Managing Exceptions in the Medical Workflow Systems

Minmin Han
Siemens Corporate Research Inc.
755 College Road East
Princeton, NJ 08540
USA

mih9@lehigh.edu

ABSTRACT

Over the years, medical informatics researcherg Bawdied how
to use software technologies to provide decisigpsu for using
evidence-based medical procedures. Software piofeds have
investigated how to support hospital administratithverapy and
laboratory workflows. For many of these efforts, maging the
exceptions in the workflows is a key issue since thedical
workflows must cope with a wide variety of patiemiedical

situations as well as those of the healthcare enmients. This
paper presents an analysis of past research ingimgnenedical
workflow exceptions, and proposes future reseatwt twould
benefit the medical applications. The paper is $eduon three
topics: representing, handling and analyzing exoept Based
upon our analysis, we believe that techniques ferifying

exception management models and for
exceptions should be useful and possibly essdotialeveloping
large scale, practical medical workflow systems.

Categories and Subject Descriptors
H.4.1 [Information Systems] Office Automation- Workflow
Management

General Terms
Design

Keywords
Exception, Workflow Management System, Medical \Wlomks

1. INTRODUCTION

A workflow management systemis a software system that
provides workflow definition and interpretation e(i. workflow
engine) mechanisms to support the workflow exeoytpossibly
by integrating with other software applications. Nfow
interpretation may invoke other software applicasiand guide
human collaborationg0].

Many medical informatics researchers and softwaoéepsionals
have done extensive research to define, analyze samdi-

Permission to make digital or hard copies of alpart of this work for
personal or classroom use is granted without feeiged that copies are
not made or distributed for profit or commercialvadtage and that
copies bear this notice and the full citation om finst page. To copy
otherwise, or republish, to post on servers oredistribute to lists,
requires prior specific permission and/or a fee.

ICSE'06 May 20-28, 2006, Shanghai, China.

Copyright 2006 ACM 1-59593-085-X/06/0005...$5.00.

741

Thomas Thiery
Technische Universitat Miinchen
Boltzmannstr. 3
85748 Garching bei Miinchen
Germany

thiery@mytum.de

handling dymami

Xiping Song
Siemens Corporate Research Inc.
755 College Road East
Princeton, NJ 08540
USA

Xiping.song@siemens.com

automate medical workflows with funding from numeso
government agencies or corporations. Cliniciansehdeveloped
and published a very large number of evidence-basedical
procedures to disseminate the best practices. fuadedures set
the starting points for the researchers to develwogh experiment
with automated or semi-automated medical workflaystems.
Experimented medical workflows include: diagnosisrkfiow
management system [5], treatment/therapy workflcamagement
system [13][35], hospital administration workflowamagement
system [12][34], etc. Support for workflow has bekmgely
provided by means of electronic reminders, alamnt$ \&ork items
(work list) for the medical staff.

It is well recognized that managing exceptions acenmon
occurrences in the daily life of medical professilsn[27][40]. In
addition, past research and experiments have disors that
effective management of exceptions in a workflownagement
system is crucial for its success [17]. Usuallypajor part of a
workflow definition defines the “normal” behavioirs response to
anticipated events and/or results. Briefly, @wception is
“abnormal” behavior from the “normal” workflow. hever, as
we will discuss later, exceptions in medical waokfs may cover
a wide variety of eventsnot limited to medical emergencies,
depending on the application context and workflowsign
decisions.

Exception management includes exception definitions and
defined procedures to response to the defined &rosp Such
procedures can be implemented with automated campystems
and human activities. Deciding whether an everitaimormal”
can be quite subjective. Workflow system desigiears choose to
use exception management to manage some systemidishar
events which might not be so “abnormal” (e.g., migs
appointments might not be so abnormal in medicedaln).

We believe that managing exceptions is unavoiddbieany
complex medical workflow systems for the followirepsons:

= Medical staff will often have to first react to wpected
events with the patient, possibly not with all degiinformation,
and then will update the tracking records to reftee changes.

= Physicians often want to deviate from the “nornfldiv [36]
to best care the patients within the given envirents (e.g.,
medical devices, schedules, patients’ insurance)

= Many medical systems to which a workflow systenegnates
may raise exceptions that need to be handled. famge, the
medical guidelines supported by GLIF3 [33], EON ][3@nd
PROForma [38], include exceptions.



Studying exceptions in medical workflows and exjigr how
such exceptions can be handled promptly and apiptefyr within
the workflow systems should improve healthcare iguand
efficiency.

For example, an emergency room diagnosis workflowaicute
abdominal pain [11] can be summarized as: physita&es the
patient’s history; then the physician performs ggital exam;
and then the patient needs to take a set of labnaaging exams.
However, “abnormal” situations can happen to thispte

workflow. For example, a patient may crash durimy af the

three diagnosis activities. If this occurs, instedadontinuing the
workflow, the physician needs to perform immediateergency
treatment to save patient’s life. One additionaegtion would be
one lab result may be delayed for hours so theiglyshas to
use some alternative checks instead of waitingesthe patient
needs immediate treatment. As this example illtessrananaging
exception situations is common for healthcare mgifmals.

We categorize the exceptions in Table 1 to illustra wide
variety of exceptions in medical workflows, incladi both
expected and unexpected exceptions. We used
categorization based on predictability and excepsource, the
same as many other researchers [2][10][14][17]RA@]B6]. This
categorization helps us understand what excepti@maging
capabilities would be useful for medical workfloystems.

Table 1 Exception Categories

This paper does not discuss those exceptions thaatasystem-
level (e.g., network problems) or at software aggilon-level

(such as memory allocation error, data type comnwergverflow).

We believe those exceptions are not much relatéld workflow

design and are often handled at the software aijait or at the
operating system level.

Software application level exception managemeiat very active
research topic in software engineering area. Mbstie research
is focused on the programming languages. Resaarghevide
new framework and algorithms to support exceptiandiing for
OOP languages (e.g. [7]) or analyzing/optimizing #xception
handling performance (e.g. [32]).

In workflow systems, the exceptions may not bersrtixe those

in computer programs, but rather, as a part of eegebusiness
conditions. Thus they have to be accommodatedddsié simply

aborting the execution and logging it as an eromaother type
of programs.

742

thee sam

Expected Exceptions

Exception Example

Source

Workflow Patient is allergic to drug “ABC” so cannot

tasks give “ABC” to patient

External “NO_AVAILABLE_BED” exception from

applications | hospital bed management system

Data changes| Patient heart rate drops to 50/mirchwdften
indicates a sudden adverse change of |the
patient's medical conditions

Temporal Blood test task is not done on time

constraints

Unexpected Exceptions

Add a new therapy into treatment plan

The goals of this paper are to: 1) summarize th@mant topics
for managing exceptions in medical workflows; 2yvay the
current state-of-the-art academic/industrial regearesults on
these topics; and 3) point out further research tiean yield
practical results. We used this effort to start cegearch in the
workflow exception management area.

Section 2 summarizes exception research areagctios 3, we
describe the current state-of-the-art in thosesal@ssection 4, we
discuss future research.

2. RESEARCH AREAS

The research for managing exceptions in generalkfloor
systems can be categorized into three major at¢&epresenting
Exception Managemen®) Implementing and Executing the
Handling of Exceptions 3) Analyzing Exceptions.

2.1 Representing Exception Management
Exception management often needs to be clearlesepted both
for computer execution (supporting medical workflexecutions)
and user understanding (e.g., medical staff trginimorkflow
design). Moreover, since medical professionals balinvolved
in developing the workflow definitions, the repretsion of the
exception management must be understandable byietywaf
users from different domains, not only IT, but alseedical
professionals.

We have identified the following aspects of exaoepti
management that would need to be represented. dltwaving
properties are listed by the importance of the prigs:

= The class of exceptionsthe type of the exception provides
basic information about the exception. One sampiee tof
exceptions is “TIME_OUT” which indicates that theception of
this type will be raised when some activity is finished within a
certain pre-defined time period.

= The condition when the exception is raisedit can be the
failure/abort/timeout of an activity (e.g., the btb test is not
finished within 2 hours), data thresholds (e.g.figpé body
temperature reaches 100F), or any combination oftipte
conditions.

= Actions for handling the exception: the actions and their
execution sequences for handling the exception.efii@n
handling can be as simple as skipping an activay, as
complicated as workflow evolution (change a wonkfldefinition
while some of its instances have been only payteatecuted).

= The source of the exceptionThe exception can be raised
during the external applications, or an activityaofvorkflow. For
example, an exception might be defined as only witt during
the “check history” activity of “acute abdominalipaliagnosis”
workflow.

= The receivers of the exception evenThe possible receivers
are one or more running instances of workflow dgfins, some
external applications, or certain roles played lmhns. For
example, a receiver can be a treatment workflowaimse for a
patient or a physician who is a specialist for aiartmedical
conditions.

It is not necessary for an exception definitiorctmtain all these
properties. For example, if the publish-subscriaggun is used as
the exception handling mechanism, the “receivedperty is no



longer necessary. However, an exception managededimition
must have the first three aspects.

The above discussions are concerned only with iddal
exception management. To effectively and clearliindea large
number of (inter-related) exceptions for a nonitdiworkflow
system can be a much harder issue. The exceptiayshiave
certain relationships, such as “is-a” or “is-pdft-&xploring the
use of those relationships to ease the exceptionagement
representation is also an interesting researcle.topi

2.2 Executing the Exception Handling

Exception handling needs not only representationatso needs
to be implemented and executed in a timely and atapée
fashion. The following areas are related to thjzeat

= Propagation: to route an exception to the corresponding
handler;

= Handling primitives: a set of pre-defined actions as the
primitives for implementing the handler (e.g., retan exception
into an event log);

= Handling logic: the algorithm for determining the concrete
activities to handle exceptions. Examples includimg explicitly
defined handling logic for each possible exceptwrconsulting
knowledge-base for appropriate handling logic.

To propagate an exception is to forward the exoeptp the
appropriate handler. One example is to use adtdetstructure to
map a certain type of exception to one exceptiordlea. Another
way is that exceptions can be propagated like #ovepions in
Java/C++ [19]: the exception will be forwarded tee thigher
control level if the lower level does not have andilar for it.

There are other ways to propagate the exceptions.critical to

ensure every specified exception be sent to theropppte

handler module. A generic handler on the highestlleakes care
of every unhandled exception. This can be, for gtama
mechanism that involves human interaction for dyiearception
handling.

Researchers have identified and defined some prasitfor
coding the exception handler. We have studied [B]R9] and
combine their work with our experience to summarnizssible
primitives in Table 2.

The simplest exception handling mechanism is tandethe
exception handling actions for each exception leefontime. A
more flexible mechanism is to let users definefselee handling
during runtime. A more automated, adaptable exoaptiandling
mechanism is to automatically decide how to hantie
exceptions depending on the previous exception |mand
experience, knowledge, resource limitations and erth
considerations.

743

Table 2 Exception Handler Primitives

Maintaining workflow “normal” behavior

Ignore Takes no action

Record Record to log (e.g., develop audit trail)

Notify Inform a role/an actor/a group of actdrs
/external applications.

Propagate Route the exception to another handle}.

Resource Add more resource.

Modifying behavior of one/more process instances

Retry Retry the current task.

Suspend Pause the current task/process

New Add a task/process

Modify Modify a task/process

Remove Remove the current task/process

Change Change the task sequence in the curfent
Sequence workflow

Terminate Terminate one/more processes.

Change Assign the task to another actor or chafge
Resource other resource requirements /constraintg.
Requirements

Delay Delay a task/process

Modifying workflow definition (evolution)

Modifications Add new tasks, remove tasks, and ghgn
sequence of tasks...

2.3 Analyzing Exceptions

Exception management in a workflow system needmtanalyzed
and verified to ensure correctness with respectitgosyntax,
executability, semantics and completeness. Theysisaincludes
three sub-areas:

= |dentify all concerned exceptionswhat exceptions need to be
defined and implemented into the medical workflyatems.

= Verify the exception management before runtime:The
verification can focus on both the syntax and etadaility. Further,
it might verify whether exception management woulolate any
medical practice rules.

= Check the effectiveness of the exception managemer€heck
whether the defined exception management is seffifigi complete
and comprehensive. For example, it can check if ekeeption
managements will handle all emergency conditiofectdely.

Also since exceptions are usually built increméwtilis important
to check the exception management models to ertkese will
remain working as they are being built. Programnamgjuages like
Java simply verify if possible exceptions are thmoww the higher
level or caught at this level. For medical workfipwve need to
make sure not only all exceptions are handledalsat the handling
will not cause problems, such as conflicting harsd{@s more and
more exception management is being added) or boeealain
medical practice rules.

3. CURRENT STATE-OF-THE-ART

Research for exceptions in workflow managemenesysthas been
going on for about ten years. In this section, vgeuss the current
research status in each of the three areas.



3.1 Representing Exceptions

In existing literature, prototypes and products fexception
management, we have found two general approachemptesent
exception management: &nbeddedh workflow process definition
[6][16][17][41]; 2) stand-alon€[8][9][21][25][30]. The embedded
approach is to expand the workflow process defingito include
exception management. The stand-alone approaohseptarate the
exception management from workflow process definiti

Two examples of embedded exception definition aresifiess
Process Modeling Language (BPML) [6] and WfMC's XML
Process Definition Language (XPDL) [41]. Since ttzeg similar,
we describe the XPDL approach only.

In XPDL, exceptions are defined as a special typéramsition
between activities. Figure 1 shows a partial XPPéciication: the
normal workflow is first to take X-Ray chest filnThen the
physician checks the patient history. When the “WfRatAvailable
Exception” happens during task “XRay Chest Film™,GI Chest
Film” task is created and needs to be completedrbethe
“CheckHistory” task.

Check
A XRay Chest Filr > History
XRayNotAvaiITfliException A
CT Chest Filr

Figure 1 partial XPDL specification for
XRAY NotAvalableException

Figure 2 shows the textual definition of FigureThe raise of an
exception is treated as a special type of tramsitmndition and the
handling of the exception is defined as a branch.

The only difference for an exception transition aadnormal
transition in XPDL is that the former has a différéype and the
transition is labeled with the exception name. ‘CHest Film” is an
exception handling task. However, the exceptiordtears scattered
in the diagram and the textual definition togethdth the other
“normal” transitions.

<Transitions>

<Transition Id="brl” From="XRay Chest Film” To="Citk History"/>
<Transition Id="br2” From="XRay Chest Film” To="CThest Film">
<Condition Type="EXCEPTION">
XRayNotAvailableException
</Condition>
</Transition>
<Transition Id="br3” From="CT Chest Film” To="Ché&History” />

</Transitions>

Figure 2 Textual Version of XPDL specification

The “stand-alone” approach uses ECA (Event, CamditAction)

rules and knowledge base entries [8][21][26][30]eiK et al.

specify exceptions in a knowledge base [26]. Evetgeption is
associated with a knowledge base entry that insluale exception
definition, a definition when the exception will dmne critical, a
detection process, and a handling procES3A rules include three
components: event, condition and action, whichaaiginally used

in active databases [42].

744

Chimera-EXC [8] provides a detailed example of gsiECA to
specify exceptions. A trigger is defined for gloleskception or an
exception for a specific process. It includes evéhi), conditions
(C), actions (A) and the event priority. If an ewvamrives and the
conditions are satisfied, the actions will be exedulf more than
one triggering event arrives, the corresponding@astare executed
according to the event's priority.

define trigger XRayNotAvailable
events raise (XRayMachineBroken)
condition XRayChestFilm(X), X.status = “waig”,
DiagnosisCase(C), X.instanceOf(C)
actions cancelTask(X), startTask(C, “CTChidstFy
order 1
end;

Figure 3 Chimera-EXC specification example

Figure 3 shows how to define the exception desdriheFigure 1
using Chimera-EXC. Once an external
“XRayMachineBroken” arrives and if a XRayChestFitask is at
the waiting state, a new task “CTChestFilm” iststdhinstead.

An event of Chimera-EXC can be a data update ewewprkflow

event, a temporal event (timestamp or time int¢realan external
event. Its conditions are set with context variaplehich support
actions such as setting data/context variablesoglifging tasks.

An embedded exception specification can be easiemterstand
because it is within an application context whdre humber of
involved exceptions is limited. However, just a§19] pointed out,

embedding exception definition and handling into peocess
definition can reduce its exception handling apiince the large
number of exceptions will obscure the normal wankflprocess.
One example is the “patient crash” exception, winetly happen at
anytime and thus it is related to all tasks inwloekflow. Currently,

as seen from the literature, the “stand-alone” gtkae management
definitions provide more expressive power by allgyvthe use of
complex conditions (including complex temporal dtinds, e.g.

within 2 hours of last medication). However, extaptdefinitions

separated from the “normal” workflow process ddifims may be
harder to understand since they are dislocated tinem application

context.

Summary:

= The current approaches to exception representafimvide
enough expressivenedsowever no one representation approach
provides all the expressive power we would neestead we need a
combination of them. For example, Chimera-EXC ptesi support

for complex temporal conditions required by excapiin medical

workflows but its action definition is descriptiviestead of a

declarative as in XPDL.

= Understandability for various kinds of users idl dficking:
Different users are concerned with the represemstat different
definition levels and for different aspects. A séviews should be
designed for different user roles. For example,sygigns want to
see an overview of the exceptions and their hagslliembedded
within the workflows while they also want to seseparate view of
the details of exception properties whedifying the exception
definitions. Probably, for patient education, patsewould need a
more friendly graphic presentation so that they gaderstand the
relevant exceptions and handlings, likely even with related cost,
risks, and possible alternatives.

event



3.2 Handling Exceptions

The propagation mechanism of many workflow manageéme
systems is similar to the nested exception propagatechanism in
programming languages such as Java and C++ [19%xéeption is
passed along the workflow call hierarchy to higlegel handlers if
the lower level module cannot handle it [8][10][24].
Alternatively, a workflow can subscribe to specifigstem events
that it can and should handle. In this case, tisen® call hierarchy
or exception passing. An exception defined at thdividual
workflow level may not be defined or visible aseeption at the
system level.

Figure 4 shows the propagation of an exceptionhan ©PERA
system [24]: process p0 creates sub-process plchwireates
activity p2. When an exception event that is subsedrby p2, is
raised during the execution of p2, and if p2 damshave a handler,
the exception is propagated to its parent pl. b ddas no
exception handler; again the exception is propdgtieits parent
p0. p0 has an exception handler for this exceptiod does the
handling that can be abort p2 and resume p1.

pO: process pl: sub-process p2: activity
! | |

] create ! X
> Ccreate 1
Ll
exception
raised
return _return <
_exception | [¥exception
-
>
abort p2
resume
Ll

Figure 4 Propagation of Exception in OPERA

If an exception is propagated to the root withoeitigg caught by
an exception handler, some workflow managemenemssthave
specialized modules to deal with this situation. dafensible
workflow [30], when no handler can be found, thstesn will try to
solve the problem based upon past experience. \&§ymams find
no similar past experience, human intervention vélrequired.

We consider this propagation mechanism applicabtenfedical
workflows. The exception handler hierarchy makeseeof handler
modules possible and the root default handler males that any
unhandled exception will be caught.

We have investigated a number of workflow managéragstems
[9][10][17][21][30][36][37] to see how well the priitives in Table
2 are implemented. Each of those approaches ssppititer a
bigger or smaller set of identified primitives. i&aind that any of
those primitives is supported by some systems figasd, though
they might be implemented in different ways. Thus,believe that
these primitives have been sufficiently supported dxisting
workflow management systems. Exception handling haigisms
include:

= Pre-defined handling: The actions for handling an exception
are explicitly defined by the user before runtirgf§36]. ADOME-
WFMS has system built-in modules to provide autdmate-
defined handling for some expected exceptions sashbest
candidate actor is not available [10].

= Ad-hoc handling: Users specify or select the exception
handling actions from the building blocks when &oception occurs
[10]. This mechanism is mainly for unexpected exoag.

745

= Using an extended model to enable workflow recovery
Extend the ACID (Atomicity, Consistency, IsolatioDurability)
transaction model to support automatic exceptiondligg in
workflow management systems [17][18][23][24][37].

Researchers proposed algorithms to label tasksdhase backward
recovery (partial rollback), forward recovery (jartrollback and
use alternative route), or pre-defined compensatocess
according to the failed task’s label and the stmgcbf the process.
The process state may end at the regular comrsiite, failed state
or other extended states. Such mechanisms provppog for
workflows to handle or adapt to the exception ctiowiwhile still
working towards accomplishing their goals.

aborting |&— active

. 7N

compensating

N

extended transaction
model state

o original transaction
- --- model state

$ O

Figure 5 Extended Transaction Model [17]

One example of extended ACID transaction modeldaseeption
handling is from Eder et al. [17]. Figure 5 shoWsit extended
transaction model: the arrows are possible tramstibetween
process states. A process starts as active state ighfirst activity
is started. If there is a failure or exceptionrméy enter “aborting” or
“compensating” state. Besides the state “failedd acommitted”,

the final state of this process can be “termingted“compensated”.

Eder et al. label the activities as vital (impottagativities) and non-
vital (not so important activities). When a norabiactivity fails,

“forward execution”, i.e. to ignore the failed attlf and continue
the workflow, is used. When a vital activity failsbackward
recovery” and “forward recovery” (use alternativetiaties if

possible) is used. The actual algorithm for backwescovery
depends on the control structure of the failedviagtisequence,
parallel, choice, or loop). The process’ statdhanged accordingly.

= Knowledge-based handling:To reuse the stored experience to
handle exceptions. Klein [26] and Luo [29] discusdending
appropriate exception handling actions from a kedgk base. In
defensible workflow, case-based reasoning (CBR3é&xl to analyze
the case repository to find similar experience dodie exceptions
[30]. Stored experience may be explored once aeptxn happens
for quickly getting a solution. However, it is alstesirable to
analyze the stored experience off-line to improwaeption handling
for the future. More discussion for this topic iggented in section
3.3.

We believe that an extended ACID model is not bigtafor
treatment/diagnosis workflow exception handling sase the
rollback of medical treatment/diagnosis activitieay be complex
and context related (e.g. using alternative medidor a patient
depends on the patient's age, stage of diseasécahéistory and
other information besides one workflow instancéjug; we believe
that it would be difficult to use the extended saction model in
treatment/diagnosis related medical workflows buosgible for
administration medical workflows. Knowledge-basethdiing can



be very useful for medical workflows since medi&alowledge
grows quickly and this can help medical staff use latest medical
developments.

Summary:

= Propagation mechanisms are satisfactorwe think that
medical workflow systems have no major special irequents for
propagation. The current propagation mechanismscapable of
sending exceptions to an appropriate handler falicakworkflows.

= The identified exception handling actions are sidfit and
broadly implementedWe believe that the currently defined and
implemented primitives are sufficient for both gehewvorkflows
and medical workflows.

= Handling mechanisms can be made more intellig&te
believe that the knowledge-based handling can hemefdical
workflows because it can help the medical staff tiee latest
information and knowledge.

3.3 Analyzing Exceptions

Analyzing unexpected exceptions can help incrdeseadpability of
handling them in the future, while analyzing expdcexceptions
can help find better solutions. There are two semrfor such
analysis: 1) the exceptions occurrence history teabrds the
special events [31] and 2) the history of workflewecutions that
contains the execution information [30]. The fiist useful for
studying unexpected exception types and propefties section
2.1), and their occurrence frequencies. The sedsnaseful for
finding and generating the suitable handling meshod

For any of the three reasons for analyzing except{section 2.3),
there are four things to consider: data sourcefetiterres we want to
check, analysis method and how to use the anabsidt.

The frequency of an exception occurrence can be tsestimate
the necessity to evolve the workflow definition teanage the
exception. Quaglini et al. was able to extract dbeurrence of an
exception using the logs by workflow mining [36]They used
history information to create the predictability efceptions. If the
frequency is above a certain level, the exceptioighimbe

considered not a special event, but instead amatiee branch in
the workflow definition. An expected, but rare eptien will still be

handled as a regular expected exception [31].

The activities necessary to handle an exceptionbeamined from
the history of workflow executions. A workflow magement
system, which allows ad-hoc adjustment of the iildial workflow
instances, can have a documented workflow histbgt tmay
include reusable solutions to react to an unexgeegeeption. In
case of a new exception, the system can mine eanepandling
data from historical workflow executions. Hwang ahang have
designed a set of mining algorithms for this puepf5]. They use
a large set of exceptions and runtime data to huplé set of trees
for past exceptions according to different attidsutind find the
possible handling according to the distance betwien new
exception and the past experience in the trees.etwb. described
this case-based reasoning methodology in theirrd@p¢ and they
provide more details in [29]. They follow four steps Aamodit et. al
discussed in [1] to explore the case repository:

= Retrieve the most similar cases (i.e., events) flatabase;
= Reuse the knowledge (such as what medicines wees)dn
those cases;

746

= Adapt the solution of the similar cases to fit thierent one;
= Add the verified solution into the case database.

The current data mining technologies are matureagmdicable to
workflow exception history. A prototype in the MEDR project
[4][30] and a branch implementation in a commereijaplications
like TeamLog [15] showed that the mining algoritimworkflow
history works well. However, since the medical domia highly
safety-critical, to use such technologies in pcacstill needs more
efforts (some of them might not be technical, kegal).

Data mining can also help to identify the root eaud the

exceptions. Thus, the root cause of the problerakidme removed
if the handling can be modified to become a metioogrevent the
exception. Especially if data dependencies betveserptions and
workflow activities/data are explicitly establishethe related

activities and data can be easily identified fréwm éxceptions. As a
result, an extended analysis of the related aesvitr data, in real
life or within the system, can lead to a full reraber reduce the
number of caused exceptions. The removal of thé caase is
described by Tucker and Edmondson in [40] for inajprg medical

applications.

Summary:

= Make use of existing data mining methodghe data mining
methods are a research field of data-mining, rdtieer a part of the
workflow research area. How to produce the necesdata for

mining is more an implementation issue.

» The steady improvement of the workflow definitism aesult of
data-mining is technologically feasible

4. Further Research Topics

Based upon our understanding of the current sfateeeart in
section 3, we propose three open questions asdfw ohallenges
of research on exceptions for medical workflows: EXception
verification; 2) Exception visualization; and 3) amic exception
handling. Solving those issues effectively will help to male
workflow management system more usable in the rabdicmain
(though likely being used in other areas (e.gldmg management
systems) as well).

4.1 Exception Verification

Exception verification is the verification of exd¢em and handling
definitions against workflow requirements and/onstoaints that
include syntax, executability, completeness anchséins. There are
two types of software verification: static and dyma Our

discussion here focuses on static verification; duomatically
analyzing the software code, derive informationuwatibe software
execution behavior to establish some correctnéssiar

Developing large scale, consistent workflow systeimst have
sophisticated exception definitions and handlings be difficult.
First, exception management is more likely to beettged with the
participation of medical professionals who haveitéoh knowledge
of workflow design. Also, exceptions are often builip
incrementally by different users, thus there maycbeflicts or
duplications among different workflows that have ception
handlings. Furthermore, certain exceptions can démapgnytime
during the execution of multiple medical workflowd/hen the
handling of one such exception may be proper fostmamrkflow
instances, it may be inappropriate for some spedfies. Thus,
identifying errors in exception management areidiff. Since the



errors during runtime for medical applications gartentially harm

the patients, it is necessary to eliminate as nesrgrs as possible
by exception verification. The key features we wonéed to verify

include:

= Completeness Expected exceptions should map to specific

handlers as much as possible. A detectable, uniexpesception
may map to a special handler that either enablers tis determine
handling actions on the fly or is intelligent enbup handle the
exception by itself. Any exception which is not etivise handled
should at least be treated by a dynamic humaraictten at the root
of the exception propagation hierarchy.

= Conflict-free: If two exceptions may be raised at the same time,

their handling should not conflict. For exampleg thandling of
exceptionA prescribes medicine X while the handling of exicept

B prescribes medicine Y. &K andB may be raised at the same time

for one patient, medicine X and Y should not catfii.e. they can
be taken concurrently.

= Compatibility : The exception handling should not break the

constraints of workflow definition (e.g., whenewbe workflow is

still expected to be continued after the exceptibo) example, the
handling for exception “XRayNotAvailableException$ to use

activity “CT chest film”, which requires two hour3his would

require that the activity after “x-ray exam” bertd two hours later
to allow for the exception handling time of ‘CT shélm’.

= Correctness If an exception handling uses context variables

that represent the data only available from whbeesexception is
raised, we need to verify if these variables amesgible and have
values for all workflow instances that may raise ¢ixception.

As we discussed in section 3.3, there is littleaesh for verifying
exceptions in workflow systems (i.e., to derive therception
handlings’ behaviors at execution time and chetikdf conform to
certain correctness criteria). We have also studiedeption
verification in programming languages. Researcheirification of
exceptions is limited to completeness (“reliability [19]) and the
estimate of response time for concurrent exceptipt®. In
computer programs, exception handling is largelyeigort errors
and their sources. It is rare to use exception lrantb “repair” or
“compensate” an abnormally behaved process ortemebit to deal
with the exception conditions, which is howeveenftlesired in the
medical domain.

Medical knowledge bases should be useful for ei@ept
verifications since they can provide rules to be Hasis for the
correctness criteria to be verified. There arercglspects we want to
check, such as whether the exception handlingrecfio with the
medical guidelines or not (where the guidelinesimama knowledge
base). But such verifications probably cannot befopmed
completely automatically and will need qualified dival staff to
accomplish them.

4.2 Exception Visualization

Exception visualization is to represent excepti@finitions and
handlings in a highly visualized form so that us#rdifferent kinds
can understand them.

The exception management definition alone can Imeptex with
raising conditions and handling actions. In moreaaded scenarios
dozens of exceptions are possible within one dimg&mply to add
more exceptions to medical workflow diagrams canken#he
workflows difficult to understand even for IT prefonals because

747

exceptions can arise at any time. Furthermore, caksiaffs cannot
properly handle the exceptions and correctly mairttee exception
management definitions, unless they have good staheting of the
exception raising condition, origins, handling stemd workflow
contexts (e.g., cause-analysis). Thus exceptionalzstion is an
important issue for improving the usability of egtiens in medical
workflows.

We summarize the key features for visualizing etioap as:

1. The visualization can provide a view to show thategt and
other factors for medical staff to determine whateption handling
actions should be taken.

2. Support different views of the exception definitidBample
views include workflow-oriented view (given a sgiecivorkflow,
what exceptions could potentially be raised andlteaf), exception-
oriented view (given specific exceptions raisedatwkorkflows will
be impacted), data relation view (given certairadztanges, what
exceptions could be raised). Such visualizatiofisaid end users to
better understand the exceptions and their reltwith other
workflows.

3. To provide views to different levels so users caaotm-in”
and “zoom-out” to view the different levels of afastions.

We discussed the current research status on excepsiualization
in section 3.1 and have not found any workflowesyst that address
all of these three points. Visualization techniqdies workflow
instances [2] may be helpful for resolving thetfpsint.

4.3 Dynamic Exception Handling

Dynamic exception handling is to create a plausitaadler upon
the raise of an exception and use the handler & dih the
exception. The handler might not be explicitly defi from the
beginning to end, but rather is incrementally deieed as it is
being executed.

Medical staffs must response to a wide variety oédical

exceptions. Some of them are expected while somenarch less
expected. Some of them are clinical-related wholaes of them are
hospital administrative or operational-related. yrdeal with such
exceptions in two ways: 1) handling the raised ptioas with skills

which are acquired through training and 2) redutivegpossibility
that the exceptions will occur for the future. Rbe first way,

medical staffs use their past experience, infoonai@bout the
available resources (e.g., medical devices, otheysigians),

prediction of outcomes to find a plausible way foandling

exceptions under the current circumstances. Howavéhe longer
term, they will use the second way by removing rcenise of the
exceptions (such as shortage of lab personnelpabg/improving

their processes.

We expect that medical workflow systems should supjpe above
described activities. We understand some of thogeardic

exception handlings are probably never supportagleomputer
software (e.g., some surgical procedures on therpst However,
we also believe that, as the healthcare envirorsyieetome more
and more computerized (wirelessly networked sensotsgrated
imaging systems, a wider use of electronic patieedical records),
it should be possible to generate some exceptindlés for certain
exceptions or at least a part of those handlers.ekample, the
handling actions can call emergency services, ondedications,
book operating rooms, make lab orders, set medimlice

configurations/parameters, retrieve patient desaktand report the



patients’ or medical staffs’ locations, etc.. Ifethworkflow
management systems can intelligently generate epgyopequence,
and execute the handling actions, this would aéptaieduce the
response time, Further, dynamic handling shouldeaehthe key
features as:

= To support dynamic exception handling handling actions
could be dynamically customized based upon tharimtion about
medical staffs’ workload/schedule, resources, pagieriences in
handling similar exceptions for the patient's besterest. The
dynamic exception handling can more likely be amplfirst to
hospital administrative or operational workflowacs they require
less intelligence and are more likely already coenized.

= To support the evolution of exception handling An

embedded exception analysis mechanism should greupport for
evolving exception management defined in workfloanagement
systems. The analysis results can be used to remom¢ecause,
perform workflow evolution and/or exception evotuti (e.g.
frequently detected unexpected exceptions will lefindd as
expected exceptions).

4.4 Demonstration Scenario

Our purpose of introducing this scenario is to siitate how
exception techniques, particularly the proposeds dnehis paper,
can help medical workflow development. The backgcbwof our
scenario is that a workflow management systemesl tis support
the acute abdominal pain diagnosis workflow in anemgency
department (ED).

Check | Physical ! iLab and imagin
@ > nistory ">: e>)</an i">: exams ’ T'>©

0

1
<O
. 1
L _current activity _planned activity executed activity _exception 1

Figure 6 Acute Abdominal Pain Diagnosis Workflow

Patient B comes to the emergency department dwdominal
pain. The patient check-in workflow starts an aaltdominal pain
diagnosis workflow instance for patient B, whicHlautomatically
retrieves the relevant patient medical records dor attending
physician. The physician checks B'’s records, parfoa thorough
physical exam and with the help of the workfloneatfonically
orders a series of lab exams and imaging examthéopatient. B
finishes the lab exams but waits for 30 minutessiticdid not have
the CT films taken. A “CT time out” exception isglyered by the
radiology information system that is integratedhwite workflow
system.

Since the workflow system cannot find a predefileadler and
there was no automatic solution available, the Had-handling”
mechanism is used. Thus, a pop-up window inforrasitirse about
the current exception and asks for solution. Thesenaletermines
that the patient cannot move and a portable CTcdesi required.
But, according to the equipment tracking softwateportable CT
devices are in use.

The nurse checks with a physician to select “uderradtive
resource” and assigns use of US (Ultrasound) idsté&T for this
activity. The physician explains to the patient @bihe change by
using a visual form of exception handling and callse

748

business/insurance people to ensure the insuranvezscthe cost.
Finally the diagnosis workflow ends and B is adeditto in-patient

department.
CBC with
differential upright an(': J— :
o i supine ! iuprighti
o> > abdominak>! chest s
R tilms (CT) ! film (CT),
° S — === '
o upnght ang | ypright
supine chest
abdominal film (US)
films (US)

Figure 7 Sub-flow of Lab and Imaging Exams

The hospital has limited number of CT devices soekception of
“CT device not available” occurs frequently duritids diagnosis
workflow. After studying the exception log and dissing with
other physicians, the director of the ED decidesadd use US
instead of CT when CT is not available as a praddfiexception
handler into the workflow.

The director opens a GUI interface to input theepkion properties
(type, condition, handling actions, etc). The wimkf system
automatically verifies the compatibility of thisweexception with
the rest of the exceptions and the workflow prac€secks are
made to see if the handling of the exception ccisflwith the
knowledge base, the frequency of such exceptiodshaw it was
handled in the past. Since there is no problemdptitis exception
was successfully added.

Following, we discuss the exception techniques ursehis sample
scenario with respect to three aspects: excepgmnesentation,
exception handling and exception analysis.

Exception representation needs to be easy to uaddror a variety
of users (e.g. nurse, business administration peafuctors, and
patients) and maintained by a non-IT staff. Froia ftenario, we
can see that a physician needs to know what erceptippened
and what handling will be taken for the exceptMfe could see the
need for three types of visualization requiremdram the above
sample scenario:

= When an exception occurs and the workflow instastags the
exception handling process, physicians or hospitihinistrative

staff may want to see the direct cause, the hapdiations and the
workflow context. This helps them to understand wdsrtain

handling actions have been suggested through #rés ar work

items. This helps them decide if they should perftiie suggested
tasks.

= A physician is dealing with a newly detected unexpe

exception. The medical workflow management systexads to

present the physician a view with sufficient infaition to define the
set of handling actions within minutes. For exampke can add a
CT check as a replacement when the x-ray devicerteefhat it is

busy.

= A physician explains the treatment workflow to dig& and
shows the patient the possible exceptions and imgndictions
during the workflow. Such education to patientsvésy useful
particularly for the therapy procedures. Similailycan be very
useful to train the medical staff.



Two types of handling mechanisms are used in ttesaio:pre-

defined handling and ad-hoc handling. Predefined handling
supports the physician setting the handling actibefore the
exception arises. Ad-hoc handling allows the phgsi¢o pick the
handling actions on the fly. However, dynamic exception

handling is used, when “CT time-out” arises, the system can

automatically find the possible alternative chag&S according to
the knowledge base and past experience and infanse nand
physician of this suggestion.

The exception verification can be used to asswectiirectness of
the modified workflows after the physician selecis defines
exception handling on the fly (such as in the “@etout” scenario,
using US instead of CT) and adds new exception |mand
afterwards. It is important to verify the excepsidor the 4C rules
(completeness, conflict-free, compatibility and reomess). If the
director adds the exception of “CT time-out” inte tworkflow but
forgets to add the corresponding handling, a caiepdss warning
will be issued. Then the newly added exception liregds checked
against other possible exceptions raised in the seonkflow to see
if there is any conflict. The compatibility chedksures this new
exception handling is compatible with the originvebrkflow. If
originally this workflow was to end within 2 houkat the new
added exception handling, using ultrasound, may \eitigin 2.5
hours, a compatibility warning is given. The comess check
verifies the workflow data used in the exceptiondimg.

5. CONCLUSION

Though managing exception situations is well reczaghas daily
occurrences in the working life of medical stafismputer software
systems, particularly the workflow management sgstéave not
been well applied to support such activities. Mangrkflow

systems provide exception management mechanismsarniéd

capabilities; however, they have not widely beeadut support
exceptional situation handling. One major reasanbelieve, is that
at this stage, the healthcare environment has e bfully

computerized and many exception handlings mandat@ah
participation, skills and reasoning. On the othend, we also
believe that as the healthcare environment will fae more

computerized in the next few years, this problethdeicrease. With
computerized healthcare environments, more exgepiioations or
more parts of them would be detectable and hanuedorkflow

systems that are integrated with computerized systsuch as
financial systems, drug ordering systems, eleatrpaitient record
systems, medical devices, disease treatment dewires other
healthcare information systems.

We started research on exception management foricahed
workflows about a year ago. We believe that, ishart term,
representing and verifying exception managementmedical
workflows should help improve the execution andliguaf the
medical procedures. In a longer term, dynamic diamegandling
should improve the efficiency of the healthcarevjters to respond
to unexpected exceptions.

6. ACKNOWLEDGEMENTS

This work was sponsored by and carried out at tleméhs
Corporate Research. We are very grateful to thightfal comments
provided by Beatrice Hwong, Arnold Rudorfer, GiltoeMatos, the
colleagues from Siemens Medical and Hui Cao fromniidical

749

Informatics Department of Columbia University. Algioanks to
Juergen Kazmeier for financial support for thiseesh.

7. REFERENCES

[1] Aamodt, A. and Plaza, E. Case-Based Reasoningdatianal
Issues, Methodological Variations, and System Aagines.
Al Communications7, 1, (1994), 39-59.

[2] Aigner, W. and Miksch, S. Supporting Protocol-BaSede in
Medicine via Multiple Coordinated Views. Proceedings
International Conference on Coordinated and Mudtipliews
in Exploratory Visualization(2004), 118-129.

[3] Anderson, T., and Lee, P. Bault Tolerance Principles and
Practice Prentice Hall International, 1981.

[4] Anyanwu, K., Sheth, A., Cardoso, J., Miller, Jdadtochut, K.
Healthcare Enterprise Process Development andrétieg.
Technical report, University of Georgia, 2002.

[5] Ardissono, L., Leva, A. Di, Petrone, G., Segnan, aid
Sonnessa, M. Adaptive Medical Workflow Managemengf
Context-Dependent Home Healthcare Assistance ®elivic
Electronic Notes in Theoretical Computer Scierktisevier,
(2005).

[6] Arkin, A. Business Process Modeling Language. (2002

[7] Buhr, P. A. and Mok, W. Y. R. Advanced Exceptiomiding
MechanismslEEE Transactions on Software Engineerigg,
9, (2000), 820-836.

[8] Casati, F.Models, Semantics, and Formal Methods for the
design of Workflows and their ExceptioR&D thesis,
Politecnico Di Milano, (1998).

[9] Casati, F., Ceri, S., Paraboschi, S., and Poz&p&cification
and Implementation of Exceptions in Workflow Manageat
SystemsACM Transactions on Database Systepds 3,
(1999), 405-451.

[10] Chiu, D. K. W., Karlapalem, K., and Li, Q. Exceptio
Handling with Workflow Evolution in ADOME-WFMS: a
Taxonomy and Resolution TechniquesCIBCW Workshop:
Towards Adaptive Workflow Systertiéov 14-18, 1998),
Seattle, Washington.

[11] Cook, K. Evaluating acute abdominal pain in adults
http://mww.jaapa.com/issues/j20050301/articlesfio@iD5.htm

[12] Dadam, P. and Reichert, M. Towards a hew dimerigion
clinical information processin&tud Health Technol Inform
77, (2000), 295-301.

[13] Dazzi, L. and Stefanelli, M. A patient workflow nagement
system built on guidelines, Proc. of AMIA 97(1997), 146-
150.

[14] Deiters, W., Goesmann, T., Just-Hahn K., Lefelegrid
Rolles, R. Support for exception handling througirkftow
management systenGSCW Workshop: Towards Adaptive
Workflow System$1998).

[15] Dustdar, S., Hoffmann, T., and Aalst, W.v.d. Minifgad-hoc
Business Processes with TeamLbgta and Knowledge
Engineering Elsevier, (Sep 2005).

[16] Edelweiss, N. and Nicolao, M. Workflow Modeling: &&ption
and Failure Handling RepresentationSIBCC '98:



Proceedings of the XVIII International Conferené¢he
Chilean Computer Scien@ociety (1998), 58.

[17] Eder, J. and Liebhert, W. Contributions to Exceptitandling
in Workflow Management. IRProceedings EDBT Workshop
on Workflow Management Systeifi®98), 3-10.

[18] Eder, J. and Liebhart, W. The Workflow Activity Meld
WAMO. In Proceedings of 3rd International Conference on
Cooperative Information Systen($995).

[19] Garcia, A. F., Rubira, C. M. F., Romanovsky, Adatu, J. A
Comparative Study of Exception Handling Mechanifons
Building Dependable Object-Oriented Softwalaurnal of
Systems and Software, Elseyg&9, 2, (Nov 2001), 197-222.

[20] Georgakopoulos, D., Hornick, M., and Sheth, A. Arrgiew
of workflow management: from process modeling tokflow
automation infrastructur®istributed Parallel Databases$,
2, (1995), 119-153.

[21] Greiner, U., Ramsch, J., Heller, B., Loffler, M.[iN&r, R.,
Rahm, E. Adaptive Guideline-based Treatment Workdlo
with AdaptFlow. InProc. of Symposium on Computerized
Guidelines and Protocal$2004), 113-117.

[22] Grigori, D. Improving Business Process Quality tigio
Exception Understanding, Prediction, and Prevention
Proceedings of the 27th International Conferencé&/ery
Large Data Baseg2001), 159 - 168.

[23] Hagen, C. and Alonso, G. Exception Handling in Viovk
Management System&EE Transactions on Software
Engineering 26, (2000), 943-958.

[24] Hagen, C. and Alonso, G. Flexible Exception Hargdimthe
OPERA Process Support SystemPhoceedings of the 18th
International Conference on Distributed Computirygt8ms
(ICDCS) (1998), 525-533.

[25] Hwang, S., and Tang, J. Consulting past exceptofailitate
workflow exception handlingdecision Support Systen®v, 1,
(2004), 49-69.

[26] Klein, M., Dellarocas, C. A Knowledge-based Apptoéa
Handling Exceptions in Workflow SystentSomputer
Supported Cooperative Worg, 3-4, (2000).

[27] Kobayashi, M., Fussell, S. R., Xiao, Y., Seagull) AVork
coordination, workflow, and workarounds in a meblaamtext.
Conference on Human Factors in Computing Syste2085y).

[28] Laprie, J. C. Ed. Dependability: Basic concepts and
Terminology. Volume 5 of Dependable Computing aadl
Tolerant Systems, Springer-Verlog, (1992).

[29] Luo, Z., Sheth, A., Kochut, K., and Arpinar, B. Eption
Handling for Conflict Resolution in Cross-Organiaatl
Workflows. Distributed and Parallel Databasg$3, (2003),
271-306.

750

[30] Luo, z., Sheth, A., Kochut, K., and Miller, J. Eptien
Handling in Workflow System#\pplied Intelligencel3, 2,
(2000), 125-147.

[31] Medeiros, A.d., Aalst, W.v.d. and Weijters, A. Wibokv
Mining: Current Status and Future Directions.Oimthe Move
to Meaningful Internet Systen{8003), Z. Tari R. Meersman
and D.C. Schmidt, ed.

[32] Ogasawara, T., Komatsu, H., and Nakatani, T. Aystid
exception handling and its dynamic optimizatiodéwa. In
Proceedings of the 16th ACM SIGPLAN Conferencelzjadd
Oriented Programming, Systems, Languages, and égioihs
(OOPSLA '01), (2001), 83-95.

[33] Peleg, M., Boxwala, A. A., Ogunyemi, O., Zeng, Qu, S.,
Lacson, R., Bernstam, E., Ash, N., Mork, P., OhnacNado,
L., Shortliffe, E. H., Greenes, R. A. GLIF3: theo&tion of a
guideline representation format.Pnoc AMIA Symp.(2000),
645-653.

[34] Poulymenopoulou, M. and Vassilacopoulos, G. A Wasehl
Workflow System for Emergency Healthcakéedical
Informatics Europ(2002).

[35] Quaglini, S., Caffi, E., Cavallini, A., Micieli, Gand Stefanelli,
M. Simulation of a Stroke Unit Careflow, Medinfo@n

[36] Quaglini, S., Stefanelli, M., Lanzola, G., Caponysé., and
Panzarasa, S. Flexible guideline-based patienfl@are
systemsaAtrtificial Intelligence in Medicing22, 1, (2001), 65-
80.

[37] Stiphout, R. van, Meijler, T. D., Aerts, A., Hammex, and
Comte, R. le. TREX: Workflow TRansactions by Meafs
Exceptions. IrProceedings of WFMS'98 EDBT Workshop on
Workflow Management Syster(ts998).

[38] Sutton, D. R., and Fox, J. The Syntax and Semaottitee
PROforma Guideline Modeling LanguageAm Med Inform
Assoc, (Sep-Oct, 2003), 10, 5, 433-476.

[39] Tu, S. W. and Musen M. A. A flexible approach tadgline
modeling. InProc AMIA Symp.(1999), 420-424.

[40] Tucker, A. L., and Edmondson, A. Managing Routine
Exceptions: A Model of Nurse Problem Solving Bebavi
Advances in Health Care Managemet(2002), 87-113

[41] WIMC. Workflow Process Definition Interface - XMLr&cess
Definition Language. Workflow Management Coalition
Workflow Standard, (2002).

[42] Widom, J. and Ceri, S., Eds. Active Database Systbforgan
Kaufmann Publishers Inc., San Francisco, CA. (1996)

[43] Xu, J., Romanovsky, A., and Randell, B. Coordinated
Exception Handling in Distributed Object Systemsrf
Model to System Implementation. Broceedings of the 18th
international Conference on Distributed Computingt8ms
(ICDCS). IEEE Computer Society, Washington, DC, 12,
(1998).



