
Managing Exceptions in the Medical Workflow Systems

Minmin Han
Siemens Corporate Research Inc.

755 College Road East
Princeton, NJ 08540

USA

mih9@lehigh.edu

Thomas Thiery
Technische Universität München

Boltzmannstr. 3
85748 Garching bei München

Germany

thiery@mytum.de

Xiping Song
Siemens Corporate Research Inc.

755 College Road East
Princeton, NJ 08540

USA

xiping.song@siemens.com

ABSTRACT
Over the years, medical informatics researchers have studied how
to use software technologies to provide decision support for using
evidence-based medical procedures. Software professionals have
investigated how to support hospital administration, therapy and
laboratory workflows. For many of these efforts, managing the
exceptions in the workflows is a key issue since the medical
workflows must cope with a wide variety of patient medical
situations as well as those of the healthcare environments. This
paper presents an analysis of past research in managing medical
workflow exceptions, and proposes future research that would
benefit the medical applications. The paper is focused on three
topics: representing, handling and analyzing exceptions. Based
upon our analysis, we believe that techniques for verifying
exception management models and for handling dynamic
exceptions should be useful and possibly essential for developing
large scale, practical medical workflow systems.

Categories and Subject Descriptors
H.4.1 [Information Systems] Office Automation - Workflow
Management

General Terms
Design

Keywords
Exception, Workflow Management System, Medical Workflows

1. INTRODUCTION
A workflow management system is a software system that
provides workflow definition and interpretation (i.e., workflow
engine) mechanisms to support the workflow execution, possibly
by integrating with other software applications. Workflow
interpretation may invoke other software applications and guide
human collaborations [20].

Many medical informatics researchers and software professionals
have done extensive research to define, analyze and semi-

automate medical workflows with funding from numerous
government agencies or corporations. Clinicians have developed
and published a very large number of evidence-based medical
procedures to disseminate the best practices. Such procedures set
the starting points for the researchers to develop and experiment
with automated or semi-automated medical workflows systems.
Experimented medical workflows include: diagnosis workflow
management system [5], treatment/therapy workflow management
system [13][35], hospital administration workflow management
system [12][34], etc. Support for workflow has been largely
provided by means of electronic reminders, alerts and work items
(work list) for the medical staff.

It is well recognized that managing exceptions are common
occurrences in the daily life of medical professionals [27][40]. In
addition, past research and experiments have also shown that
effective management of exceptions in a workflow management
system is crucial for its success [17]. Usually, a major part of a
workflow definition defines the “normal” behaviors in response to
anticipated events and/or results. Briefly, an exception is
“abnormal” behavior from the “normal” workflow. However, as
we will discuss later, exceptions in medical workflows may cover
a wide variety of events, not limited to medical emergencies,
depending on the application context and workflow design
decisions.

Exception management includes exception definitions and
defined procedures to response to the defined exceptions. Such
procedures can be implemented with automated computer systems
and human activities. Deciding whether an event is “abnormal”
can be quite subjective. Workflow system designers can choose to
use exception management to manage some system behaviors or
events which might not be so “abnormal” (e.g., missing
appointments might not be so abnormal in medical domain).

We believe that managing exceptions is unavoidable for any
complex medical workflow systems for the following reasons:

� Medical staff will often have to first react to unexpected
events with the patient, possibly not with all desired information,
and then will update the tracking records to reflect the changes.

� Physicians often want to deviate from the “normal” flow [36]
to best care the patients within the given environments (e.g.,
medical devices, schedules, patients’ insurance)

� Many medical systems to which a workflow system integrates
may raise exceptions that need to be handled. For example, the
medical guidelines supported by GLIF3 [33], EON [39], and
PROForma [38], include exceptions.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ICSE'06, May 20–28, 2006, Shanghai, China.
Copyright 2006 ACM 1-59593-085-X/06/0005...$5.00.

741

Studying exceptions in medical workflows and exploring how
such exceptions can be handled promptly and appropriately within
the workflow systems should improve healthcare quality and
efficiency.

For example, an emergency room diagnosis workflow for acute
abdominal pain [11] can be summarized as: physician takes the
patient’s history; then the physician performs a physical exam;
and then the patient needs to take a set of lab and imaging exams.
However, “abnormal” situations can happen to this simple
workflow. For example, a patient may crash during any of the
three diagnosis activities. If this occurs, instead of continuing the
workflow, the physician needs to perform immediate emergency
treatment to save patient’s life. One additional exception would be
one lab result may be delayed for hours so the physician has to
use some alternative checks instead of waiting since the patient
needs immediate treatment. As this example illustrates, managing
exception situations is common for healthcare professionals.

We categorize the exceptions in Table 1 to illustrate a wide
variety of exceptions in medical workflows, including both
expected and unexpected exceptions. We used the same
categorization based on predictability and exception source, the
same as many other researchers [2][10][14][17][18][30][36]. This
categorization helps us understand what exception managing
capabilities would be useful for medical workflow systems.

Table 1 Exception Categories

Expected Exceptions
Exception
Source

Example

Workflow
tasks

Patient is allergic to drug “ABC” so cannot
give “ABC” to patient

External
applications

“NO_AVAILABLE_BED” exception from
hospital bed management system

Data changes Patient heart rate drops to 50/min, which often
indicates a sudden adverse change of the
patient’s medical conditions

Temporal
constraints

Blood test task is not done on time

Unexpected Exceptions
Add a new therapy into treatment plan

This paper does not discuss those exceptions that are at system-
level (e.g., network problems) or at software application-level
(such as memory allocation error, data type conversion overflow).
We believe those exceptions are not much related with workflow
design and are often handled at the software application or at the
operating system level.

Software application level exception management is a very active
research topic in software engineering area. Most of this research
is focused on the programming languages. Researchers provide
new framework and algorithms to support exception handling for
OOP languages (e.g. [7]) or analyzing/optimizing the exception
handling performance (e.g. [32]).

In workflow systems, the exceptions may not be errors like those
in computer programs, but rather, as a part of expected business
conditions. Thus they have to be accommodated instead of simply
aborting the execution and logging it as an error as in other type
of programs.

The goals of this paper are to: 1) summarize the important topics
for managing exceptions in medical workflows; 2) survey the
current state-of-the-art academic/industrial research results on
these topics; and 3) point out further research that can yield
practical results. We used this effort to start our research in the
workflow exception management area.

Section 2 summarizes exception research areas. In section 3, we
describe the current state-of-the-art in those areas. In section 4, we
discuss future research.

2. RESEARCH AREAS
The research for managing exceptions in general workflow
systems can be categorized into three major areas: 1) Representing
Exception Management 2) Implementing and Executing the
Handling of Exceptions 3) Analyzing Exceptions.

2.1 Representing Exception Management
Exception management often needs to be clearly represented both
for computer execution (supporting medical workflow executions)
and user understanding (e.g., medical staff training, workflow
design). Moreover, since medical professionals will be involved
in developing the workflow definitions, the representation of the
exception management must be understandable by a variety of
users from different domains, not only IT, but also medical
professionals.

We have identified the following aspects of exception
management that would need to be represented. The following
properties are listed by the importance of the properties:

� The class of exceptions: the type of the exception provides
basic information about the exception. One sample type of
exceptions is “TIME_OUT” which indicates that the exception of
this type will be raised when some activity is not finished within a
certain pre-defined time period.
� The condition when the exception is raised: It can be the
failure/abort/timeout of an activity (e.g., the blood test is not
finished within 2 hours), data thresholds (e.g., patient body
temperature reaches 100F), or any combination of multiple
conditions.
� Actions for handling the exception: the actions and their
execution sequences for handling the exception. Exception
handling can be as simple as skipping an activity, or as
complicated as workflow evolution (change a workflow definition
while some of its instances have been only partially executed).
� The source of the exception: The exception can be raised
during the external applications, or an activity of a workflow. For
example, an exception might be defined as only occurring during
the “check history” activity of “acute abdominal pain diagnosis”
workflow.
� The receivers of the exception event: The possible receivers
are one or more running instances of workflow definitions, some
external applications, or certain roles played by humans. For
example, a receiver can be a treatment workflow instance for a
patient or a physician who is a specialist for certain medical
conditions.

It is not necessary for an exception definition to contain all these
properties. For example, if the publish-subscribe pattern is used as
the exception handling mechanism, the “receiver” property is no

742

longer necessary. However, an exception management definition
must have the first three aspects.

The above discussions are concerned only with individual
exception management. To effectively and clearly define a large
number of (inter-related) exceptions for a non-trivial workflow
system can be a much harder issue. The exceptions may have
certain relationships, such as “is-a” or “is-part-of’. Exploring the
use of those relationships to ease the exception management
representation is also an interesting research topic.

2.2 Executing the Exception Handling
Exception handling needs not only representation but also needs
to be implemented and executed in a timely and repeatable
fashion. The following areas are related to this aspect:

� Propagation: to route an exception to the corresponding
handler;

� Handling primitives: a set of pre-defined actions as the
primitives for implementing the handler (e.g., record an exception
into an event log);

� Handling logic: the algorithm for determining the concrete
activities to handle exceptions. Examples include using explicitly
defined handling logic for each possible exception or consulting
knowledge-base for appropriate handling logic.

To propagate an exception is to forward the exception to the
appropriate handler. One example is to use a flat table structure to
map a certain type of exception to one exception handler. Another
way is that exceptions can be propagated like the exceptions in
Java/C++ [19]: the exception will be forwarded to the higher
control level if the lower level does not have a handler for it.
There are other ways to propagate the exceptions. It is critical to
ensure every specified exception be sent to the appropriate
handler module. A generic handler on the highest level takes care
of every unhandled exception. This can be, for example, a
mechanism that involves human interaction for dynamic exception
handling.

Researchers have identified and defined some primitives for
coding the exception handler. We have studied [17][18][29] and
combine their work with our experience to summarize possible
primitives in Table 2.

The simplest exception handling mechanism is to define the
exception handling actions for each exception before runtime. A
more flexible mechanism is to let users define/select the handling
during runtime. A more automated, adaptable exception handling
mechanism is to automatically decide how to handle the
exceptions depending on the previous exception handling
experience, knowledge, resource limitations and other
considerations.

Table 2 Exception Handler Primitives

Maintaining workflow “normal” behavior
Ignore Takes no action
Record Record to log (e.g., develop audit trail)
Notify Inform a role/an actor/a group of actors

/external applications.
Propagate Route the exception to another handler.
Resource Add more resource.
Modifying behavior of one/more process instances
Retry Retry the current task.
Suspend Pause the current task/process
New Add a task/process
Modify Modify a task/process
Remove Remove the current task/process
Change
Sequence

Change the task sequence in the current
workflow

Terminate Terminate one/more processes.
Change
Resource
Requirements

Assign the task to another actor or change
other resource requirements /constraints.

Delay Delay a task/process
Modifying workflow definition (evolution)
Modifications Add new tasks, remove tasks, and change

sequence of tasks…

2.3 Analyzing Exceptions
Exception management in a workflow system needs to be analyzed
and verified to ensure correctness with respect to its syntax,
executability, semantics and completeness. The analysis includes
three sub-areas:

� Identify all concerned exceptions: what exceptions need to be
defined and implemented into the medical workflow systems.

� Verify the exception management before runtime: The
verification can focus on both the syntax and executability. Further,
it might verify whether exception management would violate any
medical practice rules.

� Check the effectiveness of the exception managements: Check
whether the defined exception management is sufficiently complete
and comprehensive. For example, it can check if the exception
managements will handle all emergency conditions effectively.

Also since exceptions are usually built incrementally, it is important
to check the exception management models to ensure they will
remain working as they are being built. Programming languages like
Java simply verify if possible exceptions are thrown to the higher
level or caught at this level. For medical workflows, we need to
make sure not only all exceptions are handled, but also the handling
will not cause problems, such as conflicting handlers (as more and
more exception management is being added) or break certain
medical practice rules.

3. CURRENT STATE-OF-THE-ART
Research for exceptions in workflow management systems has been
going on for about ten years. In this section, we discuss the current
research status in each of the three areas.

743

3.1 Representing Exceptions
In existing literature, prototypes and products for exception
management, we have found two general approaches to represent
exception management: 1) embedded in workflow process definition
[6][16][17][41]; 2) stand-alone [8][9][21][25][30]. The embedded
approach is to expand the workflow process definitions to include
exception management. The stand-alone approach is to separate the
exception management from workflow process definition.

Two examples of embedded exception definition are Business
Process Modeling Language (BPML) [6] and WfMC’s XML
Process Definition Language (XPDL) [41]. Since they are similar,
we describe the XPDL approach only.

In XPDL, exceptions are defined as a special type of transition
between activities. Figure 1 shows a partial XPDL specification: the
normal workflow is first to take X-Ray chest film. Then the
physician checks the patient history. When the “XRayNotAvailable
Exception” happens during task “XRay Chest Film”, a “CT Chest
Film” task is created and needs to be completed before the
“CheckHistory” task.

Figure 1 partial XPDL specification for

XRAYNotAvalableException

Figure 2 shows the textual definition of Figure 1. The raise of an
exception is treated as a special type of transition condition and the
handling of the exception is defined as a branch.

The only difference for an exception transition and a normal
transition in XPDL is that the former has a different type and the
transition is labeled with the exception name. “CT Chest Film” is an
exception handling task. However, the exception handler is scattered
in the diagram and the textual definition together with the other
“normal” transitions.

Figure 2 Textual Version of XPDL specification

The “stand-alone” approach uses ECA (Event, Condition, Action)
rules and knowledge base entries [8][21][26][30]. Klein et al.
specify exceptions in a knowledge base [26]. Every exception is
associated with a knowledge base entry that includes: an exception
definition, a definition when the exception will become critical, a
detection process, and a handling process. ECA rules include three
components: event, condition and action, which are originally used
in active databases [42].

Chimera-EXC [8] provides a detailed example of using ECA to
specify exceptions. A trigger is defined for global exception or an
exception for a specific process. It includes events (E), conditions
(C), actions (A) and the event priority. If an event arrives and the
conditions are satisfied, the actions will be executed. If more than
one triggering event arrives, the corresponding actions are executed
according to the event’s priority.

Figure 3 Chimera-EXC specification example

Figure 3 shows how to define the exception described in Figure 1
using Chimera-EXC. Once an external event
“XRayMachineBroken” arrives and if a XRayChestFilm task is at
the waiting state, a new task “CTChestFilm” is started instead.

An event of Chimera-EXC can be a data update event, a workflow
event, a temporal event (timestamp or time interval) or an external
event. Its conditions are set with context variables, which support
actions such as setting data/context variables or modifying tasks.

An embedded exception specification can be easier to understand
because it is within an application context where the number of
involved exceptions is limited. However, just as [3][19] pointed out,
embedding exception definition and handling into a process
definition can reduce its exception handling ability since the large
number of exceptions will obscure the normal workflow process.
One example is the “patient crash” exception, which may happen at
anytime and thus it is related to all tasks in the workflow. Currently,
as seen from the literature, the “stand-alone” exception management
definitions provide more expressive power by allowing the use of
complex conditions (including complex temporal conditions, e.g.
within 2 hours of last medication). However, exception definitions
separated from the “normal” workflow process definitions may be
harder to understand since they are dislocated from their application
context.

Summary:

� The current approaches to exception representation provide
enough expressiveness: however, no one representation approach
provides all the expressive power we would need; instead we need a
combination of them. For example, Chimera-EXC provides support
for complex temporal conditions required by exceptions in medical
workflows but its action definition is descriptive instead of a
declarative as in XPDL.

� Understandability for various kinds of users is still lacking:
Different users are concerned with the representations at different
definition levels and for different aspects. A set of views should be
designed for different user roles. For example, physicians want to
see an overview of the exceptions and their handlings embedded
within the workflows while they also want to see a separate view of
the details of exception properties when modifying the exception
definitions. Probably, for patient education, patients would need a
more friendly graphic presentation so that they can understand the
relevant exceptions and handlings, likely even with the related cost,
risks, and possible alternatives.

CT Chest Film

XRay Chest Film
Check
History

XRayNotAvailableException

define trigger XRayNotAvailable
 events raise (XRayMachineBroken)
 condition XRayChestFilm(X), X.status = “waiting”,

DiagnosisCase(C), X.instanceOf(C)
 actions cancelTask(X), startTask(C, “CTChestFilm”)
 order 1
end;

<Transitions>
 …
 <Transition Id=“br1” From=“XRay Chest Film” To=“Check History”/>
 <Transition Id=“br2” From=“XRay Chest Film” To=“CT Chest Film”>
 <Condition Type=“EXCEPTION”>
 XRayNotAvailableException
 </Condition>
 </Transition>
 <Transition Id=“br3” From=“CT Chest Film” To=“Check History” />
 ...
</Transitions>
…

744

3.2 Handling Exceptions
The propagation mechanism of many workflow management
systems is similar to the nested exception propagation mechanism in
programming languages such as Java and C++ [19]. An exception is
passed along the workflow call hierarchy to higher level handlers if
the lower level module cannot handle it [8][10][24][29].
Alternatively, a workflow can subscribe to specific system events
that it can and should handle. In this case, there is no call hierarchy
or exception passing. An exception defined at the individual
workflow level may not be defined or visible as an exception at the
system level.

Figure 4 shows the propagation of an exception in the OPERA
system [24]: process p0 creates sub-process p1, which creates
activity p2. When an exception event that is subscribed by p2, is
raised during the execution of p2, and if p2 does not have a handler,
the exception is propagated to its parent p1. p1 also has no
exception handler; again the exception is propagated to its parent
p0. p0 has an exception handler for this exception and does the
handling that can be abort p2 and resume p1.

Figure 4 Propagation of Exception in OPERA

If an exception is propagated to the root without getting caught by
an exception handler, some workflow management systems have
specialized modules to deal with this situation. In defensible
workflow [30], when no handler can be found, the system will try to
solve the problem based upon past experience. When systems find
no similar past experience, human intervention will be required.

We consider this propagation mechanism applicable for medical
workflows. The exception handler hierarchy makes reuse of handler
modules possible and the root default handler makes sure that any
unhandled exception will be caught.

We have investigated a number of workflow management systems
[9][10][17][21][30][36][37] to see how well the primitives in Table
2 are implemented. Each of those approaches supports either a
bigger or smaller set of identified primitives. We found that any of
those primitives is supported by some systems investigated, though
they might be implemented in different ways. Thus, we believe that
these primitives have been sufficiently supported by existing
workflow management systems. Exception handling mechanisms
include:

� Pre-defined handling: The actions for handling an exception
are explicitly defined by the user before runtime [9][36]. ADOME-
WFMS has system built-in modules to provide automatic pre-
defined handling for some expected exceptions such as best
candidate actor is not available [10].

� Ad-hoc handling: Users specify or select the exception
handling actions from the building blocks when an exception occurs
[10]. This mechanism is mainly for unexpected exceptions.

� Using an extended model to enable workflow recovery:
Extend the ACID (Atomicity, Consistency, Isolation, Durability)
transaction model to support automatic exception handling in
workflow management systems [17][18][23][24][37].

Researchers proposed algorithms to label tasks then to use backward
recovery (partial rollback), forward recovery (partial rollback and
use alternative route), or pre-defined compensation process
according to the failed task’s label and the structure of the process.
The process state may end at the regular committed state, failed state
or other extended states. Such mechanisms provide support for
workflows to handle or adapt to the exception condition while still
working towards accomplishing their goals.

Figure 5 Extended Transaction Model [17]

One example of extended ACID transaction model based exception
handling is from Eder et al. [17]. Figure 5 shows their extended
transaction model: the arrows are possible transitions between
process states. A process starts as active state when its first activity
is started. If there is a failure or exception, it may enter “aborting” or
“compensating” state. Besides the state “failed” and “committed”,
the final state of this process can be “terminated”, or “compensated”.

Eder et al. label the activities as vital (important activities) and non-
vital (not so important activities). When a non-vital activity fails,
“forward execution”, i.e. to ignore the failed activity and continue
the workflow, is used. When a vital activity fails, “backward
recovery” and “forward recovery” (use alternative activities if
possible) is used. The actual algorithm for backward recovery
depends on the control structure of the failed activity (sequence,
parallel, choice, or loop). The process’ state is changed accordingly.

� Knowledge-based handling: To reuse the stored experience to
handle exceptions. Klein [26] and Luo [29] discussed finding
appropriate exception handling actions from a knowledge base. In
defensible workflow, case-based reasoning (CBR) is used to analyze
the case repository to find similar experience to handle exceptions
[30]. Stored experience may be explored once an exception happens
for quickly getting a solution. However, it is also desirable to
analyze the stored experience off-line to improve exception handling
for the future. More discussion for this topic is presented in section
3.3.

We believe that an extended ACID model is not suitable for
treatment/diagnosis workflow exception handling because the
rollback of medical treatment/diagnosis activities may be complex
and context related (e.g. using alternative medicine for a patient
depends on the patient’s age, stage of disease, medical history and
other information besides one workflow instance). Thus, we believe
that it would be difficult to use the extended transaction model in
treatment/diagnosis related medical workflows but possible for
administration medical workflows. Knowledge-based handling can

p1: sub-process

exception
raised

create
create

return
exception

return
exception

abort p2
resume p1

p2: activity p0: process

committed failed

active compensating

compensated

aborting

terminated

original transaction
model state

extended transaction
model state

745

be very useful for medical workflows since medical knowledge
grows quickly and this can help medical staff use the latest medical
developments.

Summary:

� Propagation mechanisms are satisfactory. We think that
medical workflow systems have no major special requirements for
propagation. The current propagation mechanisms are capable of
sending exceptions to an appropriate handler for medical workflows.

� The identified exception handling actions are sufficient and
broadly implemented. We believe that the currently defined and
implemented primitives are sufficient for both general workflows
and medical workflows.

� Handling mechanisms can be made more intelligent. We
believe that the knowledge-based handling can benefit medical
workflows because it can help the medical staff use the latest
information and knowledge.

3.3 Analyzing Exceptions
Analyzing unexpected exceptions can help increase the capability of
handling them in the future, while analyzing expected exceptions
can help find better solutions. There are two sources for such
analysis: 1) the exceptions occurrence history that records the
special events [31] and 2) the history of workflow executions that
contains the execution information [30]. The first is useful for
studying unexpected exception types and properties (see section
2.1), and their occurrence frequencies. The second is useful for
finding and generating the suitable handling methods.

For any of the three reasons for analyzing exceptions (section 2.3),
there are four things to consider: data source, the features we want to
check, analysis method and how to use the analysis result.

The frequency of an exception occurrence can be used to estimate
the necessity to evolve the workflow definition to manage the
exception. Quaglini et al. was able to extract the occurrence of an
exception using the logs by workflow mining [36]. They used
history information to create the predictability of exceptions. If the
frequency is above a certain level, the exception might be
considered not a special event, but instead an alternative branch in
the workflow definition. An expected, but rare exception will still be
handled as a regular expected exception [31].

The activities necessary to handle an exception can be mined from
the history of workflow executions. A workflow management
system, which allows ad-hoc adjustment of the individual workflow
instances, can have a documented workflow history that may
include reusable solutions to react to an unexpected exception. In
case of a new exception, the system can mine exception handling
data from historical workflow executions. Hwang and Tang have
designed a set of mining algorithms for this purpose [25]. They use
a large set of exceptions and runtime data to build up a set of trees
for past exceptions according to different attributes and find the
possible handling according to the distance between the new
exception and the past experience in the trees. Luo et al. described
this case-based reasoning methodology in their paper [30] and they
provide more details in [29]. They follow four steps as Aamodt et. al
discussed in [1] to explore the case repository:

� Retrieve the most similar cases (i.e., events) from database;
� Reuse the knowledge (such as what medicines were given) in
those cases;

� Adapt the solution of the similar cases to fit the current one;
� Add the verified solution into the case database.

The current data mining technologies are mature and applicable to
workflow exception history. A prototype in the METEOR project
[4][30] and a branch implementation in a commercial applications
like TeamLog [15] showed that the mining algorithm in workflow
history works well. However, since the medical domain is highly
safety-critical, to use such technologies in practice still needs more
efforts (some of them might not be technical, but legal).

Data mining can also help to identify the root cause of the
exceptions. Thus, the root cause of the problems could be removed
if the handling can be modified to become a method to prevent the
exception. Especially if data dependencies between exceptions and
workflow activities/data are explicitly established, the related
activities and data can be easily identified from the exceptions. As a
result, an extended analysis of the related activities or data, in real
life or within the system, can lead to a full removal or reduce the
number of caused exceptions. The removal of the root cause is
described by Tucker and Edmondson in [40] for improving medical
applications.

Summary:

� Make use of existing data mining methods. The data mining
methods are a research field of data-mining, rather than a part of the
workflow research area. How to produce the necessary data for
mining is more an implementation issue.

� The steady improvement of the workflow definition as a result of
data-mining is technologically feasible.

4. Further Research Topics
Based upon our understanding of the current state-of-the-art in
section 3, we propose three open questions as the major challenges
of research on exceptions for medical workflows: 1) Exception
verification; 2) Exception visualization; and 3) Dynamic exception
handling. Solving those issues effectively will help to make a
workflow management system more usable in the medical domain
(though likely being used in other areas (e.g., building management
systems) as well).

4.1 Exception Verification
Exception verification is the verification of exception and handling
definitions against workflow requirements and/or constraints that
include syntax, executability, completeness and semantics. There are
two types of software verification: static and dynamic. Our
discussion here focuses on static verification; by automatically
analyzing the software code, derive information about the software
execution behavior to establish some correctness criteria.

Developing large scale, consistent workflow systems that have
sophisticated exception definitions and handlings can be difficult.
First, exception management is more likely to be developed with the
participation of medical professionals who have limited knowledge
of workflow design. Also, exceptions are often built up
incrementally by different users, thus there may be conflicts or
duplications among different workflows that have exception
handlings. Furthermore, certain exceptions can happen anytime
during the execution of multiple medical workflows. When the
handling of one such exception may be proper for most workflow
instances, it may be inappropriate for some specific ones. Thus,
identifying errors in exception management are difficult. Since the

746

errors during runtime for medical applications can potentially harm
the patients, it is necessary to eliminate as many errors as possible
by exception verification. The key features we would need to verify
include:

� Completeness: Expected exceptions should map to specific
handlers as much as possible. A detectable, unexpected exception
may map to a special handler that either enables users to determine
handling actions on the fly or is intelligent enough to handle the
exception by itself. Any exception which is not otherwise handled
should at least be treated by a dynamic human interaction at the root
of the exception propagation hierarchy.

� Conflict-free: If two exceptions may be raised at the same time,
their handling should not conflict. For example, the handling of
exception A prescribes medicine X while the handling of exception
B prescribes medicine Y. If A and B may be raised at the same time
for one patient, medicine X and Y should not conflict, i.e. they can
be taken concurrently.

� Compatibility : The exception handling should not break the
constraints of workflow definition (e.g., whenever the workflow is
still expected to be continued after the exception). For example, the
handling for exception “XRayNotAvailableException” is to use
activity “CT chest film”, which requires two hours. This would
require that the activity after “x-ray exam” be started two hours later
to allow for the exception handling time of ‘CT chest film’.

� Correctness: If an exception handling uses context variables
that represent the data only available from where the exception is
raised, we need to verify if these variables are accessible and have
values for all workflow instances that may raise the exception.

As we discussed in section 3.3, there is little research for verifying
exceptions in workflow systems (i.e., to derive the exception
handlings’ behaviors at execution time and check if they conform to
certain correctness criteria). We have also studied exception
verification in programming languages. Research in verification of
exceptions is limited to completeness (“reliability” in [19]) and the
estimate of response time for concurrent exceptions [43]. In
computer programs, exception handling is largely to report errors
and their sources. It is rare to use exception handling to “repair” or
“compensate” an abnormally behaved process or to extend it to deal
with the exception conditions, which is however often desired in the
medical domain.

Medical knowledge bases should be useful for exception
verifications since they can provide rules to be the basis for the
correctness criteria to be verified. There are other aspects we want to
check, such as whether the exception handling actions fit with the
medical guidelines or not (where the guidelines can be a knowledge
base). But such verifications probably cannot be performed
completely automatically and will need qualified medical staff to
accomplish them.

4.2 Exception Visualization
Exception visualization is to represent exception definitions and
handlings in a highly visualized form so that users of different kinds
can understand them.

The exception management definition alone can be complex with
raising conditions and handling actions. In more advanced scenarios
dozens of exceptions are possible within one diagram. Simply to add
more exceptions to medical workflow diagrams can make the
workflows difficult to understand even for IT professionals because

exceptions can arise at any time. Furthermore, medical staffs cannot
properly handle the exceptions and correctly maintain the exception
management definitions, unless they have good understanding of the
exception raising condition, origins, handling steps and workflow
contexts (e.g., cause-analysis). Thus exception visualization is an
important issue for improving the usability of exceptions in medical
workflows.

We summarize the key features for visualizing exceptions as:

1. The visualization can provide a view to show the context and
other factors for medical staff to determine what exception handling
actions should be taken.

2. Support different views of the exception definition. Sample
views include workflow-oriented view (given a specific workflow,
what exceptions could potentially be raised and handled), exception-
oriented view (given specific exceptions raised, what workflows will
be impacted), data relation view (given certain data changes, what
exceptions could be raised). Such visualizations will aid end users to
better understand the exceptions and their relations with other
workflows.

3. To provide views to different levels so users can “zoom-in”
and “zoom-out” to view the different levels of abstractions.

We discussed the current research status on exception visualization
in section 3.1 and have not found any workflow systems that address
all of these three points. Visualization techniques for workflow
instances [2] may be helpful for resolving the first point.

4.3 Dynamic Exception Handling
Dynamic exception handling is to create a plausible handler upon
the raise of an exception and use the handler to deal with the
exception. The handler might not be explicitly defined from the
beginning to end, but rather is incrementally determined as it is
being executed.

Medical staffs must response to a wide variety of medical
exceptions. Some of them are expected while some are much less
expected. Some of them are clinical-related while some of them are
hospital administrative or operational-related. They deal with such
exceptions in two ways: 1) handling the raised exceptions with skills
which are acquired through training and 2) reducing the possibility
that the exceptions will occur for the future. For the first way,
medical staffs use their past experience, information about the
available resources (e.g., medical devices, other physicians),
prediction of outcomes to find a plausible way for handling
exceptions under the current circumstances. However, in the longer
term, they will use the second way by removing root cause of the
exceptions (such as shortage of lab personnel) and/or by improving
their processes.

We expect that medical workflow systems should support the above
described activities. We understand some of those dynamic
exception handlings are probably never supportable by computer
software (e.g., some surgical procedures on the patients). However,
we also believe that, as the healthcare environments become more
and more computerized (wirelessly networked sensors, integrated
imaging systems, a wider use of electronic patient medical records),
it should be possible to generate some exception handlers for certain
exceptions or at least a part of those handlers. For example, the
handling actions can call emergency services, order medications,
book operating rooms, make lab orders, set medical device
configurations/parameters, retrieve patient data, track and report the

747

patients’ or medical staffs’ locations, etc.. If the workflow
management systems can intelligently generate, properly sequence,
and execute the handling actions, this would certainly reduce the
response time, Further, dynamic handling should achieve the key
features as:

� To support dynamic exception handling: handling actions
could be dynamically customized based upon the information about
medical staffs’ workload/schedule, resources, past experiences in
handling similar exceptions for the patient’s best interest. The
dynamic exception handling can more likely be applied first to
hospital administrative or operational workflows since they require
less intelligence and are more likely already computerized.

� To support the evolution of exception handling: An
embedded exception analysis mechanism should provide support for
evolving exception management defined in workflow management
systems. The analysis results can be used to remove root cause,
perform workflow evolution and/or exception evolution (e.g.
frequently detected unexpected exceptions will be defined as
expected exceptions).

4.4 Demonstration Scenario
Our purpose of introducing this scenario is to illustrate how
exception techniques, particularly the proposed ones in this paper,
can help medical workflow development. The background of our
scenario is that a workflow management system is used to support
the acute abdominal pain diagnosis workflow in an emergency
department (ED).

Figure 6 Acute Abdominal Pain Diagnosis Workflow

Patient B comes to the emergency department due to abdominal
pain. The patient check-in workflow starts an acute abdominal pain
diagnosis workflow instance for patient B, which will automatically
retrieves the relevant patient medical records for an attending
physician. The physician checks B’s records, performs a thorough
physical exam and with the help of the workflow, electronically
orders a series of lab exams and imaging exams for the patient. B
finishes the lab exams but waits for 30 minutes and still did not have
the CT films taken. A “CT time out” exception is triggered by the
radiology information system that is integrated with the workflow
system.

Since the workflow system cannot find a predefined handler and
there was no automatic solution available, the “ad-hoc handling”
mechanism is used. Thus, a pop-up window informs the nurse about
the current exception and asks for solution. The nurse determines
that the patient cannot move and a portable CT device is required.
But, according to the equipment tracking software, all portable CT
devices are in use.

The nurse checks with a physician to select “use alternative
resource” and assigns use of US (Ultrasound) instead of CT for this
activity. The physician explains to the patient about the change by
using a visual form of exception handling and calls the

business/insurance people to ensure the insurance covers the cost.
Finally the diagnosis workflow ends and B is admitted to in-patient
department.

Figure 7 Sub-flow of Lab and Imaging Exams

The hospital has limited number of CT devices so the exception of
“CT device not available” occurs frequently during this diagnosis
workflow. After studying the exception log and discussing with
other physicians, the director of the ED decides to add use US
instead of CT when CT is not available as a predefined exception
handler into the workflow.

The director opens a GUI interface to input the exception properties
(type, condition, handling actions, etc). The workflow system
automatically verifies the compatibility of this new exception with
the rest of the exceptions and the workflow process. Checks are
made to see if the handling of the exception conflicts with the
knowledge base, the frequency of such exceptions and how it was
handled in the past. Since there is no problem found, this exception
was successfully added.

Following, we discuss the exception techniques used in this sample
scenario with respect to three aspects: exception representation,
exception handling and exception analysis.

Exception representation needs to be easy to understand for a variety
of users (e.g. nurse, business administration people, doctors, and
patients) and maintained by a non-IT staff. From this scenario, we
can see that a physician needs to know what exception happened
and what handling will be taken for the exception. We could see the
need for three types of visualization requirements from the above
sample scenario:

� When an exception occurs and the workflow instance starts the
exception handling process, physicians or hospital administrative
staff may want to see the direct cause, the handling actions and the
workflow context. This helps them to understand why certain
handling actions have been suggested through the alerts or work
items. This helps them decide if they should perform the suggested
tasks.

� A physician is dealing with a newly detected unexpected
exception. The medical workflow management system needs to
present the physician a view with sufficient information to define the
set of handling actions within minutes. For example, he can add a
CT check as a replacement when the x-ray device reports that it is
busy.

� A physician explains the treatment workflow to a patient and
shows the patient the possible exceptions and handling actions
during the workflow. Such education to patients is very useful
particularly for the therapy procedures. Similarly, it can be very
useful to train the medical staff.

Check
history

Physical
exam

Lab and imaging
exams

current activity planned activity

Time-Out

executed activity

Legend

CBC with
differential

LFT

upright and
supine

abdominal
films (CT)

upright
chest

film (CT)

upright and
supine

abdominal
films (US)

upright
chest

film (US)

CT time-out

exception

748

Two types of handling mechanisms are used in this scenario: pre-
defined handling and ad-hoc handling. Predefined handling
supports the physician setting the handling actions before the
exception arises. Ad-hoc handling allows the physician to pick the
handling actions on the fly. However, if dynamic exception
handling is used, when “CT time-out” arises, the system can
automatically find the possible alternative choice is US according to
the knowledge base and past experience and inform nurse and
physician of this suggestion.

The exception verification can be used to assure the correctness of
the modified workflows after the physician selects or defines
exception handling on the fly (such as in the “CT time out” scenario,
using US instead of CT) and adds new exception handling
afterwards. It is important to verify the exceptions for the 4C rules
(completeness, conflict-free, compatibility and correctness). If the
director adds the exception of “CT time-out” into the workflow but
forgets to add the corresponding handling, a completeness warning
will be issued. Then the newly added exception handling is checked
against other possible exceptions raised in the same workflow to see
if there is any conflict. The compatibility check insures this new
exception handling is compatible with the original workflow. If
originally this workflow was to end within 2 hours but the new
added exception handling, using ultrasound, may end within 2.5
hours, a compatibility warning is given. The correctness check
verifies the workflow data used in the exception handling.

5. CONCLUSION
Though managing exception situations is well recognized as daily
occurrences in the working life of medical staffs, computer software
systems, particularly the workflow management systems have not
been well applied to support such activities. Many workflow
systems provide exception management mechanisms of varied
capabilities; however, they have not widely been used to support
exceptional situation handling. One major reason, we believe, is that
at this stage, the healthcare environment has not been fully
computerized and many exception handlings mandate human
participation, skills and reasoning. On the other hand, we also
believe that as the healthcare environment will be far more
computerized in the next few years, this problem will decrease. With
computerized healthcare environments, more exception situations or
more parts of them would be detectable and handled by workflow
systems that are integrated with computerized systems such as
financial systems, drug ordering systems, electronic patient record
systems, medical devices, disease treatment devices, and other
healthcare information systems.

We started research on exception management for medical
workflows about a year ago. We believe that, in a short term,
representing and verifying exception management in medical
workflows should help improve the execution and quality of the
medical procedures. In a longer term, dynamic exception handling
should improve the efficiency of the healthcare providers to respond
to unexpected exceptions.

6. ACKNOWLEDGEMENTS
This work was sponsored by and carried out at the Siemens
Corporate Research. We are very grateful to the insightful comments
provided by Beatrice Hwong, Arnold Rudorfer, Gilberto Matos, the
colleagues from Siemens Medical and Hui Cao from Biomedical

Informatics Department of Columbia University. Also thanks to
Juergen Kazmeier for financial support for this research.

7. REFERENCES
[1] Aamodt, A. and Plaza, E. Case-Based Reasoning: Foundational

Issues, Methodological Variations, and System Approaches.
AI Communications, 7, 1, (1994), 39-59.

[2] Aigner, W. and Miksch, S. Supporting Protocol-Based Care in
Medicine via Multiple Coordinated Views. In Proceedings
International Conference on Coordinated and Multiple Views
in Exploratory Visualization, (2004), 118-129.

[3] Anderson, T., and Lee, P. A. Fault Tolerance Principles and
Practice, Prentice Hall International, 1981.

[4] Anyanwu, K., Sheth, A., Cardoso, J., Miller, J., and Kochut, K.
Healthcare Enterprise Process Development and Integration.
Technical report, University of Georgia, 2002.

[5] Ardissono, L., Leva, A. Di, Petrone, G., Segnan, M., and
Sonnessa, M. Adaptive Medical Workflow Management for a
Context-Dependent Home Healthcare Assistance Service. In
Electronic Notes in Theoretical Computer Science, Elsevier,
(2005).

[6] Arkin, A. Business Process Modeling Language. (2002).

[7] Buhr, P. A. and Mok, W. Y. R. Advanced Exception Handling
Mechanisms. IEEE Transactions on Software Engineering, 26,
9, (2000), 820-836.

[8] Casati, F., Models, Semantics, and Formal Methods for the
design of Workflows and their Exceptions. PhD thesis,
Politecnico Di Milano, (1998).

[9] Casati, F., Ceri, S., Paraboschi, S., and Pozzi, G. Specification
and Implementation of Exceptions in Workflow Management
Systems. ACM Transactions on Database Systems, 24, 3,
(1999), 405-451.

[10] Chiu, D. K. W., Karlapalem, K., and Li, Q. Exception
Handling with Workflow Evolution in ADOME-WFMS: a
Taxonomy and Resolution Techniques. In CSCW Workshop:
Towards Adaptive Workflow Systems, (Nov 14-18, 1998),
Seattle, Washington.

[11] Cook, K. Evaluating acute abdominal pain in adults
http://www.jaapa.com/issues/j20050301/articles/belly0305.htm

[12] Dadam, P. and Reichert, M. Towards a new dimension in
clinical information processing. Stud Health Technol Inform,
77, (2000), 295-301.

[13] Dazzi, L. and Stefanelli, M. A patient workflow management
system built on guidelines, In Proc. of AMIA 97, (1997), 146-
150.

[14] Deiters, W., Goesmann, T., Just-Hahn K., Lefeler, T. and
Rolles, R. Support for exception handling through workflow
management systems. CSCW Workshop: Towards Adaptive
Workflow Systems, (1998).

[15] Dustdar, S., Hoffmann, T., and Aalst, W.v.d. Mining of ad-hoc
Business Processes with TeamLog. Data and Knowledge
Engineering, Elsevier, (Sep 2005).

[16] Edelweiss, N. and Nicolao, M. Workflow Modeling: Exception
and Failure Handling Representation. In SCCC '98:

749

Proceedings of the XVIII International Conference of the
Chilean Computer Science Society, (1998), 58.

[17] Eder, J. and Liebhert, W. Contributions to Exception Handling
in Workflow Management. In Proceedings EDBT Workshop
on Workflow Management Systems, (1998), 3-10.

[18] Eder, J. and Liebhart, W. The Workflow Activity Model
WAMO. In Proceedings of 3rd International Conference on
Cooperative Information Systems, (1995).

[19] Garcia, A. F., Rubira, C. M. F., Romanovsky, A., and Xu, J. A
Comparative Study of Exception Handling Mechanisms for
Building Dependable Object-Oriented Software. Journal of
Systems and Software, Elsevier, 59, 2, (Nov 2001), 197-222.

[20] Georgakopoulos, D., Hornick, M., and Sheth, A. An overview
of workflow management: from process modeling to workflow
automation infrastructure. Distributed Parallel Databases, 3,
2, (1995), 119-153.

[21] Greiner, U., Ramsch, J., Heller, B., Löffler, M., Müller, R.,
Rahm, E. Adaptive Guideline-based Treatment Workflows
with AdaptFlow. In Proc. of Symposium on Computerized
Guidelines and Protocols, (2004), 113-117.

[22] Grigori, D. Improving Business Process Quality through
Exception Understanding, Prediction, and Prevention. In
Proceedings of the 27th International Conference on Very
Large Data Bases, (2001), 159 - 168.

[23] Hagen, C. and Alonso, G. Exception Handling in Workflow
Management Systems. IEEE Transactions on Software
Engineering, 26, (2000), 943-958.

[24] Hagen, C. and Alonso, G. Flexible Exception Handling in the
OPERA Process Support System. In Proceedings of the 18th
International Conference on Distributed Computing Systems
(ICDCS), (1998), 525-533.

[25] Hwang, S., and Tang, J. Consulting past exceptions to facilitate
workflow exception handling. Decision Support Systems, 37, 1,
(2004), 49-69.

[26] Klein, M., Dellarocas, C. A Knowledge-based Approach to
Handling Exceptions in Workflow Systems. Computer
Supported Cooperative Work, 9, 3-4, (2000).

[27] Kobayashi, M., Fussell, S. R., Xiao, Y., Seagull, F. J. Work
coordination, workflow, and workarounds in a medical context.
Conference on Human Factors in Computing Systems, (2005).

[28] Laprie, J. C. Ed. Dependability: Basic concepts and
Terminology. Volume 5 of Dependable Computing and Fault-
Tolerant Systems, Springer-Verlog, (1992).

[29] Luo, Z., Sheth, A., Kochut, K., and Arpinar, B. Exception
Handling for Conflict Resolution in Cross-Organizational
Workflows. Distributed and Parallel Databases, 13, (2003),
271-306.

[30] Luo, z., Sheth, A., Kochut, K., and Miller, J. Exception
Handling in Workflow Systems. Applied Intelligence, 13, 2,
(2000), 125-147.

[31] Medeiros, A.d., Aalst, W.v.d. and Weijters, A. Workflow
Mining: Current Status and Future Directions. In On the Move
to Meaningful Internet Systems, (2003), Z. Tari R. Meersman
and D.C. Schmidt, ed.

[32] Ogasawara, T., Komatsu, H., and Nakatani, T. A study of
exception handling and its dynamic optimization in Java. In
Proceedings of the 16th ACM SIGPLAN Conference on Object
Oriented Programming, Systems, Languages, and Applications
(OOPSLA '01), (2001), 83-95.

[33] Peleg, M., Boxwala, A. A., Ogunyemi, O., Zeng, Q., Tu, S.,
Lacson, R., Bernstam, E., Ash, N., Mork, P., Ohno-Machado,
L., Shortliffe, E. H., Greenes, R. A. GLIF3: the evolution of a
guideline representation format. In Proc AMIA Symp., (2000),
645-653.

[34] Poulymenopoulou, M. and Vassilacopoulos, G. A Web-based
Workflow System for Emergency Healthcare. Medical
Informatics Europ, (2002).

[35] Quaglini, S., Caffi, E., Cavallini, A., Micieli, G., and Stefanelli,
M. Simulation of a Stroke Unit Careflow, Medinfo 2001.

[36] Quaglini, S., Stefanelli, M., Lanzola, G., Caporusso, V., and
Panzarasa, S. Flexible guideline-based patient careflow
systems. Artificial Intelligence in Medicine, 22, 1, (2001), 65-
80.

[37] Stiphout, R. van, Meijler, T. D., Aerts, A., Hammer, D., and
Comte, R. le. TREX: Workflow TRansactions by Means of
Exceptions. In Proceedings of WFMS'98 EDBT Workshop on
Workflow Management Systems, (1998).

[38] Sutton, D. R., and Fox, J. The Syntax and Semantics of the
PROforma Guideline Modeling Language. J Am Med Inform
Assoc., (Sep-Oct, 2003), 10, 5, 433-476.

[39] Tu, S. W. and Musen M. A. A flexible approach to guideline
modeling. In Proc AMIA Symp., (1999), 420-424.

[40] Tucker, A. L., and Edmondson, A. Managing Routine
Exceptions: A Model of Nurse Problem Solving Behavior.
Advances in Health Care Management, 3, (2002), 87-113

[41] WfMC. Workflow Process Definition Interface - XML Process
Definition Language. Workflow Management Coalition
Workflow Standard, (2002).

[42] Widom, J. and Ceri, S., Eds. Active Database Systems. Morgan
Kaufmann Publishers Inc., San Francisco, CA. (1996).

[43] Xu, J., Romanovsky, A., and Randell, B. Coordinated
Exception Handling in Distributed Object Systems: From
Model to System Implementation. In Proceedings of the 18th
international Conference on Distributed Computing Systems
(ICDCS). IEEE Computer Society, Washington, DC, 12,
(1998).

750

