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Abstract
This paper describes XOS, a cloud operating system designed to
manage hardware and software resources across a multi-tiered cloud.
XOS raises the level of abstraction in an IaaS cloud architecture by
elevating scalable software services to first-class objects. This in-
volves adopting three design principles: (1) Everything-as-a Ser-
vice (XaaS) (services are building blocks, and combinations of
those building blocks are also services); (2) Multi-tenancy (a tenant
relationship links one service to another, and facilitates reasoning
about safety, privacy and efficiency); and (3) Control/Data-plane
separation (services are configured through a logically centralized
service controller interface, but the controller is not on the data path
between services). XOS applies these principles through the lens
of an operating system—it defines a set of abstractions that support
constructing multi-tenant services that can be folded back into XOS
as available building blocks, while also extending the capabilities
of conventional IaaS. The paper shows how these abstractions can
be used to build a functional, evolvable, service-oriented cloud.

1. INTRODUCTION
The Cloud is evolving into a multi-dimensional space that includes
virtualized clusters and software-defined networks; large data cen-
ters and smaller clusters deployed deeply in the network; special-
ized private clusters and commodity public facilities; building block
services and new applications. A key challenge for architects and
designers of future clouds is to provide the right set of abstractions
so that application builders can fully leverage these new opportu-
nities, while avoiding the ossification that often arises when such a
large diversity of factors is involved.

This paper explores the value of adopting an operating system
perspective on the problem of programming the future cloud. We
describe XOS, an extensible cloud operating system that defines
unifying abstractions on top of a collection of cloud services. We
call XOS an operating system because it plays much the same role
in a geo-distributed cloud as a traditional operating system does on
a conventional computer: it provides general programming abstrac-
tions to support a wide range of applications, while at the same time
safely multiplexing the underlying hardware resources and soft-
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ware services between them. By regarding XOS as an operating
system, we bring 50 years of proven concepts and best practices to
the problem of tranforming the cloud into a general-purpose com-
puting environment.

XOS is designed for the multi-tier, network-wide cloud shown
in Figure 1. Its abstractions unify access to cloud infrastructure
across multiple sites—from commodity clouds to private datacen-
ters to wide-area network routing centers to edge access sites. XOS
leverages existing datacenter cloud management systems to imple-
ment low-level scheduling and resource allocation mechanisms for
each autonomous site, and SDN-based network customization to
connect the sites.

Figure 1: Multi-tiered cloud that XOS is designed to run on, span-
ning commodity clouds, private datacenters, and modest clusters
embedded deep in the network.

XOS provides explicit support for multi-tenant services, making
it possible to create, name, operationalize, manage and compose
services as first-class operations. Well-known multi-tenant clouds
are designed to host applications, but they usually treat these as
single-tenant services that run on top of the cloud, for the benefit of
the user. In contrast, XOS provides a framework for implementing
multi-tenant services that become part of the cloud, thereby lower-
ing the barrier for services to build on each other.

Focus on support for multi-tenant services is inspired by service
ecosystems like Amazon Web Services (AWS) [3] and the Google
Cloud Platform [9], which consist of a rich set of mutually sup-
portive services. For example, Google App Engine [11] is effec-
tively a front-end to a collection of Google services, which over
time has included different combinations of Spanner [6] (a fault-
tolerant database), BigTable [5] (a NoSQL database), Colossus and
its predecessor the Google File System [10], and the Chubby Lock-
ing Service [4]. Unlike AWS and Google Cloud Platform, how-
ever, XOS is an open system—both in terms of source code (giv-



ing others the opportunity to build their own service ecosystems)
and in terms of serving as an artifact to study (giving the com-
munity the opportunity to identify common patterns and building
blocks). We return to this point, and discuss related open systems
like Docker [7] and OpenStack [16] in Section 5.

2. APPROACH
This section outlines our approach, which considers the problem of
architecting a cloud from the perspective of designing an operating
system. It also sketches the software structure we arrived at in pro-
totyping XOS—bootstrapping XOS with existing public services
and open source software—which itself is an important element of
our approach.

2.1 OS Perspective
An OS provides many inter-related mechanisms to empower users.
If we define an OS by a successful example, Unix [18], then an OS
provides isolated resource containers in which programs run (e.g.,
processes); mechanisms for programs to communicate with each
other (e.g., pipes); conventions about how programs are named
(e.g., /usr/bin), configured (e.g., /etc), and started (e.g., init); a
mechanism to program new functionality through the composition
of existing programs (e.g., shell); a means to identify and authorize
principles (e.g., users); and a means to incorporate new hardware
into the system (e.g., device drivers).

XOS provides counterparts to all these mechanism—as described
in the next section—but in general terms, XOS adopts much the
same design philosophy as Unix. Both are organized around a sin-
gle cohesive idea—everything is a file in Unix and Everything-as-
a-Service (XaaS) in XOS. Both also aim to have a minimal core
(kernel) and are easily extended to include new functionality. In
Unix, the set of extensions correspond to the applications running
top of the Unix kernel. OS experts might debate whether /bin/bash
is a fundamental part of Unix, a feature of a particular Unix distri-
bution, or an application running on top of Unix, but from the user’s
perspective, the distinction between the kernel and commands they
can invoke is an implementation detail. This is also the case with
XOS, where as depicted in Figure 2, the core is minimal and the
interesting functionality is provided by a collection of services.
Moreover, XOS supports a shell-like mechanism that makes it pos-
sible to program new functionality from a combination of existing
services.

Figure 2: XOS layers an OS on top of a set of cloud services (ser-
vice controllers).

Implicit in Figure 2 is an underlying model of exactly what con-
stitutes a service. Our model is that every service incorporated into
XOS provides a service controller that exports a programmable
interface to network-wide functionality, with the service imple-
mented by an elastically scalable number of service instances. Fig-
ure 3 depicts the anatomy of a service in this way, where the in-
stances (for example, VMs) are potentially distributed widely over

a geo-distributed set of clusters. For example, some VMs might
be concentrated in one or more datacenters, while others are dis-
tributed across many edge sites.

The separation of service controller from service instances is
central to our design. The controller maintains all authoritative
state for the service, and is responsible for configuring the under-
lying instances. Service users (and service operators) interact with
the controller, which exposes a global interface; any per-instance
or per-device interface is an implementation detail that is hidden
behind the controller.

Figure 3: Anatomy of a Service: A single service controller pro-
vides a logically centralized interface to network-wide functional-
ity, with service instances providing many points of implementation
distributed across the network.

To continue the Unix analogy, there is a spectrum of implementa-
tion choices for providing the capabilities outlined above, including
monolithic kernels (e.g., Linux) and microkernels (e.g., Mach [1]
and L4 [14]). Because XOS unifies a collection of services, many
of which exist independent from XOS, it most naturally maps onto
a microkernel structure. Figure 4 shows a canonical microkernel
side-by-side with XOS, with the latter depicted as a simple reori-
entation of Figure 2.

Figure 4: XOS can be viewed as adopting a microkernel structure.

There are, of course, important differences between the two sys-
tems in Figure 4. The most notable is the extent to which each
decouples the control and data planes. In the case of XOS, con-
trollers represent services—each controls a scalable set of service
instances distributed throughout the network—but these instances
interact with each other without the controller being directly on
the data path. In contrast, a conventional microkernel-based sys-
tem bundles a server’s control and data plane in a single compo-
nent. Sometimes operations flow from a client to a remote server
via RPC, but both control operations and data operations traverse
the same sequence of local and remote modules. This explicit sep-
aration of a service’s control and data plane is an important aspect
of XOS’s design.

2.2 Software Structure
We have built a prototype of XOS and deployed it on hardware
similar to that shown in Figure 1. The following highlights a few
key attributes of the implementation.



XOS is organized around three layers, as illustrated in Figure 5.
At the core is a Data Model, which records the logically central-
ized state of the system. It is the Data Model that ties all of the
services together, and enables them to interoperate reliably and ef-
ficiently. The logical centralization of this state is achieved through
a clearcut separation between this authoritative state and the on-
going, fluctuating, and sometimes erroneous state of the remain-
der of the system—the so-called operational state. The ability to
distinguish between the overall state of the system at these two
levels—authoritative Data Model and operational backend—is a
distinguishing property of XOS.

Figure 5: Block diagram of the XOS software structure.

The Data Model encapsulates the abstract objects, relationships
among those objects, and operations on those objects. The opera-
tions are exported as a RESTful HTTP interface, as well as via a
library (xoslib) that provides a higher-level programming interface.
On top of this Data Model, a set of Views defines the lens through
which different users interact with XOS. For example, Figure 5
shows a view tailored for tenants, one tailored for service develop-
ers, and one customized for service operators. Finally, a Controller
Framework is responsible for distributed state management; that is,
keeping the state represented by a distributed set of service con-
trollers in sync with the authoritative state maintained by the Data
Model.

The Controller Framework is a critical component of XOS—it
binds the logically centralized authoritative state to the rest of the
system, synchronizes the policies specified in its upper levels to it
lower-level mechanisms, and keeps the policies themselves consis-
tent. Instead of transmitting changes in the authoritative state in the
form of deltas sent out to various service controllers, it computes
these deltas from the service controller’s vantage point. With this
strategy, the authoritative state of the system can be determined un-
ambiguously at any given time, even if the operational state of the
rest of the system is lagging behind, or is even erroneous.

Furthermore, any consistency properties encoded as policies in
the form as functions of the state can be applied to the central state
independent of the service controllers. This decoupling of man-
aging the central state and orchestrating backend mechanisms is
instrumental in enabling the logical centralization of distributed re-
sources. And the resulting parallel construct is not an accident. Just
as individual services have a logically centralized controller and a
scalable set of instances, XOS is structured to provide a logically
centralized interface on top of a cloud-wide set of services.

The current implementation of XOS uses a combination of open
source software and commodity services. The Data Model is imple-
mented in Django, and leverages a substantial Django ecosystem

(e.g., Django Suit is used to automatically generate an admin GUI).
Views are Javascript programs running on the user’s browser, where
xoslib is a client/server library that uses Backbone.js and Mari-
onette.js over the HTTP-based REST API. The Controller Frame-
work is a from-scratch program (called the Observer) for executing
service controller plug-ins. It leverages Ansible to handle low-level
configuration with the back-end controllers.

XOS runs on top of a mix of service controllers, some instan-
tiated as part of an XOS deployment, and some made available
by commodity providers. Today, these include OpenStack (Nova,
Neutron, Keystone, Ceilometer, and Glance), EC2, HyperCache [12]
and RequestRouter [17] (proprietary CDN services from Akamai),
ONOS [13] and OpenVirtex [2] (a network operating system and
network hypervisor, respectively), and Syndicate [15] (a research
storage service built on top of S3, Dropbox, HyperCache, and Google
App Engine). We have also prototyped multi-tenant services using
several open source projects, including Cassandra, Kairos, Swift,
and Nagios.

3. ABSTRACTIONS
Returning to the claim that XOS provides a useful collection of OS
abstractions, this section describes the support XOS provides to
first implement services, and to then fold those services back into
XOS for other applications to build upon. Because these abstrac-
tions are represented in the XOS Data Model, this section is orga-
nized around the key objects in the model, where for each, we give a
high-level pseudo-specification. (A detailed definition of the result-
ing REST API is available online at http://portal.opencloud.us/docs/.)

3.1 Resource Containers
XOS provides resource containers (Slices) in which programs (Ser-
vices) run. Services are a first-class abstraction (object) in XOS,
meaning they are explicitly created, named, and managed. This
makes it possible to define relationships among a collection of ser-
vices, for example, to say that Service A "composes with" Service
B. We summarize the key objects that comprise a service as fol-
lows:

Service = ({Slice,...}, Controller)
Slice = ({VM,...}, {VN,...})
VM = (Placement, Image, Resources)
VN = (Topology, NetworkOS, Resources)
Controller = (URL, Credentials, Plugin)

A Service is defined in terms of two other objects: (1) a set of
one or more Slices, each of which is a resource container in which
the instances that implements the service runs, and (2) a Controller
that represents the XOS end-point for the service’s controller. Most
services run in a single slice, but XOS allows for the possibility
that a given service has been factored into a set of slices—because
each sub-program benefits from being isolated in its own resource
container—akin to a Unix application running across multiple pro-
cesses.

A Slice is defined in terms of two additional objects: (1) a set
of Virtual Machines (VM), each of which is instantiated on some
physical server, and (2) a set of Virtual Networks (VN), each of
which is embedded in the underlying physical network and inter-
connects the VMs in the slice. Both VMs and VNs isolate services
from each other, where XOS is (indirectly) responsible for allo-
cating resources to slices. We say “indirectly” because still other
services imported into XOS are directly responsible for resource
allocation, but these services operate under the control of XOS. For
example, a common configuration uses OpenStack’s Nova service



to directly implement XOS VMs and OpenVirteX (a network hy-
pervisor) to directly implement XOS VNs.

Service developers are given considerable operational control
over their slices. For example, they can control VM placement,
what image is booted in each VM, and how many resources (e.g.,
cores) are to be allocated to each VM. Similarly, they control vir-
tual network topology, what NetworkOS (e.g., ONOS [13]) con-
trols each virtual network, and how many resources (e.g., link band-
width) are to be allocated to each VN. Note that the VM Image and
VN NetworkOS are parallel constructs: Both a VM and a VN are
empty containers unless “booted” with the appropriate Image and
NetworkOS, respectively.

The Controller bound to each Service records configuration state
needed to invoke operations on the back-end service controller.
There is also a Python plug-in that executes in the XOS controller
framework, invoking operations on the back-end controller accord-
ing to state it sees in the XOS data model. Note that it is possible
to import an existing/external service into XOS by creating a Con-
troller object for it, but without creating a slice in which the service
runs. This is how we incorporate a service like S3 or EC2 into a
given deployment of XOS. (See Section 3.4 for elaboration.)

3.2 Service Composition
The power of building a system from modular components is real-
ized when the system provides a means (framework) for composing
those components. XOS provides explicit support for composing
services, or to be more specific, for service providers to declare that
“Service A is a tenant of Service B.” We represent this relationship
in the XOS Data Model as a Tenant object:

Tenant = (ServiceT , ServiceP, Connect, Attributes)

The first two fields identify the tenant and provider services, re-
spectively. The third argument indicates how the two services are
to be connected in the underlying network and the last argument
records state necessary to implement the tenancy. These last two
fields are explained below.

While multi-tenancy is a staple of cloud services, there are typ-
ically two assumptions that do not apply in the general case that
XOS addresses. The first assumption is that the tenant is a user
(e.g., John Smith is a tenant of Amazon’s EC2 service). Tenancy
raises additional challenges when the tenant is itself an elastically
scalable service; all the service instances must collectively be able
to access the provider service. The second assumption is that all
services are autonomous—that is, each is an independently oper-
ated service that runs on some cloud (e.g., EC2). But XOS is also
designed to support services that are part of the cloud, which more
closely corresponds to the ecosystem of services offered by AWS
(as opposed to runs on AWS). These services build upon each other
and are all operated by a single cloud provider (Amazon).

While we could leave these challenges to the individual services
to address, XOS provides mechanisms that lower the operational
costs of Service A being a tenant of Service B under these more
general circumstances. We broadly characterize them as enabling
composition in the data plane and enabling composition in the con-
trol plane.

The first aspect of service composition is data plane connectivity:
the ability of one service to connect to (and exchange packets with)
another service. All services in XOS are connected to one or more
virtual networks. These virtual networks are designed to provide
isolation. This is the primary role they play in a multi-tenant cloud,
but for two services to compose means that the constituent service
instances (i.e., VMs) must be able to communicate with each other.
This could happen over the public Internet, as happens on public
clouds, but doing so violates the principle of least privilege. There

are deployment scenarios in which internal services are composed
with each other, but without offering a publicly reachable interface.

XOS provides three ways to interconnect a pair of services (as
indicated by the Connect field of the Tenant object). The first is
the default on commodity clouds: the services communicate over
the public Internet. The second is to create a single VN that is
shared by two or more slices. Such a shared VN interconnects the
union of all VMs belonging to the participating slices. The third
leverages OpenVirteX to install the appropriate flow rules in the
underlying switches so as to pass packets from one VN to another.
The “gateway” between the two VNs is logical—packets do not
traverse a “router process” as they cross from one VN to another.

The second aspect of service composition is control plane ten-
ancy: managing the tenancy of one service relative to another. XOS
provides mechanisms that address two challenges. First, each in-
stance of service A (i.e., each VM that implements A) must have
the requisite tenancy credentials to access B. For example, if Ser-
vice A is a tenant of a scalable storage service (B), then each VM in
A needs the credentials that allow it to read and write data stored in
the VMs of B. Mechanistically, XOS records the all tenancy state
corresponding to A being a tenant of B in its Data Model (the At-
tributes field of the Tenant object) and has a means to distribute this
state to all the service instances.

Second, one service might need to take some action when one of
its tenants changes its instances. For example, if Service A takes
advantage of a scalable storage service (B) that mounts volumes in
each of the service instances (VMs) that implement A, then Service
B needs to be alerted when Service A adds a new VM to one of
its slices. Mechanistically, because this dependency is explicitly
recorded in the Data Model, when there is a change in the state
maintained for Service A, XOS notifies the Controller plug-in for
Service B, thereby giving it an opportunity to take service-specific
actions (e.g., mount a volume in the newly created VM belonging
to Service A).

Finally, by focusing on Services as tenants we do not mean to
imply that users cannot also be tenants. Although not described
in this paper, XOS includes a User object, where Users can be as-
signed a set of Roles. This includes Roles with sufficient privilege
to operate a service. The key is that XOS decouples tenants and
users, with former representing a virtual instance of a service and
the latter being one example of a principal that can request tenancy
in a service.

3.3 Programming Environment
Analogous to a Unix shell, XOS provides a programmable environ-
ment for creating alternative views of the set of services represented
in the XOS data model. Views are typically tailored for a particular
user community or workflow. For example, we have implemented
a traditional cloud tenant view (it mimics the EC2 interface and is
tailored for someone that only wants to acquire a set of VMs to
run a scalable application); a service developer view (it is designed
for someone that requires low-level control over VM placement,
VN topology, and service composition); a service operator view
(it is designed for someone that is managing an already developed
and deployed service); and a cloud operator view (it lets operators
define global policies and configuration parameters for a suite of
services).

Views are themselves represented in the XOS data model. They
defined by a URL that renders the view, and a type that indicates
whether the view is implemented as Javascript or an iframe im-
ported from some other web page.

View = (Type, URL)



Unix XOS Comments
Processes Slices (VMs + VNs) Resource container that provides isolation
User, setuid Tenancy Access control in the Control Plane
Shell Views Programming environment for composition
Devices Controllers Means to connect new resources
Applications Services Run on top of OS / Fold back in OS
Syscall interface REST API Interface to kernel / Data Model
libc xoslib Common building block library

Table 1: Unix-to-XOS comparison.

Views access and control one or more scalable services, but a
view is not itself a scalable service. It is an interface (portal) that
runs in the end-user’s browser. For any function that requires scal-
able computation or state, the XOS design philosophy is to (1) en-
capsulate the scalable aspects of the function in a service (with
a corresponding service controller and scalable set of service in-
stances), (2) import the service into XOS via a Controller object,
and (3) run only the interface to that service in a view, accessing
the service controller indirectly through xoslib and the underlying
XOS data model.

3.4 Importing Resources
The abstractions described to this point are about defining an en-
vironment for programmers building services on top of XOS. Like
any operating system, XOS must also manage a set of underlying
hardware resources. In our case, this means importing Infrastructure-
as-a-Service (IaaS) into XOS.

Fortunately, IaaS is no different than any other service in XOS.
A given IaaS-based cloud exports a controller that is, in turn, im-
ported into the XOS data model, with a corresponding Controller
plug-in running in the XOS Observer. For example, we have im-
ported resources from both EC2 and multiple OpenStack clusters
into a global deployment of XOS called OpenCloud. Each of these
resources sets is modeled in XOS by an abstract object, called a
Deployment, but in terms of underlying XOS mechanisms, a De-
ployment is no different than any other service, it just happens to
make infrastructure resources available across some set of sites.

Deployment = (Controller, Sites, Policies)

OpenCloud is an operational system that spans the four tiers de-
picted in Figure 1. The first tier (right-most in Figure 1) is a widely
distributed set of edge sites. These sites are currently located at
Universities and research labs, and each runs as an independent
OpenStack cluster. The second tier is a set of eleven small clus-
ters co-located in routing centers of Internet2. All eleven sites run
as a single distributed OpenStack cluster. The third tier is a set of
five modest data centers—two on the east coast of the US, two on
the west coast of the US, and one in Europe—each of which runs
as an independent OpenStack cluster. The fourth tier (left-most in
Figure 1) is a set of available commodity clouds. (Figure 1 shows
two for generality, but currently only EC2 has been imported into
OpenCloud.)

3.5 Summary
We conclude with a brief summary of mechanisms that XOS pro-
vides, and how they map onto their Unix counterparts (Table1).
Using Unix as a model for XOS is not perfect, but the mapping
is helpful in understanding the roles played by the various XOS
components. Interestingly, while we consciously adopted the Unix
design philosophy as we defined XOS—particularly with respect
to extensibility—we were not trying to match Unix feature-for-
feature. Recognizing the per-component mapping happened after

we had completed XOS and started using it to build and compose
services. That this correspondence between Unix and XOS holds
at both the design level and the mechanism level is reassuring.

4. EXAMPLES
This section walks through three examples of how we configure and
use XOS, which sets the table for discussing how services benefit
from XOS (and vice versa).

4.1 End-to-End Path
The first example takes a narrow view (Figure 6), showing the path
through XOS corresponding to a single service. At the top, a View
might define a GUI through which users access the service. This
view is implemented in Javascript and makes reference to (reads
and writes fields from) a service-specific object in the XOS data
model. As the state of this object changes, a service-specific plu-
gin running in the controller framework observes the changes and
makes the necessary calls on the back-end service controller. The
controller plugin has access to related state in the XOS data model,
including the Controller object bound to the Service object (giving
it the credentials it needs to talk to the back-end controller) and the
Slice object bound to the Service objects (giving it the information
it needs to identify the VMs and VNs that correspond to service
instances). The service controller then manages the set of service
instances running in a set of VMs.

Figure 6: End-to-End path through XOS for a single service.

Figure 6 is a simple example, but it provides a frame of reference
for discussing several variations. First, XOS can include external



services like S3 and EC2, as long as they support a well-defined
controller interface. Doing so makes such services available to
Views through xoslib, thereby making it easier for others to build on
them. In this case, the service would not run on the XOS-managed
infrastructure (i.e., the slice in Figure 6 would be null), with the
implementation hidden behind the external service controller.

Second, XOS can be configured to provide a service controller
for services that do not already have one. This would be the case
if the service instances are managed by directly installing a config-
uration file on each instance, as is the case with single-tenant open
source services like Cassandra and Kairos. In such cases, XOS im-
plements the service controller as a combination of the correspond-
ing Service object (which defines the service’s interface) and the
controller plugin (which pushes the necessary configuration infor-
mation to the individual instances). Note that supporting a logically
centralized controller interface is not sufficient for creating a multi-
tenant service. The underlying implementation must also support
some form of tenant abstraction. For example, our prototype added
a “KeyStore” tenant abstraction to Cassandra.

Third, while we have been describing views as graphical in-
terfaces through which human users interact with XOS, it is also
possible to build views that interface with other programs, for ex-
ample, high-level decision-making applications (commonly called
OSS/BSS in telecommunication environments) that monitor the load
on a service and decide to scale the service up or down. To this
end, we anticipate implementing views that support existing ser-
vice modeling languages (e.g., yang[19]).

Fourth, XOS provides a collection of mechanisms to support ten-
ancy, but any given service is free to use only the subset that it
needs. If we imagine a parallel tenant service stack composed with
the provider service stack in Figure 6, then these mechanisms in-
clude: (1) interconnected virtual networks in the infrastructure (en-
abling communication in the data plane); (2) the controller plugin
for the provider service would have a reference to the Service ob-
ject for the tenant service (enabling the provider to take any nec-
essary action should the tenant Service object change); and (3)
XOS pushes credentials for provider service to the instances for
the tenant service (enabling the tenant to request service from the
provider).

4.2 Service Ecosystem
The second example takes a broad view (Figure 7), across the set
of services configured into the OpenCloud deployment of XOS.
Each node in Figure 7 represents a service and the edges represent
the “tenant of” relationship. For example, HyperCache (HPC) is a
tenant of the RequestRouter (RR) service.

This particular configuration leverages three external services
(shown in red): S3, GAE (Google App Engine), and EC2. They
are external in the sense that their instances do not run on XOS-
managed infrastructure. Also, we denote OpenStack in brackets to
indicate that there are a set of OpenStack clusters. NewService (in
green) denotes a new service someone might create. In this case, it
is a tenant of both XOS (which provides multi-site IaaS) and Syn-
dicate (which provides a secure bootstrapping service).

We make four high-level observations. First, it is accurate to
view XOS, itself, as a multi-tenant service. Its primary tenant ab-
straction is called a Service, analogous to Volumes being the tenant
abstraction of a scalable storage service and KeyStores being the
tenant abstraction of a NoSQL database. Moreover, XOS is itself a
tenant of multiple IaaS platforms. This gives us a convenient way to
think about XOS: it runs on top of a collection IaaS-based services
and offers tenancy to higher level services that want to be deployed
across the breadth of underlying clouds.

Figure 7: Tenant relationship among a set of services.

Second, the service composition graph shown in Figure 7 rep-
resents an important security policy statement made by the cloud
operator. Specifically, the tenancy objects that the graph model
include directives about how services are connected in the data
plane—that is, how they are connected by isolated virtual networks.
The interconnection of VMs and VNs (not shown in the Figure) are
derived from this specification.

Third, the tenancy graph is a static, operator-defined specifica-
tion of the available services and the dependencies among those
services, but it neither specifies nor restricts how combinations of
services can be leveraged by a View on behalf some user commu-
nity. For example, one might create an “Analytics View” that lever-
ages Syndicate as a data store and EC2 for its compute resources,
loading Hadoop into each EC2 VM. Used in this way, XOS Views
are effectively a programming environment for creating customized
Platforms-as-a-Service.

Fourth, making the tenancy graph explicit does not ensure that
service APIs and semantics remain in sync as they evolve over time.
An operator can run multiple versions of a given service and in-
crementally migrating tenants from one version to another, but the
evolution of a given service remains outside the purview of XOS.
Understanding the service life cycle and identifying opportunities
for XOS to support in-service-software-upgrades is a promising di-
rection for additional research.

4.3 Central Office as a Datacenter
The services in the previous subsection informed XOS’s design.
This section presents another example that shows how we have re-
cently started using XOS to address a much different usage sce-
nario: re-architecting the Telco central office as a datacenter.

The central office is the facility at the edge an Telco network. For
example, AT&T operates over four thousand central offices around
the US, each of which serves 10–100k residential customers. With
a diverse collection of network devices and appliances that have
accumulated over the last 50 years, the central office is a enormous
source of capital and operational costs for Telcos, which would like
to take advantage of the same economies of commodity hardware
and agility as cloud providers [8].

To this end, we are prototyping the service tenancy graph de-
picted in Figure 8. It includes three new services (vOLT, vCPE, and
vBNG), which correspond virtualized incarnations of three physi-
cal devices currently deployed in Central Offices: Optical Line Ter-
mination (OLT), Customer Premises Equipment (CPE), and Broad-
band Network Gateway (BNG), respectively. Although an in-depth



Figure 8: Tenant relationship among a set of services running in a
Telco Central Office.

description is beyond the scope of this paper, the resulting three
multi-tenant services are implemented on a leaf-spine fabric of white-
box switches and scalable software running in VMs on commodity
servers.

vOLT – Terminates the optical link in the Central Office and au-
thenticates customer access. Each tenant corresponds to a
Subscriber VLAN.

vCPE – Runs a bundle of functions (e.g., Firewall, DHCP, NAT,
VoIP, Parental Control) on behalf of a given subscriber. Each
tenant corresponds to a Subscriber Bundle.

vBNG – Connects subscribers (and other cloud services running
in the central office) to the public Internet. Each tenant cor-
responds to a Routable Subnet.

That is, a subscriber becomes a tenant of vOLT (acquiring a VLAN),
which becomes a tenant of vCPE (acquiring a service bundle that
is attached to that VLAN), which becomes a tenant of vBNG (ac-
quiring a routable subnet). Figure 8 also includes a CDN service,
which corresponds to a combined HPC+RR service from earlier.
The CDN service also uses vBNG to acquire routable addresses,
thereby allowing it to acquire content from origin servers when
there is a cache miss.

There are two important takeaways from this example. First,
XOS is general enough to be applied to a significantly different use
case than it was originally designed to support. Most notably, this
involves applying the Everything-as-a-Service organizing principle
(with multi-tenancy) to what has historically been organized and
operated at the device level.

Second, being able to isolate services on private virtual networks
is an important part of the central office’s security architecture. In
this case, the VMs that implement the vOLT and vCPE services are
connected by one VN that is not publicly routable, while the vCPE
and CDN services are connected by a second VN that is publicly
routable. vBNG is the scalable service that implements routing for
this second VN. It is essentially a logical router—implemented as
a control application running on ONOS, that in turn installs flow
rules in the underlying switching fabric—connecting the other ser-
vices running inside the datacenter to the rest of the Interent. Al-
though the initial prototype is minimal, vBNG generalizes to also
support QoS, VPNs, and various forms of tunneling.

5. DISCUSSION
This section discusses the value the XOS architecture provides for
the cloud, and in doing so, draws additional parallels between XOS
and well-understood operating system design alternatives.

5.1 Everything-as-a-Service
Nearly all of the capabilities attributed to XOS in the proceeding
sections are provided by services; the XOS core merely provides a
framework for accessing them. The key value of this approach is its
ability to deal with a space of new facilities—namely, the cloud—
whose capabilities is still being defined. Rather than claiming that
we can predict these capabilities in advance, we propose that such
capabilities evolve over time, with services as the building blocks.

This is the case for acquiring resources (which leverages infra-
structure-as-a-service like OpenStack and EC2), as well as for cre-
ating SDN-based virtual networks (which leverages the OpenVir-
teX and ONOS as examples of network-as-a-service). It is also
the case for securely bootstrapping and configuring services (which
leverages the Syndicate storage service, which in turn builds on
the XOS-hosted RequestRouter and HyperCache services, along
with external services like S3 and Google App Engine); provid-
ing a load balancer to help services scale (which leverages Reque-
stRouter, but could use a directory service like ZooKeeper or load
balancing application running on top of ONOS); and a monitoring
service (which leverages a combination of Nagios, Ceilometer, and
the Google BigQuery service).

Again, XOS merely provides the framework for integrating these
services into a cloud, but any function that needs to scale is im-
plemented as a service. This, as well as all of the other conve-
niences mentioned above, are obtained automatically when a de-
veloper uses the service abstraction to build his service.

5.2 Multi-Tenant Services
In order for capabilities to evolve with services as building blocks,
services have to link to one another. In XOS, the link between
services is captured by tenancy. A service that leverages another
service becomes a tenant of that second service.

The focus on multi-tenant services is a key characteristic of XOS,
and differentiates it from service deployment tools like Docker,
which provide mechanisms for composing single-tenant services
on behalf of a single user/application. The best way to compare the
two approaches is that they represent well-understood OS struc-
tures: XOS most closely matches a microkernel-based OS (single
instantiation of each multi-tenant service), whereas Docker most
closely matches a library-OS (multiple instantiations of single-tenant
services).

While microkernels fell out of favor in the 1990s, largely due to
performance penalties on single-core/single-machine deployments
serving single-user workloads, the multi-core/multi-machine/multi-
tenant environment of the cloud makes the microkernel-inspired
structure competitive today. Moreover, isolating functionality in
distinct multi-tenant services is more consistent with the principle
of separating concerns—as a tenant, I am not responsible for main-
taining or scaling the services upon which I depend. In the end, we
will likely see a combination of both approaches, but we do observe
that the same forces driving the industry from software-as-a-library
to software-as-a- service argues in favor of treating everything-as-
a-service.

5.3 Bootstrap and Evolve
The evolution of the Cloud must begin with a set of base capabili-
ties as a starting point. To this end, XOS heavily leverages Open-
Stack, which raises the question of what additional value it pro-



vides. One perspective is that XOS is a distribution of OpenStack,
bundled with a particular set of configurations, building block ser-
vices, and policies. Another perspective is that XOS defines a
meta-cloud that includes OpenStack as just one of possibly many
base clouds—some offering infrastructure (EC2) and others offer-
ing higher level services (S3). And while it is certainly possible that
OpenStack over time will also gain such support, XOS is purposely
designed to combine these base clouds, along with other building
block services built on top of this base, in arbitrary ways.

Both of these perspectives are accurate, but they don’t capture
the full value of XOS. One analogy that sharpens the differentia-
tion is that if XOS is the microkernel of the cloud and Docker is the
library-OS of the cloud, then OpenStack is its monolithic kernel. It
is easy to see examples of this OS structure today—for example, the
tight integrated of Nova, Neutron, and Keystone—but because the
system continues to evolve, we argue that the open source commu-
nity would be best served by evolving OpenStack towards a more
principled design in which multi-tenant services are treated as first-
class objects. XOS defines a starting collection of core abstractions
and mechanisms in support of such a design, thereby enabling the
widest combination of third-party services and new capabilities cre-
ated through service composition.

6. CONCLUSIONS
XOS is a general-purpose operating system for a multi-tier cloud.
Our goal is to enable an evolving service ecosystem. The central
characteristic that makes this possible is a well-defined model for
extensibility. That XOS resembles Unix in this respect demon-
strates the applicability of the saying: Those who ignore Unix are
destined to reinvent it.

We believe a combination of abstractions constitutes an OS when
they converge to a steady state. In Unix, the combination of files,
pipes and processes supports both isolation and composition. In
XOS, isolation and composition are the result of services, virtual
networks, and slices. Unix provides shells and XOS provides a
javascript abstraction layer built on top of the REST API. The par-
allels go on.

In this light, XOS can itself be seen as a multi-tenant service,
where its tenants are services. You could say that while XaaS was
the goal of the design, its outcome is a related but more powerful
paradigm: Service-as-a-Service.
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