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Abstract—

Social networks are usually drawn from the interactions
between individuals, and therefore are temporal and dynamic
in essence. Examining how the structure of these networks
changes over time provides insights into their evolution patterns,
factors that trigger the changes, and ultimately predict the
future structure of these networks. One of the key structural
characteristics of networks is their community structure –groups
of densely interconnected nodes. Communities in a dynamic
social network span over periods of time and are affected by
changes in the underlying population, i.e. they have fluctuating
members and can grow and shrink over time. In this paper,
we introduce a new incremental community mining approach, in
which communities in the current time are obtained based on the
communities from the past time frame. Compared to previous
independent approaches, this incremental approach is both more
effective at detecting stable communities over time and also
more computationally desirable. Extensive experimental studies
on real datasets, demonstrate the applicability, effectiveness, and
soundness of our proposed framework.

I. INTRODUCTION

A social network shows the structure of relationships
between individuals. These relationships are typically modeled
using a graph, where nodes correspond to the individuals,
and edges represent their relationships. The relationships,
especially those defined based on some type of interaction, are
usually temporal and are changing over time; examples are
friendships between people, co-authorship between scholars,
email interactions between employees within an organization.
One can aggregate all the interactions over time, into one
snapshot, to model the network using a simple graph, i.e.
static social network. However, by discarding these temporal
information, one is not able to detect invaluable evolutionary
patterns that are happening inside the network. A better mod-
eling for such a temporal/dynamic social network, is using
a sequence of consecutive static snapshots. In this model,
each snapshot incorporates interactions that happened in its
particular time-frame, the length of which can be determined
based on how dynamic is the network. Modeling a dynamic
network in this way, enables the study of its structure over
time, the detection of how the network evolves, and ultimately
the prediction of the future network structure; for example see
[1].

The term ‘social network’ is often used to refer to a more
general family of information networks –which describes any
interrelated data. That is due to the fact that all these networks
share similar characteristics, and therefore could be analyzed

by the same set of techniques, commonly known as social
network analysis techniques. Consequently, social network
analysis has attracted many researchers from a variety of fields
such as sociology, epidemiology, criminology, biology, etc.

One of the main tasks in social network analysis is
identification of communities. A community is a subset of
individuals whom are densely connected to each other, but only
sparsely connected to the rest of the network. In other words,
members of a community tend to mainly communicate with
each other, and relatively less with individuals outside their
community. Communities in dynamic social networks usually
have fluctuating members and could grow and shrink over
time [2], [1]. Analyzing the evolution of these communities
over time, can be useful in many applications such as targeted
marketing and advertising. The 2010 Edelman Trust Barometer
Report [3] shows that 44% of the users respond to the online
marketing if there are users in their peer group who have
responded to the advertisements.

Two main approaches have been followed to study the
evolution of communities in a dynamic scenario. In the in-
dependent community mining approach, the communities at
each snapshot are mined independently without considering
the temporal information and their relationship to communities
at the previous snapshots. Hence, this approach is suitable
for social networks with unstable community structures. On
the other hand, the incremental community mining approach
uses the temporal information directly during the detection,
where the community mining at a particular time is dependent
on the communities detected in the previous timeframe. This
approach finds a sequence of communities with temporal simi-
larity and hence, is only suitable for networks with community
structures that are stable over time.

In our previous works [4], [5], [6], we have explored
the independent community mining and proposed an effective
framework for tracking the evolution of communities over
time. In this paper, we propose an incremental community
mining approach that mines communities incrementally by
considering the communities discovered at previous times.
This conditional community mining approach is more appro-
priate for tracking more stable communities compared to our
previous independent method. The main contribution of our
paper is the adoption of the static L-metric approach [7], to
compute dynamic communities; where community mining at
each snapshot starts by the communities found at the previous
snapshot. The communities found at different snapshots, are
then matched based on their similarity, and grouped as the
instances of the evolving communities over time. Furthermore,



to capture the changes that are likely to occur for a dynamic
community, we apply our event detection framework [6] to
detect critical events (i.e. survive, dissolve, split, merge, form)
that characterize the evolution of communities.

II. RELATED WORK

Two main approaches have been followed to study the
evolution of communities in a dynamic scenario: 1) indepen-
dent community mining; 2) incremental community mining.
In the independent community mining, the communities at
each snapshot are mined independently without considering the
temporal information and their relationship to communities at
previous snapshots. Hence, it is more suitable for the social
networks with highly unstable community structures. After
computing communities for each snapshot, the communities
are tracked and matched based on their similarity. Commu-
nities at different snapshots that are detected as matches,
represent the instances of the same community which spans
over time. Thus, the intuitive method is to compare two
communities of the consecutive time steps with rules based
on the size of their intersection. These rules can be used con-
jointly with the community mining algorithm [8], or heuristic
algorithm to match communities based on their interaction
[9], [4], or even simplified by tracking specific core nodes
that are more representative of their community than others
[10]. Note that, although, most of the independent community
mining approaches consider matching communities between
two consecutive snapshots, a community may not necessarily
be observed at consecutive snapshots –it may be missing from
one or more intermediate steps. To support these cases, this
approach can be extended to consider matching communities
at current snapshot to communities at all previous snapshots
based on their intersections and time of occurrence [6], [11].

The incremental community mining uses the temporal in-
formation directly during the detection, where the community
mining at a particular time is influenced by the communities
detected in previous time. This approach finds a sequence
of communities with temporal similarity and hence, is only
suitable for networks with community structures that are more
stable over time. Generally, there are two techniques to mine
communities incrementally, cost function methods, and direct
methods.

Cost function methods, first introduced by Chakrabarti et al.
[12], directly try to find communities in a particular snapshot
that are meaningful communities of the interactions that exist
in that snapshot, and at the same time, are similar to the
communities detected at its previous snapshot. These methods
consider the former as the snapshot quality and the latter as the
history quality, and minimize a cost function which is defined
as a trade-off between these two qualities.

More formally, let us model a dynamic social network as
a sequence of G1, G2, ..., Gn; where Gi denotes our network
at the ith snapshot, i.e. graph Gi = (Vi, Ei), containing set
of individuals in that snapshot, Vi, and their interactions, Ei.
Also let Ci =

{
C1

i , C
2
i , ..., C

ni
i

}
represents ni communities

detected at the ith snapshot, where community Cp
i ∈ Ci is also

a graph represented by (V p
i , E

p
i ). Note that this same notation

will be used in the rest of the paper. Having this notation,
we can present the general formulation of the cost function as

follows;

cost = αSC(Gi, Ci) + (1− α)TC(Ci−1, Ci)

In this formula, the overall cost is defined as a balance
between two sub-costs: a snapshot cost (SC), and a temporal
cost (TC). Where SC(Gi, Ci) measures the quality of the
detected communities, Ci, based on the current graph, Gi, and
TC(Ci−1, Ci) measures how similar the current communities,
Ci, are to the communities detected in the previous snapshot,
Ci−1. The parameter α(0 ≤ α ≤ 1) is used to control the
trade-off between the current and temporal information. Using
this definition, the incremental community mining algorithm
finds an optimal community set that minimizes this cost at
each snapshot. Here we introduce two main approaches in this
family.

Lin et al. [13], calculate the snapshot cost SC, as the KL-
divergence between the discovered community structure and
the graph observed at that snapshot. Similarly, the temporal
cost is defined as the KL-divergence between the communities
discovered at the current and previous time. They have intro-
duced the FacetNet framework which extends the overlapping
community mining proposed by Yu et al. [14] for static graphs
to be applicable for dynamic networks. At each snapshot,
the community structure is expressed by the mixture model
proposed in [14], and the cost function is used to regularize the
community structure at current time based on the community
structure at the previous snapshot. Tantipathananandh and
Berger-Wolf [15], on the other hand, introduced a cost function
that consists of three parts: 1) cost of a node that changes its
community affiliation between two snapshots; 2) cost of two
nodes belonging to the same community but do not interact
3) cost of two nodes belonging to different communities
but do interact. Then, they propose the network community
interpretation framework to find a set of communities at each
snapshot that minimizes the above three costs and devise an
approximation algorithm. The main challenges of the cost
function methods is to derive the approximation algorithm and
the optimum communities that minimize the cost.

Direct methods mine communities incrementally by di-
rectly considering the communities discovered at the previous
time in the process of detecting communities at the current
snapshot. The difference between cost function and direct
methods is that, the focus of the former is to optimize a new
quality measure which incorporates deviation from history,
while in the latter the community structure is updated as
new data arrives. For example, in the incremental community
mining algorithm based on the Dirichlet Process Mixture
Model, the discovered communities at the previous snapshot
are included in the base distribution of the Dirichlet Process
[16]. Here we introduce the notable approaches in this family.

Aggarwal and Yu [17] propose to generate the differential
graph between the graphs at the current and previous snap-
shots. The communities at the differential graph are then mined
using k-mean community mining. Kim and Han [18] propose
to recalculate the weight between each pair of two nodes in the
current graph. More Specifically, the weight between nodes v
and w in graph Gi, is recalculated as:

w′i(v, w) = αwi(v, w) + (1− α)wi−1(v, w)



Where wi(v, w) is the weight of interactions between node v
and w at snapshot i, and α controls the balance between affect
of the previous and current snapshots. Density based clustering
is then applied on the G′i, with the new weights, to detect
communities at time i. Aynaud, and Jean-Loup [19] extend
the Louvain static community mining [20] to incrementally
mine communities in a dynamic scenario. They change the
initialization of the Louvain algorithm, in a way that the
computation at the current snapshot starts by grouping nodes
using the communities found at the previous snapshot.

Most of the previous incremental community mining ap-
proaches require knowledge of the entire graph structure.
This constraint is problematic for networks which are either
too large or too dynamic to know completely. Thus, in this
paper we propose an incremental community mining to mine
communities directly in a dynamic scenario, where global
information is not available.

III. PRELIMINARIES

In this paper, we extend the L-metric community mining al-
gorithm by Chen et al. [7], to incrementally mine communities
in a dynamic scenario following the direct approach. Similar
to [19], the main idea here is to change the initialization of
the algorithm in a way that the computation at each snapshot
starts by grouping nodes using the communities found at the
previous snapshot. Our proposed method, however, benefits
form the locality of the L-metric, which unlike most of static
community mining algorithms that implicitly assume global
information is always available, detects communities with
only local information. This locality makes L-metrics and
consequently our method, particularly desirable in case of
large real world networks, where the whole graph is usually
unavailable. In the following section, the L-metric community
mining algorithm is explained in more details.

When communities are detected at each snapshot, the next
stage is to track the evolution of the discovered communities
and individuals. Here, we distinguish between a community
and a meta community. A community contains individuals that
are densely connected to each other at a particular snapshot,
whereas a meta community is a series of similar communities
from different snapshots, not necessary consecutive, which
represents the evolution of its constituent communities over
time. In order to capture the changes that are likely to occur
for a (meta) community, we apply the MODEC framework [6]
to detect five events: form, dissolve, survive, split, and merge.
We overview the MODEC framework in the next sections, after
introducing the L-metric.

A. L-metric Community Mining

Chen et al. [7] propose a metric similar to modularity,
but with only local information, to perform local community
detection. Their proposed local modularity L, assumes that a
community would have fewer connections from its boundary
nodes to the unknown portion of the graph, while having a
greater number of connections within the local community.
They also define a two-phase algorithm based on modularity
L, called L-metric community mining, that begins from a start
node, and then iteratively identifies communities while expand-
ing to the whole graph. In contrast to existing approaches, this

Fig. 1: Local Community Definition. Figure reprinted from [7].

algorithm does not require any arbitrary thresholds or other
parameters, and the metric L is also robust against outliers.

More formally, Consider an undirected network G, with the
known local portion of the graph denote as D. Two subsets
of D are defined: the core node set C, where all neighbours
of v ∈ C belong to D; and the boundary node set B, where
any node v ∈ B have at least one neighbour outside D. The
shell node set S is the set of nodes with limited available
information and contains nodes that are adjacent to nodes in
D but do not belong to D. Figure 1 shows node sets D,S,C
and B in a network. The community internal relation Lin is
then measured by the average internal degree of nodes in D:

Lin =

∑
v∈D IKv

|D|
Where IKv is the number of connections between node v and
nodes in D. Similarly, the community external relation Lex is
measured by the average external degree of nodes in B:

Lex =

∑
v∈B EKv

|B|
Where EKv is the number of connections between node v and
nodes in S. Then, the metric L is defined as:

L =
Lin

Lex

There are three situation in which the modularity L increases
after adding one node to the local community. Assume v is
the node in question and L′in, L′ex and L′ are corresponding
scores after merging v into D. The three cases that will result
in L′ > L are:

1) L′in > Lin and L′ex < Lex

2) L′in < Lin and L′ex < Lex

3) L′in > Lin and L′ex > Lex

Nodes in the first case belong to the community, while
nodes in the second case are outliers. The nodes in the third
case can be hubs, or the first node of an enclosing community
group that is going to be merged one by one. However, at the
time of merging a node, it is too early to judge whether the
incoming node is a hub or not. Therefore, nodes in the first and
third cases are merged into the community temporarily. After
all qualified nodes are included, each node is re-examine by
removing it from D and re-calculating the modularity L to



only include the nodes in the first case. The remaining nodes
are then constituent of the local community. The L-metric
community mining discovers communities of a whole graph by
iteratively identifying a local community for a specific starting
node. For detailed information and algorithms please refer to
[7].

B. MODEC Framework

In the first stage of the MODEC framework, a one-to-one
matching algorithm, based on weighted bipartite matching, is
applied to match the communities extracted at different time
steps. Then, a meta community is constructed for each series
of similar communities detected by the matching algorithm
in different time-frames. The Meta community provides the
evolution of its constituent communities.

In the second stage, a collection of significant events are
identified and used to explain the differences between the com-
munities of a meta community over time. The key concept for
the detection of the events, and also the meta community, is the
concept of similarity between communities at different times.
Two communities that are discovered at different snapshots are
similar if a certain percentage, k ∈ [0, 1], of their members are
mutual. Given the definition of meta community, a community
Cp

i at the ith snapshot may undergo different transitions in the
later snapshots.

Community Cp
i splits at snapshot j > i, if it fractures

into multiple communities with at least k proportion of their
members from Cp

i . Community Cp
i survives, if there is a

community Cq
j at snapshot j > i such that their meta

communities are identical. In the case where there is no such
community, Cp

i dissolves.

Only the survive and dissolve events are mutually exclu-
sive, while the split event can be combined with the other
two. Community Cp

i splits and survives at the jth snapshot,
if it fractures into more than one community and one of these
communities has the same meta community as Cp

i . Community
Cp

i splits and dissolves at the jth snapshot, if it fractures into
other communities and none of these communities have the
same meta community as Cp

i .

In addition, a set of communities in Ci can merge together
in community Cq

j at snapshot j > i. The merge event occurs
when at least k proportion of the members from multiple
communities in Ci, exist in Cq

j . Furthermore, at any snapshot
there may be newly formed communities. These communities
are the ones that do not belong to any of the already existing
meta communities.

IV. INCREMENTAL L-METRIC COMMUNITY
IDENTIFICATION

In this paper, we propose to extend the L-metric community
mining to incrementally mine communities in a dynamic sce-
nario. The idea is to change the initialization of the algorithm
where the computation at snapshot i starts by grouping nodes
using the communities found at snapshot i−1. Due to the fact
that the activities and interactions of the entities frequently
change and vary in time, the community found at snapphot
i − 1 may not result in a connected component1. Thus, in

1Connected component of an undirected graph is a subgraph in which any
two vertices are connected to each other by paths.

order to use communities Ci−1 in the process of detecting
communities Ci, we first extract connected components from
communities Ci−1. Then, the nodes at snapshot i are grouped
based on the extracted connected components (Algorithm 1).

Algorithm 1 Grouping Nodes
Input: Gi (Graph at ith snapshot) and Ci−1 (Communities
from i− 1th snapshot)
Output: CCi (Groups of connected nodes at ith snapshot)

CCi = ∅
for all Cp

i−1 ∈ Ci−1 do
g = ∅
for all v ∈ Ci−1 do

if v ∈ Gi then
add v and its edges that exist in Gi to g

end if
end for
CCi + = Connected Components in g

end for

Our proposed Incremental L-metric community mining
considers the extracted connected components as the initializa-
tion state to detect local communities. Thus, for each connected
component in CCi Algorithm 2 should be executed iteratively.

Algorithm 2 Incremental L-metric Community Mining
Input: Gi (Graph at ith snapshot) and CCq

i (A Connected
Component from Algorithm 1)
Output: D (Local community at ith snapshot assigned with
L, its quality score)

1. Discovery Phase:
D = all nodes from CCq

i
Add all boundary nodes of D to B
Add all external neighbours of D to S
repeat

for all v ∈ S do
compute L′

end for
Find vm with the maximum L′

if vm belongs to the first or third case then
add vm to D

else remove vm from S
end if
Update B, S, C, L

until L′ > L

2. Examination Phase:
for all v ∈ D do

Compute L′, keep v only when it is the first case
end for

3. return D

Formally, the Incremental L-metric community mining
discovers communities for a dynamic social network with the
following procedure. Initially, communities at snapshot 0 are
mined using the traditional L-metric community mining. In
iteration i, the communities found at snapshot i − 1, Ci−1,
are considered as a building block to extract the connected



(a) G0 (b) C0

(c) G1 (d) CC1 (e) C1

Fig. 2: Example for Incremental L-metric Community Mining;
Figure 2a and 2c show the structure of the example network
in snapshot 0 and 1; and Figure 2d represents the connected
components extracted from snapshot 0 using Algorithm 1,
while Figure 2b and 2e illustrate the discovered communities
in their corresponding snapshots.

components at ith snapshot (see Algorithm 1). The connected
components found with the Algorithm 1 are not only the
members of the same communities at snapshot i − 1, but are
also connected to each other based on the interactions and con-
nection at snapshot i. Each of these connected components are
then set as the initialization state of the L-metric community
mining, where the algorithm construct its region D with the
nodes of the given connected component. After that, the shell
nodes of the region D have to be checked and if possible,
added as the new community members. More specifically, a
node v from the shell nodes is temporarily merged in the first
and third cases into the community. After all qualified nodes
are included, we re-examine each node by removing it from
D and checking the metric value change if we merge it again.
Now we only keep nodes if they are associated with the first
case (see Algorithm 2).

A toy example to demonstrate the Incremental L-metric
community mining is provided in Figure 2. At snapshot 0
(Figure 2a), since there is no previous snapshot, we apply
the traditional L-metric. Applying L-metric, red and green
communities are detected (Figure 2b). To detect communities
at snapshot 1 (Figure 2c), first we have to group the nodes
based on the communities detected at snapshot 0. Applying
Algorithm 1, three groups of nodes are extracted (Figure 2d).
Each of these three connected components are then the input
of Algorithm 2, which results in the detection of the red, green,
and blue communities at snapshot 1 (Figure 2e).

V. EXPERIMENT RESULTS

In this section, we validate our proposed incremental
community mining approach on the Enron email dataset. The
Enron email dataset incorporates emails exchanged between
employees of Enron Corporation. The entire dataset includes a
period of 15 years and its corresponding email communication

network, for the entire period of time, has over 80,000 nodes
and several hundred thousand edges. We study the year 2001
and consider a total of 285 nodes and 23559 edges, with each
month being one snapshot. For each of the 12 snapshots, one
graph is constructed with the extracted employees as the nodes
and email exchanged between them as the edges.

Here, we compare the communities detected on Enron
dataset by Incremental L-metric with the communities detected
by Independent L-metric and FacetNet [13] algorithms. This
comparison is performed from two perspectives: first, relatively
based on a direct objective for dynamic communities, and then
indirectly based on how much they improve the event detection
framework.

A. Relative Evaluation

In the static scenario, the quality of a community mining
result is mainly measured by Modularity Q [21]. However, in
a dynamic scenario, the communities detected at one snapshot
should not only be a good partitioning for that snapshot,
but also a reasonable partitioning for the previous snapshot.
Thus, we propose the Dynamic Modularity (DQ), defined by
the following quality function, to validate the quality of the
partitioning on snapshot i:

DQi = αQ(Gi, Ci) + (1− α)Q(Gi−1, Ci)

In the above formula, Q(G,C) computes the value of mod-
ularity Q for communities C based on the structure of graph
G. Consequently, Q(Gi, Ci) is computing the normal static Q
modularity for communities discovered in snapshot i, which is
computed based on structure of the graph in snapshot i. While
Q(Gi−1, Ci) is the value of modularity Q for communities at
snapshot i computed over graph from the previous snapshot.
The average quality on all the snapshots, 1

n

∑n
i=1DQi, is then

considered as the quality indicator for comparing different
community mining algorithms. On the Enron dataset, we
have the average score of 0.49, 0.44, 0.47 respectively for
the Incremental L-metric, Independent L-metric and FacetNet,
where α = .5.

Figure 3, presents a more detailed comparison of the three
algorithms on Enron email dataset. The quality, size, and
number of communities over the time is depicted in Figure
3a, 3b, 3c respectively; while the static dashed line shows
the average over time. In Figure 3a, we can clearly see that
the proposed incremental approach is consistently detecting
communities with higher quality –complying with both current
and temporal information. Figure 3b and 3c, are shedding light
on another difference between the incremental and independent
approach. As we can see here, the average size of communities
is much lower for the independent method, i.e. it found much
smaller communities. Which is due to the fact that it failed
to detect stable communities that span over time, which is
not surprising since it only looks at the current timeframe
to mine communities. The FacetNet mining, fails similarly to
the independent approach. One of the disadvantages of the
FacetNet mining is that the number of communities should be
similar for all the snapshots. As stated in [13], the number of
communities is the one maximizing the average modularity
over all the snapshots. For our results here, we run the
FacetNet with different number of communities and chose 6,
that resulted in the highest modularity.



(a)

(b)

(c)

Fig. 3: Relative Evaluation of Incremental L-metric, Inde-
pendent L-metric and FacetNet Algorithms on Enron Email
Dataset: the dynamic modularity, size of communities, and the
number of communities is reported for each snapshot, while
the average over time for each method is represented by a
constant dashed line.

B. Indirect Evaluation

Another way to compare different community mining algo-
rithms is to see how accurate are the events detected based on
their resulted communities. Considering this, here we compare
the algorithms in the context of our event detection framework
called MODEC [6]. As stated in [6], to select the appropriate
similarity threshold for our event detection framework, we
incorporate the extraction of the topics for the discovered
communities. For the Enron dataset, KEA [22] is applied to
produce a list of the keywords discussed in the emails within
each community. The topics for each community is composed
of its 10 most frequent keywords extracted by KEA. We expect
that a community which survives multiple timeframes is more
likely to continue discussions of the same topics. Topics that
persist in a community from one snapshot to the other are
called mutual topics. The survival communities mostly discuss
the same topics, thus, the k that corresponds to the highest
mutual topics illustrates the community evolution better than
the others. Based on the experiments provided in [6], setting
k = 0.5 for the Enron dataset leads to the most meaningful
evolution since it has the highest mutual topics. Therefore, we

TABLE I: Indirect Evaluation on the Enron Dataset; i.e. Comparison
of Events Detected based on Incremental, Independent L-metric and
FacetNet Algorithms.

Framework Form Dissolve Survive Split Merge Mutual Topics
Incremental 10 10 32 5 8 4.12/10

L-metric

Independent 19 19 46 7 11 3.83/10
L-metric

FacetNet 6 6 66 0 0 4.02/10

use the same setting in our experiments here.

The comparison of events detected based on different
community mining algorithms is shown in Table I, where
the total number of events for each type detected during
the 12 snapshots is provided. The Independent L-metric is
too dynamic, detecting communities that vary much differ-
ent between snapshots and, therefore, resulting in too many
triggered events, e.g. 19 forms, 19 dissolve. The FacetNet
algorithm, on the other hand, is too stable, resulting in no
merge or split events and only having survival events. Which
is a consequence of how it detects communities over all the
snapshots and has less emphasis on what is happening in
each snapshot, and therefore fails to detect any of the events.
The Incremental L-metric has the balance between the two,
i.e. it correctly determines the communities survived over
timeframes by incorporating the temporal information, and
at the same time, detects other types of events reasonably.
We further incorporate topics extracted for each community
to find out which algorithm results in the most appropriate
community evolutions for the Enron dataset. The average
mutual topics between any two survival communities during
the observation time is calculated for each algorithm, which
are reported at the last column of the Table I. Our results
show that the highest mutual topics out of the top 10 most
frequent keywords is obtained when using the Incremental L-
metric framework. Thus, the Incremental L-metric also results
in the most meaningful community evolution for Enron.

The detailed communities and events detected by inde-
pendent, Incremental L-metric and FacetNet are shown in
Figure 4. Here communities at each snapshot are marked with
different colours, where these colours are the notion of meta
communities (the communities without color are the ones that
only exist for one snapshot). Furthermore, solid, dashed, and
dotted arrows show detected survive, split, and merge events
respectively. The communities detected by the Independent L-
metric algorithm in Figure 4a, are too dynamic and unstable.
Which result in triggering too many events. For the first two
snapshots for example, we can see that it failed to detect the
green/largest community correctly, having that community as
several separate smaller communities including the cyan/47
member community, which is not a distinct community and
disappears after only one snapshot. The Incremental L-metric,
Figure 4b, started with the same communities in the first snap-
shot, detects the survival of this green community correctly,
by incorporating the temporal information. Its communities
also have a relatively higher quality, with DQ = .495 to
DQ = .456 of the independent method. The FacetNet commu-
nities are different than those found by the Independent and



(a) Events Detected for Independent L-metric

(b) Events Detected for Incremental L-metric

(c) Events Detected for FaceNet

Fig. 4: Events Detected for (a) Independent L-metric, (b) Incremental L-metric, (c) FaceNet Mining Results; Solid, dashed, and
dotted arrows show detected survive, split, and merge. We can see that communities in (a)/(c) are too unstable/stable, while in
(b) we have a balance between the change and stability. The quality of communities detected in each snapshot is also reported
at the bottom of that snapshot. In average, the communities in (b) have a relatively higher quality compared to those in (a)/(c).



Incremental L-metric methods. And at the same time, have
lower quality index, DQ. The worst part is though the fact
that these communities are too stable and fail to trigger any
events other than survival. Thus one is not able to see the
patterns of change in the structure of the network using the
communities detected by this method.

VI. CONCLUSION

One of the challenging research problems in dynamic social
networks is to mine communities and analyze their evolution
over the observation time. The traditional approach to solve
this problem is to extract communities at each snapshot inde-
pendent of the communities at other snapshots or the historic
data. In this paper, we overviewed and classified different
dynamic community mining approaches. We then proposed an
Incremental L-metric community mining approach to consider
both current and temporal data in the process of mining
communities. The proposed method is then compared with its
equivalent independent version and also with the most com-
monly used dynamic community method –FacetNet. Compared
to these two methods, the Incremental L-metric method detects
communities with higher quality when assessed directly with
a modified version of Q modularity for the dynamic scenario.
In addition, it is more successful in detecting the evolution
patterns of the communities and triggering appropriate events,
when used in our event detection framework, MODEC. The
Independent L-metric is too unstable and triggers too many
events, while the FacetNet is too stable and triggers no events
other than survivals. Our incremental method, on the other
hand, has the balance and provides meaningful communities
and evolution events by incorporating the temporal informa-
tion.

REFERENCES

[1] J. Leskovec, J. Kleinberg, and C. Faloutsos, “Graphs over time: densi-
fication laws, shrinking diameters and possible explanations,” in ACM
SIGKDD international conference on Knowledge discovery in data
mining, 2005, pp. 177–187.

[2] L. Backstrom, D. Huttenlocher, J. Kleinberg, and X. Lan, “Group
formation in large social networks: membership, growth, and evolution,”
in Proceedings of the 12th ACM SIGKDD international conference on
Knowledge discovery and data mining, ser. KDD ’06, 2006, pp. 44–54.

[3] Edelman, “Edelman trust barometer report,” 2010.
[4] M. Takaffoli, F. Sangi, J. Fagnan, and O. R. Zaı̈ane, “A framework

for analyzing dynamic social networks,” in Proceedings of the 7th
Conference on Applications of Social Network Analysis, ser. ASNA
’10, 2010.

[5] ——, “Modec - modeling and detecting evolutions of communities,” in
5th International AAAI Conference on Weblogs and Social Media, ser.
ICWSM ’11, 2011.

[6] ——, “Tracking changes in dynamic information networks,” in Pro-
ceedings of the International Conference on Computational Aspects of
Social Networks, ser. CASoN ’11, 2011.

[7] J. Chen, O. R. Zaı̈ane, and R. Goebel, “Detecting communities in
large networks by iterative local expansion,” in Proceedings of the
International Conference on Computational Aspects of Social Networks,
ser. CASoN ’09, 2009.

[8] G. Palla, A.-L. Barabási, and T. Vicsek, “Quantifying social group
evolution,” Nature, vol. 446, no. 7136, pp. 664–667, 2007.

[9] S. Asur, S. Parthasarathy, and D. Ucar, “An event-based framework for
characterizing the evolutionary behavior of interaction graphs,” ACM
Transactions on Knowledge Discovery from Data, vol. 3, pp. 16:1–
16:36, 2009.

[10] Y. Wang, B. Wu, and N. Du, “Community evolution of social network:
Feature, algorithm and model,” Science And Technology, no. 60402011,
p. 16, 2008.

[11] D. Greene, D. Doyle, and P. Cunningham, “Tracking the evolution of
communities in dynamic social networks,” in Proceeding of Interna-
tional Conference on Advances in Social Networks Analysis and Mining,
ser. ASONAM ’10, 2010.

[12] D. Chakrabarti, R. Kumar, and A. Tomkins, “Evolutionary clustering,”
in Proceedings of the 12th ACM SIGKDD international conference on
Knowledge discovery and data mining, ser. KDD ’06, 2006.

[13] Y.-R. Lin, Y. Chi, S. Zhu, H. Sundaram, and B. L. Tseng, “Analyzing
communities and their evolutions in dynamic social networks,” ACM
Transactions on Knowledge Discovery from Data, vol. 3, pp. 8:1–8:31,
2009.

[14] S. Yu, K. Yu, and V. Tresp, “Soft clustering on graphs,” in The Neural
Information Processing Systems, ser. NIPS, 2005.

[15] T. B.-W. Chayant Tantipathananandh, “Finding communities in dynamic
social networks,” in Proceedings of 11th IEEE International Conference
on Data Mining, ser. ICDM ’11, 2011.

[16] Y. Sun, J. Tang, J. Han, M. Gupta, and B. Zhao, “Community evolution
detection in dynamic heterogeneous information networks,” in Proceed-
ings of the Eighth Workshop on Mining and Learning with Graphs, ser.
MLG ’10, 2010, pp. 137–146.

[17] C. C. Aggarwal and P. S. Yu, “Online analysis of community evolution
in data streams,” in Proceedings of SIAM International Data Mining
Conference, ser. SDM’05, 2005.

[18] M.-S. Kim and J. Han, “A particle-and-density based evolutionary
clustering method for dynamic networks,” Proceedings of the VLDB
Endowment, vol. 2, pp. 622–633, August 2009.

[19] T. Aynaud and J.-L. Guillaume, “Static community detection algorithms
for evolving networks,” in WiOpt Workshop on Dynamic Networks,
2010.

[20] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre, “Fast
unfolding of communities in large networks,” Journal of Statistical
Mechanics: Theory and Experiment, vol. 2008, pp. P10 008+, 2008.

[21] M. E. J. Newman, “Modularity and community structure in networks,”
Proceedings of the National Academy of Sciences, vol. 103, no. 23, pp.
8577–8582, 2006.

[22] I. H. Witten, G. W. Paynter, E. Frank, C. Gutwin, and C. G. Nevill-
Manning, “KEA: Practical automatic keyphrase extraction,” in ACM
DL, 1999, pp. 254–255.


