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Error Rate Performance Analysis of
Coded Free-Space Optical Links over
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Abstract— Error control coding can be used over free-space
optical (FSO) links to mitigate turbulence-induced fading. In
this paper, we derive error performance bounds for coded FSO
communication systems operating over atmospheric turbulence
channels, considering the recently introduced gamma-gamma
turbulence model. We derive a pairwise error probability (PEP)
expression and then apply the transfer function technique in
conjunction with the derived PEP to obtain upper bounds on
the bit error rate. Simulation results are further demonstrated
to confirm the analytical results.

Index Terms— Atmospheric turbulence channel, free-space
optical communication, pairwise error probability, error perfor-
mance analysis.

I. INTRODUCTION

W IRELESS optical communications, also known as
free-space optical (FSO) communications, is a cost-

effective and high bandwidth access technique, which is
receiving growing attention with recent commercialization
successes [1]. With the potential high-data-rate capacity, low
cost and particularly wide bandwidth on unregulated spectrum,
FSO communications is an attractive solution for the “last
mile” problem to bridge the gap between the end user and the
fiber-optic infrastructure already in place. Its unique properties
make it also appealing for a number of other applications, in-
cluding metropolitan area network extensions, enterprise/local
area network connectivity, fiber backup, back-haul for wireless
cellular networks, redundant link and disaster recovery.

In FSO communications, optical transceivers communicate
directly through the air to form point-to-point line-of-sight
links. One severe impairment over FSO links is building-
sway as a result of wind loads, thermal expansion and weak
earthquakes. The effect of building-sway on the FSO link
reliability has been studied in detail [2], [3]. Another major
impairment is the atmospheric turbulence, which occurs as
a result of the variations in the refractive index due to
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inhomogeneities in temperature and pressure fluctuations. The
atmospheric turbulence results in fluctuations at the received
signal, i.e. signal fading, also known as scintillation in optical
communication terminology [4], severely degrading the link
performance, particularly over link distances of 1 km or longer.

Error control coding as well as diversity techniques can be
used over FSO links to improve the error rate performance
[5]–[8] . In [7], [8], Zhu and Kahn studied the performance
of coded FSO links assuming a log-normal channel model
for atmospheric turbulence. Specifically, they derived an ap-
proximate upper bound on the pairwise error probability (PEP)
for coded FSO links with intensity modulation/direct direction
(IM/DD) and provided upper bounds on the bit error rate
(BER) using the transfer function technique.

Although log-normal distribution is the most widely used
model for the probability density function (pdf) of the irradi-
ance due to its simplicity, this pdf model is only applicable
to weak turbulence conditions [4]. As the strength of tur-
bulence increases, multiple scattering effects must be taken
into account. In such cases, log-normal statistics exhibit large
deviations compared to experimental data. Furthermore, it has
been observed that log-normal pdf underestimates the behavior
in the tails as compared with measurement results. Since
detection and fade probabilities are primarily based on the tails
of the pdf, underestimating this region significantly affects the
accuracy of performance analysis. Due to the limitations of
log-normal model, many statistical models have been proposed
over the years to describe atmospheric turbulence channels un-
der a wide range of turbulence conditions, e.g. K distribution,
I-K distribution, and log-normal Rician channel [4]. Error rate
performance of coded FSO links assuming K distribution and
I-K distribution have been already studied by the authors in
[9].

In a recent series of papers on scintillation theory [10]–
[12], Andrews et.al. introduced the modified Rytov theory
and proposed gamma-gamma pdf as a tractable mathematical
model for atmospheric turbulence. This model is a two-
parameter distribution which is based on a doubly stochastic
theory of scintillation and assumes that small-scale irradiance
fluctuations are modulated by large-scale irradiance fluctua-
tions of the propagating wave, both governed by independent
gamma distributions. The gamma-gamma pdf can be directly
related to atmospheric conditions and provides a good fit to
experimental results. The performance analysis of an uncoded
FSO link over the gamma-gamma turbulence channel can be
already found in [4, p.235].

In this paper, we will investigate error rate performance of
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coded FSO links operating over atmospheric channels, where
the turbulence-induced fading is described by the gamma-
gamma distribution. The organization of the paper is as
follows: In Section II, we review the gamma-gamma channel
model under consideration. In Section III, an approximate
PEP expression is derived for an FSO communication system
with on-off keying (OOK) and in Section IV, we describe
how BER performance can be obtained using transfer function
technique in conjunction with the derived PEP expression. In
section V, we present numerical results to demonstrate the
accuracy of the derived PEP in comparison to the exact PEP
and also present bounds on the BER performance. Analytical
results are further confirmed through Monte-Carlo simulations.
Conclusions are presented in Section VI.

II. ATMOSPHERIC TURBULENCE CHANNEL MODEL

There has been a significant research effort on finding an ac-
curate and efficient channel model for atmospheric turbulence
channels. Owing to its simplicity, log-normal distribution is
the most widely used channel model, however its applicability
is mainly restricted to weak turbulence conditions [4]. Alter-
native models where the irradiance fluctuation is modeled as
the result of two multiplicative random processes include the
Rician/Log-normal model [13], the Nakagami/Gamma model
[14] and the Negative Exponential/Gamma model (also known
as the K channel) [15] among others. Recently, Andrews et.al.
proposed the modified Rytov theory [10]–[12], which defines
the optical field as a function of perturbations which are due to
large-scale and small-scale atmospheric effects. Specifically,
the normalized irradiance is defined as the product of two
random processes, i.e. I = IxIy , where Ix and Iy arise
from large scale and small scale turbulent eddies and each of
them follows gamma distribution. This leads to the so-called
gamma-gamma pdf, i.e.

f(I) =
2(αβ)(α+β)/2

Γ(α)Γ(β)
I

α+β
2 −1Kα−β(2

√
αβI), I > 0 (1)

whereKa(·) is the modified Bessel function of the second kind
of order a. Here, α and β are the effective number of small-
scale and large scale eddies of the scattering environment.
Assuming spherical wave propagation, these parameters can
be directly related to atmospheric conditions according to [4,
p.237], [16]1

α =
[
exp

(
0.49χ2

(1 + 0.18d2 + 0.56χ12/5)7/6

)
− 1
]−1

(2)

β =
[
exp

(
0.51χ2(1 + 0.69χ12/5)−5/6

(1 + 0.9d2 + 0.62d2χ12/5)5/6

)
− 1
]−1

(3)

where χ2 = 0.5C2
nk

7/6L11/6 and d = (kD2/4L)1/2. Here,
k = 2π/λ is the optical wave number, λ is the wavelength, D
is the diameter of the receiver collecting lens aperture and
L is the link distance in meters. C2

n stands for the index
of refraction structure parameter and is altitude-dependent.
Several C2

n profile models are available in the literature, but the

1There is a missing term in the formula for β given by Eq. 94 of [4-Chapter
7]. The correct formula should be read as in our Eq. 3 [16]

most commonly used is the Hufnagle-Valley model described
by [4]

C2
n(h) = 0.00594(v/27)2(10−5h)10exp(h/1000)

+2.7 × 10−6exp(−h/1500) +Aexp(−h/1000) (4)

where h is the altitude in meters (m), v is the rms wind-
speed in meters per second (m/sec) and A is a nominal value
of C2

n(0) at the ground in m−2/3. For FSO links near the
ground, C2

n can be taken approximately 1.7 × 10−14 m−2/3

during daytime and 8.4 × 10−15 m−2/3 at night. In general,
C2
n varies from 10−13 m−2/3 for strong turbulence to 10−17

m−2/3 for weak turbulence with 10−15 m−2/3 often defined
as a typical average value [17].

III. DERIVATION OF PEP

The PEP represents the probability of choosing the coded
sequence X̂ = (x̂1, x̂2, · · · , x̂M ) when X = (x1, x2, · · · , xM )
indeed was transmitted. We consider IM/DD links using on-off
keying (OOK). Following [8], we assume that the noise can
be modeled as additive white Gaussian noise (AWGN) with
zero mean and variance N0/2, independent of the on/off state
of the received bit. Under the assumption of perfect channel
state information (CSI), the conditional PEP with respect to
fading coefficients I = (I1, I2, · · · , IM ) is given as [8].

P (X, X̂|I) = Q

⎛
⎝
√
ε(X, X̂)

2N0

⎞
⎠ (5)

where Q(·) is the Gaussian-Q function and ε(X, X̂) is the
energy difference between two codewords. Since OOK is used,
the receiver would only receive signal light subjected to fading
during on-state transmission. Thus, we have

P (X, X̂|I) =

(√
Es
2N0

∑
k∈Ω

I2
k

)
(6)

where Es is the total transmitted energy and Ω is the set
of bit intervals’ locations where X and X̂ differ from each
other. Defining the signal-to-noise ratio as τ = Es/N0 and
using the alternative form for Gaussian-Q function [18], i.e.
Q(x) = (1/2π)

∫ π/2
0 exp(−x2/ sin2 θ)dθ, we obtain

P (X, X̂ |I) =
1
π

∫ π/2

0

∏
k∈Ω

exp
(
−τ

4
I2
k

sin2 θ

)
dθ (7)

To obtain unconditional PEP, we need to take an expectation
of (7) with respect to Ik . Under the assumption of perfect
interleaving, we can exploit independency among fading co-
efficients Ik and write

P (X, X̂)=
1
π

∫ π/2

0

∏
k∈Ω

EIk

[
exp

(
−τ

4
I2
k

sin2 θ
)
)]

dθ

=
1
π

∫ π/2

0

[∫ ∞

0

exp
(
−τ

4
I2

sin2 θ

)
f(I)dI

]|Ω|
dθ (8)

where E(·) is the expectation operation and |Ω| is the car-
dinality of Ω, which also corresponds to the length of error
event. Here, f(I) is the pdf for the gamma-gamma channel
given by (1). A direct use of (1) in (8) yields an expression
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P (X, X̂) =
1
π

∫ π/2

0

[
c1τ

− β
2 (sin θ)β

∫ ∞

0

μα−β−1exp

(
−αμ− c2

√
2 sin θ√
τ

μ−1 −O(μ−2)

)
dμ

]|Ω|
dθ (14)

P (X, X̂) ∼= 1
π

∫ π/2

0

[
2

α−β+4
4 c1

(c2
α

)α−β
2
(

sin θ√
τ

)α+β
2

Kα−β

(
25/4

√
c2α sin θ√

τ

)]|Ω|

dθ (17)

which unfortunately does not have a closed form solution. To
get around with this, we exploit the fact that the underlying
distribution is a conditional gamma distribution with its mean
μ following again a gamma distribution, and rewrite (8) as

P (X, X̂) =
1
π

∫ π/2

0

{
Eμ

{
EI|μ

[
exp

(
−τ

4
I2

sin2 θ

)]}}|Ω|
dθ

(9)
For the gamma-gamma channel, the inner expectation in (9)
gives

EI|μ

[
exp

(
−τ

4
I2

sin2 θ

)]

=
ββ

μβΓ(β)

∫ ∞

0

Iβ−1exp
(
−τ

4
I2

sin2 θ
− βI

μ

)
dI (10)

Using the result from [19, p. 382, Eq. 3.462.1], i.e.
∫ ∞

0

zv−1exp(−az2 − bz)dz

= (2a)−v/2Γ(v)exp
(
b2

8a

)
D−v

(
b√
2a

)
(11)

where Dp(·) is the parabolic cylinder function, we obtain

EI|μ

[
exp

(
−τ

4
I2

sin2 θ

)]
=
ββ

μβ

(
τ

2
1

sin2 θ

)−β/2

·exp
(
β2sin2θ

2μ2τ

)
D−β

(√
2β

μ
√
τ

sin θ

)
(12)

Since the operation of expectation over μ required in (9) does
not yield a closed form, we resort to the asymptotic expansion
of the parabolic cylinder function given as [20, p.689, Eq.19.9]

D−(a+ 1
2 )(z)=

√
π

Γ
(

3
4 + a

2

)2−( a
2 + 1

4 )

·exp
(
−
(√

a+
1
16
a−3/2

)
z −O(z2)

)
(13)

where O(zn) represents the terms with power equal or higher
than n. The above holds for z2 � a and this condition is
easily satisfied in our case for high SNR values. Replacing
the asymptotic expression in (12) and using the resulting
expression in (9), we have (14) at the top of the page, where

c1 =
√
πααββ

Γ(α)Γ
(
β + 1

2

)

c2 = β

(√
β − 1

2
+

1
16

(
β − 1

2

)− 3
2
)

(15)

Neglecting the higher order components in (14), the inner
integral can be solved with the help of [19, p. 384, Eq. 3.471.9]

∫ ∞

0

zv−1exp
(
−az − b

1
z

)
dz = 2

(
b

a

)v/2
Kv

(
2
√
ab
)
(16)

where a > 0, b > 0. This yields the final form for PEP as
(17) at the top of the page. It should be emphasized that (17)
is an approximation since the higher order components in the
asymptotic expansion of the parabolic cylinder function are
neglected.

IV. BER PERFORMANCE

PEP is the basic tool for the derivation of union bounds on
the error rate performance of a coded communication system.
A union bound on the average BER can be found as [21]

Pb ≤ 1
n

∑
X

P (X)
∑

X �=X̂

q(X, X̂)P (X, X̂) (18)

where P (X) is the probability that the coded sequence X is
transmitted, q(X, X̂) is the number of information bit errors
in choosing another coded sequence X̂ instead of X and n is
the number of information bits per transmission. Using transfer
function bounding technique combined with the alternative
form for the Gaussian-Q function, an efficient method for the
computation of (18) is given in [18, p. 510] as

Pb ≤ 1
n

∑
X

P (X)
∫ π/2

0

[
∂

∂N
T (D(θ), N)

∣∣∣∣
N=1

]
dθ, (19)

where N is an indicator variable taking into account the num-
ber of bits in error. If we consider uniform error probability
(UEP) codes, a symmetry property exists for this code family
making the distance structure of a UEP code independent of
the transmitted sequence [18]. This eliminates the need for
averaging over all possible transmitted sequences. In this case,
(19) simplifies to

Pb ≤ 1
x

∫ π/2

0

[
1
n

∂

∂N
T (D(θ), N)

∣∣∣∣
N=1

]
dθ. (20)

In (19)-(20), D(θ) is defined based on the underlying PEP
expression. In our case, using the integrand of PEP expression
given by (17), we have

D(θ)=2
α−β+4

4 c1

(c2
α

)α−β
2
(

sin θ√
τ

)α+β
2

·Kα−β

(
25/4

√
c2α sin θ√

τ

)
(21)
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Fig. 1. Comparison of exact and derived PEPs for the gamma-gamma
channel.

with c1 and c2 defined as in (15). In the case of exact PEP,
D(θ) is given by

D(θ)=
∫ ∞

0

2(αβ)
Γ(α)Γ(β)

I
α+β

2 −1exp
(
−τ

4
I2

sin2 θ

)

·Kα−β
(
2
√
αβI

)
dI (22)

V. NUMERICAL RESULTS

In this section, we will first compare the derived approxi-
mate PEP with the exact PEP expression. Then, as an example,
we will consider a convolutionally coded FSO system and will
use our PEP results to compute upper bounds on the BER of
the considered system.

In Fig. 1, we plot the derived PEP approximation given
by (17) for an error event of length 3, i.e. |Ω|=3, using
different values of channel parameters α and β. We also
compute the exact PEP given by (8) and include it as a
reference (illustrated by dashed lines). It is observed from
Fig.1 that the derived PEP provides a good approximation
and coincides with the exact PEP for high signal-to-noise
ratios. As a result of the neglected higher order terms in
the approximation of parabolic cylinder function, the derived
PEP behaves as a lower bound for the considered cases. In
this figure, PEP curves for log-normal channels with typical
standard deviation values of σ = 0.10, 0.15, 0.25, 0.35, 0.502

have been further included. It is observed that these plots cover
the (relatively) weak turbulence where error rate performance
decays very fast with increasing SNR. On the other hand,
our gamma-gamma results, with appropriate choices of α and
β, can be used effectively for a wider range of turbulence
conditions, including very strong turbulence. As revealed out
by the numerical results under strong turbulence assumption,
increasing SNR results in a relatively smaller change in the

2It should be noted that the PEP bounds presented in [8] for log-normal
channels are not valid for σ > 0.25 due to inefficiency of employed Taylor
series approximation [8, p.1235]. Here, we consider exact PEP calculations
for accuracy.
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Fig. 2. Upper bounds on BER for the gamma-gamma channel.

slope of performance curves. This motivates the employment
of powerful scintillation-mitigation techniques (in the form of
coding and/or diversity) since it is not practical and even not
feasible for many applications to increase the power margin
in the link budget to eliminate the deep fades observed under
strong turbulence.

In the following, we consider a convolutionally coded FSO
communication system operating at λ = 1550nm. We assume
C2
n = 1.7 × 10−14, which is a typical value of refractive

index for FSO links near the ground during daytime. A point
receiver is used, i.e. D � L leading to d = 0, therefore no
aperture averaging is possible and system performance relies
heavily on possible coding gains. In this case, α and β are
simply functions of χ as reflected by (2) and (3). We use a
convolutional code, which has a code rate of 1/3 and constraint
length of 3. The convolutional code under investigation is
illustrated in Fig.8.2.2 of [21, p.471]. The transfer function
of this code is found to be

T (D(θ), N) =
D6(θ)N

1 − 2ND2(θ)
. (23)

Since the code satisfies the uniform error property, we can use
(20) for BER performance evaluation, which leads to

Pb ≤ 1
π

∫ π/2

0

D6(θ)N
(1 − 2ND2(θ))2

dθ (24)

where D(θ) is given by (21) and (22) for the derived approx-
imate PEP bound and exact PEP, respectively. The average
BER results are computed based on (24) in conjunction with
(21) as well as with (22) to allow comparison with the true
upper bound. Both of them are illustrated in the Fig. 2 for
the FSO scenario under investigation. Here, we consider three
different link distances L1 = 3000m, L2 = 4000m and
L3 = 5000m which correspond to χ2

1 = 1.031, χ2
2 = 1.747

and χ2
3 = 2.63, respectively. For all three cases we considered,

BER estimates based on the derived PEP yield a very good
approximation to the true upper bound. Although there is some
discrepancy in the lower SNR region, it provides excellent
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agreement as SNR increases. Monte-Carlo simulation results
are furthermore included in Fig. 2 as a reference. Due to the
long simulation time involved, we are able to give simulation
results only up to BER=10−6. Simulation results are observed
to be located slightly lower than the true upper bound and
demonstrate an excellent agreement with the analytical results.

VI. CONCLUSION

In this paper, we have investigated error rate performance
of coded FSO systems operating over atmospheric turbulence
channels, which are modeled with gamma-gamma distribution.
Unlike the classically used log-normal assumption which is
only accurate for modeling weak turbulence, the gamma-
gamma channel model works for a variety of turbulence con-
ditions. The parameters of this channel model are also easily
related to practical system parameters such as the operating
frequency, link distance, lens aperture giving valuable insights
into FSO system performance. Considering this recently in-
troduced channel model, we derived a PEP expression for
coded FSO links with OOK. As a result of the underlying
assumptions in the derivation, the derived PEP demonstrates
some discrepancy in the lower SNR range, however coincides
with the exact PEP for high SNRs. Adopting the transfer
function technique associated with our PEP expression for the
gamma-gamma channel, we have also obtained upper bounds
on the BER performance, which have been further verified
through Monte-Carlo simulations. Considering BER=10−9 is
a practical performance target for an FSO link, our analytical
results can serve as a simple and reliable method to estimate
BER performance without resorting to lengthy simulations.
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