
Evolutionary Reinforcement Learning
of Artificial Neural Networks

Nils T Siebel∗and Gerald Sommer
Cognitive Systems Group, Institute of Computer Science, Christian-Albrechts-University of Kiel, Germany

Abstract. In this article we describe EANT2,Evolu-
tionary Acquisition of Neural Topologies, Version 2,
a method that creates neural networks by evolution-
ary reinforcement learning. The structure of the net-
works is developed using mutation operators, starting
from a minimal structure. Their parameters are opti-
mised using CMA-ES,Covariance Matrix Adaptation
Evolution Strategy, a derandomised variant of evolu-
tion strategies. EANT2 can create neural networks that
are very specialised; they achieve a very good perfor-
mance while being relatively small. This can be seen
in experiments where our method competes with a dif-
ferent one, called NEAT,NeuroEvolution of Augment-
ing Topologies, to create networks that control a robot
in a visual servoing scenario.

1 Introduction

Artificial neural networks are computer constructs in-
spired by the neural structure of the brain. The aim is
to approximate the vast learning and signal processing
power of the human brain by mimicking its structure
and mechanisms. In an artificial neural network (often
simply called “neural network”), interconnected neu-
ral nodes allow the flow of signals from special input
nodes to designated output nodes [23]. This very gen-
eral concept allows neural networks to be applied to
problems in the sciences, engineering and even eco-
nomics [3, 13, 21, 22, 28]. A further advantage of
neural networks is the fact that learning strategies exist
that enable them to adapt to a problem.

When a neural network is to be developed for a
given problem, two aspects need to be considered:

1. What should be thestructure (or, topology) of
the network? More precisely, how many neural
nodes does the network need in order to fulfil the
demands of the given task, and what connections
should be made between these nodes?

∗Corresponding author. E-Mail: nils “at” siebel-research.de

2. Given the structure of the neural network, what
are the optimal values for itsparameters? This
includes the weights of the connections and pos-
sibly other parameters.

1.1 Current Practice

Traditionally the solution to aspect 1, the network’s
structure, is found by trial and error, or somehow de-
termined beforehand using “intuition”. Finding the
solution to aspect 2, itsparameters, is therefore the
only aspect that is usually considered in the literature.
It requires optimisation in a parameter space that can
have a very high dimensionality—for difficult tasks it
can be up to several hundred. This so-called “curse
of dimensionality” is a significant obstacle in machine
learning problems1 [2, 18]. Most of these parameter
learning methods can be viewed as a straightforward
application of local optimisation algorithms and/or sta-
tistical parameter estimation. The popular backpropa-
gation algorithm [23, chap. 7], for instance, is, in ef-
fect, a stochastic gradient descent optimisation algo-
rithm [25, chap. 5].

1.2 Problems and Biology-inspired Solutions

The traditional methods described above have the fol-
lowing deficiencies:

1. The common approach to pre-design the network
structure is difficult or even infeasible for compli-
cated tasks. It can also result in overly complex
networks if the designer cannot find a small struc-
ture that solves the task.

1When training a network’s parameters by examples (e.g. su-
pervised learning) it means that the number of training examples
needed increases exponentially with the dimension of the parame-
ter space. When using other methods of determining the parame-
ters (e.g. reinforcement learning, as it is done here) the effects are
different but equally detrimental.

This article was published in the International Journal of Hybrid Intelligent Systems 4(3): 171-183, October 2007. (C) IOS Press, 2007.

2. Determining the network parameters by local op-
timisation algorithms like gradient descent-type
methods is impracticable for large problems. It
is known from mathematical optimisation theory
that these algorithms tend to get stuck in local
minima [20]. They only work well with very sim-
ple (e.g., convex) target functions or if an approx-
imate solution is known beforehand.(ibid.)

In short, these methods lack generality and can there-
fore only be used to design neural networks for a small
class of tasks. They are engineering-type approaches;
there is nothing wrong with that if one needs to solve
only a single, more or less constant problem2 but it
makes them unsatisfactory from a scientific point of
view.

In recent years a number of methods have been in-
troduced to overcome these deficiencies by replacing
the traditional approaches by more general ones that
are inspired by biology. Evolutionary theory tells us
that thestructureof the brain has been developed over
a long period of time, starting from simple structures
and getting more complex over time. In contrast to
that, theconnectionsbetween biological neurons are
modified by experience, i.e. learned and refined over a
much shorter time span.

In this article we describe a method, calledEANT2,
Evolutionary Acquisition of Neural Topologies, Ver-
sion 2, that works in very much the same way to create
a neural network as a solution to a given task. It is a
very general learning algorithm that does not use any
pre-defined knowledge of the task or the required solu-
tion. Instead, EANT2 uses evolutionary search meth-
ods on two levels:

1. In an outer optimisation loop calledstructural
explorationnew neuralstructuresare developed
by gradually adding new structure to an initially
minimal network that is used as a starting point.

2. In an inner optimisation loop calledstructural ex-
ploitation theparametersof all currently consid-
ered structures are adjusted to maximise the per-
formance of the networks on the given task.

To further develop and test this method, we have cre-
ated a simulation of a visual servoing scenario: A
robot arm with an attached hand is to be controlled
by the neural network to move to a position where an
object can be picked up. The only input data available

2The No Free Lunch Theorem [31] states that solutions that are
specifically designed for a particular task always perform better
at this task than more general methods. However, they perform
worse on most or all other tasks, or if the task changes.

to the network is visual data from a camera that over-
looks the scene. EANT2 was used with a complete
simulation of this visual servoing scenario to learn net-
works by reinforcement learning. In this article we
present results from these experiments with EANT2
and compare them to results obtained by NEAT, a sim-
ilar method, on the same problem.

The remainder of this article is organised as fol-
lows. Section 2 contains an overview over related
methods for evolutionary neural network learning.
Section 3 describes EANT2, our approach to a solu-
tion. In Section 4 we formulate the visual servoing
problem that is used for testing the learning methods
and review other visual servoing methods. Section 5
contains results from experiments with EANT2 and
NEAT; Section 6 concludes the article.

2 Related Work: Methods for Evolutionary
Learning of Neural Networks

In this section we review existing methods for evolu-
tionary neural network learning. The paradigm is to
learnboth the structure (topology) and the parameters
of neural networkswith evolutionary algorithms with-
out being given any information about the nature of
the problem. The development of networks is realised
through reinforcement learning [27]. This means that
candidate solutions which have been generated by the
algorithm are evaluated by testing them on the tar-
get application. A scalar value of their “fitness” is
fed back to the algorithm to help it judge and deter-
mine what to do with this candidate. These learn-
ing algorithms do not depend on the availability of
input-output pairs of the neural network as supervised
learning methods do. This makes them applicable to a
wider range of problems.

Until recently, only small neural networks have
been evolved by evolutionary means [32]. According
to Yao, a main reason is the difficulty of evaluating the
exact fitness of a newly found structure: In order to
fully evaluate astructureone needs to find the optimal
(or, some near-optimal)parametersfor it. However,
the search for good parameters for a given structure
has a high computational complexity unless the prob-
lem is very simple.(ibid.)

In order to avoid this problem most recent ap-
proaches evolve the structure and parameters of the
neural networks simultaneously. Examples include
EPNet [33], GNARL [1] and NEAT [26]. EPNet uses
a modified backpropagation algorithm for parameter
optimisation—i.e. a local search method. The muta-

2

tion operators for searching the space of neural struc-
tures are addition and deletion of neural nodes and
connections. No crossover is used. A tendency to re-
move connections/nodes rather than to add new ones
is realised in the algorithm. This is done to counteract
the “bloat” phenomenon—i.e. ever growing networks
with only little fitness improvement, also called “sur-
vival of the fattest” [6]. GNARL is similar in that
is also uses no crossover during structural mutation.
However, it uses an evolutionary algorithm for pa-
rameter adjustments. Both parametrical and structural
mutation use a “temperature” measure to determine
whether large or small random modifications should
be applied—a concept known from simulated anneal-
ing [17]. In order to calculate the current tempera-
ture, some knowledge about the “ideal solution” to the
problem, e.g. the maximum fitness, is needed.

The author groups of both EPNet and GNARL
are of the opinion that using crossover is not useful
during the evolutionary development of neural net-
works [33, 1]. The research work underlying NEAT,
on the other hand, seems to suggest otherwise. The
authors have designed and used a crossover operator
that allows to produce valid offspring from two given
neural networks by first aligning similar or equal sub-
networks and then exchanging differing parts. Like
GNARL, NEAT uses evolutionary algorithms for both
parametrical and structural mutation. However, the
probabilities and standard deviations used for random
mutation are constant over time. NEAT also incor-
porates the concept of speciation, i.e. separated sub-
populations that aim at cultivating and preserving di-
versity in the population [6, chap. 9].

3 Developing Neural Networks with EANT2

3.1 Introduction and Historical Notes

EANT (“Evolutionary Acquisition of Neural Topolo-
gies”) is an evolutionary reinforcement learning sys-
tem that realises neural network learning with evolu-
tionary algorithms both for the structural and the para-
metrical part. It was conceived by Yohannes Kassahun
within his PhD project in our research group, which
was completed in 2006 [15]. Starting end 2005 EANT
has been developed further, its search for structures
and parameters replaced by new methods that enable
it to find better performing networks and find them
faster [24]. In this article we will exclusively focus
on this improved version of EANT, called EANT2.

3.2 Representation: The Linear Genome

EANT2 uses a biology-inspired genetic encoding of a
neural networks, alinear genomeof network elements.
A gene can be a neuron, an input to the neural network,
a bias or a connection between two neurons. There
are also “irregular” connections between neural genes
which we call “jumper connections”. Jumper genes
can encode either forward or recurrent connections.
Figure 1 shows an example encoding of a neural net-
work using a linear genome. The figures show (a) the
neural network to be encoded. It has one forward and
one recurrent jumper connection; (b) the neural net-
work interpreted as a tree structure; and (c) the lin-
ear genome encoding the neural network. In the lin-
ear genome,N stands for a neuron,I for an input to
the neural network,JF for a forward jumper connec-
tion, andJR for a recurrent jumper connection. The
numbers besideN represent the global identification
numbers of the neurons,x andy are the inputs coded
by input genes. As can be seen in the figure, a lin-
ear genome can be interpreted as a tree based program
if one considers all the inputs to the network and all
jumper connections as terminals.

The linear genome encodes the topology of the neu-
ral network implicitly in the ordering of the elements
of the linear genome. Linear genomes can therefore be
evaluated, without decoding them, similar to the way
mathematical expressions in postfix notation are eval-
uated. For example, a neuron gene is followed by its
input genes. In order to evaluate it, one can traverse the
linear genome from back to front, pushing inputs onto
a stack. When encountering a neuron gene one pops
as many genes from the stack as there are inputs to the
neuron (the number of inputs is stored in the neuron),
using their values as input values. The resulting eval-
uated neuron is again pushed onto the stack, enabling
this subnetwork to be used as an input to other neu-
rons. Connection (“jumper”) genes make it possible
for neuron outputs to be used as input to more than
one neuron, seeJF3 in the example above. Together
with the bias neurons that are implemented as having
a constant value of 1, the linear genome can encode
an arbitrary neural network in a very compact format.
The length of the linear genome is equal to the number
of synaptic network weights.

If one assigns integer values to the genes of a linear
genome such that the integer values show the differ-
ence between the number of outputs and number of
inputs to the genes, one obtains the following rules
useful in the evolution of the neural controllers:

3

(a) Original neural network (b) Same network in tree format

(c) Corresponding Linear Genome

Figure 1: An example of encoding a neural network using a linear genome

1. The sum of integer values is the same as the num-
ber of outputs of the neural controller encoded by
the linear genome.

2. A sub-network (sub-linear genome) is a collec-
tion of genes starting from a neuron gene and
ending at a gene where the sum of integer val-
ues assigned to the genes between and including
the start neuron gene and the end gene is 1.

Figure 2 illustrates this concept. Please note that only
the number of inputs to neural genes is variable, so
in order to achieve a compact representation only this
number is stored within the linear genome.

Other features of the linear genome, apart from its
compactness, include completeness (any network can
be encoded) and closedness (the mutation operators
described below always produce valid networks.) It
is also a very general structure that can be used both
for direct and indirect encodings of neural networks,
and for modular networks. These properties have been
formally proven in [16].

3.3 EANT2’s Search for Neural Networks

Figure 3 shows how EANT2 works. The different
steps of the algorithm are explained in detail below.

3.3.1 Initialisation

EANT2 usually starts with minimal initial structures.
A “minimal” network has no hidden layers or recurrent
connections, only 1 neuron per output. Each neuron is
connected to approx. 50 % of inputs; the exact percent-
age and selection of inputs are random. EANT2 grad-
ually develops these simple initial network structures
further using the structural and parametrical evolution-
ary algorithms discussed below. On a larger scale new
neural structures are added to a current generation of
networks. We call this “structural exploration”. On
a smaller scale the current individuals (structures) are
optimised by changing their parameters: “structural
exploitation”.

3.3.2 Structural Exploitation

At this stage the structures in the current EANT2 pop-
ulation are exploited by optimising their parameters.
Parametrical mutation in the original version, EANT,
was implemented usingevolution strategies[6]. In
evolution strategies the so-calledstrategy parameters
of the evolutionary algorithm, mainly the standard de-
viation for random mutation, were themselves adapted
by an evolutionary algorithm. This has the advantage
that the system needs even less knowledge of the prob-
lem than with a different evolutionary algorithm, like
evolutionary programming. However, using evolution

4

Figure 2: An example of the use of assigning integer values tothe genes of the linear genome. The linear genome
encodes the neural network shown in Figure 1(a). The numbersin the square brackets below the linear genome
show the integer values assigned to the genes of the linear genome. Note that the sum of the integer values is 1
showing that the neural network encoded by the linear genomehas only 1 output. The shaded genes form a
sub-network. The sum of these values assigned to a sub-network is always 1.

?
Initialisation

(minimal networks)

?
Structural Exploitation

(parameter optimisation with CMA-ES)

?
Selection

(rank-based, preserving diversity)

?

�
�

@
@

�
�

@
@is

fitness
OK?

Yes
-

�
�

�
�Finished

No
?

Structural Exploration
(new individuals by structural mutation)

-

Figure 3: The EANT2 algorithm. Please note that
CMA-ES has its own loop which creates a nested loop
within EANT2.

strategies for parametrical mutation has the following
disadvantages:

1. After a strategy parameter has been adapted it
takes many applications of the mutation opera-
tor on the corresponding network parameter un-
til the new value of the strategy parameter can
be judged. Even then it is unclear when look-
ing at the change in fitness value whether the
network performs better/worse because of this
adapted strategy parameter or because of other
changes that happened during those many gener-
ations.

2. The number of strategy parameters adds to the
number of total parameters in the system, increas-
ing even further the dimensionality of the space in
which ideal parameters are searched.

Disadvantage 1 can be ignored in settings where a very
large population size is used. However, it does matter

in the context of neural network development where
large population sizes are prohibitive unless the prob-
lem is very simple.

For these reasons the newer version EANT2 uses
CMA-ES, Covariance Matrix Adaptation Evolution
Strategy[9] in its parameter optimisation. CMA-ES
is a variant of evolution strategies that avoids random
adaptation of the strategy parameters. Instead, the
search area that is spanned by the mutation strategy
parameters, expressed here by a covariance matrix, is
adapted at each step depending on the parameter and
fitness values of current population members. The co-
variance matrix is comparable to the Hesse matrix in
traditional optimisation methods. However, it is es-
timated by CMA-ES without the use of an analytical
derivative or finite differences that would require very
many function evaluations. CMA-ES uses sophisti-
cated methods to avoid things like premature conver-
gence and is known for fast convergence to good solu-
tions even with multi-modal and non-separable func-
tions in high-dimensional spaces.(ibid.)

When the parameter optimisation with CMA-ES
starts it is given for each variable an initial standard
deviation used in its sampling of values in the search
space. These standard deviations will be used as
a starting point only; the search area is adapted by
CMA-ES over time. These values are set by EANT2
depending on the current age of the corresponding
gene. Parameters for newer structural elements are
given a wider search area than older ones. This fea-
ture is based on the observation that over time parame-
ters for existing structures tend to become more or less
constant as they have been optimised several times.
Structural changes at other places may also influ-
ence the optimal parameter values for the older struc-
tural elements, but usually at a relatively small scale.
This is related to the “Cascade-Correlation Learning”
paradigm presented by Fahlman and Lebiere [7].

5

3.3.3 Selection

The selection operator determines which population
members are carried on from one generation to the
next. Our selection in the outer, structural exploration
loop is rank-based and “greedy”, preferring individu-
als that have a larger fitness. If two structures have
almost the same fitness the smaller individual is given
a higher rank. A consequence of this is that existing
structures may grow smaller if structural elements that
do not help the performance are removed. In order to
maintain diversity in the population, the selection op-
erator also compares individuals by structure, ignor-
ing their parameters. The operator makes sure that not
more than 1 copy of an individual and not more than
2 similar individuals are kept in the population. “Sim-
ilar” in this case means that a structure was derived
from an another one by only changing connections,
not adding neurons. Again, no network parameters are
considered here.

3.3.4 Structural Exploration

In this step new structures are generated and added
to the population. This is achieved by applying the
following structural mutation operators to the existing
structures: Adding a random subnetwork, adding or
removing a random connection and adding a random
bias. Removal of subnetworks (i.e. neurons together
with all their connections) is not done as we found out
that this almost never helps in the evolutionary pro-
cess. The same is valid for a crossover operator, mod-
elled after the one used in NEAT, which is currently
not used. New hidden neurons are connected to ap-
prox. 50 % of inputs; the exact percentage and selec-
tion of inputs are random to enable stochastic search
for new structures.

3.3.5 Differences to Other Methods

EANT2 is closely related to the methods described
in the related work section above. One main differ-
ence is theclear separation of structural exploration
and structural exploitation. By this we try to make
sure a new structural element is tested (“exploited”)
as much as possible before a decision is made to dis-
card it or keep it, or before other structural modifi-
cations are applied. Another main difference is the
use of CMA-ES in the parameter optimisation. This
should yield more optimal parameters more quickly,
which is necessary when large networks are to be cre-
ated. When EANT2’sstructural mutation operator
adds a new neuron to a given structure, it alsocon-

Figure 4: Robot Arm with Camera and Object

nects the new neuronto a random number of other
neurons and/or inputs, and the new neuron’s output as
input to other neurons. Further differences of EANT2
to other recent methods, e.g. NEAT, are asmall num-
ber of user-defined algorithm parameters(the method
should be as general as possible), itscompact, linear
encoding of the neural networkand theexplicit way of
preserving diversityin the population (unlike specia-
tion in NEAT.)

4 The Visual Servoing Task

In order to study the behaviour of EANT2 and other
algorithms on large problems we simulate the visual
servoing setup shown in Figure 4. A robot is equipped
with a camera at the end-effector and has to be steered
towards an object of unknown pose. This is achieved
in the visual feedback control loop depicted in Fig-
ure 5. In our system a neural network shall be used as
the controller, determining where to move the robot on
the basis of the object’s visual appearance. Using the
standard terminology by Weiss et al. [30] it is a “Static
Image-based Look-and-Move” controller.

4.1 Definitions and Task Description

The object has 4 identifiable markings, see Fig. 4. Its
appearance in the image is described by theimage fea-
ture vectoryn ∈ IR8 that contains the 4 pairs of image
coordinates of these markings. The desired pose rela-
tive to the object is defined by the object’s appearance
in that pose by measuring the correspondingdesired
image featuresy⋆

∈ IR8 (“teaching by showing”.) Ob-
ject and robot are then moved into a start pose so that
the position of the object is unknown to the controller.
The system has the task of moving the arm such that

6

y⋆

- g+∆y
n-Controller -

u
n Coord.

Trans.
-

ũ
n

Robot (with inner control loop)

Inverse
Kinematics

- g+- Joint
Controller

-
�
�

�

Robot
Dynamics

-

joint angles
6-

�
�

�

Robot

Kinematics

x
n

�
�
�

�

Scene�

�
�

�

Camera�Feature

Extraction

η

6

y
n

-

Figure 5: Visual Feedback Control Loop

the current image features resemble the desired image
features. This is an iterative process.

The input to the controller is theimage error
∆yn := y⋆

− yn and additionally the 2 distances in
the image of the diagonally opposing markings, re-
sulting in a 10-dimensional input vector. Theoutput
of the controller/neural network is a relative move-
ment of the robot in the camera coordinate system:
(∆x,∆y,∆z) ∈ IR3. This output is given as an in-
put to the robot’s internal controller which executes
the movement. The new statexn+1 of the environment
(i.e. the robot and scene) is perceived by the system
with the camera. This is again used to calculate the
next input to the controller, which closes the feedback
loop shown in Figure 5.

In our case a neural network is developed as a con-
troller by reinforcement learning as discussed in Sec-
tion 2. For the assessment of the fitness (performance)
of a networkN it is tested by evaluating it in the sim-
ulated visual servoing setup. For this purpose 1023
different robot start poses and 29 teach poses (desired
poses) have been generated. Each start pose is paired
with a teach pose to form a task. These tasks contain
all ranges and directions of movements. For each task,
N is given the visual input data corresponding to the
start and teach poses, and its output is executed by a
simulated robot. Thefitness functionF (N) measures
the negative RMS (root mean square) of the remain-
ing image errors after the robot movements, over all
tasks. This means that our fitness functionF (N) al-
ways takes on negative values withF (N) = 0 being
the optimal solution. Letyi denote the new image fea-
tures after executing one robot movement starting at
start posei. ThenF (N) is calculated as follows:

F (N) := −

√

√

√

√

√

1

1023

1023
∑

i=1





1

4

4
∑

j=1

dj(yi)
2 + b(yi)





(1)

where

dj(yi) :=
∥

∥

∥
(y⋆)

2j−1,2j
− (yi)2j−1,2j

∥

∥

∥

2

(2)

is the distance of thejth marker position from its de-
sired position in the image, and(y)2j−1,2j shall denote
the vector comprising of the2j−1th and2jth compo-
nent of a vectory. The inner sum of (1) thus sums
up the squared deviations of the 4 marker positions in
the image. b(y) is a “badness” function that adds to
the visual deviation an additional positive measure to
punish potentially dangerous situations. If the robot
moves such that features are not visible in the image
or the object is touched by the robot,b(y) > 0, oth-
erwiseb(y) = 0. All image coordinates are in the
camera image on the sensor and have therefore the
unit 1 mm. The image sensor in this simulation mea-
sures8

3
mm× 2 mm. The average (RMS) image error

is−0.85 mm at the start poses, which means that a net-
work N that avoids all robot movements (e.g. a neural
network with all weights= 0) hasF (N) = −0.85.
F (N) can easily reach values below -0.85 for net-
works that tend to move the robot away rather than
towards the target object.

An analysis of the data set used for training the net-
work was carried out to determine its intrinsic dimen-
sionality. The dimensionality is (approximately) 4, the
Eigenvalues being 1.70, 0.71, 0.13, 0.04 and the other
6 Eigenvalues below 1e-15. It is not surprising that
the dimensionality is less than 10, and this redundancy
makes it more difficult to train the neural networks.
However, we see this as a challenge rather than a dis-
advantage for our research, and the problem encoding
is a standard one for visual servoing.

4.2 Related Work: Methods for Visual Servoing

Visual servoing is one of the most important robot vi-
sion tasks [12, 30]. Traditionally visual servoing con-
trollers use a simple P-type controller—an approach

7

known from engineering [4]. In these controllers the
output is determined as the minimal vector that solves
the locally linearised equations describing the image
error as a function of the robot movement. This out-
put is often multiplied by a constant scale factorα,
0 < α < 1 (dampening.) Sometimes, more elaborate
techniques like trust-region methods are also used to
control the step size of the controller depending on its
current performance [14].

From a mathematical point of view, visual servoing
is the iterative minimisation of an error functional that
describes differences of objects’ visual appearances,
by moving in the search space of robot poses. The
traditional solution is equivalent to an iterative Gauss-
Newton method [8] to minimise the image error, with a
linear model (“Image Jacobian”) of the objective func-
tion [12, 30].

There have also been learning approaches to vi-
sual servoing, using neural networks or combined
neuro-fuzzy approaches like the one by Suh and
Kim [10]. Urban et al. use a Kohonen self-organising
map (SOM) to estimate the Image Jacobian for a semi-
traditional visual servoing controller [29]. Zeller et al.
also train a model that uses a Kohonen SOM, using a
simulation, to learn to control the position of a pneu-
matic robot arm based on 2 exteroceptive and 3 pro-
prioceptive sensor inputs [34].

Many of these methods reduce the complexity of
the problem (e.g. they control the robot in as few as
2 degrees of freedom, DOFs) to avoid the problems of
learning a complex neural network. Others use a par-
titioning of the workspace to learn a network of “local
experts” that are easier to train [5, 11]. A neural net-
work that controls a robot to move around obstacles
is presented in [19]. The network is optimised by a
genetic algorithm, however, its structure (topology) is
pre-defined and does not evolve.

To our mind it is a shortcoming of most (if not,
all) existing learning methods for visual servoing that
the solution to the task is modelled by the designer
of the software. Whether it be using again an Im-
age Jacobian, or whether it be selecting the size and
structure of the neural network “by hand”—that is, by
intuition and/or trial and error—these methods learn
only part of the solution by themselves. Training the
neural network then becomes “only” a parameter esti-
mation, even though the curse of dimensionality still
makes this very difficult.

5 Experimental Comparison: EANT2 and NEAT

In order to validate learning methods we use the simu-
lated visual servoing scenario as described in the pre-
vious section, with 1023 start poses and the definition
of the fitness functionF from equation (1) in Sec-
tion 4.1 above. The 10 inputs and 3 outputs to the neu-
ral networks are also as above. The computationally
expensive evaluation ofF which needs 1023 network
evaluations and simulated robot movements makes it
a priority to develop networks with as few evaluations
F (N) as possible.

5.1 The NEAT System

NEAT, NeuroEvolution of Augmenting Topologies, by
Stanley and Miikkulainen [26] has already been briefly
introduced in Section 2. It uses one evolutionary opti-
misation loop in which structures and parameters of
neural networks are mutated, and networks recom-
bined using a crossover operator. The implementation
of NEAT used here is the Java-based NEAT4J which
is available as a SourceForge project3. For reference
the original NEAT code by Stanley has also been anal-
ysed.

The initial population of NEAT4J consists of ran-
domly generated networks without hidden layers that
are either fully or sparsely connected (at an option.) In
each generation the population is split into a number
of species so that “compatible” individuals belong to
the same species. The split is done using a compatibil-
ity measurement that incorporates network size, differ-
ence of weights and number of different genes. New
species are created if necessary. If a species has a good
average fitness, its size is increased, otherwise the size
is decreased. Species become extinct if their size be-
comes zero or they excess a certain age. The best in-
dividual of each species is kept together with their off-
spring. New members of a species are spawned by
crossover and mutation from their parents who are se-
lected among the best individuals in this species. Mu-
tation is done by a stochastic update of weights and
structures. Nodes and connections are added with cer-
tain probabilities, but never removed. Existing con-
nections can, however, be enabled or disabled by tog-
gling a flag.

5.1.1 Search for Optimal NEAT4J Parameters

Unfortunately, there is no suggestion how NEAT’s
13 evolution and 9 speciation parameters should be

3http://neat4j.sourceforge.net/

8

set. We have tried many settings and found out that the
values from the examples of the original NEAT mixed
with those of NEAT4J form a suitable starting point.
The settings were then adapted to tune the system for
our visual servoing task.

NEAT tends to enlarge networks if theprobability
of toggling connectionson/off is low and slows down
the growing of networks if it is high. After some test
runs we decided to reduce the probability of toggling
(PToggleLink 0.0001) so as to enable NEAT4J to suf-
ficiently optimise the network weights before adding
a lot of structure. For the same reason we also de-
creased theprobabilities for structural mutation(PAd-
dLink=0.0025, PAddNode=0.00125) after some test
runs but left theprobabilities for weight changeshigh
(PMutation=0.25, PWeightReplaced=0.85.) NEAT re-
acts very strongly tobias neuronsand tends to add
many of them. However, in a few test runs this made
the evolution process get stuck without improving the
fitness. We therefore deactivated biases altogether
(which makes sense, considering the visual servoing
task.) An appropriatepopulation sizeis hard to cal-
culate but concerning the fitness increase over (wall
clock) time a smaller population size usually works
better than a bigger. Hence, we tested two sizes of pop-
ulations, 30 and 150. In most cases the smaller popu-
lation only performed slightly worse. We did not note
a significant change in the test outcome when varying
parameters forspeciation.

5.2 The EANT2 System

The EANT2 system which was described in detail in
section 3 was used with the following parameters:

• up to 30 individuals in the structural exploration
(global population size)

• each individual spawns 2 children through struc-
tural mutation

• 2 parallel optimisations of the same individual by
CMA-ES

• stop criteria for CMA-ES: maximum standard de-
viation in covariance matrix less than 0.00005 or
iteration (CMA-ES generation) number over 500.

5.3 Results and Discussion

Figure 6 shows the development of the best individ-
ual’s fitness value. Results from 5 experiments each
of EANT2 and NEAT are shown, plotted against the
generation number. EANT2’s (outer) generation num-
ber is increasing much slower than NEAT’s because

of the inner loop that is contained within the structural
exploitation with CMA-ES. The generation spans have
therefore been roughly aligned by the number of evalu-
ations of the fitness function, which is the determining
factor for the wall clock time used to run the method.

5.3.1 Development of Fitness

It can be seen that after around 25,000 generations the
fitness values in NEAT reach -0.33 (better runs) and
-0.38 (worse runs.) They do not improve significantly
further until generation 100,000, at which point the ex-
periments were stopped.

In EANT2, a considerable increase in fitness can
be seen up to generation 15 (and further, as different
experiments show.) After 5 generations the average
best individual has a fitness of -0.25, which increases
to -0.23 at generation 15.

Let us recall that the fitness values are (modulob(·))
the remaining RMS errors in the image after the robot
movement. Both methods quickly develop networks
that reduce the image error from the initial -0.85 to
as low as -0.23 with 1 robot movement. This is a
very good result if one compares to the traditional Im-
age Jacobian approach. Calculating the robot move-
ment using the traditional approach (without dampen-
ing) yields a fitness of -0.61. In practice visual ser-
voing techniques usually multiply the Image Jacobian
step by a scalar dampening factor before executing it.
However, this dampening of the optimisation step is
independent of the nature of the model that was used
to calculate it4. Since both the Image Jacobian and our
networks calculate the necessary camera movement to
minimise the image error inonestep this is a mean-
ingful comparison and shows that these networks can
indeed be used for visual servoing.

This comparison with the standard approach shows
that the networks from both NEAT and EANT2 are
very competitive when used for visual servoing con-
trol. It can of course be expected that a non-linear
model will be able to perform better than the linear
Image Jacobian model. However, it should be taken
into consideration that the Image Jacobian is an ana-
lytically derived solution (which is something we aim
to avoid.) Also, and more importantly, the Image Jaco-
bian contained the exact distance (z coordinate) of the
object from the camera. While this is easy to provide
in our simulator in practice it could only be estimated
using the image features.

4It is nevertheless useful to make it dependent on the correct-
ness of the model, as it is done inrestricted step methods[8].

9

0 20000 40000 60000 80000 100000
-0.5

-0.45

-0.4

-0.35

-0.3

-0.25
b

e
st

 f
itn

e
ss

 v
a

lu
e

NEAT generation

(a) NEAT: best fitness

0 5 10 15
-0.5

-0.45

-0.4

-0.35

-0.3

-0.25

be
st

 fi
tn

es
s

va
lu

e

0 5 10 15
EANT2 generation

(b) EANT2: best fitness

Figure 6: Results from 5 runs each of NEAT (sparse initialisation) and EANT2

0 5 10 15
0

20

40

60

80

100

120

si
ze

 o
f b

es
t i

nd
iv

id
ua

l

size NEAT non-sparse
mean size NEAT sparse

EANT2 generation

mean size EANT2 NNs

(a) Mean sizes, NEAT and EANT2

0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

120

si
ze

 o
f b

es
t i

nd
iv

id
ua

l

EANT2 generation

(b) Long time development, EANT2

Figure 7: Development of network size over time

5.3.2 Development of Network Sizes

Figure 7 shows the development of the neural network
sizes over time. The graphs in figure 7(a) have again
been aligned by evaluations of the fitness function (i.e.
wall clock time.) An analysis of the network sizes
shows that NEAT’s resulting networks stay “sparse” if
that initialisation option was used. The best perform-
ing network has 17 genes, with only 2 hidden neurons.
Only 1 gene was added between generation 3,000 and
100,000, which explains why the fitness does not in-
crease any further. However, without the “sparse” op-
tion NEAT generates networks with sizes approx. 80–
140 already after 3,000 generations; their fitness is
only around -0.89 to -0.66 and does not increase fur-
ther with time or network size.

EANT2’s networks are larger than the “sparse
NEAT” networks, in part due to the different initial-
isation. The mean size at generation 5 is 41 (fitness
-0.25.) Size increases slower as time goes on, with
a mean size of 59 at generation 15 (fitness -0.23.)
NEAT’s mean final network size of 17 is reached by
EANT2 at generation 0 (with no hidden neurons.) At
this size the average fitnesses of the best individuals
are -0.346 (NEAT) and -0.312 (EANT2).

As time goes on EANT2’s structures continue to
grow much further than NEAT’s. Although NEAT
does try to add new structure fairly often most of these
structural elements are discarded. NEAT has a feature
to keep newly created individuals even if they do not
perform well in the first few generations of their exis-
tence but is seems that this feature does not help here.

10

0 10 20 30 40 50 60 70 80 90 100 110
identification number of the individual

-0.48

-0.46

-0.44

-0.42

-0.40

-0.38

-0.36

-0.34

-0.32

-0.30

-0.28

-0.26

-0.24

-0.22

fit
ne

ss
 v

al
ue

training fitness
testing fitness

Figure 8: Comparison training vs. testing fitness values, EANT2. Plotted is the fitness of population members,
which were sorted by training fitness

In order to see whether network sizes in EANT2
grow further, and to see whether our selection feature
that is very slightly influenced by size helps to coun-
teract bloat we ran one EANT2 trial for 106 genera-
tions. The resulting network size of the best individ-
ual in each generation is plotted in Figure 7(b). It can
be seen that network sizes do not grow fast after gen-
eration 7 (size: 63.) The graph shows a few sudden
changes that are the result of two individuals switch-
ing rank, and therefore being drawn for a generation or
two. Apart from that one can see something like a saw-
tooth shape: Individuals have a neuron added that im-
proves the fitness, then over a many generations they
do not grow but slowly shrink. This happens when the
mutation operator takes away connections that are not
needed to maintain the current fitness value. One indi-
vidual had the size 86 in generation 92 and has shrunk,
without decrease (or increase) in fitness, to size 78 in
generation 106. As Figure 6(b) already suggested, the
overall fitness only improves very slowly after the first
dozen or so generations: in this case from -0.2288 in
generation 15 to -0.2256 in generation 106.

The two methods, NEAT and EANT2, differ in
the way networks are generated, and NEAT performs
worse in this scenario. Only when the networks are
small and the probability of structural change is low
compared to parametrical change can NEAT optimise
networks well with its evolutionary algorithm. If some
options influence NEAT to produce larger networks
they have a significantly worse performance compared

to EANT2 networks of the same size. This could mean
that neural network parameters in NEAT are not opti-
mised as well, or that structural elements exist that do
not help the task well, or both.

Overall, EANT2 always created better networks
than NEAT and required less parameter tuning to run
successfully.

5.4 Training and Testing

In order to carry out a meaningful analysis of the neu-
ral networks trained by the EANT2 system we have
generated a test set of 1023 visual servoing tasks. They
are comparable with the 1023 tasks the system was
trained on. In particular, the fitness value when not
moving the robot is the same. However, the testing
data require completely different robot movements.
All 115 neural networks that were generated as inter-
mediate results during one run of EANT2 were tested,
without any change to them, on the testing data. Fig-
ure 8 shows a comparison of the resulting fitness val-
ues of these individuals, sorted by training fitness. It
can be seen that the training and testing fitnesses are
very similar indeed. The maximum deviation of test-
ing fitnesses compared to training fitnesses is 2.738 %,
the mean deviation 0.5527 % of the fitness value. From
this follows that the neural networks developed with
our technique did not just memorise the correct re-
sponses of the network but are capable of generalising
to different, but compatible tasks.

11

6 Concluding Summary

In this article we have described EANT2, a method to
develop both the structure and the parameters of neu-
ral networks by evolutionary reinforcement learning.
EANT2 differs from other recent methods by imple-
menting a clear separation of structural and paramet-
rical development and the use of CMA-ES during pa-
rameter optimisation. It also features a compact linear
genetic encoding of the neural network.

In order to validate EANT2, it was used with a com-
plete simulation of a visual servoing scenario to learn
neural networks by reinforcement learning. The same
task was given to NEAT [26], a similar method. Re-
sults from the experiments show that both evolution-
ary methods can develop networks that make “useful”
robot movements, decreasing the image error by mov-
ing towards the goal. The performance of both meth-
ods is also significantly better than the traditional vi-
sual servoing approach.

A comparison of both methods showed that the
neural networks created by EANT2 always have a sub-
stantially better performance. NEAT also performs
good when configured to keep network sizes very
small, but then the development of networks comes to
a halt, showing almost no improvement over a long
runtime. For similar network sizes, EANT2’s neural
networks perform better.

When looking at the development of network sizes
over time it can be seen that EANT2’s neural networks
do not grow very fast once a certain size is reached.
When run over many generations those structural ele-
ments that are not needed to maintain the current best
fitness value are discarded so that networks often grad-
ually shrink over some time before new “useful” struc-
tural elements are added.

Our experimental results show that the our EANT2
method is capable of learning neural networks as so-
lutions to complex and difficult problems. EANT2
can be used as a “black-box” tool to develop networks
without being given much information about the na-
ture of the problem. It also does not require a lot of
parameter tuning to give useful results. The resulting
networks show a very good performance.

Acknowledgements

The contribution of our colleague Yohannes Kas-
sahun, most importantly the development of the orig-
inal EANT algorithm within his PhD project in our
research group, is gratefully acknowledged. He also
provided Figures 1 and 2.

The authors also wish to thank Nikolaus Hansen,
the developer of CMA-ES, and Kenneth Stanley,
the developer of NEAT, for kindly providing source
code which helped us to quickly start applying their
methods.

References

[1] P. J. Angeline, G. M. Saunders, and J. B. Pol-
lack. An evolutionary algorithm that constructs
recurrent neural networks.IEEE Transactions on
Neural Networks, 5:54–65, 1994.

[2] R. E. Bellman. Adaptive Control Processes.
Princeton University Press, Princeton, USA,
1961.

[3] A. Beltratti, S. Margarita, and P. Terna.Neu-
ral Networks for Economic and Financial Mod-
elling. International Thomson Computer Press,
London, UK, 1996.

[4] C. C. Bissell. Control Engineering. Num-
ber 15 in Tutorial Guides in Electronic Engineer-
ing. CRC Press, Boca Raton, USA, 2nd edition,
1996.

[5] W. Blase, J. Pauli, and J. Bruske. Vision-based
manipulator navigation using mixtures of RBF
neural networks. InInternational Conference on
Neural Network and Brain, pages 531–534, Be-
jing, China, April 1998.

[6] Á. E. Eiben and J. E. Smith.Introduction to Evo-
lutionary Computing. Springer Verlag, Berlin,
Germany, 2003.

[7] S. E. Fahlman and C. Lebiere. The cascade-
correlation learning architecture. Technical Re-
port CMU-CS-90-100, Carnegie Mellon Univer-
sity, Pittsburgh, USA, August 1991.

[8] R. Fletcher.Practical Methods of Optimization.
John Wiley & Sons, New York, Chichester, 2nd
edition, 1987.

[9] N. Hansen and A. Ostermeier. Completely deran-
domized self-adaptation in evolution strategies.
Evolutionary Computation, 9(2):159–195, 2001.

[10] K. Hashimoto, editor. Visual Servoing: Real-
Time Control of Robot Manipulators Based on
Visual Sensory Feedback, volume 7 ofSeries in
Robotics and Automated Systems. World Scien-
tific Publishing Co., Singapore, 1994.

12

[11] G. Hermann, P. Wira, and J.-P. Urban. Neural
networks organizations to learn complex robotic
functions. In Proceedings of the 11th Euro-
pean Symposium on Artificial Neural Networks
(ESANN 2003), pages 33–38, Bruges, Belgium,
April 2005.

[12] S. Hutchinson, G. Hager, and P. Corke. A tuto-
rial on visual servo control. Tutorial notes, Yale
University, New Haven, USA, May 1996.

[13] W. R. Hutchison and K. R. Stephens. The airline
marketing tactician (AMT): A commercial appli-
cation of adaptive networking. InProceedings of
the 1st IEEE International Conference on Neu-
ral Networks, San Diego, USA, volume 2, pages
753–756, 1987.

[14] M. Jägersand. Visual servoing using trust re-
gion methods and estimation of the full coupled
visual-motor Jacobian. InProceedings of the
IASTED Applications of Control and Robotics,
Orlando, USA, pages 105–108, January 1996.

[15] Y. Kassahun. Towards a Unified Approach to
Learning and Adaptation. PhD thesis, Cog-
nitive Systems Group, Institute of Computer
Science, Christian-Albrechts-University of Kiel,
Germany, February 2006.

[16] Y. Kassahun, M. Edgington, J. H. Metzen,
G. Sommer, and F. Kirchner. Common genetic
encoding for both direct and indirect encodings
of networks. InProceedings of the Genetic and
Evolutionary Computation Conference (GECCO
2007), London, UK, pages 1029–1036. ACM
Press, 2007.

[17] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi.
Optimization by simulated annealing.Science,
220(4598):671–680, May 1983.

[18] T. M. Mitchell. Machine Learning. McGraw-
Hill, London, UK, 1997.

[19] D. E. Moriarty and R. Miikkulainen. Evolving
obstacle avoidance behavior in a robot arm. In
Proceedings of the Fourth International Confer-
ence on Simulation of Adaptive Behavior, Cape
Cod, USA, 1996.

[20] A. Neumaier. Complete search in continuous
global optimization and constraint satisfaction.
Acta Numerica, 13:271–369, June 2004.

[21] A.-P. Refenes, editor.Neural Networks in the
Capital Markets. John Wiley & Sons, New York,
Chichester, USA, 1995.

[22] C. Robert, C.-D. Arreto, J. Azerad, and J.-F.
Gaudy. Bibliometric overview of the utilization
of artificial neural networks in medicine and bi-
ology. Scientometrics, 59(1):117–130, 2004.

[23] R. Rojas.Neural Networks - A Systematic Intro-
duction. Springer Verlag, Berlin, Germany, 1996.

[24] N. T. Siebel and Y. Kassahun. Learning neu-
ral networks for visual servoing using evolution-
ary methods. InProceedings of the 6th Inter-
national Conference on Hybrid Intelligent Sys-
tems (HIS’06), Auckland, New Zealand, page 6
(4 pages), December 2006.

[25] J. C. Spall.Introduction to Stochastic Search and
Optimization: Estimation, Simulation, and Con-
trol. John Wiley & Sons, Hoboken, USA, 2003.

[26] K. O. Stanley and R. Miikkulainen. Evolving
neural networks through augmenting topologies.
Evolutionary Computation, 10(2):99–127, 2002.

[27] R. S. Sutton and A. G. Barto.Reinforcement
Learning: An Introduction. MIT Press, Cam-
bridge, USA, March 1998.

[28] R. R. Trippi and E. Turban, editors.Neural Net-
works in Finance and Investing. Probus Publish-
ing Co., Chicago, USA, 1993.

[29] J.-P. Urban, J.-L. Buessler, and J. Gresser. Neural
networks for visual servoing in robotics. Tech-
nical Report EEA-TROP-TR-97-05, Université
de Haute-Alsace, Mulhouse-Colmar, France,
November 1997.

[30] L. E. Weiss, A. C. Sanderson, and C. P. Neuman.
Dynamic sensor-based control of robots with vi-
sual feedback.IEEE Journal of Robotics and Au-
tomation, 3(5):404–417, October 1987.

[31] D. H. Wolpert and W. G. MacReady. No free
lunch theorems for optimization.IEEE Transac-
tions on Evolutionary Computation, 1(1):67–82,
April 1997.

[32] X. Yao. Evolving artificial neural networks.Pro-
ceedings of the IEEE, 87(9):1423–1447, Septem-
ber 1999.

[33] X. Yao and Y. Liu. A new evolutionary sys-
tem for evolving artificial neural networks.IEEE
Transactions on Neural Networks, 8(3):694–713,
May 1997.

[34] M. Zeller, K. R. Wallace, and K. Schulten. Bio-
logical visuo-motor control of a pneumatic robot

13

arm. In C. H. Dagli, M. Akay, C. L. P. Chen,
B. R. Fernandez, and J. Ghosh, editors,Intel-
ligent Engineering Systems Through Artificial
Neural Networks. Proceedings of the Artificial
Neural Networks in Engineering Conference,
New York, volume 5, pages 645–650. American
Society of Mechanical Engineers, 1995.

14

