
JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 19, 433-449 (2003)

433

Resource Allocation for Independent Real-Time Tasks in
Heterogeneous Systems for Energy Minimization*

YANG YU AND VIKTOR K. PRASANNA

Department of EE-Systems
University of Southern California

Los Angeles, CA 90089-2562, U.S.A.
E-mail: {yangyu, prasanna}@halcyon.usc.edu

In recent years, power management and power reduction have become critical is-

sues in portable systems that are designed for real-time use. In this paper, we study the
problem of statically allocating a set of independent real-time tasks to a system consist-
ing of heterogeneous processing elements, each enabled with discrete Dynamic Voltage
Scaling. The goal is to minimize the overall energy dissipation of the system without
violating the real-time requirements of the tasks. The problem is first formulated as an
extended Generalized Assignment Problem. A linearization heuristic (LR-heuristic) is
then extended to solve the problem. An analysis of the upper bound on the number of
tasks that the heuristic may fail to allocate is also presented. Our experiments show that
when the average utilization of the system is high, the LR-heuristic achieves 15% off the
optimal energy dissipation for small size problems, while the performance of a classic
greedy heuristic is around 90% off the optimal. A relative performance improvement of
up-to 40% over the classic greedy heuristic is also observed for large size problems. Fi-
nally, an analytical performance comparison between the LR-heuristic and the greedy
heuristic is presented.

Keywords: energy minimization, real-time, task allocation, generalized assignment
problem, linearization heuristic

1. INTRODUCTION

In recent years, power management and power reduction have become increasingly
important in portable systems that are designed for real-time use. These systems must
be designed to meet both functional and timing requirements. Thus, the quality of ser-
vice delivered by such systems depends on both the accuracy of computations and their
timeliness. The performance as well as the limited energy constraints require imple-
menting different parts of the systems in dedicated hardware blocks. As a result, mod-
ern real-time systems [16] are generally composed of a set of heterogeneous processing
elements (PEs), where a PE can be a general-purpose processor, a RISC core, or a
field-programmable gate array. Such heterogeneous systems may be geographically dis-
tributed, or may reside on a single board, yielding heterogeneous multiprocessors that
exploit task-level parallelism in applications. Examples of such systems are mobile
computing environment [14] and distributed embedded systems [8], among others. Due

Received May 15, 2002; accepted July 25, 2002.
Communicated by Biing-Feng Wang, Stephan Olariu and Gen-Huey Chen.
* This work is supported by the DARPA Power Aware Computing and Communication Program under contract

No. F33615-C-00-1633. A preliminary version of the paper was presented at the 2002 International Confer-
ence on Parallel and Distributed Systems, Chungli, Taiwan.

YANG YU AND VIKTOR K. PRASANNA

434

to the limited energy supply of such systems, hardware components, protocols, and ap-
plications should be designed with the goal of minimizing energy dissipation. Further-
more, the capability of reducing the energy dissipation in such systems while meeting the
real-time requirements largely depends on the allocation of system resources. Hence, a
pre-runtime resource allocation algorithm that takes into consideration the real-time con-
straints is crucial. However, to determine a “good” resource allocation for energy
minimization in such systems is challenging because of the need to address real-time
constraints and system heterogeneity. More specifically, the energy dissipation of the
system must be carefully balanced against the desired system performance.

Typically, power management and reduction can be achieved by using two methods:
(1) activity based dynamic power management [21] and (2) dynamic supply voltage scal-
ing [27]. The first approach brings a processor into a power-down mode, where only
certain parts of the computer system (e.g., clock generation and time circuits) are kept
running, while the processor is in an idle state. However, the applicability of dynamic
power management techniques in real-time systems is limited, due to the latency over-
head for state transition. The second approach, Dynamic Voltage Scaling (DVS), is
based on exploiting the convex relation between the CPU supply voltage and power dis-
sipation. The rationale behind the DVS technique is to stretch out the task execution
time through CPU frequency and voltage reduction. Although systems capable of oper-
ating on an almost continuous voltage/frequency spectrum are becoming a reality, most
of the contemporary processors that support DVS use a few discrete voltage levels.
Two example processors that support discrete DVS are (1) the Crusoe processor [29],
which can adjust the clock frequency from 200 to 700 MHz and the corresponding sup-
ply voltage from 1.1V to 1.6V, in 33 MHz steps, and (2) the ARM7D processor [28],
which can run at 33 MHz (5V supply voltage) and 20 MHz (3.3V supply voltage).

In this paper, we study the problem of statically allocating a set of independent
real-time tasks onto a system consisting of heterogeneous processing elements, each
equipped with the discrete DVS feature. The tasks considered in this paper are assumed
to be periodic. Sporadic and aperiodic tasks can be treated as periodic by allotting to
them a periodically-replenished execution budget [1]. These problems require deter-
mining the assignment of tasks onto processors as well as the voltage setting of each task.
In general, such allocation problems are NP-complete. Therefore, heuristics are desired
to obtain sub-optimal solutions. The allocation problem is first formulated as a Integer
Linear Programming (ILP) problem, which can be viewed as an extension of the tradi-
tional Generalized Assignment Problem [25]. An extended LR-heuristic [25] is then
used to solve the problem. We present a lower bound on the number of tasks that the
LR-heuristic may fail to allocate. Our experiments show that when the real-time con-
straints are tight, the LR-heuristic achieves 15% off the optimal energy dissipation for
small size problems, while the performance of a classic greedy heuristic is around 90%
off the optimal. A relative performance improvement of up to 40% over the classic
greedy heuristic is also observed for large size problems. Finally, we present an ana-
lytical performance comparison of the LR-heuristic and the greedy heuristic.

The rest of the paper is organized as follows. A brief discussion of related work is
presented in section 2. The system and application models are discussed in section 3.
A formal ILP formulation of the problem based on the models is presented in section 4.
The LR-heuristic for solving the problem is presented and analyzed in section 5. Ex-

ENERGY-AWARE RESOURCE ALLOCATION IN REAL-TIME SYSTEMS

435

perimental results are presented in section 6. Concluding remarks and a discussion of
future work are given in section 7.

2. RELATED WORK

Studies on scheduling strategies for have aimed to adjust the CPU speed so as to
reduce energy dissipation in the context of a non-real-time environment. One approach
was proposed in [27], where time is divided into 10-50 msec intervals, and the CPU
speed is adjusted using a task-level scheduler based on processor utilization over the pre-
ceding interval. A comparison of several predictive and non-predictive approaches to
voltage changes was presented in [9]. It was concluded in [9] that smoothing helps more
than the prediction. A stochastic model for prediction of execution times for streaming
multimedia applications on a frame-by-frame basis was developed in [23]. An
integrated DVS and DPM approach was then proposed to save energy based on the sto-
chastic model. In [24], a workload prediction strategy based on adaptive filtering of the
past workload profile was proposed, and several filtering schemes were analyzed.

Most of the existing related works are limited to using voltage scaling for energy
minimization on single-processor systems. Some examples are the works in [3, 4,
10-12, 20, 22, 30]. One of the earliest work, [30], provided an optimal static scheduling
algorithm to minimize the total energy dissipation while satisfying the relative deadline
of all tasks. Synthesis techniques for core-based real-time system-on-chip were studied
in [10, 11]. A non-preemptive variable voltage scheduling heuristic with the assump-
tion of zero delay in changing voltage levels was developed in [10]. In [11], preemptive
variable voltage scheduling that takes into account the inherent limitation on the voltage
changing rates was considered. Based on the assumption that the voltage cannot change
continuously, a static voltage scheduling problem was studied in [12] and formulated as a
ILP problem. An efficient solution for scheduling periodic real-time tasks with (poten-
tially) different power consumption characteristics was presented in [3]. The equiva-
lence of the static scheduling problem with the reward-based scheduling problem with
concave reward functions was shown in [4]. In [20], a class of algorithms was proposed
to modify the OS’s real-time scheduler and task management service, thus providing en-
ergy savings while preserving deadline guarantees. In [22], an off-line fixed-priority
scheduling technique was presented. The above work established basic theories for
using voltage scaling. However, the problem becomes significantly different in the envi-
ronment of networked embedded systems, where multiple processors are available.

The studies most relevant to our problem include [7, 13, 17, 32, 33]. An energy
minimization technique for independent periodic tasks on homogeneous multiprocessor
platforms was discussed in [7]. It was assumed in [7] that an EDF scheduling policy
and task migration (without penalty) were available in the system. The problem was
formulated as an optimization problem with a quadratic objective function and non-linear
constraint functions.

The technique proposed in [13] addresses the problem of synthesizing a set of inde-
pendent tasks on a multi-processing system with the continuous DVS feature and
non-preemptive scheduling policy. In that work, the problem of allocating the tasks was
solved by first assigning tasks to the processors and then adjusting the voltage levels of

YANG YU AND VIKTOR K. PRASANNA

436

the processors. The task assignment procedure iteratively selects a task for assignment
based on a parameterized objective function and then determines the suitable processor
for executing the task using another parameterized objective function. A meta-algorithm
was also developed to statistically determine the parameters involved in the two objec-
tive functions.

A power-conscious joint scheduling technique for periodic task graphs and aperi-
odic tasks in distributed real-time systems was presented in [17]. That work assumed a
non-preemptive task scheduling approach and considered the communication cost be-
tween tasks. Resource allocation was carried out in two steps. A feasible static resource
allocation, task assignment and scheduling was first obtained using a system synthesis
tool [6] along with a genetic algorithm. The next step is re-scheduling of tasks on each
individual node that tries to evenly distribute the slackness among tasks. A runtime
mechanism is then used to scale the voltage.

For frame-based tasks and homogeneous multi-processor environments, a dynamic
processor supply voltage adjustment mechanism using slack reclamation was discussed
in [33]. A longest-task-first partitioning heuristic is employed to assign tasks onto
processors. A slack sharing algorithm is then used at runtime to determine how to ad-
just the voltage levels of the processors.

In [32], a two-phase framework was presented to investigate the problem in which
precedence constraints are present between tasks, where identical periods for all tasks
and a non-preemptive scheduling are assumed. The first phase determines appropriate
assignment of tasks to processors using a greedy heuristic. The second phase deter-
mines the voltage levels for executing tasks using a convex programming mechanism.

The contribution of our work is to systematically formulate the resource allocation
problem in real-time systems as an extended Generalized Assignment Problem (GAP).
Because of the inherent similarity between these two problems, techniques that are avail-
able for solving GAP can be extended to solve the resource allocation problem. In this
paper, the extension of a linearization heuristic to solve GAP is studied. Most relevant
techniques tend to consider the assignment of tasks and the settings of voltage levels as
two separate subproblems and solve them in two consecutive steps. However, by si-
multaneously solving the two aforementioned subproblems in a single formulation, we
can efficiently explore the interrelationship between the two subproblems.

3. PROBLEM DEFINITION

System Model: The system consists of a set of m PEs, {PE1, PE2, …, PEm}. Each PE
is equipped with discrete DVS feature and can adjust its voltage independently of others.
Let Vk denote the number of discrete voltage levels of PEk, k = 1, 2, …, m. In addition,
an Earliest Deadline First (EDF) [15] scheduling policy is assumed to be employed by
each PE.

Application Model: A set of n independent periodic real-time tasks, {T1, T2, …, Tn}, are
considered. The period of Ti is denoted by Pi, which is assumed to be equal to the relative
deadline of each instance of Ti [15]. This means that each instance of a task must com-
plete execution before the next instance of the task is activated. The planning cycle of
the system is defined as the least common multiple of the periods of all tasks, denoted as

ENERGY-AWARE RESOURCE ALLOCATION IN REAL-TIME SYSTEMS

437

LCM. It is well known that for the above real-time application, it suffices to analyze the
behavior of the system within a planning cycle.

The workload of a task is measured based on the worst-case number of CPU cycles
required to execute the task, which can be different on different PEs, due to system het-
erogeneity. The worst-case number of CPU cycles required by Ti to execute on PEk is
assumed to be a finite positive number, denoted by Cik. The execution time of Ti on PEk

under a constant speed S (given in cycles per second) of PEk is .)(S

C

ik
ikSt = The value

of S is determined by the supply voltage of PEk, which can be set to Vk discrete levels.
In addition, the utilization of Ti on PEk under speed S, uik(S), is defined as the ratio of the

execution time to the period of the task. Thus, we have .)(
)(

i

ik
P

St

ik
Su = Let SMAXik de-

note the maximum speed of executing Ti on PEk. In a heterogeneous environment, the
value of SMAXik for a particular Ti can be different for different PEs. However, the ef-
fect of such a difference can be captured by normalizing Cik with SMAXik, while setting
the value of SMAXik to 1. Thus, without loss of generality, we assume that SMAXik
equals 1 for all Ti and PEk.

In each PE, the voltage is assumed to dynamically switch, if necessary, upon the ar-
rival or the resumption of execution (because of preemptive task scheduling) of task in-
stances. An upper bound on the number of such switches during the execution of an

instance of Ti is given by .
1∑ =

n

j P

P

j

i The time overhead associated with this switching

is assumed to be included in the worst-case workload of the corresponding task. The
power consumption of task Ti on PEk under speed S is denoted by gik(S), a strictly in-
creasing convex function, represented by a polynomial of at least second degree [11].
By assuming that the value of S is fixed during the time used to execute Ti, we can cal-
culate the corresponding energy dissipation as gik(S)tik(S) (recall that tik(S) is the corre-
sponding execution time). Due to system heterogeneity, the exact form of the polyno-
mial function, gik, can be different for executing different tasks on the same PE and/or for
executing the same task on different PEs.

Resource Allocation: A resource allocation is defined as an assignment of all the tasks to
the PEs, together with the setting of the voltage level for each task on the corresponding
PE. Each task can be assigned to exactly one PE and can be executed with a fixed volt-
age level on that PE.

Assuming that a set of tasks, T, is allocated on PEk, the EDF schedule of tasks in T
is feasible if and only if the total utilization of all tasks in T does not exceed the compu-
tation capacity of PEk [15], i.e., ,1)(≤∑ ∈ ikikTT

Su
i

 where Sik is the speed of executing

Ti on PEk. An allocation is called feasible if for every PEk in the system, the EDF
schedule of tasks allocated on PEk is feasible. A feasible allocation is optimal if the
overall energy dissipation of the system is minimal among all feasible allocations. Be-
cause different tasks may have different periods, the overall energy dissipation is calcu-
lated as the energy dissipation of the system during a planning cycle.

YANG YU AND VIKTOR K. PRASANNA

438

4. INTEGER LINEAR PROGRAMMING FORMULATION

The problem defined in section 3 essentially requires an assignment of tasks to the
voltage levels that are available in the system. Let m̂ denote the total number of voltage

levels in the system, i.e., .ˆ
1∑ =

=
m

k k
Vm Also, we label the d-th voltage level of PEk as

the j-the voltage level of the system, denoted by VLj, where .
1

1∑
−

=
+=

k

i i dVj Thus, by

referring to a voltage level, we unambiguously mean the corresponding PE and the cor-
responding voltage level of the PE. Let VLG(k) denote the set of voltage levels of PEk.

Let u'ij denote the utilization of task Ti when executed on voltage level VLj. Simi-
larly, let eij denote the energy dissipation for executing an instance of Ti on VLj. Since we
are optimizing the system energy dissipation during a planning cycle, let e'ij denote the
total energy dissipation for executing Ti on VLj during a planning cycle. Thus, we have

 .
iP

LCM
ijij

ee =′ The values of u'ij’s and e'ij’s can be calculated based on the analysis

given in section 3. Given an allocation, the utilization of voltage level VLj, Uj, is defined
as the sum of the utilization of tasks that are assigned to VLj. Therefore, for any feasible

allocation, we must have .,,1,1
)(

mkU
jkVLGVL j

K=≤∑ ∈

Let {xij} be a set of 0-1 variables such that xij equals one if Ti is assigned to VLj, and
zero otherwise. The problem can now be formulated as the following ILP problem,
ILP(1):

Minimize ∑ ∑= =
′

n

i

m

j ijij
xe

1

ˆ

1

Subject to ∑ =
≤−′

n

i jijij
Uxu

1
0 j = 1, 2, …, ,m̂ (1)

∑ ≤
∈

1
)(jkVLGVL
U

j

 k = 1, 2, …, m, (2)

∑ =
=

m

j ij
x

ˆ

1
1 i = 1, 2, …, n, (3)

}1 ,0{∈
ij

x i = 1, 2, …, n,

 j = 1, 2, …, .m̂ (4)

This formulation is in the form of a Generalized Assignment Problem (GAP) [25]
except for constraints (2). More specifically, the capacity of resources, in terms of the
upper-bound on the utilization of voltage levels, is defined in groups in ILP(1), whereas
in the case of GAP, they are defined individually. If the value of Uj’s in ILP(1) are known,
a corresponding GAP formulation can be obtained by substituting the Uj’s with their cor-
responding values and removing constraints (2). Intuitively, the values of Uj’s can be
determined by solving the linear relaxation of ILP(1) obtained by replacing constraints (4)
with non-negativity constraints. Let LP(1) denote the linear relaxation of ILP(1).

5. RELAXATION HEURISTIC

In this section, we first give an upper bound on the number of split tasks (to be de-
fined later) in a basic solution [19] of LP(1). A linear relaxation heuristic proposed in [25]

ENERGY-AWARE RESOURCE ALLOCATION IN REAL-TIME SYSTEMS

439

for solving GAP is then extended to solve ILP(1). Finally, an upper bound on the number
of tasks that the heuristic may fail to allocate is derived.

For any solution to LP(1), a task Ti is said to be a split task if there exist j and j',
such that j ≠ j' and xij, xij' > 0. Task Ti is said to be integrally assigned, otherwise. Also, a
PE or voltage level is said to be allocated to capacity if its utilization equals 1 according
to the (partial) allocation determined by a solution of LP(1). Due to the similarity be-
tween ILP(1) and GAP, it can be easily shown that the upper-bound on the number of
split jobs in a basic solution to LP(1) is the number of voltage levels allocated to capacity
(Theorem 1 in [25]), which is .m̂ However, because of the special properties introduced
by constraints (2) in ILP(1), we show an alternative formulation of the problem, and,
consequently, improve the upper-bound to m.

Lemma 5.1 In every basic solution of LP(1), the number of split tasks is at most equal to
the number of PEs allocated to capacity.

Proof: Observing that in LP(1), the sum of the utilization of voltage levels that belong to
any VLG(k) cannot exceed 1, we can obtain the following alternative linear programming
formulation, LP(2):

Minimize ∑ ∑= =
′

n

i

m

j ijij
xe

1

ˆ

1

Subject to ∑ ∑= ∈
≤′

n

i ijijkVLGVL
xu

j1)(
1 k = 1, 2, …, m,

 ∑ =
=

m

j ij
x

ˆ

1
1 i = 1, 2, …, n,

 0≥
ij

x i = 1, 2, …, n,

 j = 1, 2, …, .m̂

It is easy to verify that the set of xij’s in any basic solution to LP(1) constitutes a ba-
sic solution to LP(2). Also, from any basic solution to LP(2), the values of Uj’s can be
determined and, consequently, form a basic solution to LP(1).

Given a basic solution to LP(2), the utilization of Ti on PEk can be calculated as

.
)(ijijkVLGVLik

xuu
j

′=∑ ∈
 Let max

ik
u denote the maximal value among u'ij’s, where VLj ∈

VLG(k). Similarly, let min

ik
u denote the minimal value among u'ij’s. As an intermediate

value between max

ik
u and min

ik
u , uik can be represented as ,

ik

min

ikik

max

ik
yuyu ′+ where yij,

0≥′iky and .
)(∑ ∈

=′+
ijkVLGVLikik

xyy
j

 More specifically, we have
min
ik

max
ik

ik
max
ik

ij
uu

uu
y

−
−

=
α

and
min
ik

max
ik

min
ikik

ij
uu

uu
y

−
−=′ α , where .

)(∑ ∈
=

ijkVLGVL
x

j

α We can now consider the following linear

programming formulation, LP(3), for which a feasible solution is desired:

Subject to 1min

1

max ≤′+∑ = ikik

n

i ikik
yuyu k = 1, 2, …, m,

∑ =
=′+

m

k ikik
yy

1
1)(i = 1, 2, …, n,

0, ≥′
ikik

yy i = 1, 2, …, n,

 k = 1, 2, …, m.

YANG YU AND VIKTOR K. PRASANNA

440

Clearly, for any basic solution to LP(2), there is a corresponding basic solution to
LP(3). Furthermore, LP(3) forms a linear relaxation of the allocation problem with mul-
tiple variable-speed PEs [26]. Any basic solution to LP(3) is known to have the prop-
erty that the number of split tasks is at most equal to the number of PEs allocated to ca-
pacity [26]; thus, the claim follows. �

Let max

j
U denote the maximum possible value of Uj (recall that Uj is the utilization

of voltage level VLj). Given a partial assignment of tasks, it is easy to see that the value
of max

j
U equals the remaining capacity of the PE that VLj belongs to. The remaining

capacity of a PE can be calculated by subtracting from 1 the sum of the utilization of
tasks that are integrally assigned to the PE, according to the partial assignment. Spe-
cifically, assuming that VLj belongs to PEk, we have .1

1)(∑∑ ′−=
=∈ ilxkVLGVL

max

j
uU

ill

 In

addition, a variable xij is defined as useless if max

jij
Uu >′ . Here, the definition of a useless

variable is an extension of its original definition in [25], due to constraints(2) in ILP(1).
Now, the linear relaxation heuristic, LR-heuristic, proposed in [25] can be extended to
solve ILP(1). The LR-heuristic is as follows:

Input: an instance of ILP(1)
Output: an assignment of tasks to voltage levels

Step 0) Remove all useless variables; if no variables remain, stop.
Step 1) Solve the linear relaxation.
Step 2) Fix all xij’s of value 1; delete the corresponding tasks and update the remaining

capacity of PEs.
Step 3) Go to Step 0.

Initially, the values of sU max
j ' are set to 1, for j = 1, 2, …, m̂ , since no task has yet

been assigned. Once a (partial) assignment is obtained by executing Step 1 at least once,
the values of sU max

j ' are updated accordingly. The main idea of LR-heuristic is to de-
lete useless variables after fixing all xij’s of value 1 in Step 2. It is known (Theorem 2 in
[25]) that there is at least one useless variable if any split task exists in a basic solution of
the linear relaxation.

Since the number of split tasks in any basic solution is at most m, it is easy to check
that Step 1 of LR-heuristic is executed at most m + 1 times. It can be further shown that
the number of tasks the LR-heuristic fails to allocate is bounded.

Corollary 5.1 If ILP(1) has a feasible solution, then the LR-heuristic fails to allocate at
most m − 1 tasks.

The proof follows from Lemma 5.1 and Theorem 4 in [26].

6. EXPERIMENTAL RESULTS

In this section, we show the quality of solutions produced by LR-heuristic obtained
in our experiments. A simulator based on the system and application models presented in
section 3 was developed to evaluate the performance of LR-heuristic in solving our prob-
lem using synthetic task sets. The goals of our experiments were: (1) to measure and

ENERGY-AWARE RESOURCE ALLOCATION IN REAL-TIME SYSTEMS

441

compare the performance of LR-heuristic against the optimal solution and a classic
greedy heuristic (to be explained later), and (2) to measure the impact of the variation of
several system parameters (e.g., the utilization of the system and the number of voltage
levels per PE) on the performance of the LR-heuristic.

6.1 Experimental Procedure

The experiments were divided into two sets, for small size problems and large size
problems, respectively. We explain the parameters settings for both sets in this section.

For small size problems, the number of PEs was fixed at 5 (so that the optimal solu-
tion could be computed in a reasonable amount of time by using LINDO), while the
number of tasks varied from 20 to 40. The system heterogeneity was captured by the dis-
tribution of the worst-case number of CPU cycles (Cik) required by different tasks on
different PEs. It could be characterized by means of task and PE heterogeneities. To
emphasize the impact on system performance due to high heterogeneity, the results for
high task and PE heterogeneities are given in this paper. Let C denote the matrix com-
posed by {Cik}, where i = 1, 2, …, n and k = 1, 2, …, m. The C matrix was generated
using a Gamma distribution based method [2]. The mean value along the task axis, μtask,
was set to 200. Two other parameters that indicate the task and PE heterogeneities, Vtask
and VPE, were both set to 0.5.

Pi, the period of task Ti, was generated based on the C matrix. Let wi be the largest
value among the elements in the i-th row of C, and let m

nX = (recall that n is the num-
ber of tasks, and that m is the number of PEs). Pi is calculated as

sys

i
U

w
．X, where Usys is

a pre-specified positive value that approximates the average utilization of the entire sys-
tem when assuming that all the processors are running at their maximum speeds. A
large value of Usys indicates a high level of contention over resources caused by tasks.
Note that from the above equation, the utilization of an individual task decreases when
the number of tasks increases with a fixed number of PEs, so that the utilization of the
entire system is sustained. To set the value of LCM within some reasonable range, the
value of Pi was adjusted to some close value, so the value of LCM was at most at 36000.

For small size problems, the number of voltage levels for all PEs was fixed at 4. The
maximum CPU speed of each PE was set to 1.0, and the minimum speed was set to 0.25.
It was assumed that other CPU speeds were distributed uniformly between the maximum
and minimum speeds. Therefore, the other two levels of CPU speed were set to 0.75 and
0.5. The energy function of Ti on PEk, gik(S), was of the form aik … Sbik, where S is the
CPU speed of PEk, and aik and bik were random variables with uniform distributions be-
tween 2 and 10, and 2 and 3, respectively [18].

For large size problems, the number of PEs was fixed at 10, while the number of
tasks varied from 60 to 100. The number of DVS levels per PE was set to 8. Other pa-
rameters were the same as those for small size problems.

The greedy heuristic (referred to as Greedy hereafter) is an extension of the min-min
heuristic that is widely used for task allocation in heterogeneous computing [5]. The
original objective function of the min-min heuristic is to minimize the makespan [5] of a
set of tasks. Here, the heuristic is modified so that the overall energy dissipation of the
system is minimized, while satisfying the utilization constraint of each PE. The pseudo
code for Greedy is shown in Fig. 1.

YANG YU AND VIKTOR K. PRASANNA

442

Begin
1. T*← T;
2. max

j
U ← 1 for j = 1, 2, …, m̂

3. While T* is not empty, Do
4. For each Ti ∈ T*, find the voltage level, V Lj, such that

ij
e′ is minimal among all

the voltage levels and max

jij
Uu ≤′ . Record the information as a turple (Ti, V Lj, ij

e′)
5. Select the tuple that gives the minimal value of

ij
e′

6. Allocate the task in the selected tuple to the corresponding voltage level in the
turple and remove the task from T*

7. Update max

j
U of all voltage levels

End

Fig. 1. Pseudo code for the Greedy heuristic.

6.2 Results

The experimental results for small size problems when Usys was set to 40%, 50%,
and 67% are shown in Fig. 2. It shows the ratio of the overall system energy dissipation
obtained from two heuristics to the optimal. Each bar represents the average value of the
ratio over a specific number of instances when both heuristics succeeded in finding a
feasible mapping. The number of instances for each case (shown next to the number of
tasks in the figure) was chosen to be large enough such that the presented ratio had a
95% confidence interval with 5% (or better) precision. The number of instances could
differ for different cases. The confidence intervals are indicated by the short lines at the
top of each bar. During the experiments, if any heuristic failed in any instance, that in-
stance was excluded from the calculations of the average ratio and the confidence inter-
val. However, these instances were included in the calculation of the miss rate of each
heuristic (to be explained later). The plots clearly show that LR-heuristic always out-
performed Greedy. When Usys = 40%, both heuristics performed quite well. When the
value of Usys increased (i.e., the real-time constraints became tighter, and the level of
contention over resources became higher), the performance of both heuristics became
worse. However, the performance of LR-heuristic was still quite acceptable when Usys
= 67%, achieving 15% off the optimal, while the performance of Greedy was around
90% off the optimal.

It was observed that when Usys increased, the number of instances for which Greedy
failed to find a feasible allocation increased rapidly. On the contrary, the LR-heuristic
still succeeded in all instances, even when Usys = 67%. Table 1 shows the miss rate (the
number of instances that a heuristic failed, normalized with respect to the total number of
instances) and the average number of unallocated tasks over all instances of both heuris-
tics when Usys = 67% and 50%. The astonishingly high miss rate of Greedy when Usys =
67% indicates the inappropriateness of using Greedy for problems with high resource
contention.

ENERGY-AWARE RESOURCE ALLOCATION IN REAL-TIME SYSTEMS

443

(a) Usys = 40%.

(b) Usys = 50%.

(c) Usys = 67%.

Fig. 2. Experimental results for small size problems.

YANG YU AND VIKTOR K. PRASANNA

444

Table 1. The miss rate and the average number of unallocated tasks of LR-heuristic and
Greedy for small size problems.

Usys 50% 67%
of tasks 20 25 30 35 40 20 25 30 35 40

LR-heuristic 0 0 0 0 0 0 0 0 0 0 miss rate
(%) Greedy 1 2 0 0 1 40 49 59 72 73

LR-heuristic 0 0 0 0 0 0 0 0 0 0 unallocated
tasks Greedy 0.01 0.03 0 0 0.02 0.69 1.04 1.48 2.21 2.34

Fig. 3 shows the relative performance of LR-heuristic and Greedy for large size
problems when Usys = 60% and 90%. Again, the number of instances for each case was
chosen to be large enough such that the presented data had a 95% confidence interval
with 5% (or better) precision. Similar trends in performance were observed when the
value of Usys increased. When Usys equaled 90%, the LR-heuristic showed upto 40%
improvement over the performance of Greedy. It was noticed that for the same value of
Usys, the relative performance of Greedy was better for large size problems, compared
with small size problems. This may be due to the fact that for the same value of Usys, the
deadline constraints for large size problems are actually not as tight as those in the case
of small size problems because (1) there are 8 DVS levels for each PE in large size prob-
lems, whereas there are 4 DVS levels in small size problems, and (2) for large size prob-
lems, the size of C matrices increases, hence leading to a higher likelihood of getting lar-
ger values of wi’s (recall that wi is the largest value within the i-th row of C), and conse-
quently, larger periods for tasks.

(a) Usys = 60% (b) Usys = 90%

Fig. 3. Experimental results for larger size problems.

We also conducted experiments to study the impact of the number of DVS levels on
the performance of LR-heuristic and Greedy. The results are shown in Fig. 4. The per-
formance of both heuristics improved when the number of DVS levels increased. Addi-
tionally, LR-heuristic was much less sensitive to variation in the number of DVS levels.

Table 2 shows the average running time of both heuristics for small size and large
size problems. The running time of LINDO for small size problems is also presented for
comparison. The figure shows that when the number of tasks increased, the ratio of the

ENERGY-AWARE RESOURCE ALLOCATION IN REAL-TIME SYSTEMS

445

Fig. 4. Performance of heuristics as a function of the number of DVS levels (10 PEs, 80 tasks, Usys
= 80%).

Table 2. Average running time (in seconds) of LINDO and both heuristics.

Problem size 5 PEs, Usys = 50% 10 PEs, Usys = 60%
of tasks 20 25 30 35 40 60 70 80 90 100
LINDO 0.28 0.26 0.36 0.51 0.37 - - - - -

LR-heuristic 0.071 0.071 0.078 0.077 0.078 0.26 0.30 0.34 0.37 0.40
Greedy 0.0004 0.0007 0.0009 0.0013 0.0016 0.007 0.009 0.012 0.015 0.02

running time of LR-heuristic to that of Greedy decreased from 160 to 48 in the case of
small size problems, and from 37 to 21 in the case of large size problems. Since our
problem is an off-line design phase problem, where the running time is not a critical con-
cern, LR-heuristic is a good choice for finding a solution.

6.3 Performance Analysis

An analysis of the performance of the proposed LR-heuristic and the Greedy heuris-
tic (given in section 6.1) is presented in this section.

Lemma 6.1 There exists an infinite number of problem instances in which LR-heuristic
can find the optimal solution, while Greedy fails to find a feasible solution.

Proof: Consider a problem instance with m = n = a, where a is an integer > 1. Also, let
each PE have exactly one voltage level (with the corresponding CPU speed set to 1).
Thus, we have .ˆ am = For each Ti, 1 ≤ i ≤ a, the value of Pi is set to some positive con-
stant b. Let F denote the matrix {eij}, where i, j = 1, 2, …, a. The C and F matrices are
illustrated in Fig. 5. In Fig. 5, e is some positive constant. Since the CPU speed of every
PE is set to 1, each entry in C, Cij, equals the time needed to execute task Ti on PEj. It can
be verified that for this problem instance, a basic solution of LP(1) is to assign Ti to PEi,
for i = 1, 2, …, a. In other words, all tasks are integrally assigned in this basic solution.
Therefore, LR-heuristic is able to find a feasible solution of the problem after the first
iteration of the heuristic. It is easy to verify that this feasible solution is also the optimal
solution of the problem, which dissipates a ˙ e amount of energy in each planning cycle.

YANG YU AND VIKTOR K. PRASANNA

446

If the Greedy heuristic is used to solve the problem, it will first allocate T1 to PEa, then T2
to PEa-1, T3 to PEa-2, and so on. However, when Ta is the only remaining task to be allo-
cated, no PE can be used to generate a feasible assignment. �

 (a) C matrix (b) F matrix

Fig. 5. The C and F matrices for the problem instance in the proof of Lemma 6.1.

Lemma 6.2 There exists an infinite number of problem instances in which the perform-
ance (in terms of the overall energy dissipation of the system in a planning cycle) of the
solution found by LR-heuristic can be arbitrarily better than the performance of the solu-
tion found by Greedy.

Proof: The proof is a slight variation of the proof of Lemma 6.1. We use a similar
problem instance except that we change the value of Ca1 to b and the value of Ea1 to θ,
where θ > e + a − 1. By using an analysis similar to the analysis in Lemma 6.1, we can
see that LR-heuristic can find a feasible solution that dissipates a ˙ e amount of energy in
each planning cycle, by allocating Ti to PEi. However, if the Greedy heuristic is used to
solve the problem, it will find a solution that dissipates (e − 1)(a − 1) + θ energy during a
planning cycle by allocating Ti to PEa − i + 1. The ratio of (e − 1)(a − 1) + θ over a ˙ e can
be made arbitrarily large by varying θ. �

7. CONCLUDING REMARKS

This paper has discussed the problem of allocating a set of independent real-time
tasks in a heterogeneous system. The problem has been formulated as an extended
Generalized Assignment Problem and solved through an extension of LR-heuristic. An
upper-bound on the number of tasks that LR-heuristic may fail to allocate has been pre-
sented. An analytical comparison of the performance of LR-heuristic and a classic
greedy heuristic has also been given.

In the future, we plan to study some related problems that consider: (1) application
specified as a set of pipelines or directed acyclic graphs, and (2) continuous DVS fea-
tures. In the first class of problems, dependency constraints between tasks must be con-
sidered. Also, modeling and optimizing the communication time and energy costs offer
new challenges, especially in networked sensor environments, where com-

ENERGY-AWARE RESOURCE ALLOCATION IN REAL-TIME SYSTEMS

447

munication is carried out in an ad hoc fashion. Convex optimization techniques may be
used to solve the second class of problems. Also, we are interested in designing on-line
energy-aware scheduling policies for distributed real-time systems based on the tech-
niques developed in this paper.

This work is a part of the Power Aware Computing/Communication for Mobile Ad
Hoc and Sensor Networks (PACMAN) project at USC. Related results can be found at
http://pacman.usc.edu.

REFERENCES

1. T. F. Adbelzaher and K. G. Shin, “Period-based load partitioning and assignment for
large real-time applications,” IEEE Transactions on Computers, Vol. 49, 2000, pp.
81-87.

2. S. Ali, H. J. Siegel, M. Maheswaran, D. Hensgen, and S. Ali, “Task execution time
modeling for heterogeneous computing systems,” 9th Heterogeneous Computing
Workshop, 2000, pp. 185-199.

3. H. Aydin, R. Melhem, D. Mossé, and P. M. Alvarez, “Determining optimal
processor speeds for periodic real-time tasks with different power characteristics,”
13th Euromicro Conference on Real-Time Systems, 2001, pp. 225-232.

4. H. Aydin, R. Melhem, D. Mossé, and P. M. Alvarez, “Dynamic and aggressive
scheduling techniques for power-aware real-time systems,” 22nd Real-Time Systems
Symposium, 2001.

5. T. D. Braun, S. Ali, H. J. Siegel, and N. Beck, “A comparison of eleven static
heuristics for mapping a class of independent tasks noto heterogeneous distributed
computing systems,” Journal of Parallel and Distributed Computing, 2001, pp.
810-837.

6. R. P. Dick and N. K. Jha, “MOCSYN: Multiobjective core-based single-chip system
synthesis,” Design Automation & Test in Europe Conference, 1999, pp. 263-270.

7. S. Funk, J. Goossens, and S. Baruah, “Energy-minimization techniques for real-time
scheduling on multiprocessor platforms,” Technical Report UNC-CS TR01-030m
Dept. of Computer Science, University of North Carolina at Chapel Hill, 2001.

8. D. D. Gajski, F. Vahid, S. Narayan, and J. Gong, Specification and Design of
Embedded Systems, Prentice-Hall, NJ, 1994.

9. K. Govil, E. Chan, and H. Wasserman, “Comparing algorithms for dynamic
speed-setting of a low-power CPU,” ACM International Conference on Mobile
Computing and Networking, 1995, pp. 13-25.

10. I. Hong, D. Kirovski, G. Qu, M. Potkonjak, and M. Srivastava, “Power optimization
of variable voltage core-based systems,” 35th Design Automation Conference, 1998,
pp. 176-181.

11. I. Hong, G. Qu, M. Potkonjak, and M. Srivastava, “Synthesis techniques for
low-power hard real-time systems on variable voltage processors,” 19th IEEE
Real-Time Systems Symposium, 1998, pp. 178-187.

12. T. Ishihara and H. Yasuura, “Voltage scheduling problem for dynamically variable
voltage processors,” International Symposium on Low Power Electronics and
Design, 1998, pp. 197-202.

YANG YU AND VIKTOR K. PRASANNA

448

13. D. Kirovski and M. Potkonjak, “System-level synthesis of low-power hard real-time
systems,” 34th Design Automation Conference, 1997, pp. 697-702.

14. M. J. Kumar and S. Venkatesh, “Power saving schemes for mobile computing
environment,” 4th International Conference on Advanced Computing, 1996, pp.
296-302.

15. C. L. Liu and J. W. Layland, “Scheduling algorithms for multiprogramming in hard
real-time environment,” Journal of ACM, Vol. 20, pp. 46-61.

16. J. W. S. Liu, Real-Time Systems, Prentice-Hall, NJ, 2000.
17. J. Luo and N. K. Jha, “Power-conscious joint scheduling of periodic task graphs and

aperiodic tasks in distributed real-time embedded systems,” Computer-Aided Design,
2000, pp. 357-364.

18. P. Mejía-Alvarez, E. Levner, and D. Mossé, “An integrated heuristic approach to
power-aware real-time scheduling,” Workshop on Power-Aware Computer Systems,
2002.

19. C. H. Papadimitriou and K. Steiglitz, Combinatorial Optimization, Prentice-Hall, NJ,
1982.

20. P. Pillai and K. G. Shin, “Real-time dynamic voltage scaling for low-power
embedded operating systems,” 18th ACM Symposium on Operating Systems
Principles, 2001.

21. Q. Qiu and M. Pedram, “Dynamic power management based on continuous-time
Markov decision processes,” 36th Design Automation Conference, 1999, pp.
555-561.

22. G. Quan and X. Hu, “Energy efficient fixed-priority scheduling for real-time
systems on voltage variable processors,” 38th Design Automation Conference, 2001,
pp. 828-833.

23. T. Simunic, L. Benini, A. Acquaviva, P. Glynn, and G. D. Micheli, “Dynamic
voltage scaling and power management for portable systems,” 38th Design
Automation Conference, 2001, pp. 524-529.

24. A. Sinha and A. Chandrakasan, “Dynamic power management in wireless sensor
networks,” IEEE Design and Test of Computers, Vol. 18, 2001, pp. 62-74.

25. M. A. Trick, “A linear relaxation heuristic for the generalized assignment problem,”
Naval Research Logistics, Vol. 39, 1992, pp. 137-152.

26. M. A. Trick, “Scheduling multiple variable-speed machines,” Operations Research,
Vol. 42, 1994, pp. 234-248.

27. M. Weiser, B. Welch, A. Demers, and S. Shenker, “Scheduling for reduced CPU
energy,” USENIX Symposium on Operating Systems Design and Implementation,
1994, pp. 13-23.

28. The ARM Cooperation, http://www.arm.com.
29. The Transmeta Cooperation, http://www.transmeta.com.
30. F. Yao, A. Demers, and S. Shenker, “A scheduling model for reduced CPU energy,”

IEEE Annual Foundations of Computer Science, 1995, pp. 374-382.
31. Y. Zhang, X. Hu, and D. Z. Chen, “Task scheduling and voltage selection for energy

minimization,” 39th Design Automation Conference, 2002.
32. D. Zhu, R. Melhem, and B. Childers, “Scheduling with dynamic voltage/speed

adjustment using slack reclamation in multi-processor real-time systems,” 22nd
IEEE Real-Time Systems Symposium, 2001.

ENERGY-AWARE RESOURCE ALLOCATION IN REAL-TIME SYSTEMS

449

Yang Yu is a Ph.D. degree candidate in the department of
electrical engineering at the University of Southern California
(USC). He received both BS and MS degrees in computer science
from Shanghai JiaoTong University in China. His research
interests include system synthesis and resource management in
real-time environments, networked embedded systems, and
sensor networks.

Viktor K. Prasanna is a professor of electrical engineering
and computer science at the University of Southern California
(USC). He is also a member of the US National Science
Foundation supported Integrated Media Systems Center (IMSC)
and an associate member of the Center for Applied Mathematical
Sciences (CAMS) at USC. His research interests include high
performance computing, parallel and distributed systems,
network computing, and embedded systems. He received the BS
degree in electronics engineering from Bangalore University, the
MS degree from the School of Automation, Indian Institute of

Science, and the PhD degree in computer science from the Pennsylvania State University.
He has published extensively and consulted for industries in the above areas. He is the
steering committee cochair of the International Parallel and Distributed Processing
Symposium (IPDPS) (merged IEEE International Parallel Processing Symposium (IPPS)
and Symposium on Parallel and Distributed Processing (SPDP)). He is the steering
committee chair of the International Conference on High Performance Computing
(HiPC). He serves on the editorial boards of the Proceedings of the IEEE and the Journal
of Parallel and Distributed Computing. He was the founding chair of the IEEE Computer
Society’s Technical Committee on Parallel Processing. He is a fellow of the IEEE. He
serves as the Editor-in-Chief of the IEEE Transactions on Computers.

