order to implement the
numerical scheme one needs to select the collocation points. In the work by Blank
the aim was to reflect the qualitative behaviour of the solutions rather than to attain
a high accuracy and therefore this was not a consideration there. In fact, there has
been no formal consideration of the order of convergence of the method. In our
experiments, we considered various choices of collocation points and found that all
gave orders of convergence close to 1 as h → 0. However, as can be seen in the table
below, for finite values of h > 0 there may be quite a difference in the apparent
order of convergence and for some choices, the apparent order approaches 1 only for
extremely small step lengths. We used the results from this table to assist in our
choice of collocation points. The recent book by Brunner ([3]) gives, on pages 361 ff.,
details (including convergence theory) for collocation methods for weakly singular
Volterra integral equations. In that book (see also [24]) there is discussion of how
graded meshes can help make the convergence order optimal. The conclusions of
Theorem 6.2.9 of [3] indicate that the convergence order of collocation methods for
the present example will be bounded below by 0.5 and will vary according to the
mesh grading. Our numerical experiments are consistent with this result.

Collocation points 0.1, 0.5, 1.0 Collocation points 0.4, 0.5, 1.0
h error y(1) KFlops Time EOC error y(1) KFlops Time EOC
1/8 1.06e-01 5.2 0.06 6.14e-02 5.2 0.05
1/16 5.24e-02 11.2 0.11 1.02 3.38e-02 11.2 0.11 0.86
1/32 2.56e-02 27.8 0.16 1.04 1.81e-02 27.8 0.17 0.90
1/64 1.25e-02 79.5 0.33 1.03 9.54e-03 79.5 0.39 0.93
1/128 6.13e-03 256.6 0.93 1.03 4.95e-03 256.6 1.10 0.95

Collocation points 0.1, 0.4, 0.5, 1.0 Collocation points 0.1, 0.4, 0.5, 0.6, 1.0
1/8 3.31e-04 8.6 0.05 1.25e-01 13.4 0.06
1/16 3.54e-04 18.4 0.11 -0.10 6.07e-02 28.3 0.11 1.04
1/32 2.65e-04 45.5 0.22 0.42 2.94e-02 69.4 0.22 1.05
1/64 1.83e-04 129.7 0.50 0.54 1.42e-02 196.0 0.60 1.04
1/128 1.16e-04 417.9 1.32 0.66 6.94e-03 627.5 1.32 1.04

Table 2. Effect of collocation point change

4.5. Finite Differences, R. Gorenflo [15]. The finite difference approach to
fractional integration can be attributed to Grünwald and Letnikov. Podlubny [22]
used the first order finite difference method and confirmed that this leads to a solver
of order 1. Gorenflo [15] introduced a second order difference method (accuracy
O(h2)). He described sufficiently smooth zero extension conditions to achieve the
desired accuracy.

The approach is a generalization of the well-known backward difference oper-
ator for ODEs. By substituting the fractional derivative α for the integer order
derivative, the approximation of the α-th derivative is

h−α 5α
h y(t) = D̃αy(t) = h−α

[t/h]∑

i=0

(−1)i

(
α
i

)
y(t− ih). (4.24)
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Thus, for example, the first order approximation to the single term problem (1.1)
can be represented by the difference scheme,

yj = −λhαyj−1 −
j∑

i=1

w
(α)
i y(tj−i) + hαg(tj) (4.25)

where,

w
(α)
i = (−1)i

(
α
i

)
.

5. Linear Test Equations. To illustrate the convergence behaviour of the various
single-term methods we vary the value of α of the test equation,

Dαy + y = t2 +
2t2−α

Γ(3− α)
(5.1)

y(0) = 0, which has the exact solution y = t2. Different values of α are chosen to
highlight that the convergence order can depend upon the value of α. In [7] and
[11] Diethelm and Ford proved that the convergence of the Implicit Quadrature and
Predictor Corrector methods are of the order O(h2−α) and O(h1+α) respectively.
As usual we use M to denote the number of corrector iterations. The Approximate
Mittag-Leffler method [14] (with p = 2) is of order O(h2), while the Collocation [1]
and Finite Differences [15] methods we have implemented are both of order O(h).

From a user’s perspective, what is of more interest is how much time is taken
to achieve a solution of a particular accuracy. Tables 3-8 give the information to
assess this. For example, in Table 3, the Approximate Mittag-Leffler method with
h = 1/128, has an absolute error of 4.71e-006, compared to the absolute error
of 2.73e-05 for the Implicit Quadrature method, however the number of KFlops
required (1796.4 compared to 42.1) is much greater for the Approximate Mittag-
Leffler method. It turns out that neither of these methods is the most economical
because, if we look at Table 4, we can see that the Predictor Corrector method with
(M = 8) is much more efficient.

Remark 5.1. One could consider also nonlinear fractional differential equations
and make a similar comparison of the efficiency of the methods. Here it would be
necessary (except for the predictor-corrector method) to use some form of nonlinear
solver (such as a Newton iteration) at each step to solve the nonlinear equations. We
have considered this matter elsewhere (see [6]) and we concluded that the extra work
involved in using the predictor-corrector method for a nonlinear problem compared to
its use for a linear problem was minimal. As we shall see in our later comparison
for linear equations, the extra overhead of a Newton solver for solving nonlinear
equations means that the alternative methods we have considered are certainly not
competitive with the predictor-corrector scheme.

6. Comparison of efficiency of Single-term Fractional Differential Equa-
tion solvers. We plot, for each method, the logarithm or the absolute error at
time T against the logarithm of the FLOP count. The ‘ideal’ numerical method’s
path will lie close to the bottom left of the graph. This represents a small error
for a small computational cost. Points where the paths of the methods cross rep-
resent critical values where one method becomes more numerically efficient than
the other. We have shown experimentally that the paths of the various methods
can be extrapolated reasonably successfully to explore whether, for smaller step
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Predictor Corrector (M=1) Implicit Quadrature
h error y(1) KFlops Time EOC error y(1) KFlops Time EOC
1/8 9.84e-02 2.5 0.05 2.88e-03 1.2 0.00
1/16 3.50e-02 5.2 0.11 1.49 9.15e-04 2.6 0.00 1.65
1/32 1.27e-02 11.5 0.16 1.46 2.87e-04 5.9 0.05 1.68
1/64 4.72e-03 27.0 0.28 1.43 8.88e-05 14.9 0.11 1.69
1/128 1.79e-03 70.4 0.55 1.40 2.73e-05 42.1 0.22 1.70

Approximate Mittag-Leffler Collocation
1/8 1.19e-03 5.9 0.06 1.25e-01 5.2 0.05
1/16 2.99e-04 22.3 0.06 1.99 6.24e-02 11.2 0.11 1.00
1/32 7.50e-05 92.9 0.06 2.00 3.08e-02 27.8 0.17 1.02
1/64 1.88e-05 405.9 0.11 2.00 1.51e-02 79.5 0.33 1.03
1/128 4.71e-06 1796.4 0.27 2.00 7.40e-03 256.6 0.93 1.03

Finite Differences
1/8 1.63e-02 0.9 0.00
1/16 8.19e-03 2.3 0.05 0.993
1/32 4.11e-03 6.9 0.06 0.996
1/64 2.06e-03 23.1 0.11 0.998
1/128 1.03e-03 83.0 0.44 0.999

Table 3. Test equation D1/4y + y = t2 + 2t1.75

Γ(2.75)

Predictor Corrector (M=2) Predictor Corrector (M=4)
h error y(1) KFlops Time EOC error y(1) KFlops Time EOC
1/8 3.34e-02 1.9 0.06 9.39e-03 2.9 0.05
1/16 1.14e-02 4.0 0.06 1.56 2.16e-03 6.4 0.11 2.12
1/32 3.81e-03 9.6 0.11 1.58 4.93e-04 15.4 0.17 2.13
1/64 1.27e-03 25.2 0.22 1.58 1.13e-04 40.9 0.39 2.13
1/128 4.25e-04 74.9 0.44 1.58 2.59e-05 122.8 0.77 2.12

Predictor Corrector (M=8) Predictor Corrector (M=16)
1/8 1.06e-03 5.1 0.06 1.06e-03 9.3 0.16
1/16 2.68e-04 11.2 0.16 1.98 2.68e-04 20.8 0.33 1.98
1/32 6.78e-05 27.0 0.33 1.98 6.78e-05 50.3 0.66 1.99
1/64 1.71e-05 72.4 0.66 1.99 1.71e-05 135.4 1.26 1.99
1/128 4.29e-06 218.5 1.37 1.99 4.29e-06 410.0 2.53 1.99

Table 4. Test equation D1/4y + y = t2 + 2t1.75

Γ(2.75)

sizes (or equivalently, long run times) any paths cross for step lengths outside the
ranges we tried. The gradient of the path represents (in some sense) the order of
numerical efficiency. Thus two paths which are parallel will possess the same order
of numerical efficiency but different levels of absolute error.

The graphical technique was used to compare methods for the test equation

Dαy + y = t2 +
2t2−α

Γ(3− α)
, y(0) = 0,
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Predictor Corrector (M=1) Implicit Quadrature
h error y(1) KFlops Time EOC error y(1) KFlops Time EOC
1/8 2.97e-02 1.3 0.00 1.07e-02 1.2 0.00
1/16 9.18e-03 2.8 0.05 1.69 3.90e-03 2.6 0.05 1.45
1/32 2.94e-03 6.6 0.05 1.64 1.41e-03 5.9 0.06 1.47
1/64 9.71e-04 17.3 0.16 1.60 5.07e-04 14.9 0.11 1.48
1/128 3.27e-04 51.0 0.33 1.57 1.81e-04 42.1 0.22 1.49

Approximate Mittag-Leffler Collocation
1/8 1.90e-03 5.9 0.06 1.06e-01 5.2 0.06
1/16 5.00e-04 22.3 0.06 1.99 5.24e-02 11.2 0.11 1.02
1/32 1.29e-04 92.9 0.06 2.00 2.56e-02 27.8 0.16 1.04
1/64 3.29e-05 404.7 0.11 2.00 1.25e-02 79.5 0.33 1.03
1/128 8.36e-06 1797.7 0.27 2.00 6.13e-03 256.6 0.93 1.03

Finite Differences
1/8 3.43e-02 0.9 0.00
1/16 1.73e-02 2.3 0.05 0.991
1/32 8.66e-03 6.9 0.06 0.996
1/64 4.34e-03 23.1 0.11 0.998
1/128 2.17e-03 83.0 0.44 0.999

Table 5. Test equation D1/2y + y = t2 + 2t1.5

Γ(2.5)

Predictor Corrector (M=2) Predictor Corrector (M=4)
h error y(1) KFlops Time EOC error y(1) KFlops Time EOC
1/8 5.99e-03 1.9 0.05 5.53e-04 2.9 0.06
1/16 1.34e-03 4.0 0.06 2.16 2.11e-04 6.4 0.05 1.39
1/32 3.08e-04 9.6 0.11 2.13 6.12e-05 15.4 0.17 1.79
1/64 7.18e-05 25.2 0.22 2.10 1.63e-05 40.9 0.38 1.91
1/128 1.70e-05 74.9 0.38 2.08 4.20e-06 122.8 0.77 1.96

Predictor Corrector (M=8) Predictor Corrector (M=16)
1/8 1.06e-03 5.1 0.05 1.06e-03 9.3 0.17
1/16 2.68e-04 11.2 0.22 1.98 2.68e-04 20.8 0.28 1.98
1/32 6.78e-05 27.0 0.33 1.98 6.78e-05 50.3 0.60 1.99
1/64 1.71e-05 72.4 0.66 1.99 1.71e-05 135.4 1.27 1.99
1/128 4.29e-06 218.5 1.37 1.99 4.29e-06 410.0 2.58 1.99

Table 6. Test equation D1/2y + y = t2 + 2t1.5

Γ(2.5)

exact solution y = t2, for various values of α.
On a first reading, Figure 1 seems to show that the Implicit Quadrature method

performs most economically for α = 1/4. Based on further experiments, this would
also appear to be the case for all 0 < α < 1/2. After closer examination however,
one can see that the slopes of the Implicit Quadrature and the Predictor Corrector
(M = 8) paths could possibly cross for smaller h. Extrapolating the paths as in
Figure 2 shows that the paths cross when log2(error) = −18, which corresponds
to an error of 2.5 × 10−6. This size of error could be achieved using a step size of
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Predictor Corrector (M=1) Implicit Quadrature
h error y(1) KFlops Time EOC error y(1) KFlops Time EOC
1/8 1.23e-02 1.3 0.00 3.03e-02 0.9 0.00
1/16 3.34e-03 2.8 0.06 1.88 1.30e-02 1.9 0.00 1.22
1/32 9.63e-04 6.6 0.05 1.79 5.55e-03 4.5 0.05 1.23
1/64 2.77e-04 17.3 0.17 1.80 2.35e-03 11.9 0.11 1.24
1/128 8.07e-05 51.0 0.27 1.80 9.92e-04 36.1 0.22 1.24

Approximate Mittag-Leffler Collocation
1/8 1.27e-03 6.0 0.00 8.94e-02 5.1 0.05
1/16 4.02e-04 22.2 0.06 1.66 4.55e-02 11.1 0.11 0.97
1/32 1.16e-04 93.3 0.05 1.79 2.28e-02 27.6 0.22 1.00
1/64 3.20e-005 408.5 0.17 1.86 1.13e-02 79.1 0.44 1.01
1/128 8.62e-006 1799.0 0.28 1.89 5.65e-03 255.8 1.15 1.00

Finite Differences
1/8 5.43e-02 0.7 0.00
1/16 2.74e-02 1.8 0.00 0.99
1/32 1.38e-02 5.8 0.06 0.99
1/64 6.91e-03 14.7 0.11 1.00
1/128 3.45e-03 49.9 0.38 1.00

Table 7. Test equation D3/4y + y = t2 + 2t1.25

Γ(2.25)

Predictor Corrector (M=2) Predictor Corrector (M=4)
h error y(1) KFlops Time EOC error y(1) KFlops Time EOC
1/8 6.33e-04 1.9 0.00 8.21e-04 2.9 0.05
1/16 2.81e-05 4.0 0.05 4.49 2.16e-04 6.4 0.11 1.93
1/32 1.41e-05 9.6 0.17 0.99 5.58e-05 15.4 0.16 1.95
1/64 7.06e-06 25.2 0.22 1.00 1.43e-05 40.9 0.38 1.96
1/128 2.38e-06 74.9 0.44 1.75 3.64e-06 122.8 0.77 1.97

Predictor Corrector (M=8) Predictor Corrector (M=16)
1/8 8.46e-04 5.1 0.05 8.46e-04 9.3 0.11
1/16 2.18e-04 11.2 0.17 1.96 2.18e-04 20.8 0.27 1.96
1/32 5.59e-05 27.0 0.33 1.96 5.59e-05 50.3 0.66 1.96
1/64 1.43e-05 72.4 0.72 1.97 1.43e-05 135.4 1.26 1.97
1/128 3.64e-06 218.5 1.37 1.97 3.64e-06 410.0 2.53 1.97

Table 8. Test equation D3/4y + y = t2 + 2t1.25

Γ(2.25)

h = 1/165. In Figure 3 the step size for the Implicit Quadrature method has been
reduced to h = 1/1024 and the Predictor Corrector M = 8 method to h = 1/256.
The figure shows that the paths these methods do intersect at the predicted value
of log2(error) = −18.
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7. Dependence on the Smoothness of the Solution. Several of the earlier
papers rely on the smoothness of the solution to prove results on the rates of con-
vergence. This is the classical approach from ordinary differential equations. How-
ever, for fractional equations even polynomial solutions may become non-smooth
following fractional order differentiation. Therefore we explore briefly whether the
form of the solution affects the performance of the method. Table 9 shows how
the exact solution y determines which method is most economical for a fixed value
of α. This indicates that the differentiability of the function directly affects the
relative performance of the methods. This is supported by the experimental data
in Tables 9 - 11. Based on our experiments it seems that the higher the powers of
t appearing in the solution, the more efficient, relatively, the Predictor-Corrector
method becomes. Since this method has always been either optimal or quite near
to the optimal method, we would propose that it should be the method of choice
in most applications.
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Figure 1. α = 1/4

Figures 4 and 5 give similar graphs for other values of α.

Shows the number of steps (nD) with m = 8 corrections at
which the Adams method outperforms the Diethelm method,
for Single term equations with the following exact solutions.

value of α y = t2 y = t3 y = t4 y = t5 y = t7 y = t10

α = 0.25 nD = 165 nD = 260 nD = 360 nD = 425 nD = 555 nD = 750
Table 9. Power of t

This still leaves us to choose the number of corrector iterations: Table 10 shows
how the optimum number of corrector iterations varies with α in our experiments.
In the Table, the value m represents the optimum number of corrector iterations
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Figure 2. α = 1/4 extrapolated
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Figure 3. α = 1/4 extended

and the value (nD) is the number of steps at which there is a change in the optimum
number of corrector iterations.

Table 11 shows how varying the coefficient of t2 has little effect on the optimum
number of steps nD.

8. Conclusions and Further Work. Based on our experiments, the Predictor-
Corrector method [11] is recommended in most situations, however the Implicit
Quadrature method [7] performs well for linear problems with α < 1/2. As we
pointed out previously, the Predictor-Corrector method has the advantage of easy
implementation for non-linear problems too and also is nearly optimal even when
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Figure 4. α = 1/2

−20 −18 −16 −14 −12 −10 −8 −6 −4 −2
−2

0

2

4

6

8

10

12

log2 (error)

lo
g2

 (
K

F
lo

ps
)

Adams M=1
M=2      
M=4      
M=8      
M=16     
Diethelm 
Luchko   
Blank    
Gorenflo 

Figure 5. α = 3/4

the Implicit Quadrature is better. Therefore in our opinion it should be the method
of choice for those who want to use a single method.

As we remarked earlier, the recent paper [9] indicates that a convolution quad-
rature method based on a third order backward difference scheme might be com-
petitive and this would be worthy of experimentation in the future. Both time and
space constraints have prevented its consideration here.
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Single term equation which has the exact solution.
value of α Exact y = t2 Exact y = t3

α > 1 m = 1 m = 1
1 > α > 0.6 m = 2 m = 2
α = 0.575 m = 4 → 2 at nD = 20 m = 2
α = 0.55 m = 4 → 2 at nD = 128 nD = 6 m = 2
α = 0.525 m = 4 nD = 9 m = 2
α = 0.5 m = 4 nD = 13 m = 2
α = 0.45 m = 4 nD = 10 m = 4
α = 0.4 m = 4 m = 4
α = 0.35 nD = 18 m = 4 nD = 10 m = 4
α = 0.3 nD = 75 m = 4 nD = 34 m = 4

nD = 90 m = 8 nD = 135 m = 8
α = 0.25 nD = 165 m = 8 nD = 260 m = 8
α = 0.2 nD = 260 m = 8 nD = 700 m = 8
α = 0.15 nD = 1500 m = 8 nD ' 400 m = 8

Table 10. Varying α

shows the optimum number of steps (nD) and corrections (m) at
which the Adams method outperforms the Diethelm method.

value of α Exact y = 2t2 Exact y = 10t2 Exact y = t2

2

α = 0.25 nD = 172 m = 8 nD = 172 m = 8 nD = 170 m = 8
Table 11. Solution is a multiple of t2
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