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Abstract— This paper presents a metric-based matching
algorithm to estimate the robot planar displacement by
matching dense two-dimensional range scans. The contri-
bution is a geometric distance that takes into account the
translation and orientation of the sensor at the same time.
This result is used in the two steps of the matching - estimation
process. The correspondences between scans are established
with this measure and the minimization of the error is
also carried out in terms of this distance. As a result, the
translation and rotation are compensated in this framework
simultaneously. In fact, this is the contribution with respect to
previous work that addressed only translation or translation
and rotation but separately. The new technique has been
implemented and tested on a real vehicle. The experiments
illustrate how it is more robust and accurate than prior
techniques, especially facing large rotation errors. At the end
of the paper, we give an extension of our distance measure
to 3D range-data matching problems.

I. INTRODUCTION

One of the key issues in autonomous mobile robots is to
keep track its position. Usually this problem is addressed
by using the on board sensors to gather information of the
environment for localization and mapping purposes. Many
applications in robotics use techniques to estimate the robot
displacement among successive range measurements. This
paper presents a new method that achieves this goal. In
robotics these techniques have been successfully applied
to a wide range of issues as an ameliorated odometry.
For example to improve the performance of simultaneous
localization and mapping algorithms [22], [9], [11], to build
local maps for indoor and outdoor navigation [15], [12],
[16] and to implement people tracking systems for mobile
platforms [21]. Furthermore, the pattern recognition and
machine vision communities have also addressed the sensor
matching problem in the context of 3D data registration,
object recognition or scene understanding [20], [13]. In this
paper, we also give the perspective to apply our technique
to these communities.

The objective of the scan matching techniques is to
compute the relative motion of a vehicle between two con-
secutive configurations by maximizing the overlap between
the range measurements obtained at each configuration.
They usually assume an initial estimation of the relative
pose of the scans that is provided by the vehicle odometry.

One of the main differences between the existing al-
gorithms is the usage or not of high-level entities such as
lines or planes. In structured environments, one can assume

the existence of polygonal structure in the environment
[8], [6], [4]. These methods are fast and work quite well
for indoor environments. However, they limit the scope
of application to the extraction of geometric features that
are not always available in unstructured environments. On
the other hand, a great deal of work has been done to
perform in any type of scenario dealing with raw data.
Roughly, these techniques are based on an iterative process
that estimates the sensor displacement that better explains
the overlap between the scan measurements. For example
[3] constructs a piecewise continuous differentiable density
that models on a grid the probability to measure a point,
and then, apply the Newton’s algorithm. By converting the
scans to statistical representations, [23] iteratively compute
the crosscorrelation that results in the displacement. In [7]
the motion parameters are estimated using a constrained
velocity equation for the scanned points.

However, the most popular methods usually follow the
Iterative Closest Point (ICP) algorithm (principle borrowed
from the computer vision community [2]). They are based
on an iterative process where they first compute the cor-
respondences between the scans, and then they minimize
the distance error to compute the sensor displacement
[14], [19], [10], [1], [18]. This process is repeated with
this new estimate until convergence. A common feature
of most versions of ICP is the usage of the Euclidean
distance to establish the correspondences and to apply
the least squares. However, this distance does not account
for the fact that points far from the sensor could be far
from its correspondent due to rotations of the sensor. To
overcome this limitation [14] proposed to compute two set
of correspondents, one by the Euclidean distance and other
by the angular distance (to capture the sensor rotation). The
gain in accuracy is however lost in complexity and conver-
gence since the method builds two sets of matchings and
performs two minimizations (rotation and translation) at
each iteration. We understand that this is a central problem
of the ICP algorithms: to find a way to measure (to find
the closest correspondent and to apply the minimization)
in such a way that it captures the sensor translation and
rotation at the same time.

Our contribution resides in the definition of a new
distance measure in the image space of the sensor that
takes into account both, translation and rotation at the same
time. The distance between two points is the norm (in a



Pose ref

Pose new

p’
1

p
2
’

p3’

p2

p3

1p

Obstacle

Range
measurements

Fig. 1. This Figure depicts the scan-matching problem: to compute the
sensor relative displacement between poses using the range information.
Due to the discrete nature of the data it is assumed local structure in the
reference scan (a segment that joins successive points).

sense we are going to define) of the smallest rigid body
transformation that leads a point to the other one. I.e our
distance naturally depends on translation and rotation. We
use this distance in both steps of the ICP algorithm:

1) matching of each point of a scan with the closest
feature of the other scan in terms of our distance,

2) computation of relative displacement by least square
minimization of the errors (in terms of our distance).

With this formulation we obtain results that ameliorate
by far the algorithm that we were using [14] (the most
used algorithm for scan matching) in terms of robustness
and precision. Furthermore, we present in the paper the
extension to the 3D problem, which could be used by the
robotics, computer vision and graphics communities that
use the ICP algorithm to address sensor motion estimation,
location and map building, object recognition, pattern anal-
ysis, image registration, and scene understanding among
others.

The paper is distributed as follows: in Section II we
describe the ICP algorithm. In Section III-C we show how
to use our distance to match points of two laser scans
and we express the least square criterion we minimize,
based on this distance measure. In Section IV, we discuss
the experimental results and we compare our method with
existing methods. Finally we draw our conclusions in
Section V and we discuss possible extensions and future
work in Section VI.

II. THE ITERATIVE CLOSEST POINT (ICP) ALGORITHM

Given a reference scan Sref , the new scan Snew and
a rough estimation q0 of the relative displacement of the
sensor between the scans, the objective is to estimate the
real displacement q = (x, y, θ) between them (Figure 1).

The ICP algorithm addresses this problem with an it-
erative process in two steps. At each iteration k, there is
a search of correspondences between the points of both
scans. Then the estimation of relative displacement qk is
improved through a minimization process. The process is
repeated until convergence:

1) First let place each point p′i of Snew in the system of
reference Sref using the estimation qk, p′′i = qk(p′i).
Then, due to the discrete nature of the data, it is
assumed a local structure in Sref between successive
points (pi, pi+1) of Sref [14] (Figure 1). Thus, the
correspondent point to p′′j is the closest point pj
belonging to one of the segments [pi pi+1]:

min{d(p′′j , [pi pi+1])} (1)

The result is a set C of n correspondences (pj , p
′′
j ).

2) Compute the displacement estimation qmin that min-
imizes the mean square error between pairs of C. The
criterion to minimize is q:

Edist(q) =

n∑

i=1

d(q(pj), p
′′
j )2 (2)

If there is convergence the estimation is qmin, oth-
erwise we iterate again with qk+1 = qmin.

The ICP uses the Euclidean distance in both steps of the
algorithm. The contribution of this work is a distance that
takes into account translation and rotation simultaneously.
In order to use this new concept in the ICP we need to
define the distance, give the expression of distance point
to segment, and formulate the least squares in terms of the
new distance. In the next section we address these issues.

III. DISTANCE MEASURE AND TOOLS ASSOCIATED

In this section, we introduce first our distance measure
in the plane, defined as the minimum norm among the rigid
body transformations that move a point to another one.

A. Distance point to point

A rigid body transformation in the plane is defined
by a vector q = (x, y, θ) representing the position and
orientation (−π < θ < π) of the scanner sensor in the
plane. We define the norm of q as :

‖q‖ =
√
x2 + y2 + L2θ2 (3)

where L is a positive real number homogeneous to a length.
Given two points p1 = (p1x, p1y) and p2 = (p2x, p2y) in
R2, we define a distance between p1 and p2 as follows:

dp(p1, p2) = min{‖q‖ such that q(p1) = p2} (4)

where

q(p1) =

(
x+ cos θ p1x − sin θ p1y

y + sin θ p1x + cos θ p1y

)
(5)

It can be easily checked that dp is a real distance satisfying
for any p1 and p2:

1) dp(p1, p2) = dp(p2, p1)
2) dp(p1, p2) = 0 implies p1 = p2

3) dp(p1, p3) ≤ dp(p1, p2) + dp(p2, p3)

Unfortunately, there is no closed form expression of the
above distance w.r.t. the coordinates of the points. However,
we can compute an approximation valid when the mini-
mum norm transformation is small, by linearizing (5) about
θ = 0. The set of rigid-body-transformations satisfying



q(p1) = p2 can be approximated by the set of solutions
(x, y, θ) of the following system:

x+ p1x − θ p1y = p2x

y + θ p1x + p1y = p2y

The set of solutions is infinite and can be expressed by:

x = p2x − p1x + θ p1y

y = p2y − p1y − θ p1x

where θ is a parameter for the set of solutions. Let us
recall that according to (4), we need to find the solution
that minimizes the norm of q = (x, y, θ). For a given θ, this
norm is given by the following equation, after substituting
the above expressions of x and y into (3):

‖q‖ = (δx + θ p1y)2 + (δy − θ p1x)2 + L2θ2

where δx = p2x − p1x and δy = p2y − p1y . Expanding the
above expression, we obtain a polynomial of degree 2 in
θ:

‖q‖2 = aθ2 + bθ + c

with a = p2
1y + p2

1x + L2, b = 2(δxp1y − δyp1x) and
c = δ2

x+ δ2
y . Notice that a > 0 implies that this expression

has a unique minimum for θ = −b/(2a) and the value of
this minumum is given by

‖q‖2 =
−b2 + 4ac

4a

=
−(δxp1y − δyp1x)2 + (p2

1y + p2
1x + L2)(δ2

x + δ2
y)

p2
1y + p2

1x + L2

= δ2
x + δ2

y −
(δxp1y − δyp1x)2

p2
1y + p2

1x + L2

Finally, the distance between p1 and p2 is approximated
by:

dapp (p1, p2) =

√
δ2
x + δ2

y −
(δxp1y − δyp1x)2

p2
1y + p2

1x + L2
(6)

Notice that as expected, our distance is smaller than the
Euclidean distance, since this latter is the norm of the
translation between p1 and p2 and therefore is bigger than
the minimum norm.

To better understand the properties of this distance
measure, let us compute the iso-distance curves. Again,
we do not have the exact expression of the iso-distance
curves but if we use approximation (6), we can prove that
the iso-distance curves relative to dapp :

{p2 ∈ R2 such that dapp (p1, p2) = c}

are ellipses centered on p1 with principal axes (p1x, p1y)

and (−p1y, p1x) and lengths c
√

1 + ‖p1‖2
L2 and c (see

Figure 2).
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Fig. 2. The iso-distance curves of dapp are ellipses centered on p1.

B. Distance point to segment

In this subsection we give an expression of the distance
point to segment (1). Let us consider a point p1 and a line
segment defined by two points s1 and s2. The distance
between p1 and segment [s1 s2] is defined by:

dps(p1, [s1 s2]) = min
λ∈[0,1]

dp(p1, (1− λ)s1 + λs2) (7)

Let us denote by d(λ) = dp(p1, (1 − λ)s1 + λs2) the
distance between p1 and the point on segment [s1 s2] of
parameter λ. Following the same reasoning as in previous
Section, we can approximate this distance by:

d(λ)2 ≈ δx(λ)2 + δy(λ)2 − (δx(λ)p1y − δy(λ)p1x)2

p2
1y + p2

1x + L2
(8)

where

δ(λ) = (δx(λ), δy(λ)) = s1 − p1 + λ(s2 − s1) (9)

Substituting (9) into (8), we get a polynomial of degree 2
in λ:

d(λ)2 ≈ aλ2 + bλ+ c

with the following coefficients:

a = u2
2x + u2

2y −
(p1yu2x − p1xu2y)2

p2
1x + p2

1y + L2

b = 2(u2xδ1x + u2yδ1y)

−2
(p1yu2x − p1xu2y)(δ1xp1y − δ1yp1x)

p2
1x + p2

1y + L2

c = δ2
1x + δ2

1y −
(δ1xp1y − δ1yp1x)2

p2
1x + p2

1y + L2

where u2 = (u2x, u2y) = s2 − s1 and δ1 = (δ1x, δ1y) =
s1 − p1. Coefficient a is positive and therefore the above
expression has a unique minimum in λ, for λ = −b

2a :



−b2+4ac
4a . The expression of the approximation of the

distance dps(p1, [s1 s2]) for small rotations is thus given
by:

dps(p1, [s1 s2]) ≈





dp(p1, s1) if λ < 0
dp(p1, s2) if λ > 1√
−b2+4ac

4a if 0 ≤ λ ≤ 1

and the closest point to p1 on [s1 s2] in these three cases
is respectively s1, s2 and s1 − b

2as2.

C. Least Square Minimization

To compute and minimize the criterion proposed in (2),
we use the following notation: the coordinates of pi and p′′i
are respectively (pix, piy) and (p′′ix, p

′′
iy). We assume that θ

is small and thus we linearize the above expression about
θ = 0. We get the following expression:

Edist(q) =

n∑

i=1

(
δ2
ix + δ2

iy −
(δixpiy − δiypix)2

p2
iy + p2

ix + L2

)
(10)

where

δix = p′′ix − pix + piyθ − x
δiy = p′′iy − pixθ − piy − y

(10) is quadratic w.r.t. q:

Edist(q) = qTAq − 2bT q + c

where c is a constant number, A is a symmetric matrix

A =




a11 a12 a13

a12 a22 a23

a13 a23 a33




a11 =
∑n
i=1

p2
ix+L2

p2
ix+p2

iy+L2 a12 =
∑n
i=1 pixpiy

a13 =
∑n
i=1 piy(p2

ix + p2
iy − 1) a22 =

∑n
i=1

p2
iy+L2

p2
ix+p2

iy+L2

a23 =
∑n
i=1 pix(1− p2

ix − p2
iy) a33 =

∑n
i=1

L2(p2
ix+p2

iy)

p2
ix+p2

iy+L2

and

b =




∑n
i=1

(p2
ix+L2)(p′′ix−pix)+pixpiy(p′′iy−piy)

p2
ix+p2

iy+L2

∑n
i=1

(p2
iy+L2)(p′′iy−piy)+pixpiy(p′′ix−pix)

p2
ix+p2

iy+L2

−L2
∑n
i=1

piy(p′′ix−pix)−pix(p′′iy−piy)

p2
ix+p2

iy+L2




The value of q that minimizes Edist(q) is thus

qmin = A−1b

IV. EXPERIMENTAL RESULTS

In this Section we outline the experimental results. We
implemented the method on a wheelchair mobile robot
equipped with a Sick LMS-200 laser range scanner.

In order to compare our method (metric-based ICP,
MbICP in short) with existing scan matching techniques,
we used the widely known IDC algorithm [14]. We did
not implement this method ad hoc for the comparison,
since we have this tool working in our laboratory [17],
[15], [16]. As proposed by the authors, our IDC algorithm
uses two types of correspondences and interpolates in
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Fig. 3. This Figure the two scans used in the experiment.

both between successive range points (local structure). We
also reject outliners using visibility criteria [14] and range
criterions [18]. Furthermore we use a trimmed version of
the ICP to manage the correspondences [5] that improves
the least squares minimization, and a smooth criterion of
convergence [18]. We also implemented these features in
the MbICP algorithm. In order to show a fair comparison,
we used the same values for common parameters (actually
we used our IDC previous parameters for the MbICP), and
we only tuned the metric length in the MbICP (the only ad
hoc parameter). In the experiments, we found that L = 2
gave the best results.

We outline next two types of experiments. The first eval-
uates the properties of the MbICP algorithm by matching
a pair of scans (Figure 3). The second one is a run with
the vehicle to evaluate the global algorithm performance
(Figures 5 and 6).

The first experiment consisted on matching two different
scans for different location errors. They were both acquired
in the same sensor location but at different times. Thus,
the scans are different due to the sensor noise and we
know precisely the ground truth (0, 0, 0). We remark that
we selected a place to take the scans where the range
information was more or less equally distributed in all
directions (Figure 3), which is a well-conditioned situation
for both methods. To test both algorithms, we added
random noise to the initial location estimate up to 0.2m
in x and y, and up to 45◦ in θ. Notice how large are
the maximum errors especially in rotation 1. We repeated
the experiment 1000 times starting at random locations.
Convergence of the algorithm was achieved when the error
ratio was below 0.0001% and the maximum number of
iterations was 500.

Figure 4a depicts the final estimates of both the MbICP
and IDC, and Figure 4b the number of iterations of both
algorithms. The MbICP converged all the times and all the
estimates concentrate around the true solution (0, 0, 0) . In

1Previous comparisons of scan matching [18] use maximum rotation
errors up to 6◦.
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Fig. 4. (a) Estimations of both algorithms. (b) Convergence rate. (c) Zoom on the estimations around the ground truth. (d) Figure (c) projected in
the XY plane.

other words, all the results of the MbICP were True Positive
(see Table below). On the other hand, in 19.6% of the trials
the IDC did not converge leading to negatives (Figure 4b).
In some of them 18.6% the algorithm was close to the
solution (False Negatives). Another measure of robustness
is that some of the IDC positives were False Positives.
They corresponded to situations were the IDC converged
but towards a local minimum that did not correspond to
the real solution (Figure 4a).

TABLE I

MBICP VS IDC (%)

Positive False Positive Negative False Negative
MbICP 100 0 0 0

IDC 75.2 5.2 1 18.6

The conclusion is that the MbICP is more robust than
the IDC because: (i) all the results of the MbICP were True
Positives while the IDC had Negatives (they correspond to
large errors in orientation that could not be compensated).
We think that relaxing the convergence criterion for the
IDC would reduce the number of False Negatives but they
would not disappear. And (ii) the IDC had 5.2% of False

Positives (also due to large errors in orientation) which are
really bad for these methods since the estimate is wrong
although the result is positive.

Figure 4c depicts a zoom on Figure 4a around the ground
truth (0, 0, 0), and Figure 4d the projection on the XY
plane. There we see how all the solutions of the MbICP
concentrate around the ground truth, while all the IDC
solutions are farther. Next table depicts the mean and
standard deviation of the error in both coordinates (we only
use the True positives):

TABLE II

MBICP VS IDC ERROR

x error y error th error
µ σ µ σ µ σ

MbICP (10−3) 0.15 0.02 0.09 0.1 0.0 0.0
IDC (10−3) 0.68 0.1 0.78 0.17 -0.001 0.01

In all coordinates, the medium and covariance of the
errors are lower in MbICP than in the IDC. In other words,
the MbICP is more accurate than the ICP.

Figure 4b depicts the number of iterations of the trials
where we see how the converge rate is similar for both
methods (without taking into account all the times that



Fig. 5. This Figure depicts the odometry data of a trial of 70 meters.

the IDC did not converge). We want to remark this test
was carried out in extreme conditions for both methods.
In real scenarios the error noise should be lower (as is the
next experiment). However, the experiment illustrates the
advantages in robustness and precision of the MbICP.

The second experiment corresponds to a run in our
University with the wheelchair vehicle. The robot travelled
70 meters getting out of an office, travelling around a
corridor and coming back to the office. The experiment is
difficult because the floor was very polished and the vehicle
slipped constantly with a poor effect on the odometry
(Figure 5). In addition, the scenario was full of chairs,
tables, baskets which are non structured, and the corridor
is quite long and thus there was not many frontal structure
to correct the location in this direction.

Figure 6 depicts the result with each method. We see
how the visual result of the MbICP is better than the ICP
since it is able to align the corridor and the office when it
comes back. The rotational accumulated error is lower for
the MbICP than for the IDC. Moreover, note how the error
in translation is also quite small. These experiments show
how the behavior of the algorithm in a complete experiment
is globally better in the MbICP than in the IDC, since the
MbICP is more robust and accurate than the IDC.

V. CONCLUSIONS

This paper presents a metric-based matching algorithm
to estimate the robot planar displacement by matching
dense two-dimensional range scans. The contribution is a
geometric distance that takes into account the translation
and orientation of the sensor at the same time.

We have implemented and tested the technique in a real
vehicle and compared with the widely used Iterative Dual
Corresponce scan matching algorithm. The results demon-
strate that we improve previous methods in robusteness and
precission with a similar convergence rate. This is because
we compensate at the same time the three variables of
the minimization (two of translation and one of rotation).

b

Fig. 6. (Top) Visual map obtained with the MbICP. (Bottom) Visual
map of the IDC.

Another important consequence is that our method is able
to deal with large odometry errors especially in rotation
(up to 45◦), which is the difficulty of most of the existing
approaches.

Finally we address in the next Section how this technique
could be extended to be used in other contexts.

VI. DISCUSSION AND FUTURE WORK

In this Section we briefly describe some extensions and
applications of this metric based scan matching technique.
The first issue to address is how to extend the metric to
deal with more complex systems (with crossrelations in the
coordinates). This could be done by extending the norm to
be:

||q||2 = qT .A.q (11)

where A = {ai,j , i, j = 1 . . . 3} is a symmetric and
semipositive matrix. The expression of the distance is then:

dap = |δT .Q.δ| 12 (12)



where δ = (δx δy)T and:

Q =

(
a11 − k2

2

2k1
a12 − k2k3

4k1

a12 − k2k3

4k1
a22 − k2

3

2k1

)
(13)

k1 = a11p
2
y + a22p

2
x − 2a12pxpy−

− 2a23px + 2a33py + a33

k2 = 2(a11py − a12px + a33)
k3 = 2(a12py − a22px + a23)

This expression of the distance is the generalization of
the distance presented in this paper. This would allow to
address the same problem but describing more complex
systems.

Another important matter is the extension of the distance
formulation to three dimensions. Up to now we have
demonstrated that the distance is also a distance in R3 and
the expression given two points p1 and p2 is:

dap = ||p2 − p1||2 −
||p1 ⊗ p2||2
||p1||2 + L2

(14)

This result allows to address scan matching problems
in 3D workspaces and to use it in other communities that
use the ICP algorithm to address sensor motion estimation,
location and map building, object recognition, pattern anal-
ysis, image registration, and scene understanding among
others. Up to our knowledge the idea of a unified frame-
work to take into account translation and rotation in the
ICP has not been explored in these communities yet [20].

Finally, we are exploring how this distance relates with
an statistical distance called the Mahalanobis distance.
More precisely, by associating the matrix A with the
information matrix of vector q, and transforming it to
the point location using the Jacobian of q, we obtain a
matrix C defining the uncertainty of the point location. The
Mahalanobis distance using C is equal to the expression
of our approximate distance. However, we remark that
this is true for the approximate expression of the distance
(obtained linearizing). In any case, we stress that, to our
knowledge, the scan- matching problem has not been
addressed with the Mahalanobis distance yet. The results
of this paper suggest promising research opportunities in
this direction.
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