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Abstract—A novel approach is presented in this paper for im-
proving the performance of neural-network classifiers in image
recognition, segmentation, or coding applications, based on a re-
training procedure at the user level. The procedure includes: 1) a
training algorithm for adapting the network weights to the cur-
rent condition; 2) a maximum a posteriori(MAP) estimation pro-
cedure for optimally selecting the most representative data of the
current environment as retraining data; and 3) a decision mecha-
nism for determining when network retraining should be activated.
The training algorithm takes into consideration both the former
and the current network knowledge in order to achieve good gen-
eralization. The MAP estimation procedure models the network
output as a Markov random field (MRF) and optimally selects the
set of training inputs and corresponding desired outputs. Results
are presented which illustrate the theoretical developments as well
as the performance of the proposed approach in real-life experi-
ments.

Index Terms—mage analysis, MPEG-4, neural-network re-
training, segmentation, weight adaptation.

. INTRODUCTION

ROBABLY the most important issue when designing ang‘
training artificial neural networks in real-life applications
is network generalization. Many significant results have be

derived during the last few years regarding generalization
neural networks when tested outside their training environm

[23], [32]. Examples include algorithms for adaptive creatio
of the network architecture during training, such as pruning g
constructive techniques, modular and hierarchical networks,

theoretical aspects of network generalization, such as the
dimension. Specific results and mathematical formulations

garding error bounds and overtraining issues have been obtal

when considering cases with known probability distributions

the data [4], [7], [16], [40]. Despite, however, the achievemen!d
obtained, most real-life applications do not obey some speciﬁ@
probability distribution and may significantly differ from one;
case to another mainly due to changes of their environment. T
is why straightforward application of trained networks, to data

outside the training set, is not always adequate for solving ima?h%

recognition, classification or detection problems.

This is, for example, the case in remote sensing applications.
In particular, recent studies, on the use of neural networks for
classification and segmentation of images representing different
geographical locations, have shown that neural networks trained
at a specific location may result in as low as 25% classification
accuracy if tested on another area. Instead, retraining of the net-
works, using data from both localities, was found necessary for
achieving classification ratios of about 80% in either area [41].
This geographical generalization problem can be due to various
reasons, including the fact that various locations of the earth can
be quite different from each other, the fact that the conditions
of image capturing are generally different, or even the fact that
training sets may not be representative enough.

Another example of particular interest concerns applications
to video processing and analysis. Neural networks have not
played a significant role in the development of video coding
standards, such as MPEG-1 and MPEG-2 [17], [18]. Nev-
ertheless the forthcoming MPEG-4 and MPEG-7 standards
[19], [28] referring to content-based video coding [1], [8],
0], storage, retrieval, and indexing [9], [11], [13] are based
on physical object extraction from scenes, so as to handle
ultimedia information with an increased level of intelligence.

ural networks, with their superior nonlinear classification

eamilities, can play a major role in these forthcoming multimedia

ﬁtandards [22]. However, the above-mentioned problems in the
Fneralization of neural networks when used in environments
pich are different from their training ones constitute a major
tacle, especially when dealing with applications where
arge variations of image and video scenes are frequently

T&ed- Apart from image and video coding, the above hold in a
79

e variety of applications, including medical imaging [30],
variant object recognition [21], e.g., in factory environments
d in robot vision, human face detection [12], [29], [39],
and nonlinear system identification where the system to be
ntified is changing with time.

n most of the above cases, the adopted assumption of sta-
narity of the network training data is not valid. Consequently,
e training set is not able to represent all possible variations or
states of the operational environment to which the network is
to be applied. Instead, it would be desirable to have a mech-
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count both the former network knowledge and the knowleddpock of an image outside the training set. Whenever a change
extracted from the current input data. of the environment occurs, new network weights should be

Adaptive training of neural networks in slowly varyingestimated through a retraining procedure, taking into account
nonstationary processes has been a topic of research withith the former network knowledge and the current situation.
the neural-network community in the last few years [31], [33].et us consider retraining in more detail. Let include all
However, the proposed techniques have focused on the probleeights of the network before retraining, amg, the new
of weight adaptation, assuming that retraining is manuallyeight vector which is obtained through retraining. A training
activated and that retraining input and desired output data @S, is assumed to be extracted from the current operational
a priori known. situation composed of, say;. image blocks of 8 x 8 pixels;

A novel approach is presented in this paper for improving ti,. = {(z1,d1), -+, (m., dm.)} Wherez, and d; with
performance of neural networks when handling nonstationary= 1, 2, ---, m,. similarly correspond to théth input and
image and video data, including: desired output retraining data. The retraining algorithm that is

« an automatic decision mechanism, which determin@étivated as described in Section V, whenever a change of the
when network retraining, should take place; environment is detected, computes the new network weights

« a maximuma posteriori (MAP) estimation technique ., by minimizing the following error criterion with respect to
which extracts knowledge from the current input data biae weights:
modeling the network output as a Markov random field

(MRF) and optimally selecting pairs of training inputs Po=FeatnEya 2)
and corresponding desired outputs; with

e an algorithm which retrains the network, adapting its .
weights to the current environment, by applying a non- E.,= % Z za(z:) — dill, (2a)
linear programming technique. ’ -

This paper is organized as follows. Formulation of th
problem is given in Section Il, while the retraining algorithm,
the optimal selection of the training data and the mechanism
for dgciding whether retraining isgneeded are presented in Bfo= % Z llza(23) — &ill (2b)
Sections 1lI-V, respectively. Application of the proposed =t
approach to a real-life problem related to the new multimedyghere
standards, which is extraction of the head and shoulder parts of.,.  error performed over training sef. (“current”

my

humans from image sequences in videophone communications, knowledge);
is presented in Section VI. Conclusions and suggestions forEs,«  corresponding error over training sg (“former”
further work are given in Section VII of the paper. knowledge);
za(z;) output of the retrained network, corresponding to
[I. FORMULATION OF THE PROBLEM input vectorz; of the network consisting of weights

Wa,
zq(z}) output of the retrained network, corresponding to
input vectorz, to the network consisting of weights

Letw; ;,4 = 0,---, My — 1,5 = 0,---, M> — 1 de-
note the image intensity at pixél, ). In most image/video
coding and analysis applications the image is processed in par- w

t|t|ons,.o.r bIocks, of, say, 8 x 8 pixels. For classification purSimiIarIy, 2(x;) would represent the output of the network,
posesitis required to clgssﬁy each block, or a_transformed V@Bnsisting of weightss;, when accepting vectar; at its input.
sion of it of the same size, to one of, sayavailable classes \ypqn retraining the network for the first time,(z; ) is identical
wi, © = 1,2, -, p. Letz; be a vector containing the |exico-y, .y “parameter, is a weighting factor accounting for the
graphically ordered values of thh block to be classified. A gjgnificance of the current training set compared to the former
neural—network_classmer will produce adimensional output and| - ||» denotes theL,-norm.
vectory(z;) defined as follows: In most real-life image or video analysis applications, training
o T set.S. is a priori unknown; consequently estimation 6f as
ylz:) = [pl.l Py pf;.p} (1) well as detection of the change of the environment should be au-
tomatically provided by the system. As a result, apart from the
Wherepi.j denotes the probability that thigh image block be- retraining algorithm, two additional modules are embedded in
longs to thejth class. the proposed architecture; a “change detection” decision mecha-
Let us first consider that a neural network has beearismandaMAP training set estimation procedure. The main ob-
initially trained to perform the previously describedectives ofthese modules are briefly described next. A block-di-
classification task using a specific training set, sawgram of the overall architecture is presented in Fig. 1. The ini-
Sy = {(z1, dv), ---, (@, dn,)}, Where vectorsz; and tially trained neural-network classifier and the retrained one are
d.withi =1, 2, -- -, m; denote thath input training vector, also included in the figure. The initially trained network is as-
i.e., theith image block or a transformed version of it, and theumed to provide a coarse approximation of the correct classi-
corresponding desired output vector consisting @lements. fication irrespectively of changes of the environment. Possible
Let y(x;) denote the network output when applied to tfe misclassifications provided by this classifier are then corrected
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Fig. 1. The system architecture.

by the retrained network, which generates the final classificafter retraining has been performed to a specific image or
tion. video frame. Letw{ 0y denote a vector containing thex 1
1) Decision MechanismThe goal of this module is to de- weights between the output and hidden neuronswehd, by
termine when retraining should be activated, or equivalently, o= 1, 2.---, ¢ denote the/ x 1 vector of weights between
detect the time instances when a change of the enwronmentmekth hidden neuron and the network inputs, where subscripts
curs. Whenever network performance is considered satisfactgry 4} refer to either the situation “after” or “before” retraining,
(no change of the environment occurs), the network weights argpectively. An illustration of welghtw a,b} andy%a’b} is
structure remain the same. Instead, new network weights are gaésented in Fig. 2. Then
culated when network performance is not appropriate, by acti-
vating both the MAP estimation procedure and the retraining al- N T N T/, 7
gorithm. Investigation of the performance of the initially trained “{e, 5} = [(wl {a b}) (—q {a b}) (w{a b}) } ©)
network on the current data is the basis of the mechanism, as de-
scribed in Section V. is a vector containing all network weights. For a given input
2) MAP Estimation ProcedureThis module optimally se- vectorz;, corresponding to thgth image block, the output of
lects a training set of input and desired output data which optie final neural-network classifier is given by
mally represent the current situation as described in Section IV. .
;Tj;ﬁt;sﬁzg:,em by the retraining algorithm described in the Yoy (z;) = f <(w1[a b}) a1y (xj)> (4)

wheref(-) denotes the activation function of the output neuron,

I1l. THE RETRAINING TECHNIQUE : ) .
e.g., a sigmoidal function, and

A. The Network Architecture

Let us, for simplicity, consider: 1) a two-class classification Ufa, b} (Z5) = [ul,{a,b} (z5) - Ug, {a,0} (gj)]T (5)
problem, where classes, w- refer, for example, to foreground
and background objects in an image and 2) a feedforwaeda vector containing the hidden neuron outputs when the net-
neural-network classifier which includes a single output neuravork weights arew; (before retraining) ow, (after the re-
providing classification in two categories, one hidden laydraining). The network output in (4) is scalar, since we have as-
consisting ofg neurons, and accepts image blocks of, sagumed a single network output. The output of itteneuron of
J pixels at its input. Let us also ignore neuron thresholdthe first hidden layer can be written in terms of the input vector
Extension to classification problems and networks of highend the Weigh@?’{a’b} as follows:
complexity can be performed in a similar way. Fig. 2 presents
the structure of the network. As mentioned beforg, and 0 T

Ui (a0} (25) = <(—z,{a b}) '£j) . (6)

w, denote the corresponding network weights, before and
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Fig. 2. The neural-network structure.

Thus (5) can be expressed as network knowledge. To stress, however, the importance of cur-
rent training data in (2), one can replace (2a) by the constraint
T .
that the actual network outputs are equal to the desired ones, that
won @) =1 (Wew) =) @ " puts are eq

where 2o () =d; i=1---, mg, for all datainS.. (9)

W?a »y  Jwq matrix defined asW?a by = [w? (o) _ o , _
0 ] ’ 1 Equation (9) indicates that the first term of (2), corresponding to
—q, {a,b} . . error E. ,, takes values close to zero, after estimating the new
f(-) vector-valued function the elements of which repre: o
ER - : X . network weights.
sent the activation function of a corresponding hidden", . . . . - .
. . : . " Itis shown in Appendix B that, through linearization, solution
neuron. The hyperbolic tangent sigmoidal function is . o ; .
. of (9) with respect to the weight increments is equivalent to a set
used in the rest of the paper.

of linear equations

B. The Retraining Algorithm c=A Aw (20)
The goal of the training procedure is to minimize (2) and es-,

_ oNT W17 o _ 7 0 :
timate the new network weights, i.e.,Wg andw!, respec- \LvhereAg = [(Aw’)” (Aw’)"]", Aw’ = {AWT}, with

0 . .
tively. Let us first assume that a small perturbation of the ne AW} denoting a vector formed by stacking up all columns

0. . : ;
work weights (before retrainingy, is enough to achieve good of AW f’ \r:ectorg_and matnxxlé(l are ?]ppr_(l)_ﬁrlat_ez;:;pr;ssca_d n
classification performance. Then terms of the previous network weights. The sizé\af is N,, =

(J + 1)q for the network presented in Fig. 2. In particulas-
WO WO AWO and wl—wi+duwt (@ Lol eln )l () () expressingthe
difference between network outputs after and before retraining

where AW and Aw! are small increments. This assumptior);or all input vectors inS... Based on (9), vectarcan be written
leads to an analytical and tractable solution for estimating
since it permits Iir?eariza_ltion ofthe nonlinear activation _function c=1[di - drnc]T — o (z1) -+ 2 (inc)]T- (11)
of the neuron, using a first-order Taylor series expansion.

Equation (2) indicates that the new network weights are es-Equation (10) is valid only when weight increme{s are
timated taking into account both the current and the previoamall quantities. In Appendix A, (A11) and (A13), it is shown
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that, given a tolerated error value, proper boufidsd¢ can be of elements ofS;, is in general greater than the number of net-
computed for the weight increments, for each input veetan  work weights since this set includes alpriori network knowl-

Se edge. Consequently, overfitting issues are not encountered in
the proposed retraining algorithm, since the number of training

-9 (z;) < (A@g)T s <9 (z), k=12 ---¢q data, i.e., the number of data # andS,, is greater than the
and respective network weights. In Section V, where experimental

results are presented, specific values for the numbers of data in
setsS. and.S, are provided.

wherea is a vector depending on the former weights and on theThe error function defined by (1.4) IS convex since it 'S .Of
uared form [25]. The constraints in (10) are linear equalities,

input vector as described in Appendix B. Equation (12) shoutd'” 4 ) . .
P PP d (12) f:d%nle the constraints in (12) are linear inequalities. Thus, the so-

be satisfied for all; in S., SO as to assure that each linear equa- . _ . .
St i | ! ! quiﬁtlon should lie on the hyper-surface defined by (10), satisfy the

tion in (10) is valid within the given tolerated error. A less stric] lities in (12) and simult v minimize th f
approach would require that the mean value of the inner prdH?qua' les in (12) and simultaneously minimize the error func-

ucts in (12), for allz;, be smaller than the mean value of thdion givenin (14). A variety of methods can be used to estimate
bounds ' = the weight increments based on minimization of (14) subject

The size of vector is smaller than the number of unknown® (10) and (12). In this paper we adopt the gradient projection

weightsAw, since in general a small numbeit,., of training method, which is presented next.

data, is chosen, either through a clustering or a principal com:AS described in Section V, the decision mechanism ascer-

ponent analysis technique. Thus, many solutions exist for (1 ins whether a small adaptation of the network weights is suffi-

since the number of unknowns is much greater than the resp& _ntttot_prowde ?c%urate fla?slflcabnon.tln case tr|1at Sltjﬁh a smaIIt
tive number of equations. Unigueness, however, is imposed% P aO:on. IS nc;ha e?.uatg, fe atpve ra|n|n9[E\gor| m pan?od
an additional requirement, which takes into consideration tg used, since the activation functions cannot be approximate

previous network knowledge. Among all possible solutions th ¥ aglrst—order Tz(ajy_lor se_rlesi Inf this ca(sje,hneltr;]er (9) nor (13)k
satisfy (10) the one which causes a minimal degradation of hgh be expressed in a simple form and thus the new networ
ights should be estimated through conventional minimization

i twork knowledge is selected as th t il
RrEVIOUS hEWWOTK Xnowledge IS selected as the mos: appropri (2) by applying, for example, the backpropagation algorithm.

It is considered that the network weights before retraining, i.€;, both th t and . twork training dat :
wy, have been estimated as an optimal solution over data of gice bo € current and preévious network training data Sets

S,. Furthermore, the weights after retraining provide a minim&f© taken m;[o accoutnt f%r _uptcrj]z_;\tlng thet weights, overfitting is-
error over all data of the current s&t, according to (9). Thus, sues are not encountéred in this case too. -
minimization of the second term of (2), which expresses the ef-EaCh. time the deC|s_|qn mechgmsm ascertains that retraining
fect of the new network weights over data Sgtcan be consid- IS required, a new training s, is created, Wh'Ch represgnts
ered as minimization of the absolute difference of the error Ovté}e_cur_rent condition. Then, new nerork we_lghts are_esnmated
data inS, with respect to the previous and the current neton\klng into account both the gurrer_lt information (datahand
weights. Similar conclusions are drawn in [31]. This means th e former knowledge (data ). Since the sef.. has been op-

the weight increments are minimally modified, resulting in thgm'zed over th_e current condition, it cannot b.e conS|dered.Sl.J|t-
following error criterion: able for following or future states of the environment. This is

due to the fact that data obtained from future states of the envi-
Es=|Ef.o—Esol, (13) ronment may be in co_n_ﬂlct with data obtamed_ from the current
one. Onthe contrary, itis assumed that the trainingsethich

with £} , defined similarly to£ ,, with z, replaced by, in is in general provided by a vendor, is able to roughly approxi-

—¢(z;) < (Aw)" - a(z) < ¢ () (12)

the right-hand side of (2b). mate the desired network.performance at any state of the en-
It can be shown [31] that (13) takes the form of vironment. Consequently, in every network retraining phase, a
new training sek. is created and the previous one is discarded,
Es=1 (AM)T KT K- Aw (14) Wwhile new weights are estimated based on the currerii.sand

the old oneS,, which remains constant throughout network op-

where the elements of matrik are expressed in terms oféeration.
the previous network weights;, and the training data ir%,. ] o
Thus, the problem results in minimization of (14) subject t&- The Gradient Projection Method
constraints (10) and (12). The philosophy of the gradient projection method is, starting

The number of data belonging to s&t is in general much from a feasible point, to move in a direction which decreases
smaller than the number of network weights. This is due to thgs and simultaneously satisfies the constraints (10) and (12).
fact that these data have been selected from the current conditiehus give some definitions first [25]. A point is called feasible
using a clustering or principal component analysis techniquewten it satisfies all the constraints. An inequality is character-
discard data of similar content and obtain more reliable solized as an active constraint when it is about to be violated at a
tions. Thus, network overfitting could arise if only these currerfieasible point, in the sense that it turns to equality at this point.
data were taken into account. However, in our method, the n€therwise the inequality is an inactive constraint. For example,
work weights are estimated using data from both the current #e¢ inequalityAw - a(z;) < ¢(z;) in (12) becomes active at
S. andthe previous sét, as (10) and (14) indicate. The numbear feasible poinfAw whenAw - a(x;) = ¢(z;) at this current
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point. Otherwise it is considered to be inactive. In the followinthe obtained solution. It should be mentioned that the times that

we denote ag, the number of active inequalities. By conventhe working set is changed are equal to number of inequalities

tion we consider any equality constraint to be active at a feasilsice equalities are always considered active. Thus, the number
point. Thus, the total number of active constraints, i.e., equatif iterations required for getting all elements bfpositive so

ties and active inequalities, is equaltq. + ¢, (m. equalities that the Kuhn—Tucker conditions are satisfied, is bounded by

andg, active inequalities). the number of inequalities.

Only the active constraints define the direction which causesThe time required to adapt network weights is very crucial,
adecrease of functiafs. As aresult, aworking set is formed atespecially in real-time applications. This is, for example, the
each feasible point which includes all active constraints. Thergse in video processing, where each video frame is transmitted
the method tries to move in a direction which decreases the eresery 40 (33) ms for the PAL (NTSC) system and thus net-
function Es while keeping the working constraints active. Thisvork retraining should be completed within this small inter-
is accomplished by projecting the negative gradientgfonto frame period. The computational complexity required to update
the subspace that is tangent to the surface defined by these @ath network weight independently using the gradient projec-
straints. If the resulting vector is nonzero, it determines the dien method is proportional to the number of network weights
rection for the next step. To compute this projection, let matri¥,, as shown next.

A, be composed of the above-defined working set. Ma#tjx At each iteration of the algorithm, the inner product of ma-
contains all rows of matri¥ (since equalities are always activetrix P with the gradient of functiot’s is calculated (16a) along
at any feasible point) and additional rows which include the a@ith the weight updating given by (15). Since functigg is of
tive inequalities. Thus4, is of (m.+q,) x Ny, where we recall squared form, the gradieME, = KTKAw and thus (16a)
thatV,, corresponds to the total number of network weights. Latvolves a simple multiplication of vectadkw with matrix @ =

us denote by:(n) the projection of the negative gradientBf PK* K Aw, which is of sizeN,, x N,,. This requiresD(N,,)

in thenth iteration step of the algorithm. Then, adaptation of theperations assuming that each elemenk@f) can be imple-

weight increments is made as follows: mented in parallel. It should be mentioned that mafixfor a
fixed number of working constraints is calculated once sifce
Aw(n +1) = Aw(n) + p(n)h(n) (15) is modified each time the working constraints are changed and

wherep(n) is a scalar that determines the rate of convergencrgét”XK’ which depends on the previous network weighis

: : is ‘available before the algorithm begins. Furthermore, the pro-
Using the methodology of [25] we can estimate vedior) as jection matrixP does not need to be entirely recomputed each

h(n) = —PVEs = —QAw (16a) time the working constraints are modified. This is due to the fact
that the active constraints in the working set change by one at a
with time and thus it is possible to recalculate maffifrom the pre-
- . - vious one by an updating procedure as described in [25, p. 333].
P=I-A4,(4,A4)"A, and Q=PK KAw (16b) Thjsis a significant property of the gradient projection method
. . . and greatly reduces its computational load.
usmgV_Es computgd_f_rom (14) at th_eth |terat|on.. ... The convergence rate of the gradient projection method is
Sta}rtlng from an initial feasible pomt, the gradient projectio f the same order with that of steepest descent, for a constant
algorlth_m computes the next feasible point based on (15) un IIarning rate:(n); i.e., it converges to the optimal solution lin-
:Ees zg)éicfg geraéjrle_r:_t_(sn) (l)ssé:_ltc))lzet(t)o_;erroo, 'éet%gli; t(')(.)r:n esﬁgrly as can be shown using eigenvalue analysis in [25, p. 342].
: » NOWEVET, 1L IS oSS Improv ution ( aster convergence rates can be achieved by selecting the value
mate a new feasible point that causes a greater decredsg of

by relaxing one active constraint, i.e., one active inequality. TF‘; n) to be the largest step toward the global minimum. This can
. P . . Pbe accomplished by minimizing the following equation with re-
happens since the Kuhn—Tucker conditions are not satisfied P y g ged

g - .
the original problem [25]. A vector, say, is calculated by the s%ect to leaming ratg(n):
following equation:

A=—(4, -A,I;)_l -A,-VE,. (17) w(n) = argmin {Es (Aw(n) + p(n)h(n))}. (18)
u(n)eR
Each element of, denoted as\;, corresponds to thih ac-

tive cpnstraint of the working set [25]. In case that there angy., minimization, the optimal value of learning raién) is
negative elements of, the Kuhn—Tucker conditions are not satie following:
isfied and a new improved feasible solution can be obtained by
relaxing the respective constraint from the working set. This is
performed by deleting the corresponding rowAy, so that the BT
respective constraint becomes inactive. In this case the projec- p(n) = — - .
tion matrix P should be recomputed since matry has mod- hT(n)- K= - K - h(n)
ified. A new iteration then commences until the projected gra-
dienth(n) reaches a value close to zero. If all elements afe The number of iterations required by the algorithm to con-
nonnegative, the Kuhn—-Tucker conditions are satisfied and terge is further restricted by the maximum permitted time, say
process is terminated since it is not possible to further impro¥g,, in which retraining should be accomplished. For instance,

(19)
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in case of on line classification of video frameg, = 40 It is straightforward to show that the corresponding condi-
ms for a PAL system, within which selection of the currenional probability density can be written as follows:

training setS.., weight adaptation procedure as well as network

testing using the new weights should be completed. Since the ~ Pr(Z, w, 5/Y)

time required for network retraining is significantly larger than =Pr(S/Y)Pr(Z, w/Y,S)

the other times, we can assume in the following that the max- =Pr(S/Y)Pr(w/Y, S)Pr(Z/S, w,Y) (22)
imum permitted time for weight adaptation is approximately

equal taT. Thus, the number of iterations of the gradient provhere we have ignored the dependence on the current image
jection method should be smaller thdlp /T, whereT; indi- since it is involved in all equations.

cates the average computational time for one iteration. If, afterEstimation of the network weights is independent of vector
T /T iterations, the solution is not close to the optimal one, th. Moreover, network output only depends on the values of
currently estimated weights are used to perform classificatidhe weightsu (and the inputimage). Hence, it can be concluded
Weight updating will be continued in the following frames, fothat

further improving the network performance. Similarly, in a large

weight adaptation case, where a type of backpropagation algo- 28X Pr(Z, w, S/Y)

_rithm_is us_ed for estimating the networ_k weights, t_he number of - ;_max (Pr(S/Y)Pr(w/S)Pr(Z/w)}. (23)
iterations is also restricted by the maximum permitted tithe Z,w, S

If a solution cannot be reached withir,, processing moves to
the following frames, assuming that no further retraining is res
quired.

Using (4), (5), and (7), it is easy to compute a nonlinear func-
n g(-) that models the operation of the neural network. Then

Z=g(w, z). (24)
IV. OPTIMAL SELECTION OF THENETWORK RETRAINING DATA

Whenever the decision mechanism ascertains that network reThus’ if the optimal weightg) have been estimated through

training is required, a training s8t should be generated so thape_twork retraining, the final classification of current imagis
the retraining algorithm uses it to adapt the network weights rgraue. Consequently

the current environment. A MAP estimation procedure is pro- p [ 1, if Zfullfils (24)
posed next for constructing this training s&t, i.e., for de- r(Z/w) = {0 otherwise.
termining proper pair$z;, d;), with z; denoting input image ) ) o )
blocks of the examined imageandd; respective desired out- Equation (23) using (25) indicates that the optimal vector
puts. LetS be a vector containing the probabilities that eacind the output of the retrained classifiécan be computed as
image block belongs to one of theavailable classes. Then,follows:

S = [s(z1)Ts(z2)? --- s(xrp)T]" whereL is the number of B

blocks ofimage: ands(z:) = [pi,, pi,, - pi, |7 Ahighvalue  Z)u.s Pr(Z, w, 5/Y) = max {Pr(5/Y) Pr(w/S)}.

pi.j indicates that it is highly probable that the respective image _ (2_6)_
blockz; belongs to class; and can therefore be included inthe Optimal network weightsi are calculated by the retraining
retraining set, being classified to categary. Let also vectors algorithm of Section Il given a vectd?, i.e., the training sef...

Z andY include the outputs of the retrained and initially trained hus, maximization of the latter term in (26) is achieved through

(25)

7

networks, respectively, for all blocks of imagez, i.e., computation of weights, by the retraining algorithm. Conse-
. quently, maximization of (26) is equivalent to estimationsf
Z = [Z (@)T z(@)T ~~~§(£L)T} (and consequently..), based on the outpudt of the initially

trained neural classifier.

and Thus (26) results in

pR— .T T .T T... ‘T TT
Y= [y@) gy’ )] (20) & = argmax log Px(5/T). @)
S

For a currentimage and an outpul” being provided by the
initially trained network, our target is: 1) to estimate vecfor  Using the Bayes formula, (27) can be written as follows:
and consequently the current training Sgf 2) to compute the
weights of the final network classifier, (through the retraining 5 = arg max {log Pr(S/Y)}
algorithm); and 3) to obtain the final classification outgitor- =

responding to image. This can be obtained through maximiza- ~ ~ #&™M§¥ {log Pr (Y, 5) —log Pr(¥)}

tion of the following conditional likelihood function: — arems ; . _loo
argmax {log Pr (Y/ 5) + log Pr(8) ~ log Pr(¥)}
{20 8} =argmax L(Z w, $/Y.2)  (21) = argmin {~log Pr(Y/S) - log Pr(S)} (28)
Z,w, S =

whereL denotes a log-likelihood function. In (2&)denotes the wherePr(Y") has been omitted from the log likelihood function,
weightsw,, provided by the retraining algorithm arfdlis the sinceitis independent &f. Equation (28) indicates that in order
classification output of the retrained neural-network classifi¢o find S, we should compute both the conditional probability
which is applied to the input image densityPr(Y /S) and the probability densityr(S).
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Let us first assume that for a given vect®y there is only choice for functionV,(-) in a two-class classification problem,
one classification vectdr’ which is associated t8 by a linear wheres(z;) is a scalar denoted by, is
relation through a fixed matri®, or equivalently that different 1
training setsS are estimated for different vectaYs As a result, _ o
the conditional probability densityr(Y /S) is given by ze; Ve(S) = ; ga: psi =) (332)
Pr(Y/S) = { 1, ?f Y=DS 29) where measurg depends both on the distance pffrom the

== 0, ifY #DS. corresponding initial classificatiogy as well as on its distance

) - from its neighbors;. In (33a), the neighborhoad, of s;, i.e.,

The next step is to model probability densiy(5). The el- the clique structure, has been selected to be a 3 x 3 pixel grid. An
ements ofS represent the probabilities that an image block beyyal-weight operator has been used for all eight directions of
longs to each of the available classes. It is well known thatiye clique, since the same training set should be produced irre-

image blockse; are strongly correlated to their spatial neighgpectively from the image orientation. For this reason, function
bors, due to smoothness of the objects appearing in IMages) in (33a) is given by

Thus, the elements of are also locally correlated, i.e., for ) )
image blockse; andz,; we have [5], [20] p(si—s)=(si —w) +7(si —s1) (33b)

Pr(S(z:)/ S (z;), j #1%) where parameter controls the contribution of each of the two
— Pr(S(2:)/ 5 (), j € &) Vi (30) terms in the right-hand side of (33b) to the minimization of the
2L/ L2ALG) 5 I & G cost function. In particular, values of close to zero result in
whered; denotes a neighborhood of the image block corr& YECtorS that approximately equals outplitobtained by the

sponding taz;. Such a property characterizes an MRF hené@itially trained classifier. However, several misclassified blocks

a Gibbs distribution can be used for modeliPg(S) [5], [15], are gncountered i.l as was mentioned in Sec;tipn Il. Since
training setS.., which is used for network retraining, follows

[35] the estimation of the optimal vectsr, erroneous training ele-
Z V. (S) ments will be presented if. for small values ofr. As a re-
et sult, the network performance deteriorates after retraining. On
Pr(S) =T exp _f (31)  the other hand, unnecessarily large values stress the im-
portance of the smoothness (second) term of (33b), resulting in
many ambiguous blocks, i.e., blocks which do not present high
where probability of belonging to a specific class. In this case the set
r normalizing constant; S, cannot appropriately describe the current condition since it
~ “temperature” parameter of the density; contains few training data, i.e., only those which are not am-
V.(-) any function of a local group of pointscalled clique biguous.
andC is the set of all cliques. As parameter- increases from small to large values, more
Using the MAP estimation procedure and based on (28) aadd more misclassified blocks &f are considered as am-
(29) the estimate of can be written as biguous and are therefore discarded frém However, very
large values of- reduce the representativity 6f., since high
A 1 confident blocks are also discarded apart from the misclassified
4= argémm {’y ; Ve (E)} ’ (32) ones. Assuming that the outpbit containsa% misclassified

blocks, the parameter is selected so that the training set

Based on the previous equation, it is observed that estimatincontains a slightly smaller number tharu% of the total
of the optimal vectolS is not affected by the value of temper-number of image blocks; a slight deviationofround the se-
aturev since the latter has the same influence on all directiofected value does not significantly affect network performance
of the clique. For this reason, we will consider, for simplicity, irafter retraining.
the following thaty = 1. Functionp(-) in (33b) satisfies the convexity property since it

As already mentioned, images are locally smooth [38F of squared form [25]. Therefore, (33a) also defines a convex
Consequently, it is not probable that an image block belonfisiction since the sum of convex functions also yields a convex
to a specific class, if all its neighbors belong to another onfunction (see [25, p. 178, Proposition 1]). Convexity guarantees
Since retraining should be performed using data that hateta global minimum can be obtained by minimizing (32). Oth-
already been classified with maximum confidence, functicgrwise, local minima would be present and a computationally
V.(-) should award image blocks that satisfy the smoothnesspensive technique, such as simulated annealing [24], should
property and discourage the rest. It should also be mentioraslused for function minimization. Direct minimization of (32)
that the knowledge included in the initially trained networkeads to the linear relation betwe&hand.S that has been as-
classifier should be trusted as much as possible within themed in (29). In (33a) and (33b) the valuesptlepends on the
above selection procedure; it is, therefore, desired that theues of the eight connected neighbarfocated on the clique
finally computed classification is similar to the one originallystructure), which are also involved in the minimization process.
provided by the classifier, modified according to the smootHor this reason, the iterative conditional modes (ICM’s) tech-
ness principle. Following the previous assumption, a commaitue [3] has been proposed to estimate the optimal vettor
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Retraining is needed Retraining is needed

Initial Training \ / /

x0,00 x(1,00  x01) x(LD x21) x02 x(12) x22)

|

1 2 3 4 5 6 7 8

Video sequence consisting of 8 frames

Fig. 3. A scenario of a video sequence consisting of eight frames in which retraining at frames three and six has been accomplished.

Starting from an initial, say zero, condition, the algorithm corimages from theVth retraining phase, a new retraining phase,
verges in a few steps to the minimum valueSof i.e., the(N + 1)th takes place.

Following computation of optimal vectdt, selection of the Retraining of the network classifier is accomplished at time
data sefS. for retraining the classifier can be performed as folnstances where its performance deteriorates, i.e., the current
lows. Let us denote by a set of indexes, which correspond network output deviates from the desired one. Let us recall that
to elements of vectas, say,s;, which belong with high proba- vectorc¢ in (11) expresses the difference between the desired

bility to one of the two classes and the actual network outputs based on weightsand ap-
plied to the current data s8t. As a result, if the norm of vector
I=1{is;>Tyors; <Ti} (34) ¢ increases, network performance deviates from the desired one

and retraining should be applied. On the contrary, if veetor

whereT}, andZ} are proper thresholds which define the regiori@kes small values, then no retraining is required. In the fol-
of high probability. If we denote by, the kth element of sef, '0Wing we denote this vector agk, ) indicating its depen-
then the pairgz; , s;, ) are included inS... dence upon image(k, N). However, direct calculation of the

ig 0

Although in general the above described method converge®m of c(k, V') would require application of the MAP esti-
the optimal value after a small number of iterations, in case Biation procedure descr'bed in the previous section so as to ex-
real-time applications, where the amount of computational cd&¢t Se from each image:(k, V). In video processing appli-
is very crucial, alternative techniques can be used for selectifions, for example, each image frame arrives at a rate of 40
of the training sefS,. A fast technique, which yields a subop-MS (25 f_rames/s in PAL system); it Wlll t_herefore be very time
timal but good selection of training data, is based on the bingf§nsuming to activate the MAP estimation procedure for each
form of the mask” of the initially trained network. This form (%, IV). In such applications, detection of the retraining time
is derived by thresholding the probability values of (1) for affStances can be performed through the following methodology.
image blocks. Then, a block is selected as training one, if %II
its eight neighbors belong to the same class with it. In this way;
ambiguous blocks are discarded from the training set and only-€t us assume that th¥th retraining phase of the network

the most confident ones are selected for training, through a vétgssifier has been completed. If the classifier is then applied to
fast procedure. all blocks of the image: (0, V), including the ones used for re-

training, it is expected to provide classification results of good
quality. The difference between the output of the retrained net-
work and of that produced by the initially trained classifier at

The purpose of this mechanism is to detect when the outpmiagez(0, N) constitutes an estimate of the level of improve-
of the neural-network classifier is not appropriate and cons@ent that can be achieved by the retraining procedure. Let us
quently to activate the retraining algorithm at those time irdenote bye(0, V) this difference, which is computed as fol-
stances when a change of the environment occurs. lows:

Let us index images or video frames in time, denoting by

L
z(k, N) the kth image or image frame following the image e(0, N) :% Z {g (2:(0, N)) — z (;(0, N))}T
=1

Detection of the Retraining Time Instances

V. THE DECISION MECHANISM FORNETWORK RETRAINING

at which the Nth network retraining occurred. Indek is

therefore reset each time retraining takes place, with V) . {y(wi(O, N)) — 2 (20, N))} (35)
corresponding to the image where th&h retraining of the = -

network was accomplished. Fig. 3 indicates a scenario witthere L is the number of blocks in the image; dependence of
two retraining phases (at frames three and six, respectivalgctorz on the current network weights, has been omitted for

of a video sequence composed of eight frames) and the csimplicity.

responding values of indexdsand N. It can been seen that Lete(k, V) denote the difference between the corresponding
z(0, N + 1) = z(ko, N) whereky indicates that aftek, classification outputs, when the two networks are applied to the
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kth image or image frame following th€th network retraining additional or alternative mechanism for detecting the need for

phase, fort = 1,2,8, --- retraining. This is due to the fact that magksandZ, in binary
L form, suffer large variation for any change of the environment;
f Z (zi(k, N)) — z (x;i(k, N))}T thus, they cause a large variation of the differemge, V) and
=1 as a consequence, retraining is activated. Other measures that
{y zi(k, N)) — z (z;(k, N))} (36) canbe also used for detecting the need of retraining are the com-

rison of the spatial distribution of classified blocks to that of
ach class as well as of their number with respect to total number
éblocks in the image.

It is anticipated that the level of improvement expressed
e(k, N) will be close to that of:(0, N) as long as the classifi-
cation results are good. This will occur when input images aP

similar, or belong to the same scene with the ones used durlng
the retraining phase. An errefk, N), which is quite different B- The Retraining Phase
from ¢(0, N), is generally due to a change of the environment. Whena(k, N) exceeds threshold for somek, sayk,, the
Thus, the quantity(k, N) = |e(k, N) —¢(0, N)| canbe used (N + 1)th retraining phase starts. In this case, the MAP es-
for detecting the change of the environment or equivalently thienation procedure is activated so as to create the training set
time instances where retraining should occur. Thus S. which represents the current condition; veatty, N) =
if a(k, N) < T no retraining is needed (37)¢(0, N + 1) is also calculated. The weights of the network be-

fore retraining are used as previous network weightsn the
Stralmng algorithm.

The training algorithm provides the new network weights

whereT’ is a threshold which expresses the maximum toleran
beyond which retraining is required for improving the networ

performance. In case of retraining, indeis reset to zero while through minimization of (14) subject to constraints (10) and

index V is incremented by one. 12). However, existence of a feasible solution is assured only if

i Such tan app?iﬁh detects V‘;ithbhigr: acgurac()j/ thle Letrainiip% hyper plane given by (10) crosses through the boundary con-
ime instances both in cases of abrupt and gradual ¢ ange3Pints imposed by (12). For this reason the minimal distance
the operational environment since the comparison is performﬁ m the origin to the surface(0, N + 1) — A- Aw = 0, is

?ethen thhte ?turrentt error dlffereoneég, | N) and ghe ?ne 0b- first calculated, by solving the following minimization problem
ained right after retraining, i.e¢(0, N). In an abrupt opera- with respect taAw

tional change, errog(k, N) will not be close toe(0, V); con-
sequentlyu(k, N) exceeds threshol# and retraining is acti- Minimize
vated. In case of a gradual change, ew@¥, N) will gradu- || Aw||, or equivalently( Aw)? - Aw
ally deviate frome(0, V) so that the quantity,(k, N) grad- gypject to
u?llfl?/;)crfa;fas and retraining is activated at the frame where (0, N+1)— A-Aw =0. (38)
The norm of vectoe(k, N) in (11) is not directly involved Using Lagrange multipliers the above minimization problem
in (37). Sincez in (36) corresponds te, in (11) andd’s are re- leads to the following solution:
placed byy’s, it can be concluded that, (36) uses the output pro- Ag,? :AT.(A.AT)—I (0, N+1)=Q-¢(0, N+1)h,v,j
vided by the initially trained network as an approximation of thﬁ/it
desired output in each new image, or frame. For detection pur- o7 1 )
posesz(k, N) and the norm of(k, N) appear to have similar Q=4 -(A-4)" hv,j (39)
behavior and properties and thug:, V) provides a quick way whereAw? is the minimal distance from the origin 0, N +
for determining the retraining time instances without requirint)) — A - Aw = 0. For this value ofAw?®, if the inequality con-
to activate the MAP estimation procedure at every image fraretraints defined by (12) are satisfied for all datasin the new
z(k, N). network weights can be calculated by minimizing (14) subject to
Network retraining can be instantaneously executed ead®) and (12). Otherwise, (2) cannot be expressed in the simple
time the system is put in operation by the user by utilizing zeform of (10) and (14) and thus direct minimization of (2) is re-
initial values for the output mask. Thus, the quantity(0, 0) quired for estimating the network weights. This is due to the
initially exceeds threshol@” and retraining is forced to take fact that the former knowledge is quite different from the cur-
place. rent one and a small weight perturbation is inadequate for suf-
In some, rather rare, cases, the aforementioned mechanfiently adapting the network weights.
could detect no need for retraining although it should. This is, Another situation where the above can be used is the fol-
for example, the case when a significant amount of image blodksving. Let us assume that several neural-network classifiers
lie near class boundaries, and consequently there is low probbng with their respective training sets and weights have been
bility that they belong to a specific class. Thus, despite a possilgieen to a user by different suppliers or that the user has created
large change in the classification of the image blocks, due ddferent retraining sets himself using the procedure presented
moving boundaries, there is only a small variation of the blodk the paper; the user is assumed to apply one of them. In cases
probabilities. In this case, the decision mechanism detectsthat the decision mechanism detects that retraining is needed,
need for retraining since only a small perturbation of the bloddut the training algorithm cannot be applied to the users’ clas-
probabilities has occurred. To avoid such situations, the binagification problem since the boundary constraints are not sat-
forms of masksY” and Z can be used in (35) and (36) as arisfied, it seeks, among the available networks, the most appro-
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TABLE |

Initial Phase

Start from a feasible point Aw(0) andset n=0.

1. Find the active constraints for the point Aw(n) and form matrix A, .

2. Calculate the projection matrix P based on (16b) and then the projected gradient 4(n) (16a).
3. If A(n)# 0 compute Aw(n + 1) using (15), set m=n+1 and go to step 1.

4. If h(n) =0 compute vector A based on (17).

4a. If all elements of vector A corresponding to the active inequalities are nonnegative, the process is
terminated.
4b. Otherwise, drop the active inequality with the most negative component of & from the working

set, delete the respective row of matrix A, and go to step 2.

TABLE Il

Set all elements of vector S equal to zero.
1. Find the optimal § by minimizing the convex function (32) through a gradient-based algorithm.
2. Form the set of indices [ using (34).

Create the training set S. .

TABLE 11l

1. For the kth image after the Nth retraining, x(k, N) do
1. Compute a(k,N) =le(k,N) —e(0,N)| using (35) and (36)
2. If (37) is satisfied then
set k:=k +1 and go to step 2.
4. Else do
4.1. Setindex k:=0 and N:=N +1.

4.1. Using the steps of Table 2, compute the training set S, for the current image x(k,N).
4.2. Using (39) calculate Aw®.
4.3. If the inequalities in (12) are satisfied at point Aw® then
4.3.1. Using the algorithm described in Table 1 compute the weight increments Aw .
4.3.2, Compute the weights after retraining, as W. = W, + AW® and l’}; = v_v,IJ +Aw'.

4.3.3. Set k:=1 and go to step 2.

4.4. Otherwise, estimate the new network weights by direct minimization of (2).

priate one for the current environment. Then, the selected nattd extraction of humans, and particularly of the upper part of
work is considered to represent the best previous knowledgeman body including the head, shoulders and arms areas, in
and the training algorithm is used to further improve the neithages or video sequences. Such an extraction plays an impor-
work performance. The inner steps of the method, i.e., the tant role in many image analysis problems. Examples include
training algorithm, the selection of retraining data and the decetrieval of images or video sequences containing humans from
sion mechanism are given in algorithmic form in Tables I-llimage data bases [9], [11], [13] low bit rate coding of image
of this paper. sequences for videophone and videoconferencing applications
[8], [10], [36], video surveillance of specific areas, such as city
centers, for identifying suspects for crimes [14], as well as anal-
ysis by synthesis methods, where 2-D or 3-D modeling fol-
In the following, the performance of the proposed scheme ftlmws the extraction of human bodies from scenes. Furthermore,
on line neural network retraining was examined for detectidruman extraction from background has recently attracted a great

VI. EXPERIMENTAL STUDY



148 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 11, NO. 1, JANUARY 2000

for adapting the network weights to the current condition. The
ak.N) ] same happened at the first frames of Trevor and Miss America.
e 5* norm( ¢(k.N) ) The retraining algorithm, described in Section 1, was used
to adapt the network weights in all the above changes of the
scene. Fig. 5 shows the values of the 27 network weights con-
necting 1) the first hidden and 2) the tenth hidden neuron to the
network input computed in the case of Claire before and after
the luminosity change. The procedure described in Section IV
was used for optimally selecting the retraining data sets and pro-
viding them to the training algorithm. In all the above cases the
inequality constraints imposed by (12) were satisfied. The rela-
tive tolerance error of the network output was chosen to be less
‘ . ' ‘ . . . than 10%. Since, the desired output for all training daté.in
0 5 10 15 20 25 30 35 40 corresponding to foreground (background), was close td }, (
Number of Frames the bounds in (12) were almost equal, for all training inputs

. _ o _ _For the selected relative errg¥,was equal to 0.5, whil@ was
Fig.4. Theerror-fuctior(k, N) computed by the decision mechanism (soli

line) along with the threshol@ beyond of which retraining is required (dashegcalcglated based Or? (A7) and (Al?) and _vvas_equal to 0‘3_8 for
line). For comparison thic(k, N)||2 is also shown in the figure. the first frame of Claire sequence with luminosity change. Fig. 6

illustrates the inner product of (A13) for the weights connecting

research interest especially in the framework of MPEG-4 aiiae first and the tenth hidden neurons to the input layer, for all
MPEG-7 standards for content-based video coding/represerifg@ut vectorse; in S..
tion and content-based visual query in image and video. The next figures refer to the quality of classification achieved

An image scene was formed consisting of 40 frames froly the proposed system. Fig. 7(a) shows a characteristic frame of
three different color videophone sequences, Claire, Trevor, dh@ Claire sequence, while Fig. 7(b) the first frame of Claire with
Miss America. In particular the sequence consisted of ten frarreiminosity change, where retraining was performed. Fig. 7(c)
of Claire, followed by ten frames of Claire with their luminosityshows the classification output provided by the network after
changed, followed by ten frames of Trevor and by ten frames ksftraining (final classification). The output is shown in the form
Miss America. Thus, the image scene included three change®b& map, in which all blocks classified to belong to background
the environment. Several characteristic data of video conferer@é, for clarity of presentation, marked with black color. It is ob-
applications has been used to train the initial neural-netwosRrved that, after retraining, the network correctly classifies the
classifier. image blocks into the two categories. Fig. 7(d) illustrates the

The format of the three-color sequences was QCIF, i.e., edigwork output before retraining. Itis clear that several blocks,
image frame consisted of 144 x 176 pixels per color image comainly in Claire’s body, have been misclassified due to the lu-
ponent. The latter were separated in image blocks consistingwhosity change. The output of the MAP estimation procedure,
8 x 8 pixels, resulting in. = 396 blocks per component. Thewhich was used for selecting the retraining data set is presented
target was to classify each image block into one of two class#sFig. 7(e) in continuous form. In this case the parameteas
namely foreground objects, i.e., upper part of human body, abéen selected so that tisg set contains about 70% of the total
background. The dc coefficient and the first 8 ac coefficients 8timber of image blocks; its value was= 3.9. This is due to the
the zig-zag scanned DCT transform of each color componentfa¢t that it is assumed that the initially trained network provides
theith block, i.e., 27 elements in total were used as ingub  an approximation slightly greater than 70% for the final classi-
the network, which consisted ¢f= 15 units in the hidden layer fication (30% misclassification). Dark blocks indicate areas of
and one output unit as described in Section I1I-A. This results bickground, white blocks indicate foreground areas while gray
450 network weights, apart from the biases. Fheet contains ones indicate ambiguous areas. This mask has been generated
approximately 1000 image blocks as training elements. by minimizing (33a) and (33b) with respect to vectarA 3 x

Fig. 4 showsa(k, N), computed by the proposed decisiord pixel grid with equal weights in all eight directions has been
mechanism using (35), (36), and the norme@f, V) estimated Selected to form the clique structure, as was mentioned in Sec-
by applying the MAP procedure to each image frame. For claritign IV. Fig. 7(f) also shows the selected training blocks, in dis-
of presentation we have multiplied the valueg|af, V)|, by ~ crete form; black color denotes all blocks that were not selected
the factor of five. Similar behavior of the value pé(k, V)|, astraining data. Since there is a large number of similar training
anda(k, N) is observed. It can be seen that using a constaocks, especially in the background, a distance measure was
threshold of 4% the proposed mechanism was able to corredted to reduce their number before using them to define the con-
detect whether retraining was required or not. After netwograints in (10). The number of selected blocks was reduced, in
initialization, where retraining has been activated on the firis way, from 198 to ten.
frame of Claire, thes(k, V) was below the value of 4% in the Fig. 8 refers to network retraining when fed with the first
following frames and therefore no retraining was needed. diame of the Trevor sequence, shown in Fig. 8(a). Fig. 8(b)
the other hand, at the first frame of the Claire sequence wittsBows the output of the initial network, which provided a coarse
luminosity change, the value atk, V) exceeded the thresholdapproximation of the desired classification. The effect of param-
and the decision mechanism activated the retraining algoritt&ier~ on selecting the training sét. is illustrated in Fig. 9. In
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a(k,N) & norm( c(k,N) )
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Fig. 5. Weight adaptation by the training algorithm in case of the Claire sequence with luminosity change. The weights between the input layer finstl (a) t
hidden neuron, i.ew{ and (b) the tenth hidden neuron i.e?,.
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Fig. 6. The inner product of network weight perturbation, corresponding to the weights connecting the input layer to (a) the first and (b) theete migvLinah,
respectively, for all input vectors of the training s&tin case of Claire sequence with luminosity change (solid line). The bound derived from (A7) and (A12) is
illustrated in dashed line.

this figure the selected foreground blocks are depicted for twase. Moreover, the convergence of the MAP estimation proce-
extreme values of; 7 = 0.5, andr = 22. Asis observed, when dure is shown in Fig. 11, in terms of the numike§ of blocks

is close to zero, erroneous training data are estimated. Insteadyed from one class to the other in consecutive iterations. It
large values ofr result in a small training set, which is gen-can be easily seen that, starting from a zero initial valug,of
erally inadequate to represent with high accuracy the currehe algorithm converges within five iterations to the global min-
image. Fig. 10 presents the percentage of the selected trairimgm of the cost function (33a) and (33b). Fig. 8(e) presents the
data inS,. to the total number of image blocks versus paramnmetwork output after retraining, which shows that correct clas-
eterr. It can been seen that the number of selected blocksdification has been achieved.

that of the total image decreases as the value ofcreases. In the following, a video conference application showing a
Having assumed that the initially trained neural network approgeene of a conference room with three people talking is exam-
imates the desired classification by about 70%, the parametdned. In this case, since the scene can be considered as super-
is selected so that the percentage of the selected data is 70%basition of three video frames, each of which presents a single
the total blocks. Fig. 8(c) shows the output of the MAP estima@erson, the initially trained neural-network classifier will con-
tion technique in a form similar to that of Fig. 7(e) using théinue to provide satisfactory results. After network retraining,
value ofr selected from Fig. 10/(= 4.92). Fig. 8(d) shows the extraction of foreground objects from background is very sat-
training set selected by the MAP estimation procedure in thisfactorily accomplished. The first frame of the respective se-
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(H

Fig. 7. (a) A characteristic frame of Claire, (b) the first frame of Claire with luminosity change, (c) the classification output, in discretetéomehabrk
retraining, (d) the network output before retraining, for the same frame, in discrete form, (e) the trairfingsletcted for retraining, in continuous form, i.e., the
output of the MAP estimation procedure, $&t, and (f) in discrete form.

guence is depicted in Fig. 12(a). Fig. 12(b) shows the respecteaor characteristics as Figs. 7 and 8 indicate. Segmentation
training set in binary form, while Fig. 12(c) the final classificatechniques based on spatial and/or texture homogeneity criteria
tion results. have been also proposed in the literature for this purpose [6],
As far as the problem of foreground—background separatif2v], [34], [37]. However, such approaches cannot provide ac-
is concerned, the proposed neural-network architecture providesate foreground—background separation since, in general, a
very accurate results regardless of the luminosity conditionserson in a scene, contains regions with different color and tex-
foreground-background location/orientation and the respectivige characteristics (e.g., head, hair, clothes’ color) which are
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©

Fig. 8. Network performance at the first frame of Trevor sequence: (a) the original image, (b) the output of initially trained network, (c) theétéingelected
for retraining in continuous form, (d) the training set in discrete form, and (e) the final classification output in discrete form.

classified to different segments (objects) according to such heet extraction [2], [26]. However, these methods are restricted
mogeneity criteria. For example, division of a square image into the specific applications and thus they cannot be applied to
four equal-sized square blocks (quadtree decomposition), ddferent operational conditions.

cording to the texture homogeneity of the block, results in many
misclassified blocks both in background and foreground areas
[10]. Recently, other approaches have been proposed in the liter-
ature, which combine (fuse) several image properties accordingrhis paper has discussed on-line retraining of neural networks,
to predefined rules in order to provide more semantic video ofmcusing onimage and video analysis applications. Atraining al-

VII. CONCLUSIONS
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Fig. 9. The selected foreground blocks for different values of parame{a) = = 0.5 and (b)r = 22.0.
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Fig. 10. Variation of the percentage of selected image blocks versus paramgf‘r%b érl Convergence of the MAP estimation procedure at the first frame of

T.

gorithm has been presented, which can efficiently handle casep@froving the performance of neural networks in dynamically

smallvariations ofthe operationalenvironment, whileamaximuehanged environments.

aposterioriestimationtechnique has been developed which opti-Of particular interest is the interweaving of MAP estima-

mally selectstheretrainingdatasetfromtheimage presentedtoiba algorithms with neural-network learning optimization al-

network. Thisis accomplished by modeling the image as an MRforithms; in the resulting scheme optimal selection of the net-

A decision mechanism has also been introduced which automabrk training set is performed by the former algorithms and op-

ically activates network retraining whenever the network perfotimal output estimation is provided by the neural network. In-

mance is notconsidered satisfactory. vestigation of convergence and performance of a general block
The presented results refer to extraction of foreground areasnponent estimation method, which iteratively uses these two

from background ones in image/video classification problemsrocedures, is another topic, which is under investigation.

These results indicate the ability of the method to be success-

fully applied to a variety of image analysis applications, where APPENDIX A

neural-network-based classification constitutes a possible solu- . ) ) .

tion, especially when considering the forthcoming MPEG stan-A\S was described n Section I“’_ network weights, wa.,

dards. This constitutes a topic, which is currently further investf€fore and after retraining, respectively, are related through the

gated. It should be mentioned that the proposed neural-netwllowing equation:

architecture can be used to a variety of other applications. Ex- w, = wy + Aw (A1)

amples include prediction of video traffic over high-speed N€fjhere Aw denotes a small perturbation.

works where the traffic characteristics vary from time to time Using (6), the output of théth neuron of the hidden layer,

according to the scene complexity or nonlinear system identifiz;q, retraining, is given by

cation where the system to be identified is changing with time. T

As a result, the proposed scheme can be viewed as a method for Uia = f ((QJ o) £) (A2)
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(c)

Fig. 12. Network performance for a video scene indicating a conference room with three people talking: (a) the original image, (b) the traieictgdén sel
discrete form, and (c) the final classification mask.

omitting, for simplicity, subscrip from z; as well as the de- where
pendence ofi; , on ;. f”(-) second derivative of (-);

From (A2) it can be seen that , depends only on the inner ¢&; scalar taking values betweéh , andj; , + AS;.
product(w; ) - z; settingf; o = (w} )" -z, (A2) takes the  In general the absolute value dt; in (A5) should be

i, a

form bounded, so that the error of the first-order Taylor series be
small, i.e.,
tia = f(Bi,a)- (A3) IRi| < e, (A6)
Combining (A1) and (A3) and using the formula of first-ordetvheree; is the maximum error of the residu&l;, that is al-
Taylor series expansion we have lowed.
Based on (A6) and using the Lagrange formula (A5), the inner
wi o = f (Bi,0 + A5) productAg; can be bounded as follows:
=f(Biv)+ f (Bip) AB; + R; 12
=u; p + Au; + Ry (A4) |AB;] < <|f”2%> =9, (A7)

whereuw; ; is the output of théth hidden neuron before the re- i o )
training bhase ey = f(Biy) with By = (w9 ,)T -z The value off”(£;) in (A7) is difficult to be calculated, since
and Av; is a small berturbatic;nAui _ jf/(ﬁi b)&ﬁi' with  scalarg; is unknown. Estimation of”(¢;) can be performed by
AB; = (Aw?, b)T - z. Functionf’(-) in (Ad) denotes the first considering that the second derivative /@) is bounded and
derivative of £(-), while R; represents the first-order TaylorP l€tting /“(&;) be equal to its maximum valug?' (&;) — jez,

residual for theth hidden neuron. Using the Lagrange formula/here: = max f"(-). From (A7) we get two linear inequal-
R; can be expressed as ities for Aw;' so that the first-order Taylor series expansion be

valid with an error less thas;, namely
_ I (&) AB?

Ri=—5— (AS) —0i < (M) -z <9, i=12 -0
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Using (4) and ignoring the residual errdgs in (A4), we can whereq is the number of neurons in the first hidden layer. In this

express the network outpry, after retraining, as follows: case all bounds; of the inner productAj; are the same, i.e.,
T T — 0T, j =
o= f (@) N < (Auw}) rz <Y, i=1,2--q (ALY
S Aut Aw' -+ At Aﬂ) APPENDIX B

~f ((@)T Sy + (@)T - Au 4 Awt -gb) (A8) For a given input vectat; in S, and ignoring residuak in
(A9), we can approximate the network output as follows:
where the term\w? - Au has been ignored since it is very small y
e = Za i) =z 7 6 3 A& 7 Bl

compared to the other terms. Let us recall that:,, are vectors & @.) 2 (@) + f (8 (22)) (i) (B1) )
defined in (6), whileAw = [Aus Ay - - - Aug|? is defined as where we have introduced the dependence of the output on input
u, = uy + Au. Expanding (A8) as a first-order Taylor serie/€ctorz;. Using (9), (B1) is written as
we get c(zi) =di — 2z (z) = [ (6 (2:)) Ab () . (B2)

2o = [ (6a) SinceAd(zi) = (w,)" - Aulz;) + Aw' - uy(z;) [see (A8)]
_ y indicating a linear relationship with the total weight perturbation
=/ (6b)A+ / gb) Ad+ R (9) Aw, the termf’ (8, (z;)) Aé(z;) in (B2) can be expressed as
=z, + Az+ K

c(z;) = (Aw)" - a(z;) (B3)

where we have sef(, ;3 = (wj, ;)" e,y AAAS = \yhereq(s;) is a vector provided by the solution of the following
(wy)? - Au + Aw' - . In (A9), R represents the residualequation:

error of the first-order Taylor series approximation which can (Aw)T ca(zs)

be expressed similarly to (A5). Requiring that the residué I -
smaller than a relative error provided by the user, saj.|, = f' (&) [(w},) CAu(zi) + Aw' (L‘)} - (B4)

the following inequality should be satisfied: SinceAu(;) depends on the network weights, we have

2, |za|>1/2 _ Au(ai) = Vaf (B (i) - AW - z; (B5)
149 < < (6 = (A10) with

It should be mentioned that the value |ef| is known, being N ‘ ‘ T
estimated by the MAP estimation procedure. @) = [B1,0 (i) Brb (i) -+ Ba, 0 ()]

Computation of/”' () can be performed similarly to (A7). As 44 £(.) the gradient matrix of the vector valued functigh).

is proved in Appendix BAS can be written ag\§ = (Aw)? - a, Thea(z;) is thus calculated by

wherea is a vector depending on the weights before retraining

and on the input vector. Consequently (A10) imposes two (Aw)" - a(wi)
linear inequalities as far as the total weight perturbatian is = f" (6 (@) [(Q,{)T Vaf (B(z) - AW
concerned -
czi + Aw' -y (L‘)} : (B6)
¢ < (Mw)" a< ¢ (All)  Taking into account all input vectots; in S., (B3) is ex-
pressed as
Satisfaction of (A10) indicates that the approximate network
output, using the first-order Taylor series expansion, differs c=A Aw (B7)

from the actual one at most kyf|z,|, under the assumption

thatu, = w + Au. However, taking into consideration thewhere

residuals?; in (A4) the total error of the network output c=[c(z1) c(@)...c@mc)]T
is greater by an amount depending &). Let us denote

by » a vector containing all residual®; of the first-layer

T
neurons, i.e.y = [R1 Rs---R,|". Then, using the mean A" =la(a) a(@2) - alzm )]
value theorem, the error of the network output should be
increased by the quantity (w?)? - r wherep; = max f/(-). REFERENCES
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