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Designing Games for Distributed Optimization
Na Li and Jason R. Marden

Abstract—The central goal in multiagent systems is to design
local control laws for the individual agents to ensure that the
emergent global behavior is desirable with respect to a given
system level objective. Ideally, a system designer seeks to satisfy
this goal while conditioning each agent’s control law on the least
amount of information possible. This paper focuses on achieving
this goal using the field of game theory. In particular, we derive
a systematic methodology for designing local agent objective
functions that guarantees (i) an equivalence between the resulting
Nash equilibria and the optimizers of the system level objective
and (ii) that the resulting game possesses an inherent structure
that can be exploited in distributed learning, e.g., potential
games. The control design can then be completed utilizing any
distributed learning algorithm which guarantees convergence to a
Nash equilibrium for the attained game structure. Furthermore,
in many settings the resulting controllers will be inherently robust
to a host of uncertainties including asynchronous clock rates,
delays in information, and component failures.

I. INTRODUCTION

The central goal in multiagent systems is to design local
control laws for the individual agents to ensure that the emer-
gent global behavior is desirable with respect to a given system
level objective, e.g., [2]–[7]. These control laws provide the
groundwork for a decision making architecture that possesses
several desirable attributes including real-time adaptation and
robustness to dynamic uncertainties. However, realizing these
benefits requires addressing the underlying complexity asso-
ciated with a potentially large number of interacting agents
and the analytical difficulties of dealing with overlapping and
partial information. Furthermore, the design of such control
laws is further complicated by restrictions placed on the
set of admissible controllers which limit informational and
computational capabilities.

Game theory is beginning to emerge as a powerful tool
for the design and control of multiagent systems [6]–[10].
Utilizing game theory for this purpose requires two steps.
The first step is to model the agent as self-interested decision
makers in a game theoretic environment. This step involves
defining a set of choices and a local objective function for
each decision maker. The second step involves specifying a
distributed learning algorithm that enables the agents to reach
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a desirable operating point, e.g., a Nash equilibrium of the
designed game.

One of the core advantages of game theory is that it
provides a hierarchical decomposition between the distribution
of the optimization problem (game design) and the specific
local decision rules (distributed learning algorithms) [11]. For
example, if the game is designed as a potential game [12]
then there is an inherent robustness to decision making rules
as a wide class of distributed learning algorithms can achieve
convergence to a pure Nash equilibrium under a variety of
informational dependencies [13]–[16]. Several recent papers
focus on utilizing this decomposition in distributed control by
developing methodologies for designing games, in particular
agent utility functions, that adhere to this potential game
structure [6], [9], [11], [17]. However, these methodologies
typically provide no guarantees on the locality of the agent
utility functions or the efficiency of the resulting pure Nash
equilibria. Furthermore, the theoretical limits of what such
approaches can achieve are poorly understood.

The goal of this paper is to establish a methodology for
the design of local agent objective functions that leads to
desirable system-wide behavior. We define the locality of an
objective function by the underlying interdependence, i.e.,
the set of agents that impact this objective function. For
convention, we refer to this set of agents as the neighbor set.
Accordingly, an objective function (A) is more local than an
objective function (B) if the neighbor set of (A) is strictly
smaller than the neighbor set of (B). The existing utility design
methodologies, i.e., the wonderful life utility [6], [9] and
the Shapley value utility [18], [19], prescribe procedures for
deriving agent objective functions from a given system level
objective function. While both procedures guarantee that the
resulting game is a potential game, the degree of locality in the
agent objective functions is an artifact of the methodology and
the underlying structure of the system level objective. Hence,
these methodologies do not necessarily yield agent objective
functions with the desired locality.

The main contribution of this paper is the development of a
systematic methodology for the design of local agent objective
functions that guarantees the efficiency of the resulting equi-
libria. In particular, in Theorem 3 we prove that our proposed
methodology ensures (i) that there is an equivalence between
the equilibria of the resulting game and the optimizers of the
system level objective and (ii) that the resulting game is a
state based potential game as introduced in [20].1 A state
based potential game is an extension of a potential game
where there is an underlying state space introduced into the

1It is important to highlight that [20] focuses predominantly on learning
in state based potential games with finite action sets. The design of agent
utility functions to ensure the efficiency of the resulting equilibria, which is
the focus of this manuscript, is not addressed in [20].
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game structure. Our design utilizes these state variables as a
coordinating entity to decouple the system level objective into
agent specific objectives of the desired interdependence.

Our second result focuses on learning in state based poten-
tial games with continuous action sets. Much like potential
games, state based potential games possess an underlying
structure that can be exploited in distributed learning. Ac-
cordingly, in this paper we prove that the learning algorithm
gradient play, introduced in [21], [22] in the context of
strategic form games, converges to an equilibrium in any state
based potential game (see Theorem 4). Moreover, we provide
a characterization of the convergence rate of gradient play for
state based potential games (see Theorem 5). This work is
complimentary to the results in [20] which provide similar
results for state based potential games with finite action sets.

The design of multiagent systems parallels the theme of
distributed optimization which can be thought of as a con-
catenation between a designed game and a distributed learning
algorithm. One core difference between these two domains is
the fact that multiagent systems frequently place restrictions
on the set of admissible controllers. In terms of distributed
optimization, this places a restriction on the set of admissible
distributed algorithms. Accordingly, the applicability of some
common approaches to distributed optimization, e.g, subgradi-
ent methods [23]–[28], consensus based methods [2], [3], [29],
[30], or two-step consensus based approaches [10], [31], [32],
may be limited by the structure of the system level objective.

There are also a family of distributed algorithms that are
similar in spirit to the algorithms presented in this paper. In
particular, the algorithms presented in [27] and [32] introduce
a communication protocol between the agents with the purpose
of providing the agents with sufficient degrees of information
so that the agents can estimate their gradient to the system
level objective. While the proposed algorithms provide the
desired asymptotic guarantees, the robustness to variations in
clock rates, delays in information, and component failures is
currently uncharacterized. Furthermore, the complexity regard-
ing the analysis of these algorithms could make providing such
a characterization challenging. In contrast to [27] and [32], our
focus is on a methodological decomposition of the system level
objective into local agent objective functions. Through this
decomposition, we can take advantage of existing results in
the field of learning in games to derive distributed algorithms
that are robust to delays in information and heterogeneous
clock rates. This follows directly from [14] and [20] which
prove that any reasonable distributed learning algorithm will
converge to a pure Nash equilibrium in any (finite) potential
game or (finite) state based potential game.

This paper focuses on establishes a systematic approach for
distributed optimization. Accordingly, we focus predominantly
on a general class of optimization problem with the realiza-
tion that many problem instantiations relevant to multiagent
systems can be represented within this problem formulation.
Examples include collaborative sensing in a distributed PTZ
camera network and the design of local control strategies
for mobile sensor networks [33], [34]. For concreteness, in
Section V-B we formally describe a distributed routing prob-
lem and illustrate how the proposed methodology can lead

to desirable system behavior even when the agents possess
incomplete information regarding the network behavior.

II. PROBLEM SETUP AND PRELIMINARIES

We consider a multiagent system consisting of n agents
denoted by the set N = {1, · · · , n}. Each agent i ∈ N is
endowed with a set of decisions (or values) denoted by Vi
which is a nonempty convex subset of R. We denote a joint
value by the tuple v = (v1, · · · , vn) ∈ V =

∏
i Vi where V

is referred to as the set of joint values. Last, there is a global
cost function of the form φ : RN → R that a system designer
seeks to minimize. More formally, the optimization problem
takes on the form:2

minv φ(v1, v2, . . . , vn)
s.t. vi ∈ Vi,∀i ∈ N.

(1)

We assume throughout that φ is differentiable convex and a
solution of this optimization problem is guaranteed to exist.3

The focus of this paper is to establish an interaction frame-
work where each agent i ∈ N chooses its value independently
in response to local information. The information available
to each agent is represented by an undirected and connected
communication graph G = {N, E} with nodes N and edges E .
Define the neighbors of agent i as Ni = {j ∈ N : (i, j) ∈ E}
and we adopt the convention that i ∈ Ni for each i.
This interaction framework produces a sequence of values
v(0), v(1), v(2), . . ., where at each iteration t ∈ {0, 1, . . .}
each agent i chooses a value independently according to a
local control law of the form:

vi(t) = Fi

(
{Information about agent j}j∈Ni

)
(2)

which designates how each agent processes available infor-
mation to formulate a decision at each iteration. The goal in
this setting is to design the local controllers {Fi(·)}i∈N such
that the collective behavior converges to a joint value v∗ that
solves the optimization problem in (1).

A. An illustrative example
We begin by presenting a simple example to motivate the

theoretical developments in this paper. Consider the following
instance of (1) where

φ(v1, v2, v3) =

 v1

v2

v3

T  2 1 1
1 3 1
1 1 4

 v1

v2

v3

+[1 1 1]

 v1

v2

v3

 (3)

and Vi = R for all agents N = {1, 2, 3}. Here, the goal is to
derive local agent control laws of the form (2) that converge
to the minimizer of the cost function in (3) while adhering
to the communication graph 1 ↔ 2 ↔ 3. Note that this
communication graph implies that the control policy of agent
1 is not able to depend on the true value of agent 3.

2For ease of exposition we let Vi ⊆ R, which is just one dimension. In
general, Vi can be any convex subset of Rdi for any dimension di ≥ 1. The
results in this paper immediately extends to the cases where di > 1 and di 6=
dj for i 6= j. Furthermore, this work focuses on problems with decoupled
constraints on agents’ actions, i.e., vi ∈ Vi. The forthcoming methodologies
can also incorporate coupled constraints using the approach demonstrated in
[35].

3There are many sufficient conditions to guarantee the existence of the
optimal solution, e.g., compactness of V or coercivity of φ.
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1) Gradient methods: Gradient methods represent a popular
algorithm for solving nonlinear optimization problem [36]. A
gradient method for the optimization problem in (3) takes on
the form

vi(t+ 1) = vi(t)− ε
∂φ

∂vi
, (4)

where
∂φ

∂v1
= 4v1 + 2v2 + 2v3 + 1

∂φ

∂v2
= 2v1 + 6v2 + 2v3 + 1

∂φ

∂v3
= 2v1 + 2v2 + 8v3 + 1.

and ε is a positive step size. Note that both agent 1 and 3
require global information to calculate their gradients which
is not admissible in our setting.

2) A game theoretic approach: Since φ in (3) does not
possess a locally decomposable structure, the resulting gra-
dient descent algorithms were not of the desired locality. A
game theoretic approach introduces an intermediate step to
the control design where each agent is assigned an objective
function of the form Ji :

∏
j∈Ni

Vj → R. Here the goal is to
embed the information admissibility constraints directly into
the agents’ objective function. For example, if we design agent
objective functions of the form:

J1 : V1 × V2 → R
J2 : V1 × V2 × V3 → R
J3 : V2 × V3 → R

and each agent follows a gradient-based approach to their local
objectives, i.e., for any agent i ∈ N ,

vi(t+ 1) = vi(t)− ε
∂Ji
∂vi

,

then the resulting agents’ control policies will satisfy our
locality constraints. However, the convergence properties of
such an algorithm are not as straightforward as the gradient
algorithm given in (4), which leads to the work of this paper.

B. Preliminaries: Potential games

A strategic form game is characterized by a set of agents
N = {1, . . . , n} where each agent i ∈ N has an action set Ai
and a cost function Ji : A → R where A =

∏
i∈N Ai denotes

the set of joint actions. For an action profile a = (a1, ..., an),
let a−i denote the action profile of agents other than agent i,
i.e., a−i = (a1, . . . , ai−1, ai+1, . . . , an).

One class of games that plays a prominent role in engineer-
ing multiagent systems is that of potential games [12].

Definition 1. (Potential Games) A game {N, {Ai}, {Ji}}
is called an (exact) potential game if there exists a global
function Φ : A → R such that for every agent i ∈ N ,
a−i ∈ A−i and a′i, a

′′
i ∈ Ai,

Ji(a
′
i, a−i)− Ji(a′′i , a−i) = Φ(a′i, a−i)− Φ(a′′i , a−i).

There are three main properties regarding potential games
which makes them an attractive paradigm for distributed

engineering systems. First, in a potential game a pure Nash
equilibrium, i.e., an action profile a∗ ∈ A such that

Ji(a
∗
i , a
∗
−i) = min

ai∈Ai

Ji(ai, a
∗
−i),∀i ∈ N,

is guaranteed to exist. Second, there are several available
distributed learning algorithms with proven asymptotic guar-
antees that could be utilized for the control design [12]–
[16]. Lastly, learning pure Nash equilibria in potential games
is inherently robust [14]. That is, any “reasonable” learning
algorithm where players seek to optimize their individual
objective function will converge to a pure Nash equilibrium
in potential games [14]. Hence, issues such as heterogeneous
clock rates and informational delays are not problematic to
learning pure Nash equilibria in such games.

C. Preliminaries: state based potential games

State based games, a simplification of stochastic games
[37], represent an extension to strategic form games where
an underlying state space is introduced to the game theoretic
environment [20]. The class of state based games considered
in this paper consists of the following elements:

(i) an agent set N ,
(ii) a state space X ,

(iii) a state dependent action set, Ai(x), for each agent i ∈ N
and state x ∈ X ,

(iv) a state dependent cost function of the form Ji(x, a) ∈
R, for each agent i ∈ N , x ∈ X , and a ∈ A(x) =∏
i∈N Ai(x), and

(v) a deterministic state transition function f(x, a) ∈ X for
x ∈ X and a ∈ A(x).

Furthermore, we focus on state based games where for any x ∈
X there exists a null action 0 ∈ A(x) such that x = f(x,0).
This implies that the state will remain unchanged if all of the
agents take the null action. We will frequently denote a state
based game by G = {N,X,A, J, f}, where A =

⋃
x∈X A(x).

Repeated play of a state based game produces a sequence
of action profiles a(0), a(1), · · · , and a sequence of states
x(0), x(1), . . ., where a(t) ∈ A is referred to as the action
profile at time t and x(t) ∈ X is referred to as the state at
time t. At any time t ≥ 0, each agent i ∈ N selects an action
ai(t) ∈ Ai(x(t)) according to some specified decision rule
which depends on the current state x(t). The state x(t) and
the joint action profile a(t) = (a1(t), . . . , an(t)) ∈ A(x(t))
determine each agent’s one stage cost Ji(x(t), a(t)) at time
t. After all agents select their respective action, the ensuring
state x(t + 1) is chosen according to the deterministic state
transition function x(t+ 1) = f(x(t), a(t)) and the process is
repeated.

In this paper we focus on the class of games termed
state based potential games which represents an extension of
potential games to the framework of state based games.

Definition 2. (State Based Potential Game) A (deterministic)
state based game G with a null action 0 is a (deterministic)
state based potential game if there exists a potential function
Φ : X × A → R satisfying the following two properties for
every state x ∈ X:
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(D-1): For every agent i ∈ N , action profile a ∈ A(x) and
action a′i ∈ Ai(x)

Ji(x, a
′
i, a−i)− Ji(x, a) = Φ(x, a′i, a−i)− Φ(x, a)

(D-2): For every action profile a ∈ A(x) and the ensuing
state x̃ = f(x, a), the potential function satisfies

Φ(x, a) = Φ(x̃,0).

The first condition states that each agent’s cost function
is aligned with the potential function in the same fashion
as in potential games (Definition 1). The second condition
relates to the evolution on the potential function along the
state trajectory.4 We focus on the class of state based potential
games as dynamics can be derived that converge to the
following class of equilibria (see Theorem 4).

Definition 3. (Stationary State Nash Equilibrium) A state
action pair [x∗, a∗] is a stationary state Nash equilibrium if
(D-1): For any agent i ∈ N ,

a∗i ∈ arg min
ai∈Ai(x∗)

Ji(x
∗, ai, a

∗
−i).

(D-2): The state x∗ is a fixed point of the state transition
function, i.e., x∗ = f(x∗, a∗).

Note that in the case of a single state, i.e., X = 1, the
definition of Stationary State Nash Equilibrium is precisely
that of a Nash equilibrium since Condition (D-2) is satisfied
trivially. The following proposition proves the existence of a
stationary state Nash equilibrium in any state based potential
game.

Proposition 1. Let G be a state based potential game
with potential function Φ and a null action 0. If x∗ ∈
argminx∈XΦ(x,0), then [x∗,0] is a stationary state Nash
equilibrium. Moreover, for any a ∈ A(x∗) such that x∗ =
f(x∗, a), [x∗, a] is also a stationary state Nash equilibrium.

Proof: In order to prove that [x∗,0] is a stationary
state Nash equilibrium we only need to show that 0 ∈
argmina∈A(x∗)Φ(x∗, a) because x = f(x,0) for any x ∈ X
and Φ is a potential function of the game G. Let a∗ ∈
argmina∈A(x∗)Φ(x∗, a). Thus Φ(x∗,0) ≥ Φ(x∗, a∗). How-
ever since x∗ ∈ argminx∈XΦ(x,0), we have that Φ(x∗, a∗) =
Φ(x̃∗,0) ≥ Φ(x∗,0) where x̃∗ = f(x∗, a∗). Therefore we
have Φ(x∗,0) = Φ(x∗, a∗) = mina∈A(x∗) Φ(x∗, a). Hence
[x∗,0] is a stationary state Nash equilibrium. For any a
such that x∗ = f(x∗, a), we have Φ(x∗, a) = Φ(x∗,0) =
mina∈A(x∗) Φ(x∗, a) implying that [x∗, a] is also a stationary
state Nash equilibrium.

III. STATE BASED GAME DESIGN

In this section we introduce a state based game design for
the distributed optimization problem in (1). The goal of our
design is to establish a state based game formulation that
satisfies the following four properties:

4The definition of state based games differs slightly from [20] as we focus
on state dependent actions sets and games where there exists null actions.

(i) The state represents a compilation of local state variables,
i.e., the state x can be represented as x = (x1, . . . , xn)
where each xi represents the state of agent i. Further-
more, the state transition f should also rely only on local
information.

(ii) The objective function for each agent i is local and of
the form Ji({xj , aj}j∈Ni

) ∈ R.
(iii) The resulting game is a state based potential game.
(iv) The stationary state Nash equilibria are optimal in the

sense that they represent solutions to the optimization
problem in (1), i.e., vi = v∗i .5

A. A state based game design for distributed optimization

We now introduce the specifics of our designed game.

State Space: The starting point of our design is an underlying
state space X where each state x ∈ X is defined as a tuple
x = (v, e), where

• v = (v1, . . . , vn) ∈ Rn is the profile of values and
• e = (e1, . . . , en) is the profile of estimation terms where
ei = (e1

i , · · · , eni ) ∈ Rn is agent i’s estimation for
the joint action profile v = (v1, . . . , vn). The term eki
captures agent i’s estimate of agent k’s actual value vk.

The estimation terms are introduced as a means to relax the
degree of information available to each agent. More specifi-
cally, each agent is aware of its own estimation as opposed to
the true value profile which may in fact be different, i.e., eki
need not equal vk.

Action Sets: Each agent i is assigned an action set Ai that per-
mits agents to change their value and change their estimation
through communication with neighboring agents. Specifically,
an action for agent i is defined as a tuple ai = (v̂i, êi)
where v̂i ∈ R indicates a change in the agent’s value vi and
êi = (ê1

i , · · · , êni ) indicates a change in the agent’s estimation
terms ei. We represent each of the estimation terms êki by the
tuple êki = {êki→j}j∈Ni\{i} where êki→j ∈ R represents the
estimation value that agent i passes to agent j regarding to
the value of agent k.

State Dynamics: Define êki←in =
∑
j∈Ni\{i} ê

k
j→i and

êki→out =
∑
j∈Ni\{i} ê

k
i→j denote the total estimation passed

to and from agent i regarding the value of the k-th agent
respectively. We represent the state transition function f(x, a)
by a set of local state transition functions {fvi (x, a)}i∈N
and

{
fei,k(x, a)

}
i,k∈N

. For a state x = (v, e) and an action

5 There is a significant body of work in the field of algorithmic game theory
that focuses on analyzing the inefficiency of Nash equilibria [38]. A common
measure for this inefficiency, termed price of anarchy, is the worst case ratio
between the system level performance of a Nash equilibrium and the optimal
systems level performance. The vast literature in this area is predominantly
analytical where the price of anarchy is characterized for situations where
both the system level objective function and the agent cost functions are given.
This work, on the other hand, focuses on the the counterpart of this analytical
direction. In particular, is it possible to design local agent cost functions such
that the price of anarchy is 1 for given a system level objective function? For
the class of optimization problems considered in this manuscript, we provide
a systematic methodology for accomplishing this task.
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a = (v̂, ê), the ensuing state x̃ = (ṽ, ẽ) is given by

ṽi = fvi (x, a) = vi + v̂i

ẽki = fei,k(x, a) = eki + nδki v̂i + êki←in − êki→out (5)

where δki is an indicator function, i.e., δii = 1 and δki = 0
for all k 6= i. Since the optimization problem in (1) imposes
the requirement that vi ∈ Vi, we condition agents’ available
actions on the current state. That is, the available action set
for agent i given state x = (v, e) is defined as

Ai(x) = {(v̂i, êi) : vi + v̂i ∈ Vi} (6)

Invariance associated with state dynamics: Let v(0) =
(v1(0), ..., vn(0)) be the initial values of the agents. Define the
initial estimation terms e(0) to satisfy

∑
i∈N e

k
i (0) = n·vk(0),

for each agent k ∈ N ; hence, the initial estimation values
are contingent on the initial values. Note that satisfying this
condition is trivial as we can set eii(0) = n · vi(0) and
eji (0) = 0 for all agents i, j ∈ N where i 6= j. Define the
initial state as x(0) = [v(0), e(0)]. It is straightforward to show
that for any action trajectory a(0), a(1), · · · , the resulting state
trajectory x(t) = (v(t), e(t)) = f(x(t− 1), a(t− 1)) satisfies
the following equalities for all times t ≥ 1 and agents k ∈ N

n∑
i=1

eki (t) = n · vk(t) (7)

Agent Cost Functions: The cost functions possess two dis-
tinct components and takes on the form

Ji(x, a) = Jφi (x, a) + α · Jei (x, a) (8)

where Jφi (·) represents the component centered on the ob-
jective function φ, Jei (·) represents the component centered
on the disagreement of estimation based terms e, and α is
a positive constant representing the tradeoff between the two
components.6 We define each of these components as

Jφi (x, a) =
∑
j∈Ni

φ(ẽ1
j , ẽ

2
j , ..., ẽ

n
j )

Jei (x, a) =
∑
j∈Ni

∑
k∈N

[
ẽki − ẽkj

]2 (9)

where x̃ = (ṽ, ẽ) = f(x, a) represents the ensuing state. The
null action 0 is characterized by

v̂i = 0, êki→j = 0,∀i, j, k ∈ N.

Since x = f(x,0), the agents’ cost functions satisfy
Ji(x, a) = Ji(x̃,0).

B. Analytical properties of designed game

In this section we derive two analytical properties of the
designed state based game. The first property establishes that
the designed game is a state based potential game.

Theorem 2. The state based game depicted in Section III-A
is a state based potential game with potential function

Φ(x, a) = Φφ(x, a) + α · Φe(x, a) (10)

6We will show that for any positive α, the results demonstrated in this paper
holds. However, choosing the right α is important for the learning algorithm
implementation, e.g., the convergence rate of the learning algorithm.

where

Φφ(x, a) =
∑
i∈N φ(ẽ1

i , ẽ
2
i , ..., ẽ

n
i )

Φe(x, a) = 1
2

∑
i∈N

∑
j∈Ni

∑
k∈N

[
ẽki − ẽkj

]2 (11)

and x̃ = (ṽ, ẽ) = f(x, a) represents the ensuing state.

Proof: It is straightforward to verify that Conditions (D-
1)-(D-2) of state based potential games in Definition 2 are
satisfied using the state based potential function defined in
(10).

The following theorem demonstrates that all equilibria of
our designed game are solutions to the optimization problem
in (1).

Theorem 3. Let G be the state based game depicted in Sec-
tion III-A. Suppose that φ is a differentiable convex function,
the communication graph G is connected and undirected, and
at least one of the following conditions is satisfied:

(i) The communication graph G is non-bipartite.7

(ii) The communication graph G contains an odd number of
nodes, i.e., the number of agents is odd;

(iii) The communication graph G contains at least two agents
which have a different number of neighbors, i.e., |Ni| 6=
|Nj | for some agents i, j ∈ N ;

(iv) For each agent i ∈ N the actions set Vi is open.

Then the state action pair [x, a] = [(v, e), (v̂, ê)] is a stationary
state Nash equilibrium if and only if the following conditions
are satisfied:

(a) The estimation profile e satisfies that eki = vk, ∀i, k ∈ N ;
(b) The value profile v is an optimal solution for problem (1);
(c) The change in value profile satisfies v̂ = 0;
(d) The change in estimation profile satisfies that for all agents

i, k ∈ N , êki←in = êki→out.

The above theorem proves that the resulting equilibria of
our state based game coincide with the optimal solutions to the
optimization problem in (1) under relatively minor conditions
on the communication graph. Hence, our design provides
a systematic methodology for distributing an optimization
problem under virtually any desired degree of locality in the
agents’ objective functions. A natural question arises as to
whether the results in Theorem 2 and 3 could have been
attained using the framework of strategic form games. In
Appendix-A we prove that it is impossible to accomplish such
a task.

IV. GRADIENT PLAY

In this section we prove that the learning algorithm gradient
play, studied previously in [21] and [22] for strategic form
games, converges to a stationary state Nash equilibrium in
state based potential games. Since the designed game depicted
in Section III-A is a state based potential game, the algorithm
gradient play can be utilized to design control laws of the form
(2) that guarantee convergence to the optimal solution of (1).

7A bipartite graph is a graph that does not contain any odd-length cycles.
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A. Gradient play for state based potential games

Given a state based potential game G = {N,A, X, J, f},
suppose that Ai(x) is a closed convex set for all i ∈ N and
x ∈ X . Let x(t) represent the state at time t. Accordingly to
the learning algorithm gradient play, each agent i ∈ N selects
an action ai(t) ∈ Ai (x(t)) according to

ai(t) =

[
−εi ·

∂Ji(x(t), a)

∂ai

∣∣∣∣
a=0

]+

(12)

where [·]+ represents the projection onto the closed convex set
Ai (x(t)) and εi is the step size which is a positive constant.
Note that the agents’ step sizes can be heterogeneous.

Before establishing the convergence results, we make the
following assumptions for the state based potential game G:

A-1: Φ(x,0) is continuously differentiable and bounded below
on x and Φ(x, a) is convex and differentiable on variable
a.

A-2: ∇aΦ(x, a) is a Lipschitz function on variable a, i.e., there
exist a constant L such that for any x ∈ X and for any
a, a′ ∈ A(x), ||∇aΦ(x, a)−∇aΦ(x, a′)||2 ≤ L||a−a′||2
where ∇aΦ(x, a) = ( ∂Φ

∂a1
, . . . , ∂Φ

∂an
).

Theorem 4. Let G be a state based potential game with a
potential function Φ(x, a) that satisfies Assumption (A-1,2).
If the step size εi is smaller than 2/L for all i ∈ N , then
the state action pair [x(t), a(t)] of the gradient play process
in (12) asymptotically converges to a stationary state Nash
equilibrium of the form [x,0].

Proof: From the definition of the state based potential
game, we have Φ(x(t + 1),0) = Φ(x(t), a(t)) where x(t +
1) = f(x(t), a(t)). We will first prove that Φ(x(t + 1),0)
is monotonically decreasing during the gradient play process
provided that the step size is sufficiently small. The gradient
play process in (12) can be expressed using the state based
potential function as

ai(t) =

[
−ε · ∂Ji(x(t), a)

∂ai

∣∣∣∣
a=0

]+

=

[
−ε · ∂Φ(x(t), a)

∂ai

∣∣∣∣
a=0

]+

(13)

Therefore, we have

Φ(x(t + 1),0)− Φ(x(t),0)=Φ(x(t), a(t))− Φ(x(t),0)

≤a(t)T
∂Φ(x(t), a)

∂a

∣∣∣∣T
a=0

+
L

2
‖a(t)‖22

where the second inequality is based on Proposition A.24 in
[36]. By the Projection Theorem (Proposition 2.1.3 in [36]),
we know that(

−εi ·
∂Φ(x(t), a)

∂ai

∣∣∣∣
a=0

− ai(t)
)T
· (−ai(t)) ≤ 0

which is equivalent to

ai(t)
T · ∂Φ(x(t), a)

∂ai

∣∣∣∣
a=0

≤ − 1

εi
ai(t)

Tai(t).

If εi is smaller than 2
L for all i ∈ N , we have that

Φ(x(t+ 1),0)− Φ(x(t),0) ≤
∑
i

(
L

2
− 1

εi

)
‖ai(t)‖22 ≤ 0

and the equality holds in the second inequality if and only if
a(t) = 0. Therefore, Φ(x(t),0) is monotonically decreasing
along the trajectory x(t). Since Φ(x(t),0) is bounded below,
Φ(x(t),0) keeps decreasing until it reaches a fixed point,
which means a(t) = 0. By Lemma 12 in Appendix-C,
we know that such a fixed point is a stationary state Nash
equlibrium. Hence [x(t), a(t)] converges to a stationary state
Nash equilibrium in the form of [x,0].

First note that the asymptotic guarantees given in Theo-
rem 4 hold for heterogenous step sizes. This implies that
the agents can take actions synchronously or asynchronously
without altering the asymptotic guarantees. Second, the rate
of convergence of gradient play depends on the structure of
the potential function Φ, the state transition function f , and
the stepsize εi. Larger step sizes εi generally leads to faster
convergence but can also lead to instability. The bound on
the stepsize εi in Theorem 4 is conservative as larger stepsize
can usually be used without losing stability. Moreover, the
stepsizes can vary with time as long as some additional mild
conditions are satisfied.8

The following theorem establishes the convergence rate of
the gradient play algorithm for state based potential games.
For ease of exposition, we let εi = εj = ε for all the agents
i, j ∈ N and Ai(x) = Rdx for some dimension dx, which
means that the gradient play algorithm in (12) takes on the
form: ai(t) = −ε · ∂Ji(x(t),a)

∂ai

∣∣∣
a=0

. Additionally, we make the
following assumptions.
A-3 : The state transition rule is linear, namely that x̃ =

f(x, a) = x + Ba. Thus Φ(x, a) = Φ(x + Ba,0) for
all a ∈ A(x).

A-4 : There exit constants M,m > 0 such that for any [x, a] ∈
X ×A,

m

2
||a||2 ≤ Φ(x, a)−Φ(x, 0)−aT · ∇aΦ|(x,0) ≤

M

2
||a||2.

Note that if Φ(x, a) is a strict convex function on variable a,
one choice for M,m is that

M = max
[x,a]∈X×A

(
σmax∇2

aΦ(x, a)
)

;

m = min
[x,a]∈X×A

(
σmin∇2

aΦ(x, a)
)
.

Here ∇2
aΦ(x, a) denotes the Hessian matrix of Φ on variable

a and σ denotes the singular values of this matrix.

Theorem 5. Let G be a state based potential game that
satisfies Assumptions (A-1,3,4). If the step size ε is smaller
than 2/M , then the state action pair [x(t), a(t)] of the gradient
play process asymptotically converges to a stationary state
Nash equilibrium of the form [x∗,0]. Moreover, Φ(x(t), a(t))
is monotonically non-increasing and for all t > 1,

Φ(x(t), a(t))−Φ(x∗,0) ≤ θ ·
(
Φ(x(t−1), a(t−1)−Φ(x∗,0)

)
8This is similar with the gradient methods in optimization literature [39].
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where θ =
(
1− 2m(ε− M

2 ε
2)
)
.

Proof: Please see Appendix.

B. Gradient play for our designed game

Suppose that Vi is a closed convex set for all i ∈ N .
The gradient play algorithm applied to the game depicted in
Section III-A takes on the following form. At each time t ≥ 0,
given the state x(t) = (v(t), e(t)), each agent i selects an
action ai = (v̂i, êi) according to

v̂i(t) =

[
−εvi ·

∂Ji (x(t), a)

∂v̂i

∣∣∣∣
a=0

]+

(14)

=

−εvi (n φi|ei(t) + 2nα
∑
j∈Ni

(eii(t)− eij(t)))

+

êki→j(t) = −εk,ei→j ·
∂Ji (x(t), a)

∂êki→j

∣∣∣∣∣
a=0

= εk,ei→j ·
(
φk|ei(t) − φk|ej(t) + 2α

(
eki (t)− ekj (t)

)
+2α

∑
l∈Ni

·
(
eki (t)− ekl (t)

) )
(15)

where [·]+ represents the projection onto the closed convex
set Av̂i (x) = {v̂i : vi + v̂i ∈ Vi}; and εvi and

{
εk,ei→j

}
j∈Ni

are

the stepsizes which are positive constants.
If φ(v) in (1) is a bounded differentiable convex function,

it is straightforward to verify that the designed state based
potential game satisfies Assumptions (A-1,2). Therefore, if the
step sizes are sufficiently small, Theorem 4 ensures that the
gradient play algorithm (14,15) will converge to a stationary
state Nash equilibrium in the form of [(v, e),0], where v
is the optimal solution of (1). Moreover, notice that the
station transition rule given in (5) is linear; hence Theorem 5
guarantees a linear convergence rate.

V. ILLUSTRATIONS

In this section we illustrate the theoretical developments in
this paper on two independent problems. The first problem
rigorously explores our state based game design on the moti-
vational example given in Section II-A. The second problem
focuses on distributed routing with information constraints.

A. A simple example

Following the state based game design rule given in Sec-
tion III-A, each agent i ∈ {1, 2, 3} in the example in
Section II-A is assigned a local state variable of the form
xi = (vi, e

1
i , e

2
i , e

3
i ) where eki is agent i’s estimate of agent k’s

value vk. Agent i’s action ai is of the form ai = (v̂i, ê
1
i , ê

2
i , ê

3
i )

where êki =
{
êki→j

}
j∈Ni

for k = 1, 2, 3. The state transition
rule and local cost function are defined in (5) and (8) respec-
tively.

For concreteness, consider agent 1 as an example.
• A state associated with agent 1 is of the form x1 =

(v1, e
1
1, e

2
1, e

2
1).

• An action associated with agent 1 is of the form a1 =
(v̂1, ê

1
1→2, ê

2
1→2, ê

3
1→2).

• The state transition rule is of the form [ṽ, ẽ] =
f ([v, e], [v̂, ê]) where

ṽ1 = v1 + v̂1,
ẽ1

1 = e1
1 + v̂1 − ê1

1→2 + ê1
2→1

ẽ2
1 = e2

1 − ê2
1→2 + ê2

2→1

ẽ3
1 = e3

1 − ê3
1→2 + ê3

2→1.

• The local cost function of agent 1 is of the form

J1 ([v, e], [v̂, ê]) = φ(ẽ1
1, ẽ

2
1, ẽ

3
1) +

α

2

∑
k=1,2,3

(
ẽk1 − ẽk2

)2
Figure 1 shows simulation results associated with this

example. The top figure includes the following: (i) the red
curve shows the dynamics of φ using a centralized gradient
method, (ii) the blue curve shows the dynamics of φ using
our proposed state based game design with gradient play
where agents take actions synchronously with a homogeneous
step size ε = 0.02, and (iii) the black curve shows the
dynamics of φ using our proposed state based game design
with gradient play where agents take actions asynchronously
with heterogeneous step sizes, ε1 = 0.01, ε2 = 0.02, and
ε3 = 0.015. In the asynchronous simulation, each agent
took an action with probability 0.9 or took the null action
0 with probability 0.1. Lastly, we set α = 1 for the above
simulation. These simulations demonstrate that our state based
game design can efficiency solve the optimization problem
under the presented informational constraints. Furthermore,
the agents achieve the correct estimate of the true value v as
highlighted in the bottom figure. Note that the bottom figure
only highlights the estimation errors for agent 1 as the plots
for agents 2 and 3 are similar.

B. Distributed routing problem

In this section we focus on a simple distributed routing
problem with a single source, a single destination, and a
disjoint set of routes R = {r1, ..., rm}. There exists a set of
agents N = {1, ..., n} each seeking to send an amount traffic,
represented by Qi ≥ 0, from the source to the destination.
The action set Vi for each agent is defined as{

vi = (vr1i , , v
rm
i ) : 0 ≤ vri ≤ 1,∀r ∈ R;

∑
r∈R

vri = 1

}
(16)

where vri represents that percentage of traffic that agent i
designates to route r. Alternatively, the amount of traffic that
agent i designates to route r is vriQi. Lastly, for each route
r ∈ R, there is an associated “congestion function” of the
form: cr : [0,+∞) → R that reflects the cost of using the
route as a function of the amount of traffic on that route.9 For
a given routing decision v ∈ V , the total congestion in the
network takes the form

φ(v) =
∑
r∈R

fr · cr(fr)

9This type of congestion function is referred to an anonymous in the
sense that all agents contribute equally to traffic. Non-anonymous congestion
functions could also be used for this example.
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Fig. 1. Simulation results for the optimization problem in (II-A). The top
figure shows the evolution of the system cost φ(v) using (i) centralized
gradient algorithm, (ii) our proposed state based game design with gradient
play, homogeneous step sizes, and synchronously updates (blue), and (iii) our
proposed state based game design with gradient play, heterogeneous step sizes,
and asynchronously updates (black). The bottom figure shows the evolution
of agent 1’s estimation errors, i.e., e11 − v1, e21 − v2, and e31 − v3, during
the gradient play algorithm with homogeneous step sizes and synchronous
updates.

where fr =
∑
i∈N v

r
iQi. The goal is to establish a local con-

trol law for each agent that converges to the allocation which
minimizes the total congestion, i.e., v∗ ∈ arg minv∈V φ(v).
One possibility for a distributed algorithm is to utilize a
gradient decent algorithm where each agent adjust traffic flows
according to

∂φ

∂vri
= Qi ·

(
c′r

(∑
i∈N

Qiv
r
i

)
+ cr

(∑
i∈N

Qiv
r
i

))
where c′r(·) represents the gradient of the congestion function.
Note that implementing this algorithm requires each agent to
have complete information regarding the decision of all other
agents. In the case of non-anonymous congestion functions this
informational restriction would be even more pronounced.

Using the methodology developed in this paper, we can
localize the information available to each agent by allowing
them only to have estimates of other agents’ flow patterns.
Consider the above routing problem with 10 agents and the
following communication graph

1↔ 2↔ 3↔ · · · ↔ 10.

Now, each agent is only aware of the traffic patterns for at most
two of the other agents and maintaining and responding to
estimates of the other agents’ traffic patterns. Suppose we have
5 routes where each route r ∈ R has a quadratic congestion
function of the form cr(k) = ark

2 − brk + cr where k ≥ 0
is the amount of traffic, and ar, br, and cr are positive and
randomly chosen coefficients. Set the tradeoff parameter α to
be 900. Figure 2 illustrates the results of the gradient play al-
gorithm presented in Section IV coupled with our game design
in Section III. Note that our algorithm does not perform as well
as the centralized gradient descent algorithm in transient. This

Fig. 2. Simulation results: The upper figure shows the evolution of the
system cost φ using the centralized gradient decent algorithm (red) and our
proposed algorithm (black). The bottom figure shows the evolution of agent
1’s estimation error, i.e., ek,r1 − vrk for each route r ∈ R and each agent
k ∈ N .

is expected since the informational availability to the agents
is much lower. However, the convergence time is comparable
which is surprising.

VI. CONCLUSION

This work presents an approach to distributed optimization
using the framework of state based potential games. In par-
ticular, we provide a systematic methodology for localizing
the agents’ objective function while ensuring that the resulting
equilibria are optimal with regards to the system level objective
function. Furthermore, we proved that the learning algorithm
gradient play guarantees convergence to a stationary state Nash
equilibria in any state based potential game. By considering
a game theoretic approach to distributed optimization, as op-
posed to the more traditional algorithmic approaches, we were
able to attain immediate robustness to variation in clock rates
and step sizes as highlighted in Sections III and IV. There are
several open and interesting questions that this paper promotes.
One in particular is regarding the communication requirements
on the agents. In our design, each agent possessed n additional
state variables as estimates for the n components of the
value profile v. Could similar guarantees be attained with
less variables? What happens if we transition from a fixed to
time varying communication topology? Lastly, how does this
approach extend to alternative classes of system level objective
functions?
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APPENDIX

A. An impossibility result for game design

This section addresses the question as to whether the results
in Theorem 2 and 3 could have been attained using the
framework of strategic form games. More specifically, is it
possible to design agent objective functions that achieves the
following four objectives:
• Each agent’s cost function relies solely on local informa-

tion as defined by the communication graph. Moreover,
agents’ cost functions should possess a degree of scalabil-
ity with regards to the size of the system and the topology
of the communication graph.

• All Nash equilibria of the resulting game represent solu-
tions to the optimization problem (1);

• The resulting game possesses an underlying structure that
can be exploited by distributed learning algorithm, e.g.,
potential games.

Accomplishing these objectives would ensure that the agents’
control policies resulting from the designed game plus a
suitable learning algorithm would be of the local form in (2).

In the following we demonstrate that achieving these ob-
jectives using the framework of strategic form games is
impossible in general. To show this we focus on the following
optimization problem

minv
(∑

i∈N vi
)2

s.t. vi ∈ [ci, di] ⊂ R.
(17)

To make the control laws {Fi(·)}i∈N scalable as to the agent
set and the communication graph G, we require that the under-
lying control design must be invariant to the agents’ indices.
This implies that if two agents (i, j) have the same number of
neighbors, i.e., |Ni| = |Nj |, and for each agent k in Ni there is
an agent h in Nj such that vk = vh and [ck, dk] = [ch, dh], and
vice versa, then the control policies of agent i, j should be the
same, i.e., Fi

(
{vk, ck, dk}k∈Ni

)
= Fj

(
{vk, ck, dk}k∈Nj

)
.

Accordingly, we formulate the optimization problem as a
game where the agent set is N , the action set of each agent is
the setAi = [ci, di], and each agent is assigned a cost function
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of the form Ji :
∏
j∈Ni

Vj → R. To facilitate the design of
scalable agent control policies, we focus on the design of agent
cost functions of the form:

Ji(v) = J
(
{vj , cj , dj}j∈Ni

)
(18)

where the function J(·) is invariant to specific indices assigned
to agents. Notice that this design of J(·) leads to a well defined
game irrespective of the agent set N , constraint sets [ci, di]
or the structure of the communication graph {Ni}i∈N . The
following proposition demonstrates that it is impossible to
design J(·) such that for any game induced by a constraint
profile [c, d] and communication graph G all resulting Nash
equilibria solve the optimization problem in (3).

Proposition 6. There does not exist a single J(·) such that
for any game induced by a connected communication graph
G, a constraint profile [c, d], and agents’ cost functions of the
form (18), the Nash equilibria of the induced game represent
solutions to the optimization problem in (17).

Proof: Suppose that there exists a single J(·) that satisfies
the proposition. We will now construct a counterexample
to show that this is impossible. Consider two optimization
problems of the form (17) with a single communication graph
given by

1↔ 2↔ 3↔ 4↔ 5↔ 6.

Here, we have N = {1, 2, 3, 4, 5, 6} and E =
{{1, 2}, {2, 3}, {3, 4}, {4, 5}, {5, 6}}. In the first optimization
problem the constraint profile is: [c1, d1] = [c6, d6] =
[−1,− 21

22 ], [c2, d2] = [c3, d3] = [c4, d4] = [ 6
11 ,

7
11 ], and

[c5, d5] = [0, 0]. In the second optimization problem, the
constraint profile is:[c1, d1] = [c6, d6] = [−1,− 21

22 ] and
[c2, d2] = [c3, d3] = [c4, d4] = [c5, d5] = [ 6

11 ,
7
11 ]. We

call the settings for the two optimization problems as setting
(a) and (b) respectively. Under those constraints, the optimal
solution for setting (a) is va = (va1 , v

a
2 , v

a
3 , v

a
4 , v

a
5 , v

a
6 ) =

(− 21
22 ,

7
11 ,

7
11 ,

7
11 , 0,−

21
22 ) and the optimal solutions for setting

(b) is vb = (vb1, v
b
2, v

b
3, v

b
4, v

b
5, v

b
6) = (−1, 6

11 ,
6
11 ,

6
11 ,

6
11 ,−1).

We start by defining agent cost functions of the form (18)
which ensures that va is a Nash equilibrium for setting (a).
This implies that for any agent i ∈ N , we have

J
(
{vai , ci, di} ,

{
vaj , cj , dj

}
j∈Ni\{i}

)
≤ J

(
{vi, ci, di} ,

{
vaj , cj , dj

}
j∈Ni\{i}

)
(19)

for any vi ∈ Vi. By writing down the Nash equilibrium
condition in (19) for setting (b), it is straightforward to see
that agents 1, 2, 3, 4, 5, 6 in setting (b) have the same structure
form of the cost function as agents 1, 2, 3, 3, 2, 1 in setting
(a) respectively. For example, agent 4 in setting (a) has an
identical cost function to agent 3 in setting (b). Since va

represents a Nash equilibrium for setting (a) then no agent
i ∈ {1, . . . , 6} has a unilateral incentive to deviate from va.
As agents 1, 2, 3, 4, 5, 6 in (b) can be mapped precisely to
agents 1, 2, 3, 3, 2, 1 in (a), v∗ = (v∗1 , v

∗
2 , v
∗
3 , v
∗
4 , v
∗
5 , v
∗
6) =

(− 21
22 ,

7
11 ,

7
11 ,

7
11 ,

7
11 ,−

21
22 ) is a Nash equilibrium of setting (b)

since no agent i ∈ {1, . . . , 6} has a unilateral incentive to

deviate from v∗. The impossibility comes from the fact that
v∗ is not an optimal solution to setting (b).

B. Proof of Theorem 3

Since the designed state based game is a state based
potential game, we can apply Proposition 1 to prove the
sufficient condition of the theorem. The proof involves two
steps: (i) If x∗ satisfy Condition (a)-(b) listed in the theorem,
then x∗ ∈ argminx∈Xφ(x,0); (ii) if a∗ satisfy Condition (c)-
(d) in the theorem, then x = f(x, a) for all x ∈ X . Therefore
it is straightforward to prove that if a state action pair [x, a]
satisfies Conditions (a)-(d) listed in the theorem, then [x, a] is
a stationary state Nash equilibrium.

Let us prove the necessary condition of Theorem 3. Suppose
[x, a] is a stationary state Nash equilibrium. First notice that
to ensure [x, a] satisfies Condition (D-2) of Definition 3, i.e.
x = f(x, a), the action profile a = (v̂, ê) should satisfy Condi-
tion (c)-(d) of this theorem. To prove Condition (a)-(b), we will
use a series of lemmas to prove that under one of Cases (i)-(iv)
of this theorem, if a station action pair [x, a] satisfies Condition
(D-1) of Definition 3, i.e. ai ∈ argminǎJi(x, ǎi, a−i) for
all i ∈ N , then the ensuing state x̃ = f(x, a) satisfies the
following conditions:

1) Estimation alignment: The ensuing estimation terms are
aligned with the ensuing value profile, i.e., for all agents
i, k ∈ N we have ẽki = ṽk where (ṽ, ẽ) = f(x, a).
(Lemma 7 for Case (i)–(ii), Lemma 8 for Case (iii) and
Lemma 10 for Case (iv).)

2) Optimality alignment: The ensuing value profile ṽ is an
optimal solution to (1). (Lemma 9 for Case (i)–(iii) and
Lemma 10 for Case (iv).)

Combining with the fact that x̃ = f(x, a) = x, we can
conclude that under one of Cases (i)-(iv) of this theorem if
[x, a] is a state based Nash equilibrium, then Condition (a)-
(d) must be satisfied.

In the subsequent lemmas we consistently express the
ensuing state for a state action pair [x, a] = [(v, e), (v̂, ê)]
as (ṽ, ẽ) = f(x, a).

Lemma 7. Suppose the communication graph G satisfies
either Condition (i) or (ii) of Theorem 3. If [x, a] satisfies
ai ∈ argminǎ∈Ai(x)Ji(x, ǎ, a−i) for all i ∈ N , then all agent
have correct estimates of the value profile. That is, for all
agents i, k ∈ N we have ẽki = ṽk.

Proof: If ai ∈ argminǎi=(v̌i,ěi)∈Ai(x)Ji(x, ǎi, a−i) for
all i ∈ N , then

∂Ji(x, ǎi, a−i)

ěki,l

∣∣∣∣∣
ai

= 0,∀i, k ∈ N, l ∈ Ni\{i}

which is equivalent to

φk|ẽi + 2α
∑
j∈Ni

(
ẽki − ẽkj

)
= φk|ẽl − 2α

(
ẽki − ẽkl

)
(20)

where φk|ẽi represents the derivative of φ relative to ẽki for the
profile ẽi, i.e., φk|ẽi = ∂φ(ẽi)

∂ẽki
. Consider any two connected
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agents i, j ∈ N , i.e., (i, j) ∈ E . The equality in (20) translates
to
φk|ẽi + 2α

∑
l∈Ni

(
ẽki − ẽkl

)
= φk|ẽj − 2α

(
ẽki − ẽkj

)
φk|ẽj + 2α

∑
l∈Nj

(
ẽkj − ẽkl

)
= φk|ẽi − 2α

(
ẽkj − ẽki

)
.

Adding these two equalities gives us∑
l∈Ni

(ẽki − ẽkl ) = −
∑
l∈Nj

(ẽkj − ẽkl ) (21)

for all agents i, j, k ∈ N such that (i, j) ∈ Nj . Since our
communication graph is connected, the equality condition in
(21) tells us that the possible values for the summation terms∑
l∈Ni

(ẽki − ẽkl ) for each agent i ∈ N can be at most one of
two possible values that differ purely with respect to sign, i.e.,
for any agent i ∈ N we have∑

l∈Ni
(ẽki − ẽkl ) ∈

{
ekdiff,−ekdiff

}
(22)

where ekdiff ∈ R is a constant. We can utilize the underlying
topology of the communication graph coupled with (22) to
demonstrate that ekdiff = 0.

1) If there exists a cycle in the communication graph with
an odd number of nodes, applying equality (21), we can
get that ekdiff = −ekdiff, which tells us that ekdiff = 0.

2) Since the communication graph is undirected we know
that

∑
i∈N

∑
l∈Ni

(ẽki − ẽkl ) = 0. If the number of agents
n is odd, condition (22) tells that

∑
i∈N

∑
l∈Ni

(ẽki −
ẽkl ) = h · ekdiff where h is a nonzero integer. Hence ekdiff =
0.

In summary, if the total number of agents is odd or there
exists a cycle in the communication graph with odd number
of nodes we have that for all i, k ∈ N ,

∑
l∈Ni

(ẽki − ẽkl ) = 0.
Since the communication graph is connected and undirected,
it is straightforward to show that for all agents i, j ∈ N ,
ẽki = ẽkj ,∀k ∈ N where the proof is the same as the proof of
Theorem 1 in [40].10 Combining with the equality (7), we get
that for all agents i, k ∈ N , ẽki = vk.

Remark 1. It is important to note that alternative graph
structures may very well provide the same guarantees.

Lemma 8. Suppose the objective function φ and communi-
cation graph G satisfy Condition (iii) of Theorem 3. If [x, a]
satisfies ai ∈ argminǎi∈Ai(x)Ji(x, ǎi, a−i) for all i ∈ N , then
all agent have correct estimates of the value profile. That is,
for all agents i, k ∈ N we have ẽki = ṽk.

Proof: In the proof of last lemma, we have proved that if
ai ∈ argminǎiJi(x, ǎi, a−i), then equation (20) should satisfy.
Consider any agent i ∈ N , and any pair of agents j1, j2 ∈ Ni,
equation (20) tells us that

φk|ẽi + 2α
∑
j∈Ni

(
ẽki − ẽkj

)
= φk|ẽj1 − 2α

(
ẽki − ẽkj1

)
φk|ẽi + 2α

∑
j∈Ni

(
ẽki − ẽkj

)
= φk|ẽj2 − 2α

(
ẽki − ẽkj2

)
.

(23)
Combining the two equations, we have the following equality

φk|ẽj1 − φk|ẽj2 − 2α
(
ẽkj2 − ẽ

k
j1

)
= 0.

10The main idea of this proof is to write
∑

l∈Ni
(ẽki − ẽkl ) = 0, ∀i ∈ N

in a matrix form for each k ∈ N . The rank of this matrix is n− 1 resulting
from the fact that the communication graph is connected and undirected hence
proving the result.

Note that agents j1 and j2 are not necessarily connected but
are rather siblings as both agents are connected to agent i.
Therefore, the above analysis can be repeated to show that for
any siblings j1, j2 ∈ N that are siblings we have the equality

φk|ẽj1 − φk|ẽj2 = 2α
(
ẽkj2 − ẽ

k
j1

)
. (24)

for all agents k ∈ N . Applying Lemma 11 in the appendix,
Condition (24) coupled with the fact that φ is a convex
function implies that for any siblings j1, j2 ∈ N ,

ẽj1 = ẽj2 . (25)

Since the communication graph is connected and undirected,
Equality (25) guarantees that there exist at most two different
estimation values which we denote by x = (x1, . . . , xn) and
y = (y1, . . . , yn), i.e.,

ẽi ∈ {x, y},∀i ∈ N. (26)

Now applying equality (22), for each i ∈ N , we have that
either ekdiff = 2ni(xk − yk) or ekdiff = −2ni(xk − yk), where
ni = |Ni| − 1 > 0. If there exist two agents having different
number of neighbors, we can derive that x = y, i.e. ẽi =
ẽj ,∀i, j ∈ N . Following the same arguments as the previous
proof, we have that ẽki = vk,∀i, k ∈ N .

Lemma 9. Suppose that at least one of conditions (i)–
(iii) of Theorem 3 is statisfied. If [x, a] satisfies ai ∈
argminǎi∈Ai(x)Ji(x, ǎi, a−i) for all i ∈ N , then ṽ is an
optimal solution to (1).

Proof: If ak ∈ argminǎiJk(x, ǎk, a−k), where ǎk =
(v̌k, ěk),we have

∂Jk(x, ǎk, a−k)

v̌k

∣∣∣∣
ak

· (v̂′k − v̂k) ≥ 0,∀v̂′k ∈ Av̂i (x)

which is equivalent ton φk|ẽ + 2nk
∑
j∈Nk

(ẽkk − ẽkj )

 · (v̂′k − v̂k) ≥ 0 (27)

We have shown in Lemma 7 and Lemma 8 that if [x, a] =
[(v, e), (v̂, ê)] satisfies ai ∈ argminǎiJi(x, ǎi, a−i), then ẽki =
vk,∀i, k ∈ N . Therefore, equation (27) tells that

φk|(ṽ) · (ṽ
′
k − ṽk) ≥ 0,∀ṽ′k ∈ Vk. (28)

This implies that ṽ is an optimal profile for the optimization
problem (1) given that φ is convex over V .

Lemma 10. Suppose Condition (iv) of Theorem 3 is satisfied.
If [x, a] satisfies ai ∈ argminǎi∈Ai(x)Ji(x, ǎi, a−i) for all i ∈
N , then ẽki = ṽk for all i, j ∈ N , and ṽ is an optimal profile
for the optimization problem (1).

Proof: In the proof of Lemma 7 and Lemma 8, we have
shown that if [x, a] satisfies ai ∈ argminǎiJi(x, ǎi, a−i),
equations (20) and (27) should satisfy. Since Vk is open,
equation (27) is equivalent to

φk|ẽk + 2
∑
j∈Nk

(
ẽkk − ẽkj

)
= 0, ∀k ∈ N (29)



12

Substituting this equation into equation (20), we have

φk|ẽl + 2ẽkl = 2ẽkk, ∀l ∈ Nk, k ∈ N (30)

Since φ is a convex function, we already have equality (26)
as shown in the proof of Lemma 8. We will show that x = y.
Suppose x 6= y. For each i ∈ N , either ẽi = x or ẽi = y.
Suppose ẽi = x. Then for all j ∈ Ni, ẽj = y; otherwise if
ẽj = x for some j ∈ Ni, equation (25) implies that ẽj =
x,∀j ∈ N , i.e. x = y. Equation (29) tells us that

φk|x = 2nk(yk − xk)

where nk = |Nk| − 1. While equation (30) tells us that

φk|y = 2(xk − yk)

If ẽk = y, similarly we will have:

φk|y = 2nk(xk − yk)

φk|x = 2(yk − xk)

In both cases, we have φk|x − φk|y = 2(nk + 1)(yk − xk).
Applying Lemma 11, we know x = y. Now we can conclude
that ẽi = ẽj and hence ẽki = vk,∀i, k ∈ N . Substituting those
equalities into equation (29), we have:

φk|(ṽ1,...,ṽn) = 0,∀k ∈ N

which implies that ṽ is an optimal point of the optimization
problem (1) given that φ is an convex function and V is open.

Lemma 11. Given a continuously differentiable convex func-
tion φ(x1, x2, . . . , xn) and two vectors x = (x1, . . . , xn)
and y = (y1, . . . , yn), if for all k = 1, 2, . . . n, we have
φk|x − φk|y = αk(yk − xk) where αk > 0, then x = y.

Proof: Since φ is a convex function, we have

φ(x) ≥ φ(y) + (x− y)T∇φ|y
φ(y) ≥ φ(x) + (y − x)T∇φ|x

Adding up the two inequalities, we have

0 ≥ (x− y)T (∇φ|y −∇φ|x)

Since φk|x − φk|y = α(yk − xk) for all k, we have

0 ≥
∑
k

αk(xk − yk)2 ≥ 0

Therefore x = y.

C. A Lemma for Gradient Play

Lemma 12. Let G be a state based potential game and the
potential function Φ(x, a) is a differentiable convex function
on variable a. Suppose all agents are using the gradient play
algorithm and the state at time t is x(t) = [v(t), e(t)]. The
action profile at time t is the null action, i.e., a(t) = 0, if and
only if the state action pair [x(t),0] is a stationary state Nash
equilibrium of the state based game G.

Proof: Since f(x(t),0) = x(t), by Definition 3 we know
that [x(t),0] is a stationary state Nash equilibrium if and only

if 0 ∈ argminai∈Ai(x(t))Ji(x(t), ai, 0) for all i ∈ N . This is
equivalent to (

∂Ji(x(t), a)

∂ai

∣∣∣∣
a=0

)
· ai ≥ 0

for all i ∈ N and ai ∈ Ai(x(t)). By Projection Theorem,
this inequality is equivalent to the fact that the projection of
−εi ∂Ji(x(t),a)

∂ai

∣∣∣
a=0

onto Ai(x(t)) is 0, i.e.

ai(t) =

[
−ε · ∂Ji(x(t), a)

∂ai

∣∣∣∣
a=0

]+

= 0,∀i ∈ N.

D. Proof of Theorem 5

1) From Assumption (A-4), we have

Φ(x(t+ 1),0)=Φ(x(t), a(t))
≤Φ(x(t),0) + a(t)T∇aΦ(x(t),0)

+M
2 ||a(t)||22

≤Φ(x(t),0)− (ε− M
2 ε

2)||∇aΦ(x(t),0)||22
(31)

Therefore if ε < 2
M , Φ(x(t+ 1),0) ≤ Φ(x(t),0).

2) Assumption (A-4) also implies the following inequality:

Φ(x+Ba,0)=Φ(x, a)
≥Φ(x,0) + aT · ∇aΦ(x, 0) + m

2 ||a||
2

≥mina
(
Φ(x,0) + aT · ∇aΦ(x, 0) + m

2 ||a||
2
)

=Φ(x,0)− 1
2m ||∇aΦ(x,0)||22

Since the state transition rule is x(t + 1) =
f(x(t), a(t)) = x(t) +Ba(t), we have:

Φ(x(T ),0) = Φ(x(T − 1) +Ba(T − 1),0)
= . . .

= Φ(x(t) +B
∑T−1
τ=t a(t),0)

≥ Φ(x(t),0)− 1
2m ||∇aΦ(x(t),0)||22

(32)
for any T > t ≥ 0. If we pick t = 0, we know
that {Φ(x(T ),0)}T≥0 is bounded below. As we showed
in the proof for Theorem 4, we know that (x(t), a(t))
will asymptotically converge to a stationary state Nash
equilibrium [x∗,0] and Φ(x(t),0) ≥ Φ(x∗,0) for any
t ≥ 0.

3) Since x(T ) = x(t)+B
∑T−1
τ=t a(τ) and limT→∞ x(T ) =

x∗, we know that limT→∞ x(t) + B
∑T−1
τ=t a(τ) = x∗.

Combining with Inequality (32), we have:

Φ(x∗,0)− Φ(x(t),0) ≥ − 1

2m
||∇aΦ(x(t),0)||22 (33)

for any t ≥ 0. Substituting this into Inequality (31), we
have

Φ(x(t+ 1),0)≤Φ(x(t),0)

−2m(ε− M

2
ε2) (Φ(x(t),0)− Φ(x∗,0))

which gives the following inequality:

Φ(x(t+ 1),0)− Φ(x∗,0) ≤ θ (Φ(x(t),0)− Φ(x∗,0))
(34)

where θ =
(
1− 2m(ε− M

2 ε
2)
)
. Therefore we can

conclude the statement in this theorem.
2


