
Introduction

 Infertility is a major clinical problem, affecting 
people medically and psychosocially. Statistics 
indicate that 15 per cent of all couples in the United 
States are infertile, and the male factor is responsible 
for 25 per cent of these cases1. Of the many causes 
of male infertility, oxidative stress (OS) has been 
identified as one factor that affects fertility status and 
thus, has been extensively studied in recent years. 
Spermatozoa, like any other aerobic cell, are constantly 
facing the “oxygen-paradox”2. Oxygen is essential to 
sustain life as physiological levels of reactive oxygen 
species (ROS) are necessary to maintain normal cell 
function. Conversely, breakdown products of oxygen 
such as ROS can be detrimental to cell function and 
survival3. Reactive oxygen species are present as free 
radicals. Examples of ROS include the hydroxyl ion, 
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superoxide, hydrogen peroxide, peroxyl radical, and 
hypochlorite ion. These are the common forms of ROS 
that have been considered injurious to sperm survival 
and function when present in abundance. 

 OS is a consequence of an imbalance between 
the production of ROS and the body’s antioxidant 
defense mechanisms. OS also has been implicated in 
the pathogenesis of many other human diseases such 
as atherosclerosis, cancer, diabetes, liver damage, 
rheumatoid arthritis, cataracts, AIDS, inflammatory 
bowel disease, central nervous system disorders, 
Parkinson’s disease, motor neuron disease, and 
conditions associated with premature birth4. This 
article briefly enumerates the pathophysiology of ROS 
generation, its physiological and pathological effects 
on the male reproductive system, its importance in the 
field of assisted reproductive technology, and finally, 
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the possible ways of preventing and minimizing 
oxidative stress with the goal of achieving positive 
results in infertile couples with male factor infertility.

Physiological role of ROS in male reproductive 
system

 Pioneering work in the field of reactive oxygen 
species was conducted by Aitken and his group in 
the mid eighties. Until recently, ROS was exclusively 
considered toxic to human spermatozoa. However, 
substantial evidence suggests that small amounts 
of ROS are necessary for spermatozoa to acquire 
fertilizing capabilities5-7. Low levels of ROS have 
been shown to be essential for fertilization, acrosome 
reaction, hyperactivation, motility, and capacitation8,9. 
Capacitation has been shown to occur in the female 
genital tract, a process carried out to prepare the 
spermatozoa for interaction with the oocyte. During 
this process, the levels of intracellular calcium, 
ROS, and tyrosine kinase all increase, leading to an 
increase in cyclic adenosine monophosphate (cAMP).  
This increase in cAMP facilitates hyperactivation of 
spermatozoa, a condition in which they are highly 
motile10,11. However, only capacitated spermatozoa 
exhibit hyperactivated motility and undergo a 
physiological acrosome reaction, thereby acquiring 
the ability to fertilize12. Co-incubation of spermatozoa 
with low concentrations of hydrogen peroxide has been 
shown to stimulate sperm capacitation, hyperactivation, 
acrosome reaction, and oocyte fusion5,10,13,14. Other 
ROS such as nitric oxide and the superoxide anion also 
are shown to promote capacitation and the acrosome 
reaction15. ROS also have been implicated in sperm 
oocyte interaction16. Lipid peroxidation caused by 
low levels of ROS leads to modification of the plasma 
membrane, thus facilitating sperm-oocyte adhesion14.

Sources of ROS

 ROS represent a broad category of molecules, 
including a collection of radical (hydroxyl ion, 
superoxide, nitric oxide, peroxyl, etc.) and non-radical 
(ozone, singlet oxygen, lipid peroxide, hydrogen 
peroxide) oxygen derivatives4. These derivatives 
participate in a cascade of reactions that give rise to free 
radicals that ultimately can damage organic substrates. 
Reactive nitrogen species (nitrous oxide, peroxynitrite, 
nitroxyl ion, etc.) are also a class of free radicals 
derived from nitrogen and considered a subclass of 
ROS17,18. Virtually every human ejaculate is considered 
to be contaminated with potential sources of ROS10 as 
human semen is known to contain different types of 

cells, such as mature and immature spermatozoa, 
round cells from different stages of spermatogenesis, 
leukocytes, and epithelial cells. Of these different cell 
types, leukocytes and spermatozoa have been shown to 
be the two main sources of ROS19.

 Cytoplasmic droplets, or excess residual 
cytoplasm, explain the missing link between poor 
sperm quality and increased ROS generation. Gomez 
et al 20 showed that cytoplasmic droplets, a result of 
defective spermiogenesis, are a major source of ROS. 
During spermatogenesis, a defect of the cytoplasmic 
extrusion mechanism results in release of spermatozoa 
from germinal epithelium carrying surplus residual 
cytoplasm. The resulting spermatozoa are thought to 
be immature and functionally defective. Studies have 
suggested that retention of residual cytoplasm by 
spermatozoa is, in fact, positively correlated with ROS 
generation via mechanisms that may be mediated by the 
cytosolic enzyme glucose-6-phosphate dehydrogenase6. 
The generation of ROS by spermatozoa has been 
proposed to occur in two ways: (i) nicotinamide adenine 
dinucleotide phosphate (NADPH) oxidase system at 
the level of the sperm plasma membrane21, and (ii) 
NADPH-dependent oxidoreductase (diphorase) at the 
mitochondrial level22.

 Immature, morphologically abnormal spermatozoa 
and seminal leukocytes are the main sources of 
ROS in human ejaculates23 Spermatozoa are rich in 
mitochondria because they need a constant supply 
of energy for their motility. Unfortunately, when 
spermatozoa contain dysfunctional mitochondria, 
increased production of ROS occurs, affecting 
mitochondrial function24. Such a relationship could 
be due to two mutually interconnected phenomena: 
ROS causing damage to the mitochondrial membrane 
and the damaged mitochondrial membrane causing an 
increase in ROS production.

 World Health Organization (WHO) defines 
leukocytospermia (increased leukocyte infiltration 
in semen) as the presence of peroxidase-positive 
leukocytes in concentrations of >1 X 106 per milliliter 
of semen25. However, controversy exists over the 
clinical significance of leucocytospermia26. On one 
side, sperm parameters such as poor quality, decreased 
hyperactivation, and defective sperm function27 have 
been attributed to leucocytospermia. On the other 
side, no correlation was established between seminal 
leukocyte concentrations and impaired sperm quality28 
or defective sperm function29.
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 Studies conducted in our laboratory have shown that 
in non leukocytospermic samples, ROS levels were lower 
in fertile men than in subfertile patients in unprocessed 
(neat) samples (0.29 vs. 0.94, P=0.001) and washed 
semen (5.73 vs. 23.4, P=0.001)30. Similarly, samples with 
leukocytes were found to have lower ROS levels in fertile 
men in neat (0.75 vs. 2.0, P=0.001) and washed semen 
(15.85 vs. 239.83, P<0.001)31. Furthermore, in an earlier 
study, oxidative stress correlated with the rising leukocyte 
count32. Thus, after reviewing this new information, it can 
be concluded that oxidative stress occurs even in patients 
with a very low seminal leukocyte count (between 0 and 
1x 106 /ml), and a rise in ROS occurs with an increase 
in leukocyte count. Also, it has been concluded that the 
presence of any leukocytes is associated with oxidative 
stress and may, therefore, impair infertility.

 Peroxidase-positive leukocytes include 
polymorphonuclear leukocytes, which represent 50 to 
60 per cent of all seminal leukocytes, and macrophages, 
which represent another 20 to 30 per cent26. The prostate 
gland and the seminal vesicles are the main sources 
of these peroxidase-positive leukocytes in human 
ejaculate27. Leukocytes may be activated in response to 
various stimuli such as infection and inflammation32, 
and these activated leukocytes can produce up to 
100-fold higher amounts of ROS compared with 
non-activated leukocytes33. This is mediated by 
an increase in NADPH production via the hexose 
monophosphate shunt. The myeloperoxidase system of 
both polymorphonuclear leukocytes and macrophages 
is also activated, leading to a respiratory burst and 
production of high levels of ROS. Sperm damage from 
ROS that is produced by leukocytes, occurs if seminal 
leukocyte concentrations are abnormally high, such as 
in leukocytospermia34 or if seminal plasma is removed 
during sperm preparation for assisted reproduction35.

Effects of OS

 All cellular components, including lipids, proteins, 
nucleic acids, and sugars are potential targets of OS. 
The extent of OS-induced damage depends not only 
on the nature and amount of ROS involved, but also 
on the duration of ROS exposure and on extracellular 
factors such as temperature, oxygen tension, and the 
composition of the surrounding environment (e.g., 
ions, proteins, and ROS scavengers)3,4,6,9,17,36.

Lipid peroxidation

 Lipids are considered to be the most susceptible 
macromolecules and are present in sperm plasma 

membrane in the form of polyunsaturated fatty acids 
(PUFA), fatty acids that contain more than two 
carbon-carbon double bonds. Most membrane PUFA 
contain unconjugated double bonds that are separated 
by methylene groups. The presence of a double bond 
adjacent to a methylene group makes the methylene 
carbon-hydrogen bond weaker, and as a result, the 
hydrogen is more susceptible to abstraction. Once 
this abstraction has occurred, the radical produced is 
stabilized by the rearrangement of double bonds. The 
PUFA rearranges to form a conjugated diene radical 
that subsequently can be oxidized10,14,15,35-39.

 ROS attacks PUFA in the cell membrane, leading to 
a cascade of chemical reactions called lipid peroxidation. 
ROS have a tendency toward chain reactions; that is, a 
compound carrying an unpaired electron will react with 
another compound to generate an unpaired electron, 
in such a manner that “radical begets radical”. The 
reactions proceed through three main steps- initiation, 
propagation, and termination10,14,15,36-39. 

 During initiation, the free radicals react with fatty 
acid chains and release lipid free radicals. This lipid 
free radical may further react with molecular oxygen 
to form the lipid peroxyl radical. Peroxyl radicals can 
react with fatty acids to produce lipid free radicals, 
thus propagating the reaction10,14,15,36-39. One of the 
byproducts of lipid peroxidation is malondialdehyde. 
This byproduct has been used in various biochemical 
assays to monitor the degree of peroxidative damage 
sustained by spermatozoa36,37. Results of such an 
assay exhibit an excellent correlation when examining 
the relationship between impaired sperm function, 
discussed in terms of motility, and the capacity for 
sperm-oocyte fusion38.

Effect on motility

 Increased ROS levels also have been correlated 
with decreased sperm motility40- 42. However, the exact 
mechanism through which ROS causes decreased 
motility is not understood. Thus, many hypotheses 
have been proposed to explain the link between ROS 
and decreased motility. One hypothesis shows that 
H

2
O

2
 can diffuse across the membranes into the cells 

and inhibit the activity of some vital enzymes such as 
glucose-6-phosphate dehydrogenase (G6PD). G6PD is 
an enzyme that controls the rate of glucose flux via the 
hexose monophosphate shunt and in turn, controlling 
the intracellular availability of NADPH. This is used 
as a source of electrons by spermatozoa to fuel the 
generation of ROS by an enzyme system known as 
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NADPH oxidase43. Another hypothesis involves a 
series of interrelated events resulting in a decrease 
in axonemal protein phosphorylation and sperm 
immobilization, both of which are associated with a 
reduction in membrane fluidity that is necessary for 
sperm-oocyte fusion44.

DNA damage by OS

 Two factors protect spermatozoa DNA from 
oxidative stress: the characteristic tight packaging of 
sperm DNA and the antioxidants in seminal plasma45. 
Exposing the sperm to artificially produced ROS 
causes DNA damage in the form of modification of 
all bases, production of base-free sites, deletions, 
frame shifts, DNA cross- links, and chromosomal 
rearrangements46. Oxidative stress also is associated 
with high frequencies of single- and double-strand 
DNA breaks46,47. ROS also can cause various 
types of gene mutations such as point mutations 
and polymorphism, resulting in decreased semen 
quality31,48. Other mechanisms such as denaturation 
and DNA base - pair oxidation also may be involved49. 
A common byproduct of DNA oxidation, 8-hydroxy-2-
deoxyguanosine (8-OH-2-deoxyguianosine), has been 
considered a key biomarker of this oxidative DNA 
damage50.

 When the extent of DNA damage is small, 
spermatozoa can undergo self-repair, and moreover, 
the oocyte also is capable of repairing damaged 
DNA of spermatozoa16. However, if the damage is 
extensive, apoptosis and embryo fragmentation can 
occur. Decreased fertilization rates and poor embryo 
cleavage and quality have been reported in infertility 
cases where sperm samples contain a high frequency of 
damaged DNA51. DNA damage in the Y chromosome 
also can cause gene deletion in the Y chromosome of 
the offspring, leading to infertility47.

Oxidative stress and apoptosis 

 Apoptosis is a non-inflammatory response to tissue 
damage characterized by a series of morphological 
and biochemical changes52-59. In the context of male 
reproductive tissue, it helps in elimination of abnormal 
spermatozoa, thus maintaining the nursing capacity of 
the Sertoli cells54. High levels of ROS disrupt the inner 
and outer mitochondrial membranes, inducing the 
release of the cytochrome-C protein and activating the 
caspases and apoptosis. Apoptosis in sperm also may 
be initiated by ROS-independent pathways involving 
the cell surface protein Fas60. Fas is a type I membrane 

protein that belongs to the tumour necrosis factor-nerve 
growth factor receptor family and mediates apoptosis61. 
When Fas ligand or agonistic anti-Fas antibody binds 
to Fas, apoptosis occurs62. On the other hand, bcl-2, 
the inhibitor gene of apoptosis, protects the cell, most 
likely by mechanisms that reduce ROS production63.

 Although the Fas protein often leads to apoptosis, 
some of the Fas-labelled cells may escape apoptosis 
through abortive apoptosis. This result in a failure to clear 
all of the spermatozoa destined for elimination and thus, 
leads to a large population of abnormal spermatozoa in 
the semen. This failure to clear Fas- positive spermatozoa 
may be due to a dysfunction at one or more levels. First, the 
production of spermatozoa may not be enough to trigger 
apoptosis in men with hypospermatogenesis. In this case, 
Fas-positive spermatogonia may escape the signal to 
undergo apoptosis. Second, Fas-positive spermatozoa also 
may exist because of problems in activating Fas-mediated 
apoptosis. In this scenario, apoptosis is aborted and fails 
to clear spermatozoa that are earmarked for elimination 
by apoptosis52. In men with abnormal sperm parameters 
(oligozoospermia, azoospermia), the percentage of 
Fas-positive spermatozoa can be as high as 50 per cent. 
Samples with low sperm concentrations are more likely 
to have a high proportion of Fas-positive spermatozoa52.

 Mitochondrial exposure to ROS results in the 
release of apoptosis inducing factor (AIF), which 
directly interacts with the DNA and leads to DNA 
fragmentation64,65. In another study by our group, 
a positive correlation was demonstrated between 
increased sperm damage by ROS and higher levels 
of cytochrome C and caspase 9 and 3, which 
indicate positive apoptosis in patients with male 
factor infertility66. Activation of caspases 8, 9, 1, 
and 3 in human ejaculated spermatozoa have been 
studied to examine the main pathways of apoptosis. 
Potential functional impact of this phenomenon and 
possible activation mechanisms were examined by 
subjecting cells to freezing and thawing, and testing 
the dependence of caspase activity on membrane 
integrity67.

 In an earlier study carried out by our group, annexin 
V staining assay was used to study the externalization 
of phosphatidylserine, a marker of early apoptosis. It 
was shown that mature spermatozoa from infertility 
patients had significantly higher levels of apoptosis 
compared with the mature spermatozoa from a control 
group of normal sperm donors68.
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Varicocele and OS

 Clinical or subclinical varicocoele69 has been shown 
to cause male infertility in about 15 per cent of infertile 
couples70. These patients have increased ROS in serum, 
testes, and semen samples71. Increased nitric oxide also 
has been demonstrated in the spermatic veins of patients 
with varicocoele72,73, which could be responsible for 
the spermatozoal dysfunction74. ROS in patients with 
varicocoele are formed due to the excessive presence of 
xanthine oxidase, a source of superoxide anion from the 
substrate xanthine and nitric oxide in dilated spermatic 
veins. On the other hand, it has also been recorded 
that varicocelectomy increases the concentrations of 
antioxidants such as superoxide dismutase, catalase, 
glutathione peroxidase, and vitamin C, in seminal 
plasma as well as improves sperm quality75. One study 
showed a significant correlation between ROS levels and 
varicocele grade76. The researchers demonstrated that 
ROS levels were significantly higher in men with grade 
2 and 3 varicocoele than in those with grade 1, and that 
no correlation existed between ROS levels and testicular 
volumes. Patients with varicocoele had increased 
8-hydroxy-2:deoxyguanosine (8-OHdG), indicating 
oxidative DNA damage77,78. The conclusion from a meta-
analysis was that oxidative stress parameters (such as 
ROS and lipid peroxidation) are significantly increased 
in infertile patients with varicocoele as compared with 
normal sperm donors, and antioxidant concentrations 
were significantly lower in infertile varicocoele patients 
compared with controls79.

Smoking, oxidative stress and infertility

 Tobacco smoke consists of approximately 4,000 
compounds such as alkaloids, nitrosamines and 
inorganic molecules, and many of these substances 
are reactive oxygen or nitrogen species. Significant 
positive association has been reported between active 
smoking and sperm DNA fragmentation80, as well as 
axonemal damage81 and decreased sperm count82. 

 Sperm from smokers have been found to be 
significantly more sensitive to acid- induced DNA 
denaturation than those from non smokers because the 
smokers’ sperm have been shown to contain higher 
levels of DNA strand breaks83. In a study carried out on 
655 smokers and 1131 non smokers, cigarette smoking 
was associated with a significant decrease in sperm 
density (-15.3%), total sperm count (-17.5%), and total 
number of motile sperm (-16.6%)84. Thus, smoking 
does, in fact, affect the quality and quantity of sperm 
present within a male.

Assessment of ROS by chemiluminescence

 To accurately quantify oxidative stress, levels of 
ROS and antioxidants should be measured in fresh 
samples. Direct methods such as pulse radiolysis and 
electron-spin resonance spectroscopy have been useful 
for many systems of the body but have limitations 
in their use in the male reproductive system. These 
methods are faced with the problems of a relatively 
low volume of seminal plasma, short life span of 
ROS, and the need to perform the evaluation in fresh 
samples16. Thus, another method is needed that avoids 
the problems encountered by the direct methods.  
Recently, one of the most widespread methods of 
measuring ROS is chemiluminescence assay. This 
method seems to quantify both intracellular and 
extracellular ROS. It uses sensitive probes such as 
luminol (5-amino-2, 3, dihydro 1, 4, phthalazinedione) 
and lucigen for quantification of redox activities of 
spermatozoa85. Luminol is an extremely sensitive, 
oxidizable substrate that has the capacity to react 
with a variety of ROS at neutral pH. Furthermore, it 
can measure both intracellular and extracellular ROS, 
whereas lucigen can measure only the superoxide 
radical released extracellularly. Hence, by using 
both the probes on the same sample, it is possible to 
accurately identify intracellular and extracellular ROS 
generation57,85,86. The reaction of luminol with ROS 
results in production of a light signal that is converted 
to an electrical signal (photon) by a luminometer. 
Levels of ROS are assessed by measuring the luminal-
dependent chemiluminescence with the luminometer. 
The results are expressed as x106 counted photons per 
minute (cpm) per 20 x 106 sperm. Normal ROS levels 
in washed sperm suspensions range from 0.10 to 1.0 x 
106 cpm/20 x 106 sperm. In a recent study, ROS levels 
of 0.145 x 106 cpm per 20 x 106 sperm were defined as 
the optimum cut-off value in unprocessed ejaculated 
samples87. 

Antioxidants

 ROS have physiological and pathological roles. 
Spermatozoa, due to the paucity of cytoplasmic 
enzymes, are unable to repair oxidative damage. Studies 
have shown that antioxidants have a widespread effect 
in andrology. These protect spermatozoa from ROS 
producing abnormal spermatozoa, scavenge ROS 
produced by leucocytes, prevent DNA fragmentation, 
improve semen quality in smokers, reduce cryodamage 
to spermatozoa, block premature sperm maturation, 
and stimulate spermatozoa and improve assisted 
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reproductive techniques (ART) outcome. Three 
different antioxidant protection systems play important 
and interdependent roles in reducing OS in males: 
dietary antioxidants, endogenous antioxidants, and 
metal-binding proteins88-96.

 Endogenous antioxidants comprise antioxidants 
present in seminal plasma and spermatozoa. Seminal 
plasma contains three main enzymatic antioxidants: 
superoxide dismutase (SOD), catalase, and glutathione 
peroxidase/glutathione reductase (GPX/GRD), in 
addition to a wide range of non enzymatic antioxidants 
like ascorbate, urate, vitamin E, pyruvate, glutathione, 
albumin, vitamin A, ubiquitol, taurine, and hypotaurine. 
Spermatozoa possess primarily enzymatic antioxidants, 
with SOD being the most predominant. Dietary 
antioxidants are usually present in the form of 
vitamin C, vitamin E, beta-carotenes, carotenoids, and 
flavonoids. Metal-binding proteins such as albumin, 
ceruloplasmin, metallothionein, transferrin, ferritin, and 
myoglobin function by inactivating transition metal ions 
that otherwise would have catalyzed the production of 
free radicals2,92,93,95,96. Metal chelators such as transferrin, 
lactoferrin, and ceruloplasmin that are present in human 
semen also control lipid peroxidation of the sperm 
plasma membrane, protecting its integrity91,97.

In vivo antioxidants

(i)  Vitamin E: Vitamin E is a major chain-breaking 
antioxidant in the sperm membranes and appears to 
have a dose-dependent effect98. It scavenges all three 
types of free radicals, namely, superoxide, H

2
O

2
,
 

and hydroxyl radicals8. Suleiman et al98 showed that 
administration of 100 mg of vitamin E three times a 
day for six months in a group of asthenozoospermic 
patients with normal female partners led to a significant 
decrease in lipid peroxidation and increase in motility. 
Also, pregnancy rates consequently increased 
significantly (21% in treatment group as compared 
with placebo group).

(ii)  Vitamin C: Vitamin C is another important chain-
breaking antioxidant, contributing up to 65 per cent 
of the total antioxidant capacity of seminal plasma 
found intracellularly and extracellularly. It neutralizes 
hydroxyl, superoxide, and hydrogen peroxide radicals 
and prevents sperm agglutination8. It prevents lipid 
peroxidation, recycles vitamin E and protects against 
DNA damage induced by the H

2
O

2
 radical. Kodama 

et al49 showed that administration of 200 mg of 
vitamin C orally along with vitamin E and glutathione 
for two months significantly reduced 8-OH-dG levels 

in spermatozoa and also led to an increase in sperm 
count.

(iii)  Coenzyme Q10: Coenzyme Q-10 is a non 
enzymatic antioxidant that is related to low-density 
lipoproteins and protects against peroxidative damage. 
Since it is an energy-promoting agent, it also enhances 
sperm motility89. It is present in the sperm midpiece99 
and recycles vitamin E and prevents its pro-oxidant 
activity39. It has been shown that oral supplementation 
of 60 mg/day of coenzyme Q10 improves fertilization 
rate using intracytoplasmic sperm injection (ICSI) in 
normospermic infertile males89. 

Role of antioxidants in motility

 Not only do antioxidants prevent reduction in 
sperm motility (mainly vitamin E and C, glutathione, 
N-acetyl cysteine, SOD, catalase, albumin, taurine, 
and hypotaurine), these also increase sperm motility 
(N-acetyl cysteine and coenzyme Q10). A randomized 
double-blind controlled trial has shown that vitamin E 
administered orally (300 mg/day) results in a decrease 
in malondialdehyde (a marker for lipid peroxidation) 
concentration in spermatozoa and improved sperm 
motility98. Another study has shown that incubation 
of sperm samples from asthenozoospermic infertile 
males for 24 h in Ham’s F-10 medium with 50 
µM coenzyme Q10 improves sperm motility89. 
Lenzi et al90 reported that oral supplementation of 
2-3 g/day of carnitines for >2 months improved 
sperm concentration and motility. In another study 
incubating sperm with D-penicillamine significantly 
increased sperm motility91.

 The results of in vitro trials using antioxidants 
are not better than the results of in vivo trials92 and 
the potential advantages of antioxidants in assisted 
reproduction are still under debate93. One study showed 
that supplementing the sperm preparation media with a 
combination of vitamins C and E was associated with 
decreased ROS production by the sperm94. In another 
study, superoxide supplementation was associated with 
improved rates of acrosome reaction and preservation 
of sperm motility9. In the clinical ART setting, various 
antioxidants such as vitamin E100, vitamin C101, 
cysteine102, and taurine and hypotaurine103 added to the 
culture medium can improve the developmental ability 
of the embryos by reducing the effects of ROS. 

Role of antioxidants in preventing cryodamage

 Sperm freezing and thawing procedures cause a 
significant and irreversible depression of motility and 
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metabolic activity of sperm along with disruption of 
plasma membrane104. Park et al 105 have shown that 
vitamin E (10 mmol/l) and rebamipide (300 mmol/l) 
decreased the cryodamage during the freeze-thaw 
procedure and improve post- thaw motility. In vitro 
supplementation of 300 micromol/l of rebamipide 
in semen samples during incubation (37oC) and 
cryopreservation (-196oC, 3 days) has been shown to 
significantly decrease the ROS level106.

Role of antioxidants in preventing DNA damage

 Antioxidants have been shown to decrease the 
DNA fragmentation induced by oxidative stress. Daily 
oral supplementation of 1 g vitamins C and E for two 
months is reported to reduce the number of TUNEL- 
(terminal deoxynucleotidyl transferase biotin-dUTP 
nick end labeling) positive spermatozoa from 22.1 
to 9.1 per cent, while the amount of spermatozoa 
with DNA defragmentation remained the same in the 
placebo group95. Moreover, the same group also showed 
a marked improvement of clinical pregnancy and 
implantation rates after antioxidant treatment compared 
with the pre-treatment outcomes of ICSI107. Vitamin E 
or C was added to the sperm preparation media during 
density gradient separation using Percoll, and thus, 
spermatozoa were protected from DNA damage96. On 
the contrary, using a combination of the above vitamins 
demonstrated an increase in DNA damage. Twigg et 
al 45 found that albumin can be an important means 
of neutralizing lipid peroxide-mediated damage to the 
sperm plasma membrane and DNA.

ROS in assisted reproductive techniques

 OS-induced DNA damage may have important 
clinical implications in the context of ART. Studies 
have indicated that human spermatozoa significantly 
increased levels of ROS production in response 
to repeated cycles of centrifugation involved in 
conventional sperm preparation techniques used 
for ART 41. Spermatozoa selected for ART usually 
originate from an environment experiencing oxidative 
stress, and a high percentage of these sperm may have 
damaged DNA49. When intrauterine insemination (IUI) 
or in vitro fertilization (IVF) is used; such damage 
may not be a cause of concern because the collateral 
peroxidative damage to the sperm plasma membrane 
ensures that fertilization cannot occur with a DNA-
damaged sperm. 

 When (ICSI) is used, this natural selection barrier 
is bypassed and a spermatozoon with damaged DNA is 

directly injected into the oocyte6, 44. However, ROS can 
be produced in a number of ways in ART procedures. 
Oocytes and embryo metabolism, cumulus cells, 
leukocyte contamination during sperm preparation, 
and culture media are the major sources. Oral et al108  
demonstrated that higher MDA levels in follicular 
fluid of females was an indicator of lower pregnancy 
rates, and thus, MDA can be used as a potential marker 
for predicting ART outcomes. A meta-analysis by 
our group109 concluded that ROS have a statistically 
significant effect on the fertilization rate after IVF, 
and that the measurement of ROS levels in semen 
specimens before IVF may be useful in predicting 
IVF outcomes. We also have reported that high day 
1 ROS levels in culture media were associated with 
low blastocyst rate, low fertilization rate, low cleavage 
rate, and high embryonic fragmentation with ICSI but 
not with conventional IVF; however, high day 1 ROS 
levels in culture media were associated with lower 
pregnancy rates in both IVF and ICSI cycles110.

 Assisted reproduction techniques may show 
significant improvement in in vitro supplementation 
of antioxidants and metal chelators to achieve a better 
success111. Excellent results were obtained with the use 
of many compounds like rebamipide, pentoxyfylline, 
vitamins E and C, SOD, catalase, etc. In a study on 
740 embryos, Zhang et al 112 showed a dose-dependent 
decrease in % BDR (blastocyst development rate) with 
increasing concentrations of H

2
O

2
,
 
indicating that H

2
O

2 

(>60 mM) is embryotoxic, and the administration of 
pentoxyfylline at 500 µM could reduce the embryotoxic 
effect of hydrogen peroxide.

Conclusion

 In the last decade, a phenomenal growth has 
occurred in our knowledge of male reproduction, 
sperm function, and development of diagnostic 
tools and treatment modalities for male infertility. In 
addition, knowledge regarding oxidative stress has 
given rise to several new treatment modalities that 
are now being tried to improve male infertility. Many 
new antioxidants are now available that can decrease 
oxidative stress and improve sperm quality, but a major 
concern in their usage is lack of scientific evidence of 
their effectiveness, which has led to denial of their 
approval by the US Food and Drug Administration. 
Evidence exists that supports the use of systemic 
antioxidants as well as antioxidants in sperm 
preparation techniques. Moreover, several newer 
sperm preparation techniques such as density gradient 
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centrifugation, glass wool filtration and migration-
sedimentation have significantly reduced the level of 
ROS by removing leucocytes. However, OS being 
only one of the causes of male infertility, antioxidant 
therapy should be tried only in cases of increased 
oxidative stress or established DNA damage.

 Evaluation of OS status and the use of antioxidants 
is not a routine in clinical practice. Immediate attention 
should be directed at simplifying and validating the 
evaluation of reactive oxygen species and OS status 
so that it can be performed routinely without the 
use of sophisticated equipment. Also, a threshold 
ROS level above which antioxidants could be used 
for male infertility, should be determined. The dose 
and duration of these antioxidants should also be 
determined and standardized. With the increased 
use of ART procedures, efforts should be directed at 
developing optimum combinations of antioxidants to 
supplement sperm preparation media. Adding testicular 
sperm extraction and percutaneous epididymal sperm 
aspiration to our ART armamentarium and improving 
cryopreservation techniques may help patients, 
especially in cases of cancer and azoospermia.
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