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Abstract—A novel approach is presented in this paper for im-
proving the performance of neural-network classifiers in image
recognition, segmentation, or coding applications, based on a re-
training procedure at the user level. The procedure includes: 1) a
training algorithm for adapting the network weights to the cur-
rent condition; 2) a maximum a posteriori(MAP) estimation pro-
cedure for optimally selecting the most representative data of the
current environment as retraining data; and 3) a decision mecha-
nism for determining when network retraining should be activated.
The training algorithm takes into consideration both the former
and the current network knowledge in order to achieve good gen-
eralization. The MAP estimation procedure models the network
output as a Markov random field (MRF) and optimally selects the
set of training inputs and corresponding desired outputs. Results
are presented which illustrate the theoretical developments as well
as the performance of the proposed approach in real-life experi-
ments.

Index Terms—Image analysis, MPEG-4, neural-network re-
training, segmentation, weight adaptation.

I. INTRODUCTION

PROBABLY the most important issue when designing and
training artificial neural networks in real-life applications

is network generalization. Many significant results have been
derived during the last few years regarding generalization of
neural networks when tested outside their training environment
[23], [32]. Examples include algorithms for adaptive creation
of the network architecture during training, such as pruning or
constructive techniques, modular and hierarchical networks, or
theoretical aspects of network generalization, such as the VC
dimension. Specific results and mathematical formulations re-
garding error bounds and overtraining issues have been obtained
when considering cases with known probability distributions of
the data [4], [7], [16], [40]. Despite, however, the achievements
obtained, most real-life applications do not obey some specific
probability distribution and may significantly differ from one
case to another mainly due to changes of their environment. That
is why straightforward application of trained networks, to data
outside the training set, is not always adequate for solving image
recognition, classification or detection problems.

Manuscript received June 18, 1998; revised June 22, 1999 and October 4,
1999.

The authors are with the Electrical and Computer Engineering Department,
National Technical University of Athens, Zografou 15773, Athens, Greece
(e-mail: stefanos@cs.ntua.gr).

Publisher Item Identifier S 1045-9227(00)00875-4.

This is, for example, the case in remote sensing applications.
In particular, recent studies, on the use of neural networks for
classification and segmentation of images representing different
geographical locations, have shown that neural networks trained
at a specific location may result in as low as 25% classification
accuracy if tested on another area. Instead, retraining of the net-
works, using data from both localities, was found necessary for
achieving classification ratios of about 80% in either area [41].
This geographical generalization problem can be due to various
reasons, including the fact that various locations of the earth can
be quite different from each other, the fact that the conditions
of image capturing are generally different, or even the fact that
training sets may not be representative enough.

Another example of particular interest concerns applications
to video processing and analysis. Neural networks have not
played a significant role in the development of video coding
standards, such as MPEG-1 and MPEG-2 [17], [18]. Nev-
ertheless the forthcoming MPEG-4 and MPEG-7 standards
[19], [28] referring to content-based video coding [1], [8],
[10], storage, retrieval, and indexing [9], [11], [13] are based
on physical object extraction from scenes, so as to handle
multimedia information with an increased level of intelligence.
Neural networks, with their superior nonlinear classification
abilities, can play a major role in these forthcoming multimedia
standards [22]. However, the above-mentioned problems in the
generalization of neural networks when used in environments
which are different from their training ones constitute a major
obstacle, especially when dealing with applications where
large variations of image and video scenes are frequently
met. Apart from image and video coding, the above hold in a
large variety of applications, including medical imaging [30],
invariant object recognition [21], e.g., in factory environments
and in robot vision, human face detection [12], [29], [39],
and nonlinear system identification where the system to be
identified is changing with time.

In most of the above cases, the adopted assumption of sta-
tionarity of the network training data is not valid. Consequently,
the training set is not able to represent all possible variations or
states of the operational environment to which the network is
to be applied. Instead, it would be desirable to have a mech-
anism, which would provide the network with the capability
to automatically test its performance and be automatically re-
trained when its performance is not acceptable. The retraining
algorithm should update the network weights taking into ac-
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count both the former network knowledge and the knowledge
extracted from the current input data.

Adaptive training of neural networks in slowly varying
nonstationary processes has been a topic of research within
the neural-network community in the last few years [31], [33].
However, the proposed techniques have focused on the problem
of weight adaptation, assuming that retraining is manually
activated and that retraining input and desired output data are
a priori known.

A novel approach is presented in this paper for improving the
performance of neural networks when handling nonstationary
image and video data, including:

• an automatic decision mechanism, which determines
when network retraining, should take place;

• a maximuma posteriori (MAP) estimation technique
which extracts knowledge from the current input data by
modeling the network output as a Markov random field
(MRF) and optimally selecting pairs of training inputs
and corresponding desired outputs;

• an algorithm which retrains the network, adapting its
weights to the current environment, by applying a non-
linear programming technique.

This paper is organized as follows. Formulation of the
problem is given in Section II, while the retraining algorithm,
the optimal selection of the training data and the mechanism
for deciding whether retraining is needed are presented in
Sections III–V, respectively. Application of the proposed
approach to a real-life problem related to the new multimedia
standards, which is extraction of the head and shoulder parts of
humans from image sequences in videophone communications,
is presented in Section VI. Conclusions and suggestions for
further work are given in Section VII of the paper.

II. FORMULATION OF THE PROBLEM

Let de-
note the image intensity at pixel . In most image/video
coding and analysis applications the image is processed in par-
titions, or blocks, of, say, 8 × 8 pixels. For classification pur-
poses it is required to classify each block, or a transformed ver-
sion of it of the same size, to one of, say,available classes

. Let be a vector containing the lexico-
graphically ordered values of theth block to be classified. A
neural-network classifier will produce a-dimensional output
vector defined as follows:

(1)

where denotes the probability that theth image block be-
longs to the th class.

Let us first consider that a neural network has been
initially trained to perform the previously described
classification task using a specific training set, say,

, where vectors and
with denote theth input training vector,

i.e., the th image block or a transformed version of it, and the
corresponding desired output vector consisting ofelements.
Let denote the network output when applied to theth

block of an image outside the training set. Whenever a change
of the environment occurs, new network weights should be
estimated through a retraining procedure, taking into account
both the former network knowledge and the current situation.
Let us consider retraining in more detail. Let include all
weights of the network before retraining, and the new
weight vector which is obtained through retraining. A training
set is assumed to be extracted from the current operational
situation composed of, say, image blocks of 8 × 8 pixels;

where and with
similarly correspond to theth input and

desired output retraining data. The retraining algorithm that is
activated as described in Section V, whenever a change of the
environment is detected, computes the new network weights

, by minimizing the following error criterion with respect to
the weights:

(2)

with

(2a)

and

(2b)

where
error performed over training set (“current”
knowledge);
corresponding error over training set (“former”
knowledge);
output of the retrained network, corresponding to
input vector of the network consisting of weights

;
output of the retrained network, corresponding to
input vector to the network consisting of weights

.
Similarly, would represent the output of the network,
consisting of weights , when accepting vector at its input.
When retraining the network for the first time, is identical
to . Parameter is a weighting factor accounting for the
significance of the current training set compared to the former
one and denotes the -norm.

In most real-life image or video analysis applications, training
set is a priori unknown; consequently estimation of as
well as detection of the change of the environment should be au-
tomatically provided by the system. As a result, apart from the
retraining algorithm, two additional modules are embedded in
the proposed architecture; a “change detection” decision mecha-
nism and a MAP training set estimation procedure. The main ob-
jectives of these modules are briefly described next. A block-di-
agram of the overall architecture is presented in Fig. 1. The ini-
tially trained neural-network classifier and the retrained one are
also included in the figure. The initially trained network is as-
sumed to provide a coarse approximation of the correct classi-
fication irrespectively of changes of the environment. Possible
misclassifications provided by this classifier are then corrected
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Fig. 1. The system architecture.

by the retrained network, which generates the final classifica-
tion.

1) Decision Mechanism:The goal of this module is to de-
termine when retraining should be activated, or equivalently, to
detect the time instances when a change of the environment oc-
curs. Whenever network performance is considered satisfactory
(no change of the environment occurs), the network weights and
structure remain the same. Instead, new network weights are cal-
culated when network performance is not appropriate, by acti-
vating both the MAP estimation procedure and the retraining al-
gorithm. Investigation of the performance of the initially trained
network on the current data is the basis of the mechanism, as de-
scribed in Section V.

2) MAP Estimation Procedure:This module optimally se-
lects a training set of input and desired output data which opti-
mally represent the current situation as described in Section IV.
This set is used next by the retraining algorithm described in the
following section.

III. T HE RETRAINING TECHNIQUE

A. The Network Architecture

Let us, for simplicity, consider: 1) a two-class classification
problem, where classes , refer, for example, to foreground
and background objects in an image and 2) a feedforward
neural-network classifier which includes a single output neuron
providing classification in two categories, one hidden layer
consisting of neurons, and accepts image blocks of, say,

pixels at its input. Let us also ignore neuron thresholds.
Extension to classification problems and networks of higher
complexity can be performed in a similar way. Fig. 2 presents
the structure of the network. As mentioned before, and

denote the corresponding network weights, before and

after retraining has been performed to a specific image or
video frame. Let denote a vector containing the
weights between the output and hidden neurons and ,

denote the vector of weights between
the th hidden neuron and the network inputs, where subscripts

refer to either the situation “after” or “before” retraining,
respectively. An illustration of weights and is
presented in Fig. 2. Then

(3)

is a vector containing all network weights. For a given input
vector , corresponding to theth image block, the output of
the final neural-network classifier is given by

(4)

where denotes the activation function of the output neuron,
e.g., a sigmoidal function, and

(5)

is a vector containing the hidden neuron outputs when the net-
work weights are (before retraining) or (after the re-
training). The network output in (4) is scalar, since we have as-
sumed a single network output. The output of theth neuron of
the first hidden layer can be written in terms of the input vector
and the weights as follows:

(6)
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Fig. 2. The neural-network structure.

Thus (5) can be expressed as

(7)

where
matrix defined as

vector-valued function the elements of which repre-
sent the activation function of a corresponding hidden
neuron. The hyperbolic tangent sigmoidal function is
used in the rest of the paper.

B. The Retraining Algorithm

The goal of the training procedure is to minimize (2) and es-
timate the new network weights, i.e., and , respec-
tively. Let us first assume that a small perturbation of the net-
work weights (before retraining) is enough to achieve good
classification performance. Then

and (8)

where and are small increments. This assumption
leads to an analytical and tractable solution for estimating,
since it permits linearization of the nonlinear activation function
of the neuron, using a first-order Taylor series expansion.

Equation (2) indicates that the new network weights are es-
timated taking into account both the current and the previous

network knowledge. To stress, however, the importance of cur-
rent training data in (2), one can replace (2a) by the constraint
that the actual network outputs are equal to the desired ones, that
is

for all data in (9)

Equation (9) indicates that the first term of (2), corresponding to
error , takes values close to zero, after estimating the new
network weights.

It is shown in Appendix B that, through linearization, solution
of (9) with respect to the weight increments is equivalent to a set
of linear equations

(10)

where , , with
denoting a vector formed by stacking up all columns

of ; vector and matrix are appropriately expressed in
terms of the previous network weights. The size of is

for the network presented in Fig. 2. In particular,
, expressing the

difference between network outputs after and before retraining
for all input vectors in . Based on (9), vectorcan be written
as

(11)

Equation (10) is valid only when weight increments are
small quantities. In Appendix A, (A11) and (A13), it is shown
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that, given a tolerated error value, proper boundsand can be
computed for the weight increments, for each input vectorin

and

(12)

where is a vector depending on the former weights and on the
input vector as described in Appendix B. Equation (12) should
be satisfied for all in , so as to assure that each linear equa-
tion in (10) is valid within the given tolerated error. A less strict
approach would require that the mean value of the inner prod-
ucts in (12), for all , be smaller than the mean value of the
bounds.

The size of vector is smaller than the number of unknown
weights , since in general a small number, , of training
data, is chosen, either through a clustering or a principal com-
ponent analysis technique. Thus, many solutions exist for (10),
since the number of unknowns is much greater than the respec-
tive number of equations. Uniqueness, however, is imposed by
an additional requirement, which takes into consideration the
previous network knowledge. Among all possible solutions that
satisfy (10) the one which causes a minimal degradation of the
previous network knowledge is selected as the most appropriate.
It is considered that the network weights before retraining, i.e.,

, have been estimated as an optimal solution over data of set
. Furthermore, the weights after retraining provide a minimal

error over all data of the current set, according to (9). Thus,
minimization of the second term of (2), which expresses the ef-
fect of the new network weights over data set, can be consid-
ered as minimization of the absolute difference of the error over
data in with respect to the previous and the current network
weights. Similar conclusions are drawn in [31]. This means that
the weight increments are minimally modified, resulting in the
following error criterion:

(13)

with defined similarly to , with replaced by in
the right-hand side of (2b).

It can be shown [31] that (13) takes the form of

(14)

where the elements of matrix are expressed in terms of
the previous network weights and the training data in .
Thus, the problem results in minimization of (14) subject to
constraints (10) and (12).

The number of data belonging to set is in general much
smaller than the number of network weights. This is due to the
fact that these data have been selected from the current condition
using a clustering or principal component analysis technique to
discard data of similar content and obtain more reliable solu-
tions. Thus, network overfitting could arise if only these current
data were taken into account. However, in our method, the net-
work weights are estimated using data from both the current set

and the previous set , as (10) and (14) indicate. The number

of elements of is in general greater than the number of net-
work weights since this set includes alla priori network knowl-
edge. Consequently, overfitting issues are not encountered in
the proposed retraining algorithm, since the number of training
data, i.e., the number of data in and , is greater than the
respective network weights. In Section V, where experimental
results are presented, specific values for the numbers of data in
sets and are provided.

The error function defined by (14) is convex since it is of
squared form [25]. The constraints in (10) are linear equalities,
while the constraints in (12) are linear inequalities. Thus, the so-
lution should lie on the hyper-surface defined by (10), satisfy the
inequalities in (12) and simultaneously minimize the error func-
tion given in (14). A variety of methods can be used to estimate
the weight increments based on minimization of (14) subject
to (10) and (12). In this paper we adopt the gradient projection
method, which is presented next.

As described in Section V, the decision mechanism ascer-
tains whether a small adaptation of the network weights is suffi-
cient to provide accurate classification. In case that such a small
adaptation is not adequate, the above training algorithm cannot
be used, since the activation functions cannot be approximated
by a first-order Taylor series. In this case, neither (9) nor (13)
can be expressed in a simple form and thus the new network
weights should be estimated through conventional minimization
of (2) by applying, for example, the backpropagation algorithm.
Since both the current and previous network training data sets
are taken into account for updating the weights, overfitting is-
sues are not encountered in this case too.

Each time the decision mechanism ascertains that retraining
is required, a new training set is created, which represents
the current condition. Then, new network weights are estimated
taking into account both the current information (data in) and
the former knowledge (data in ). Since the set has been op-
timized over the current condition, it cannot be considered suit-
able for following or future states of the environment. This is
due to the fact that data obtained from future states of the envi-
ronment may be in conflict with data obtained from the current
one. On the contrary, it is assumed that the training set, which
is in general provided by a vendor, is able to roughly approxi-
mate the desired network performance at any state of the en-
vironment. Consequently, in every network retraining phase, a
new training set is created and the previous one is discarded,
while new weights are estimated based on the current setand
the old one , which remains constant throughout network op-
eration.

C. The Gradient Projection Method

The philosophy of the gradient projection method is, starting
from a feasible point, to move in a direction which decreases

and simultaneously satisfies the constraints (10) and (12).
Let us give some definitions first [25]. A point is called feasible
when it satisfies all the constraints. An inequality is character-
ized as an active constraint when it is about to be violated at a
feasible point, in the sense that it turns to equality at this point.
Otherwise the inequality is an inactive constraint. For example,
the inequality in (12) becomes active at
a feasible point when at this current
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point. Otherwise it is considered to be inactive. In the following
we denote as the number of active inequalities. By conven-
tion we consider any equality constraint to be active at a feasible
point. Thus, the total number of active constraints, i.e., equali-
ties and active inequalities, is equal to ( equalities
and active inequalities).

Only the active constraints define the direction which causes
a decrease of function . As a result, a working set is formed at
each feasible point which includes all active constraints. Then,
the method tries to move in a direction which decreases the error
function while keeping the working constraints active. This
is accomplished by projecting the negative gradient ofonto
the subspace that is tangent to the surface defined by these con-
straints. If the resulting vector is nonzero, it determines the di-
rection for the next step. To compute this projection, let matrix

be composed of the above-defined working set. Matrix
contains all rows of matrix (since equalities are always active
at any feasible point) and additional rows which include the ac-
tive inequalities. Thus, is of , where we recall
that corresponds to the total number of network weights. Let
us denote by the projection of the negative gradient of
in the th iteration step of the algorithm. Then, adaptation of the
weight increments is made as follows:

(15)

where is a scalar that determines the rate of convergence.
Using the methodology of [25] we can estimate vector as

(16a)

with

and (16b)

using computed from (14) at theth iteration.
Starting from an initial feasible point, the gradient projection

algorithm computes the next feasible point based on (15) until
the projected gradient is close to zero, i.e., . In
this case, however, it is possible to improve the solution (esti-
mate a new feasible point that causes a greater decrease of)
by relaxing one active constraint, i.e., one active inequality. This
happens since the Kuhn–Tucker conditions are not satisfied for
the original problem [25]. A vector, say, is calculated by the
following equation:

(17)

Each element of , denoted as , corresponds to theth ac-
tive constraint of the working set [25]. In case that there are
negative elements of, the Kuhn–Tucker conditions are not sat-
isfied and a new improved feasible solution can be obtained by
relaxing the respective constraint from the working set. This is
performed by deleting the corresponding row of, so that the
respective constraint becomes inactive. In this case the projec-
tion matrix should be recomputed since matrix has mod-
ified. A new iteration then commences until the projected gra-
dient reaches a value close to zero. If all elements ofare
nonnegative, the Kuhn–Tucker conditions are satisfied and the
process is terminated since it is not possible to further improve

the obtained solution. It should be mentioned that the times that
the working set is changed are equal to number of inequalities
since equalities are always considered active. Thus, the number
of iterations required for getting all elements ofpositive so
that the Kuhn–Tucker conditions are satisfied, is bounded by
the number of inequalities.

The time required to adapt network weights is very crucial,
especially in real-time applications. This is, for example, the
case in video processing, where each video frame is transmitted
every 40 (33) ms for the PAL (NTSC) system and thus net-
work retraining should be completed within this small inter-
frame period. The computational complexity required to update
each network weight independently using the gradient projec-
tion method is proportional to the number of network weights

as shown next.
At each iteration of the algorithm, the inner product of ma-

trix with the gradient of function is calculated (16a) along
with the weight updating given by (15). Since function is of
squared form, the gradient and thus (16a)
involves a simple multiplication of vector with matrix

, which is of size . This requires
operations assuming that each element of can be imple-
mented in parallel. It should be mentioned that matrix, for a
fixed number of working constraints is calculated once since
is modified each time the working constraints are changed and
matrix , which depends on the previous network weights,
is available before the algorithm begins. Furthermore, the pro-
jection matrix does not need to be entirely recomputed each
time the working constraints are modified. This is due to the fact
that the active constraints in the working set change by one at a
time and thus it is possible to recalculate matrixfrom the pre-
vious one by an updating procedure as described in [25, p. 333].
This is a significant property of the gradient projection method
and greatly reduces its computational load.

The convergence rate of the gradient projection method is
of the same order with that of steepest descent, for a constant
learning rate ; i.e., it converges to the optimal solution lin-
early as can be shown using eigenvalue analysis in [25, p. 342].
Faster convergence rates can be achieved by selecting the value

to be the largest step toward the global minimum. This can
be accomplished by minimizing the following equation with re-
spect to learning rate :

(18)

After minimization, the optimal value of learning rate is
the following:

(19)

The number of iterations required by the algorithm to con-
verge is further restricted by the maximum permitted time, say

, in which retraining should be accomplished. For instance,
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in case of on line classification of video frames,
ms for a PAL system, within which selection of the current
training set , weight adaptation procedure as well as network
testing using the new weights should be completed. Since the
time required for network retraining is significantly larger than
the other times, we can assume in the following that the max-
imum permitted time for weight adaptation is approximately
equal to . Thus, the number of iterations of the gradient pro-
jection method should be smaller than , where indi-
cates the average computational time for one iteration. If, after

iterations, the solution is not close to the optimal one, the
currently estimated weights are used to perform classification.
Weight updating will be continued in the following frames, for
further improving the network performance. Similarly, in a large
weight adaptation case, where a type of backpropagation algo-
rithm is used for estimating the network weights, the number of
iterations is also restricted by the maximum permitted time.
If a solution cannot be reached within , processing moves to
the following frames, assuming that no further retraining is re-
quired.

IV. OPTIMAL SELECTION OF THENETWORK RETRAINING DATA

Whenever the decision mechanism ascertains that network re-
training is required, a training set should be generated so that
the retraining algorithm uses it to adapt the network weights to
the current environment. A MAP estimation procedure is pro-
posed next for constructing this training set, i.e., for de-
termining proper pairs , with denoting input image
blocks of the examined imageand respective desired out-
puts. Let be a vector containing the probabilities that each
image block belongs to one of theavailable classes. Then,

where is the number of
blocks of image and . A high value

indicates that it is highly probable that the respective image
block belongs to class and can therefore be included in the
retraining set, being classified to category. Let also vectors

and include the outputs of the retrained and initially trained
networks, respectively, for all blocks of image , i.e.,

and

(20)

For a current image and an output being provided by the
initially trained network, our target is: 1) to estimate vector,
and consequently the current training set; 2) to compute the
weights of the final network classifier (through the retraining
algorithm); and 3) to obtain the final classification outputcor-
responding to image. This can be obtained through maximiza-
tion of the following conditional likelihood function:

(21)

where denotes a log-likelihood function. In (21)denotes the
weights provided by the retraining algorithm and is the
classification output of the retrained neural-network classifier
which is applied to the input image.

It is straightforward to show that the corresponding condi-
tional probability density can be written as follows:

(22)

where we have ignored the dependence on the current image,
since it is involved in all equations.

Estimation of the network weights is independent of vector
. Moreover, network output only depends on the values of

the weights (and the input image). Hence, it can be concluded
that

(23)

Using (4), (5), and (7), it is easy to compute a nonlinear func-
tion that models the operation of the neural network. Then

(24)

Thus, if the optimal weights have been estimated through
network retraining, the final classification of current imageis
unique. Consequently

if fullfils (24)
otherwise.

(25)

Equation (23) using (25) indicates that the optimal vector
and the output of the retrained classifiercan be computed as
follows:

(26)
Optimal network weights are calculated by the retraining

algorithm of Section III given a vector, i.e., the training set .
Thus, maximization of the latter term in (26) is achieved through
computation of weights by the retraining algorithm. Conse-
quently, maximization of (26) is equivalent to estimation of
(and consequently ), based on the output of the initially
trained neural classifier.

Thus (26) results in

(27)

Using the Bayes formula, (27) can be written as follows:

(28)

where has been omitted from the log likelihood function,
since it is independent of. Equation (28) indicates that in order
to find , we should compute both the conditional probability
density and the probability density .
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Let us first assume that for a given vector, there is only
one classification vector which is associated to by a linear
relation through a fixed matrix , or equivalently that different
training sets are estimated for different vectors. As a result,
the conditional probability density is given by

if
if

(29)

The next step is to model probability density . The el-
ements of represent the probabilities that an image block be-
longs to each of the available classes. It is well known that
image blocks are strongly correlated to their spatial neigh-
bors, due to smoothness of the objects appearing in images.
Thus, the elements of are also locally correlated, i.e., for
image blocks and we have [5], [20]

(30)

where denotes a neighborhood of the image block corre-
sponding to . Such a property characterizes an MRF, hence
a Gibbs distribution can be used for modeling [5], [15],
[35]

(31)

where
normalizing constant;
“temperature” parameter of the density;
any function of a local group of pointscalled clique
and is the set of all cliques.

Using the MAP estimation procedure and based on (28) and
(29) the estimate of can be written as

(32)

Based on the previous equation, it is observed that estimation
of the optimal vector is not affected by the value of temper-
ature since the latter has the same influence on all directions
of the clique. For this reason, we will consider, for simplicity, in
the following that .

As already mentioned, images are locally smooth [38].
Consequently, it is not probable that an image block belongs
to a specific class, if all its neighbors belong to another one.
Since retraining should be performed using data that have
already been classified with maximum confidence, function

should award image blocks that satisfy the smoothness
property and discourage the rest. It should also be mentioned
that the knowledge included in the initially trained network
classifier should be trusted as much as possible within the
above selection procedure; it is, therefore, desired that the
finally computed classification is similar to the one originally
provided by the classifier, modified according to the smooth-
ness principle. Following the previous assumption, a common

choice for function in a two-class classification problem,
where is a scalar denoted by, is

(33a)

where measure depends both on the distance offrom the
corresponding initial classification as well as on its distance
from its neighbors . In (33a), the neighborhood of , i.e.,
the clique structure, has been selected to be a 3 × 3 pixel grid. An
equal-weight operator has been used for all eight directions of
the clique, since the same training set should be produced irre-
spectively from the image orientation. For this reason, function

in (33a) is given by

(33b)

where parameter controls the contribution of each of the two
terms in the right-hand side of (33b) to the minimization of the
cost function. In particular, values of close to zero result in
a vector that approximately equals outputobtained by the
initially trained classifier. However, several misclassified blocks
are encountered in as was mentioned in Section II. Since
training set , which is used for network retraining, follows
the estimation of the optimal vector, erroneous training ele-
ments will be presented in for small values of . As a re-
sult, the network performance deteriorates after retraining. On
the other hand, unnecessarily large values ofstress the im-
portance of the smoothness (second) term of (33b), resulting in
many ambiguous blocks, i.e., blocks which do not present high
probability of belonging to a specific class. In this case the set

cannot appropriately describe the current condition since it
contains few training data, i.e., only those which are not am-
biguous.

As parameter increases from small to large values, more
and more misclassified blocks of are considered as am-
biguous and are therefore discarded from. However, very
large values of reduce the representativity of , since high
confident blocks are also discarded apart from the misclassified
ones. Assuming that the output contains % misclassified
blocks, the parameter is selected so that the training set

contains a slightly smaller number than 1-% of the total
number of image blocks; a slight deviation ofaround the se-
lected value does not significantly affect network performance
after retraining.

Function in (33b) satisfies the convexity property since it
is of squared form [25]. Therefore, (33a) also defines a convex
function since the sum of convex functions also yields a convex
function (see [25, p. 178, Proposition 1]). Convexity guarantees
that a global minimum can be obtained by minimizing (32). Oth-
erwise, local minima would be present and a computationally
expensive technique, such as simulated annealing [24], should
be used for function minimization. Direct minimization of (32)
leads to the linear relation betweenand that has been as-
sumed in (29). In (33a) and (33b) the value ofdepends on the
values of the eight connected neighbors(located on the clique
structure), which are also involved in the minimization process.
For this reason, the iterative conditional modes (ICM’s) tech-
nique [3] has been proposed to estimate the optimal vector.
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Fig. 3. A scenario of a video sequence consisting of eight frames in which retraining at frames three and six has been accomplished.

Starting from an initial, say zero, condition, the algorithm con-
verges in a few steps to the minimum value of.

Following computation of optimal vector, selection of the
data set for retraining the classifier can be performed as fol-
lows. Let us denote by a set of indexes, which correspond
to elements of vector , say, , which belong with high proba-
bility to one of the two classes

(34)

where and are proper thresholds which define the regions
of high probability. If we denote by the th element of set ,
then the pairs are included in .

Although in general the above described method converges to
the optimal value after a small number of iterations, in case of
real-time applications, where the amount of computational cost
is very crucial, alternative techniques can be used for selection
of the training set . A fast technique, which yields a subop-
timal but good selection of training data, is based on the binary
form of the mask of the initially trained network. This form
is derived by thresholding the probability values of (1) for all
image blocks. Then, a block is selected as training one, if all
its eight neighbors belong to the same class with it. In this way,
ambiguous blocks are discarded from the training set and only
the most confident ones are selected for training, through a very
fast procedure.

V. THE DECISIONMECHANISM FORNETWORK RETRAINING

The purpose of this mechanism is to detect when the output
of the neural-network classifier is not appropriate and conse-
quently to activate the retraining algorithm at those time in-
stances when a change of the environment occurs.

Let us index images or video frames in time, denoting by
the th image or image frame following the image

at which the th network retraining occurred. Index is
therefore reset each time retraining takes place, with
corresponding to the image where theth retraining of the
network was accomplished. Fig. 3 indicates a scenario with
two retraining phases (at frames three and six, respectively,
of a video sequence composed of eight frames) and the cor-
responding values of indexesand . It can been seen that

where indicates that after

images from the th retraining phase, a new retraining phase,
i.e., the th takes place.

Retraining of the network classifier is accomplished at time
instances where its performance deteriorates, i.e., the current
network output deviates from the desired one. Let us recall that
vector in (11) expresses the difference between the desired
and the actual network outputs based on weightsand ap-
plied to the current data set . As a result, if the norm of vector

increases, network performance deviates from the desired one
and retraining should be applied. On the contrary, if vector
takes small values, then no retraining is required. In the fol-
lowing we denote this vector as indicating its depen-
dence upon image . However, direct calculation of the
norm of would require application of the MAP esti-
mation procedure described in the previous section so as to ex-
tract from each image . In video processing appli-
cations, for example, each image frame arrives at a rate of 40
ms (25 frames/s in PAL system); it will therefore be very time
consuming to activate the MAP estimation procedure for each

. In such applications, detection of the retraining time
instances can be performed through the following methodology.

A. Detection of the Retraining Time Instances

Let us assume that the th retraining phase of the network
classifier has been completed. If the classifier is then applied to
all blocks of the image , including the ones used for re-
training, it is expected to provide classification results of good
quality. The difference between the output of the retrained net-
work and of that produced by the initially trained classifier at
image constitutes an estimate of the level of improve-
ment that can be achieved by the retraining procedure. Let us
denote by this difference, which is computed as fol-
lows:

(35)

where is the number of blocks in the image; dependence of
vector on the current network weights has been omitted for
simplicity.

Let denote the difference between the corresponding
classification outputs, when the two networks are applied to the
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th image or image frame following theth network retraining
phase, for

(36)

It is anticipated that the level of improvement expressed by
will be close to that of as long as the classifi-

cation results are good. This will occur when input images are
similar, or belong to the same scene with the ones used during
the retraining phase. An error , which is quite different
from , is generally due to a change of the environment.
Thus, the quantity can be used
for detecting the change of the environment or equivalently the
time instances where retraining should occur. Thus

if no retraining is needed (37)

where is a threshold which expresses the maximum tolerance,
beyond which retraining is required for improving the network
performance. In case of retraining, indexis reset to zero while
index is incremented by one.

Such an approach detects with high accuracy the retraining
time instances both in cases of abrupt and gradual changes of
the operational environment since the comparison is performed
between the current error difference and the one ob-
tained right after retraining, i.e., . In an abrupt opera-
tional change, error will not be close to ; con-
sequently, exceeds threshold and retraining is acti-
vated. In case of a gradual change, error will gradu-
ally deviate from so that the quantity grad-
ually increases and retraining is activated at the frame where

.
The norm of vector in (11) is not directly involved

in (37). Since in (36) corresponds to in (11) and ’s are re-
placed by ’s, it can be concluded that, (36) uses the output pro-
vided by the initially trained network as an approximation of the
desired output in each new image, or frame. For detection pur-
poses and the norm of appear to have similar
behavior and properties and thus provides a quick way
for determining the retraining time instances without requiring
to activate the MAP estimation procedure at every image frame

.
Network retraining can be instantaneously executed each

time the system is put in operation by the user by utilizing zero
initial values for the output mask. Thus, the quantity
initially exceeds threshold and retraining is forced to take
place.

In some, rather rare, cases, the aforementioned mechanism
could detect no need for retraining although it should. This is,
for example, the case when a significant amount of image blocks
lie near class boundaries, and consequently there is low proba-
bility that they belong to a specific class. Thus, despite a possible
large change in the classification of the image blocks, due to
moving boundaries, there is only a small variation of the block
probabilities. In this case, the decision mechanism detects no
need for retraining since only a small perturbation of the block
probabilities has occurred. To avoid such situations, the binary
forms of masks and can be used in (35) and (36) as an

additional or alternative mechanism for detecting the need for
retraining. This is due to the fact that masksand , in binary
form, suffer large variation for any change of the environment;
thus, they cause a large variation of the difference and
as a consequence, retraining is activated. Other measures that
can be also used for detecting the need of retraining are the com-
parison of the spatial distribution of classified blocks to that of
each class as well as of their number with respect to total number
of blocks in the image.

B. The Retraining Phase

When exceeds threshold for some , say , the
th retraining phase starts. In this case, the MAP es-

timation procedure is activated so as to create the training set
which represents the current condition; vector

is also calculated. The weights of the network be-
fore retraining are used as previous network weightsin the
retraining algorithm.

The training algorithm provides the new network weights
through minimization of (14) subject to constraints (10) and
(12). However, existence of a feasible solution is assured only if
the hyper plane given by (10) crosses through the boundary con-
straints imposed by (12). For this reason the minimal distance
from the origin to the surface , is
first calculated, by solving the following minimization problem
with respect to

minimize

or equivalently

subject to

(38)

Using Lagrange multipliers the above minimization problem
leads to the following solution:

with

(39)

where is the minimal distance from the origin to
. For this value of , if the inequality con-

straints defined by (12) are satisfied for all data in, the new
network weights can be calculated by minimizing (14) subject to
(10) and (12). Otherwise, (2) cannot be expressed in the simple
form of (10) and (14) and thus direct minimization of (2) is re-
quired for estimating the network weights. This is due to the
fact that the former knowledge is quite different from the cur-
rent one and a small weight perturbation is inadequate for suf-
ficiently adapting the network weights.

Another situation where the above can be used is the fol-
lowing. Let us assume that several neural-network classifiers
along with their respective training sets and weights have been
given to a user by different suppliers or that the user has created
different retraining sets himself using the procedure presented
in the paper; the user is assumed to apply one of them. In cases
that the decision mechanism detects that retraining is needed,
but the training algorithm cannot be applied to the users’ clas-
sification problem since the boundary constraints are not sat-
isfied, it seeks, among the available networks, the most appro-
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TABLE I

TABLE II

TABLE III

priate one for the current environment. Then, the selected net-
work is considered to represent the best previous knowledge
and the training algorithm is used to further improve the net-
work performance. The inner steps of the method, i.e., the re-
training algorithm, the selection of retraining data and the deci-
sion mechanism are given in algorithmic form in Tables I–III
of this paper.

VI. EXPERIMENTAL STUDY

In the following, the performance of the proposed scheme for
on line neural network retraining was examined for detection

and extraction of humans, and particularly of the upper part of
human body including the head, shoulders and arms areas, in
images or video sequences. Such an extraction plays an impor-
tant role in many image analysis problems. Examples include
retrieval of images or video sequences containing humans from
image data bases [9], [11], [13] low bit rate coding of image
sequences for videophone and videoconferencing applications
[8], [10], [36], video surveillance of specific areas, such as city
centers, for identifying suspects for crimes [14], as well as anal-
ysis by synthesis methods, where 2-D or 3-D modeling fol-
lows the extraction of human bodies from scenes. Furthermore,
human extraction from background has recently attracted a great
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Fig. 4. The error-fuctiona(k; N) computed by the decision mechanism (solid
line) along with the thresholdT beyond of which retraining is required (dashed
line). For comparison thekc(k; N)k is also shown in the figure.

research interest especially in the framework of MPEG-4 and
MPEG-7 standards for content-based video coding/representa-
tion and content-based visual query in image and video.

An image scene was formed consisting of 40 frames from
three different color videophone sequences, Claire, Trevor, and
Miss America. In particular the sequence consisted of ten frames
of Claire, followed by ten frames of Claire with their luminosity
changed, followed by ten frames of Trevor and by ten frames of
Miss America. Thus, the image scene included three changes of
the environment. Several characteristic data of video conference
applications has been used to train the initial neural-network
classifier.

The format of the three-color sequences was QCIF, i.e., each
image frame consisted of 144 × 176 pixels per color image com-
ponent. The latter were separated in image blocks consisting of
8 × 8 pixels, resulting in = 396 blocks per component. The
target was to classify each image block into one of two classes,
namely foreground objects, i.e., upper part of human body, and
background. The dc coefficient and the first 8 ac coefficients of
the zig-zag scanned DCT transform of each color component of
the th block, i.e., 27 elements in total were used as inputto
the network, which consisted of= 15 units in the hidden layer
and one output unit as described in Section III-A. This results in
450 network weights, apart from the biases. Theset contains
approximately 1000 image blocks as training elements.

Fig. 4 shows, , computed by the proposed decision
mechanism using (35), (36), and the norm of estimated
by applying the MAP procedure to each image frame. For clarity
of presentation we have multiplied the values of by
the factor of five. Similar behavior of the value of
and is observed. It can be seen that using a constant
threshold of 4% the proposed mechanism was able to correctly
detect whether retraining was required or not. After network
initialization, where retraining has been activated on the first
frame of Claire, the was below the value of 4% in the
following frames and therefore no retraining was needed. On
the other hand, at the first frame of the Claire sequence with a
luminosity change, the value of exceeded the threshold
and the decision mechanism activated the retraining algorithm

for adapting the network weights to the current condition. The
same happened at the first frames of Trevor and Miss America.

The retraining algorithm, described in Section III, was used
to adapt the network weights in all the above changes of the
scene. Fig. 5 shows the values of the 27 network weights con-
necting 1) the first hidden and 2) the tenth hidden neuron to the
network input computed in the case of Claire before and after
the luminosity change. The procedure described in Section IV
was used for optimally selecting the retraining data sets and pro-
viding them to the training algorithm. In all the above cases the
inequality constraints imposed by (12) were satisfied. The rela-
tive tolerance error of the network output was chosen to be less
than 10%. Since, the desired output for all training data in,
corresponding to foreground (background), was close to 1 (−1),
the bounds in (12) were almost equal, for all training inputs.
For the selected relative error,was equal to 0.5, while was
calculated based on (A7) and (A12) and was equal to 0.38 for
the first frame of Claire sequence with luminosity change. Fig. 6
illustrates the inner product of (A13) for the weights connecting
the first and the tenth hidden neurons to the input layer, for all
input vectors in .

The next figures refer to the quality of classification achieved
by the proposed system. Fig. 7(a) shows a characteristic frame of
the Claire sequence, while Fig. 7(b) the first frame of Claire with
a luminosity change, where retraining was performed. Fig. 7(c)
shows the classification output provided by the network after
retraining (final classification). The output is shown in the form
of a map, in which all blocks classified to belong to background
are, for clarity of presentation, marked with black color. It is ob-
served that, after retraining, the network correctly classifies the
image blocks into the two categories. Fig. 7(d) illustrates the
network output before retraining. It is clear that several blocks,
mainly in Claire’s body, have been misclassified due to the lu-
minosity change. The output of the MAP estimation procedure,
which was used for selecting the retraining data set is presented
in Fig. 7(e) in continuous form. In this case the parameterhas
been selected so that the set contains about 70% of the total
number of image blocks; its value was . This is due to the
fact that it is assumed that the initially trained network provides
an approximation slightly greater than 70% for the final classi-
fication (30% misclassification). Dark blocks indicate areas of
background, white blocks indicate foreground areas while gray
ones indicate ambiguous areas. This mask has been generated
by minimizing (33a) and (33b) with respect to vector. A 3 ×
3 pixel grid with equal weights in all eight directions has been
selected to form the clique structure, as was mentioned in Sec-
tion IV. Fig. 7(f) also shows the selected training blocks, in dis-
crete form; black color denotes all blocks that were not selected
as training data. Since there is a large number of similar training
blocks, especially in the background, a distance measure was
used to reduce their number before using them to define the con-
straints in (10). The number of selected blocks was reduced, in
this way, from 198 to ten.

Fig. 8 refers to network retraining when fed with the first
frame of the Trevor sequence, shown in Fig. 8(a). Fig. 8(b)
shows the output of the initial network, which provided a coarse
approximation of the desired classification. The effect of param-
eter on selecting the training set is illustrated in Fig. 9. In
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Fig. 5. Weight adaptation by the training algorithm in case of the Claire sequence with luminosity change. The weights between the input layer and (a) the first
hidden neuron, i.e.,w and (b) the tenth hidden neuron i.e.,w .

Fig. 6. The inner product of network weight perturbation, corresponding to the weights connecting the input layer to (a) the first and (b) the tenth hidden neuron,
respectively, for all input vectors of the training setS in case of Claire sequence with luminosity change (solid line). The bound derived from (A7) and (A12) is
illustrated in dashed line.

this figure the selected foreground blocks are depicted for two
extreme values of; = 0.5, and = 22. As is observed, when
is close to zero, erroneous training data are estimated. Instead,
large values of result in a small training set, which is gen-
erally inadequate to represent with high accuracy the current
image. Fig. 10 presents the percentage of the selected training
data in to the total number of image blocks versus param-
eter . It can been seen that the number of selected blocks to
that of the total image decreases as the value ofincreases.
Having assumed that the initially trained neural network approx-
imates the desired classification by about 70%, the parameter
is selected so that the percentage of the selected data is 70% of
the total blocks. Fig. 8(c) shows the output of the MAP estima-
tion technique in a form similar to that of Fig. 7(e) using the
value of selected from Fig. 10 (= 4.92). Fig. 8(d) shows the
training set selected by the MAP estimation procedure in this

case. Moreover, the convergence of the MAP estimation proce-
dure is shown in Fig. 11, in terms of the number of blocks
moved from one class to the other in consecutive iterations. It
can be easily seen that, starting from a zero initial value of,
the algorithm converges within five iterations to the global min-
imum of the cost function (33a) and (33b). Fig. 8(e) presents the
network output after retraining, which shows that correct clas-
sification has been achieved.

In the following, a video conference application showing a
scene of a conference room with three people talking is exam-
ined. In this case, since the scene can be considered as super-
position of three video frames, each of which presents a single
person, the initially trained neural-network classifier will con-
tinue to provide satisfactory results. After network retraining,
extraction of foreground objects from background is very sat-
isfactorily accomplished. The first frame of the respective se-
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Fig. 7. (a) A characteristic frame of Claire, (b) the first frame of Claire with luminosity change, (c) the classification output, in discrete form, after network
retraining, (d) the network output before retraining, for the same frame, in discrete form, (e) the training setS selected for retraining, in continuous form, i.e., the
output of the MAP estimation procedure, setS , and (f) in discrete form.

quence is depicted in Fig. 12(a). Fig. 12(b) shows the respective
training set in binary form, while Fig. 12(c) the final classifica-
tion results.

As far as the problem of foreground–background separation
is concerned, the proposed neural-network architecture provides
very accurate results regardless of the luminosity conditions,
foreground–background location/orientation and the respective

color characteristics as Figs. 7 and 8 indicate. Segmentation
techniques based on spatial and/or texture homogeneity criteria
have been also proposed in the literature for this purpose [6],
[27], [34], [37]. However, such approaches cannot provide ac-
curate foreground–background separation since, in general, a
person in a scene, contains regions with different color and tex-
ture characteristics (e.g., head, hair, clothes’ color) which are
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Fig. 8. Network performance at the first frame of Trevor sequence: (a) the original image, (b) the output of initially trained network, (c) the training setS selected
for retraining in continuous form, (d) the training set in discrete form, and (e) the final classification output in discrete form.

classified to different segments (objects) according to such ho-
mogeneity criteria. For example, division of a square image into
four equal-sized square blocks (quadtree decomposition), ac-
cording to the texture homogeneity of the block, results in many
misclassified blocks both in background and foreground areas
[10]. Recently, other approaches have been proposed in the liter-
ature, which combine (fuse) several image properties according
to predefined rules in order to provide more semantic video ob-

ject extraction [2], [26]. However, these methods are restricted
to the specific applications and thus they cannot be applied to
different operational conditions.

VII. CONCLUSIONS

Thispaperhasdiscussedon-line retrainingofneuralnetworks,
focusing on image and video analysis applications. A training al-
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Fig. 9. The selected foreground blocks for different values of parameter� : (a) � = 0.5 and (b)� = 22.0.

Fig. 10. Variation of the percentage of selected image blocks versus parameter
� .

gorithm hasbeenpresented,which can efficiently handle cases of
smallvariationsoftheoperationalenvironment,whileamaximum
aposterioriestimation techniquehasbeendevelopedwhichopti-
mallyselectstheretrainingdatasetfromtheimagepresentedtothe
network.This isaccomplishedbymodeling the imageasanMRF.
A decision mechanism has also been introduced which automat-
ically activates network retraining whenever the network perfor-
mance isnotconsideredsatisfactory.

The presented results refer to extraction of foreground areas
from background ones in image/video classification problems.
These results indicate the ability of the method to be success-
fully applied to a variety of image analysis applications, where
neural-network-based classification constitutes a possible solu-
tion, especially when considering the forthcoming MPEG stan-
dards. This constitutes a topic, which is currently further investi-
gated. It should be mentioned that the proposed neural-network
architecture can be used to a variety of other applications. Ex-
amples include prediction of video traffic over high-speed net-
works where the traffic characteristics vary from time to time
according to the scene complexity or nonlinear system identifi-
cation where the system to be identified is changing with time.
As a result, the proposed scheme can be viewed as a method for

Fig. 11. Convergence of the MAP estimation procedure at the first frame of
Trevor.

improving the performance of neural networks in dynamically
changed environments.

Of particular interest is the interweaving of MAP estima-
tion algorithms with neural-network learning optimization al-
gorithms; in the resulting scheme optimal selection of the net-
work training set is performed by the former algorithms and op-
timal output estimation is provided by the neural network. In-
vestigation of convergence and performance of a general block
component estimation method, which iteratively uses these two
procedures, is another topic, which is under investigation.

APPENDIX A

As was described in Section III, network weights, ,
before and after retraining, respectively, are related through the
following equation:

(A1)

where denotes a small perturbation.
Using (6), the output of theth neuron of the hidden layer,

after retraining, is given by

(A2)
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Fig. 12. Network performance for a video scene indicating a conference room with three people talking: (a) the original image, (b) the training set selected in
discrete form, and (c) the final classification mask.

omitting, for simplicity, subscript from as well as the de-
pendence of on .

From (A2) it can be seen that depends only on the inner
product ; setting , (A2) takes the
form

(A3)

Combining (A1) and (A3) and using the formula of first-order
Taylor series expansion we have

(A4)

where is the output of theth hidden neuron before the re-
training phase, i.e., with ,
and is a small perturbation, , with

. Function in (A4) denotes the first
derivative of , while represents the first-order Taylor
residual for theth hidden neuron. Using the Lagrange formula,

can be expressed as

(A5)

where
second derivative of ;
scalar taking values between and .

In general the absolute value of in (A5) should be
bounded, so that the error of the first-order Taylor series be
small, i.e.,

(A6)

where is the maximum error of the residual , that is al-
lowed.

Based on (A6) and using the Lagrange formula (A5), the inner
product can be bounded as follows:

(A7)

The value of in (A7) is difficult to be calculated, since
scalar is unknown. Estimation of can be performed by
considering that the second derivative of is bounded and
by letting be equal to its maximum value, ,
where . From (A7) we get two linear inequal-
ities for so that the first-order Taylor series expansion be
valid with an error less than , namely
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Using (4) and ignoring the residual errors in (A4), we can
express the network output, after retraining, as follows:

(A8)

where the term has been ignored since it is very small
compared to the other terms. Let us recall that, are vectors
defined in (6), while is defined as

. Expanding (A8) as a first-order Taylor series
we get

(A9)

where we have set and
. In (A9), represents the residual

error of the first-order Taylor series approximation which can
be expressed similarly to (A5). Requiring that the residualis
smaller than a relative error provided by the user, say, ,
the following inequality should be satisfied:

(A10)

It should be mentioned that the value of is known, being
estimated by the MAP estimation procedure.

Computation of can be performed similarly to (A7). As
is proved in Appendix B, can be written as ,
where is a vector depending on the weights before retraining
and on the input vector . Consequently (A10) imposes two
linear inequalities as far as the total weight perturbation is
concerned

(A11)

Satisfaction of (A10) indicates that the approximate network
output, using the first-order Taylor series expansion, differs
from the actual one at most by , under the assumption
that . However, taking into consideration the
residuals in (A4) the total error of the network output
is greater by an amount depending on. Let us denote
by a vector containing all residuals of the first-layer
neurons, i.e., . Then, using the mean
value theorem, the error of the network output should be
increased by the quantity where .
Since and is a very small quantity, the
previous term can be considered to be approximately equal
to . Using the Cauchy–Schwartz formula and
requiring that , the output error due
to residuals is smaller than . Assuming for simplicity
that all bounds of in (A6) are equal to each other, i.e.,
for all , we can estimate the residual bounds as

(A12)

where is the number of neurons in the first hidden layer. In this
case all bounds of the inner product are the same, i.e.,

(A13)

APPENDIX B

For a given input vector in and ignoring residual in
(A9), we can approximate the network output as follows:

(B1)

where we have introduced the dependence of the output on input
vector . Using (9), (B1) is written as

(B2)

Since [see (A8)]
indicating a linear relationship with the total weight perturbation

, the term in (B2) can be expressed as

(B3)

where is a vector provided by the solution of the following
equation:

(B4)

Since depends on the network weights, we have

(B5)

with

and the gradient matrix of the vector valued function .
The is thus calculated by

(B6)

Taking into account all input vectors in , (B3) is ex-
pressed as

(B7)

where

and
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