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This paper develops and demonstrates an original approach to face-image analysis based on iden-
tifying distinctive areas of each individual’s face by its comparison to others in the population.
The method differs from most others—that we refer as unary — where salient regions are defined
by analyzing only images of the same individual. We extract a set of multi-scale patches from each
face image before projecting them into a common feature space. The degree of “distinctiveness”
of any patch depends on its distance in feature space from patches mapped from other individuals.
First a pair-wise analysis is developed and then a simple generalization to the multiple-face case
is proposed. A perceptual experiment, involving 45 observers, indicates the method to be fairly
compatible with how humans mark faces as distinct. A quantitative example of face authentica-
tion is also performed in order to show the essential role played by the distinctive information.
A comparative analysis shows that performance of our n-ary approach is as good as several con-
temporary unary, or binary, methods - whilst tapping a complementary source of information.
Furthermore we show it can also provide a useful degree of illumination invariance.

Categories and Subject Descriptors: I.4 [Image Processing and Computer Vision]: ; I.5
[Pattern Recognition]:

General Terms: Algorithms; Design; Human factors; Security; Perceptual models; Face recognition

1. INTRODUCTION

Automatic visual face analysis is an active research area in which interest has grown
over recent years, for both scientific and industrial reasons. Identifying the most
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distinctive areas of a face [Bruce et al. 1994] ought to assist the performance in
such analyses. Yet the methodologies proposed to date do not attempt to directly
identify, or make use of, the areas of an individual’s face that make it distinct from
the rest of the population. For example, typical feature-based methods [Zhao et al.
2003] make the convenience assumption that anatomical features, such as the eyes
nose and mouth, are, a-priori, the most distinctive areas [Campadelli and Lanzarotti
2004; Ming-Hsuan et al. 2002; Senior 1999]. Yet, the gaps around the eyes, nose
and mouth could be as, or even more, characteristic of a given face - especially
if they contain distinctive scars, spots and lines. Note that face recognition by
human observers requires a series of eye movements (ocular saccades), that locate
and process the distinctive areas within a face [Goren et al. 1975; Yarbus 1967;
Nahm et al. 1997; Haith et al. 1979; Klin 2001]—which can not stereotypically be
reduced to the eyes, mouth and nose.

Holistic methods, adopt the opposite approach by taking the neutral stance that
all areas of a face are equally important—e.g Eigenfaces [Turk and Pentland 1991;
Kirby and Sirovich 1990] and Fisher Faces [Belhumeur et al. 1997]. Similarly,
Principal Component Analysis (PCA) and methods based on space decomposition
have been applied to image windows but they also rely on global features of the
face space—not distinctive areas.

An alternative is explored here: we compute those areas of an individual’s face
that appear distinct when compared to other faces selected from the population.
This is performed before incorporating these areas in a subsequent face analysis, as
detailed in later sections. Since we tap information from multiple individuals, this
approach is conceptually different from most of the existing feature extraction meth-
ods that rely on the detection and analysis of specific face areas for authentication or
recognition purposes—e.g. the Elastic Bunch Graph Matching technique [Wiskott
et al. 1997]. It differs also from more elaborate techniques that identify the most
“salient” parts within the face according to a pre-specified criterion. Among these
[Tsotsos et al. 1995; Lindeberg 1993; Koch and Ullman 1985; Salah et al. 2002], the
system described by [González-Jiménez and Alba-Castro 2005] that detects “key
points” from a set of lines extracted from the face image and that in [Lowe 2004]
which selects “characteristic points” in a generic image by means of a local opti-
mization process applied to the difference of Gaussians image, filtered at different
scales and orientations. Though they all vary in implementation, robustness, com-
putational requirements and accuracy, each of the above approaches is essentially
a unary technique: salient regions are defined by analyzing only one instance of
the face class, namely only images of the same individual. On the contrary, we
identify local patches within an individual’s face that are different from other indi-
viduals by performing a pair-wise, or binary, analysis. This avoids issues that may
arise when invoking a single average face, or canonical model, against which each
face would then be distinguished. In particular, we find differences between faces
by directly extracting from one individual’s face image the most distinguishing or
dissimilar patches with respect to another’s. The details of how this is achieved
are described in the next section. Here, we simply note that image patches from
the same individual tend to cluster together when projected in a multi-dimensional
space and the distance, in that space, of that patch from clusters formed by other
ACM Journal Name, Vol. V, No. N, Month 20YY.
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Fig. 1. Idea of the pair-wise differences algorithm.

faces can be used as a measure of “distinctiveness”—as sketched, in just 2-D, in
Fig. 1.

Note that the concept of comparative face analysis is also inherent in the recent
work by Penev and Atik [Penev and Atick 1996] (Local Feature Analysis), as well
as by Li et al. [Li et al. 2001] (Local Nonnegative Matrix Factorization), and by
Kim et al. [Kim et al. 2005] (Locally Salient Independent Component Analysis).
These are locally salient versions of dimensionality reduction techniques, applied to
a database of images so to obtain a local representation (as a set of basis) of the
training set. Even if not explicitly developed to extract salient parts of a face, all
these techniques find utility in characterizing a face by performing a comparative
local analysis.

An interesting approach more related to our work extracts most salient patches
(there denoted fragments) of a set of images [Ullman et al. 2002]. There a sufficient
coverage of patches are extracted from a set of “client” images, before each patch is
weighted in terms of its mutual information with respect to a selected set of classes.
However, the optimality criterion there used to select the most relevant patches
differs from ours. We use a deterministic criterion computing the distance from
the “impostor” set, while they adopt a probabilistic criterion based on empirical
estimation of probability function. In order to obtain a reliable estimate, their
approach thus requires a considerably large training set—as illustrated in later
sections.

Our computational analysis is in line with some psychophysical experimental
ACM Journal Name, Vol. V, No. N, Month 20YY.
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results [Gauthier et al. 1999]. These indicate that the human visual system adopts
a model formation process for objects, including faces, by making several continuous
comparisons with other objects, or faces, i.e. by performing repeated comparative
analysis.

Achieving biometric authentication generally involves the active cooperation of
the individual. In the case of faces, client and impostor alike need to face towards
the camera while adequately illuminated, else access will be denied. Although,
three-quarters profiles may be more informative, [Bruce et al. 1987] passport-style
frontal poses are the norm: they tend to reduce the preprocessing of the image
to a simple affine transform—so to obtain a face representation invariant to 2-
D translation, rotation and scaling. This is also in line with recent databases
collected for testing face analysis systems—like Banca [Bailly-Baillire et al. 2003]
or Face Recognition Grand Challenge (FRGC) [Phillips et al. 2005]. It is within
such a context that our work has been developed: we presents results from a face
authentication test, performed on the BANCA database [Bailly-Baillire et al. 2003]
with encouraging results, adopting an impairment test. Of course, we should prefer
to improve this authentication experiment, superseding the impairment test with
one that actively uses the ranking of the face distinctive patches. To operate in
more challenging scenarios, e.g. surveillance of video streams, invariance to 3-D
pose and illumination would need reinforcing. We illustrate how we might achieve
a greater degree of illumination invariance in the final section.

The remainder of the paper is organized as follows: in section 2 the pair-wise
approach for computing differences between faces is described together with some
qualitative visual analysis. Section 3 contains a perceptual study that asks human
observers where in face-images do they see distinctive differences, and compares
their responses to those of our algorithm. Section 4 of the paper presents results
from the face authentication test. It ends with an illustration of illumination in-
variance. In section 5 conclusions are sought.

2. DISTINGUISHING FACES

Our method finds and applies the distinctive patterns in faces as detailed below in
three parts: First we describe how candidate areas of each face-image are extracted
and encoded as “feature vectors”. Second, we indicate how, in the resultant feature-
space, face-pairs are analyzed. Finally, we elucidate some examples that motivate
refinements of the process.

2.1 Multi-scale patches extraction

From each face-image, candidate patches are extracted as areas of gray-level im-
age. These patches should be spatially distributed such that most of the face
area is sampled—in a way similar to that adopted in patch-based image classifica-
tion [Agarwal and Roth 2002; Fergus et al. 2003; Dorko and Schmid 2003; Csurka
et al. 2004] and image characterization [Jojic et al. 2003]. Since face recognition
may involve information apparent at a variety of spatial resolutions, there may be
an advantage in extracting candidate patches at multiple scales. In particular, we
adopt a variant multi-scale approach designed to avoid two notable pitfalls: (a)
blind analysis - whereby information revealed at one scale is not usefully available
at other scales, and (b) repeated image processing - which would add to the over-
ACM Journal Name, Vol. V, No. N, Month 20YY.
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(a) (b) (c)

Fig. 2. Log polar sampling: (a) original image (b) all fixations (c) some reconstructed log-polar
patches.

all computational expense. Thus we sample each face-image using patches derived
from a log-polar mapping [Grosso and Tistarelli 2000], considering the resulting
sampled vectors as our features. This mapping has been motivated by its resem-
blance to the distribution of the receptive fields in the human retina, where the
sampling resolution is higher at the central fovea and decreases toward the periph-
ery. The resultant sampling process ensures that each patch contains both low scale
(fine resolution) and contextual (low resolution) information.

To ensure translation-independence and to side-step coarse registration issues the
patches are extracted at a loci centered on the edges detected within the image -
e.g. using zero crossing of Laplacian of Gaussian (LoG). This approach proved more
practical than the alternatives of selecting points at random [Bicego et al. 2005] or
by applying morphological operators. Thus we maintain translation-independence,
while reducing the number of points required. Note, the use of edge points does
not imply that the analysis occurs only at edges: the points actually represent the
center (the fovea) of the log-polar mapping, which extends the processing also to
the neighborhood. As an example, Figure 2(b) shows the sampling points (corre-
sponding to fovea fixations) of one face.

In particular, the face-image is re-sampled at each point following a log-polar
scheme so that the resulting set of patches represents a local space-variant remap-
ping of the original image, centered at that point. Analytically, the log-polar scheme
describes the mapping postulated to occur between the retina (retinal plane (r, q))
and the visual cortex log-polar or cortical plane (x, h). As illustrated in Fig. 3(a)
the size of the “receptive fields” follows a linear increment moving from the central
region (fovea) outwards into the periphery.

The log-polar transformation applied here is that described in [Grosso and Tistarelli
2000]—which differs from the models proposed in [Braccini et al. 1982; Tistarelli
and Sandini 1993]. The parameters required to define the log-polar sampling are:
the number of step in eccentricity (Nr), the number of receptive fields per eccen-
tricity (Na) and the radial and angular overlap of neighboring receptive fields (Or

and Oa).
For each receptive field, located at eccentricity ρi and with radius Si, the angular

overlap factor is defined by K0 = Si

ρi
. The amount of overlapping is strictly related

to the number of receptive fields per step in eccentricity Na. In particular if K0 =
ACM Journal Name, Vol. V, No. N, Month 20YY.
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(a) (b)

Fig. 3. (a) Log-polar sampling strategy and (b) the adopted log-polar model.

π
Na

all receptive fields are disjoint. The radial overlap is determined by:

K1 =
Si

Si−1
=

ρi

ρi−1
.

The two overlap parameters K0 and K1 are not independent, in fact:

K1 =
ρi

ρi−1
=

1 + K0

1−K0
.

As for the angular overlap, the radial overlap is not null only if:

K1 <
1 + K0

1−K0
.

Given the log-polar parameters Nr, Na, Or, Oa, K0 and K1 are computed as:

K0 = π
Oa

Na
, K1 =

Or + K0

Or −K0
.

The image resolution determines the physical limit in the size of the smallest recep-
tive fields in the modeled fovea. This, in turn, determines the smallest eccentricity
value:

ρ0 =
S0

K0

The set of log-polar image patches, sampled from each face-image, are vectorized,
e.g. a 20× 20 pixel patch is transformed in a vector of 400 raw gray-level values—
that represent the face in feature space.

2.2 Finding differences between face-pairs

Without loss of generality, we start by considering the two-face case, i.e. when
client set and impostor set contain only one face each. Later we examine how this
process can be expanded to the multi-face case.

The main idea is that the patches from one face-image will tend to form their
own cluster in the feature space, while those of the other face-image ought to form a
ACM Journal Name, Vol. V, No. N, Month 20YY.
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different cluster—e.g. see Fig. 1. The “distinctiveness” of each patch can be related
to its locus in feature space with respect to other faces. Any patches of the first
face, found near loci of a second face can be considered less distinctive since they
may easily be confused with the patches of that second face, and thus may lead
to algorithmic misclassification. Conversely, a patch lying on the limb of its own
cluster, that is most distant from any other cluster, should turn out to be usefully
representative, and may thus be profitably employed by a classifier.

2.2.1 Patch weighting . We formalize the degree of distinctiveness of each face
patch by weighting it according to its distance from the projection of the other
data-cluster. Patches with the highest weights are then interpreted as encoding the
most important differences between the two face-images.

More formally, let S1, S2 be the set of patches of face 1 and 2, respectively. The
weight of distinctiveness ω of a patch p1(x, y), centered at the position (x, y) in the
face 1 is computed as:

ω(p1(x, y)) = d(p1(x, y), S2) (1)

where

d(p1(x, y), S2) = min
(x′,y′)

dE(p1(x, y), p2(x′, y′)) (2)

where dE is some distance metric between features vectors. Here, for clarity, we
adopt an Euclidean metric. It might be worthwhile investigating other metrics,
such as those due to transforming feature space via say a Principal Component
Analysis or Linear Discriminant Analysis.

Another possibility for the extraction of weights is to train a classifier able to
separate set S1 and S2 and compute a distinctiveness measure based on the distance
from the separating surface. We investigated this in [Bicego et al. 2005], using a
Support Vector Machine— with mixed results. However this is computationally
demanding and much affected by the choice of the parameters. Here we focus
instead on a more basic approach that is easier to control.

2.3 Details and qualitative examples

This section presents details of our pair-wise face differences algorithm: in particu-
lar, the parameters used throughout the experimental session are given; moreover,
some visual examples are presented, in order to assess the capability of the proposed
approach in finding differences between pairs of faces, showing different extra-class
results. Images used were all gray-level, of dimensions 320× 200 pixels, and cropped
in order to reduce the influence of the background. Fixations, or centers of the patch
sampling process (edge-points), were computed using zero-crossings of a LoG filter.
After a preliminary evaluation, log-polar patch resolution was set to 15 eccentricity
steps (Nr), at each of which there were 35 receptive fields (Na), with a 70% overlap
along the two directions (Or and Oa). This represents a reasonable compromise be-
tween fovea resolution and peripheral context. Some examples of log-polar patches,
rebuilt from the log-polar representations, are shown on Fig. 2(c).

Fig. 4 represents the comparison between different individuals. In particular
two pairs of images are displayed in two columnal groups. In the first row are the
original images, in the second the fixations used for the log-polar analysis, and in

ACM Journal Name, Vol. V, No. N, Month 20YY.
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face A face B face C face D

Fixations Fixations

A vs. B B vs. A C vs. D D vs. C
25 most weighted patches 25 most weighted patches

A vs. B B vs. A C vs. D D vs. C
100 most weighted patches 100 most weighted patches

Fig. 4. Two examples of differences extracted from pairs of images of different persons: (A,B) and
(C,D).

the third and fourth are, respectively, the plots of the fixations that result in the
25 and the 100 most weighted patches.

The first two columns (subjects A and B) reveal that the main differences are
in the ears and in the eyebrows: this is clearly evidenced in row 3 that shows that
the first 25 patches are located on the ear in the right part of the face and on the
eyebrows. This result is re-enforced when adding patches (last row): note how the
left ear is now highlighted.

As a general consideration, it seems that the method is able to capture the
ACM Journal Name, Vol. V, No. N, Month 20YY.
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essential differences between these face pairs. A similar reasoning applies to faces
C and D (column 3 and 4).

3. PERCEPTUAL COMPARISON

3.1 Motivation

Do human beings observe differences between faces around the areas designated
as “distinctive” by our algorithm? We carried out a perceptual experiment that
asked observers to click on images where they perceived important differences and
then compared the results to those produced by our algorithm. We preferred this
direct approach over others such that require the interpretation of eye-movements.
The degree of correspondence may indicate whether the algorithm can replicate, or
complement, the work of human observers. As such this work follows the paradigm
adopted in other human face recognition studies [O’Toole 2004; O’Toole et al. 2006;
O’Toole et al. 2005]. We selected image-pairs from the BANCA database each
showing faces of two different individuals—such that the observer is confronted
with a range of difficulties when asked to distinguish between the pairs. By an
informal survey of the data-set we were able to select one pair that even expert
observers might confuse: i.e. where the image of face A appeared very like that of
face B. Three other pairs of decreasing level of difficulty were also selected so as
to cover a small but representative spectrum. All four pairs are shown in the left
two columns of Fig. 5.

3.2 Method

The image-pairs were included as stimuli in a perceptual experiment (cf. [Collishaw
and Hole 2000]) carried out on an LCD screen of a PC, implemented in Matlab.
In all, 45 university students (13 male, 32 female), all with normal, or corrected
vision, were asked to perform one trial per selected image-pair. Each trial consisted
of displaying the two gray-scale face-images side-by-side on a mid-gray background
for 20s while the subject was free to scrutinize the two faces and mark, by a mouse-
click, the points in the right image that indicate differences. During the 5s between-
trial interval each face image was replaced by a Gaussian noise gray-level image—to
minimize any influence of after-images. No observer saw the same image twice. On
each click a confirmatory audio high-pitch beep was given. Clicking outside of the
left-hand image resulted in a lower-pitch beep—as a warning.

Viewing parameters were fixed as follows: viewing distance: 50 cm; image height:
6.5 cm (11 deg, 220 pixels); image width: 6 cm (7 deg, 200 pixels); image-pair
separation 1 cm; full contrast LCD screen viewed under indoor illumination.

3.3 Results

A preliminary analysis [Brelstaff et al. 2006] of a larger set of 12 face-pair stimuli
permitted a selection of data suitable for a direct comparison with our algorithm’s
output. Since the algorithm models a low-level visual process our results plot only
those loci marked by observers on their first click, and within the following time
slice of one second. Fig. 5 shows the resultant loci in the third column for all 45

ACM Journal Name, Vol. V, No. N, Month 20YY.
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face A face B Human Algorithm

Very Difficult Pair

Quite Difficult Pair

Quite Easy Pair

Very Easy Pair

Fig. 5. Results of perceptual experiment: original face-pairs ( each of 2 different individuals) are
shown side-by-side in the first two columns, in the third the points clicked by human observers,
and in the fourth the result of our pair-wise algorithm.

human observers, and in the fourth column for the algorithm.
A degree of correspondence is apparent even when examining by eye the third

and fourth columns in the figure. Several areas not usually included as distinct
features are marked both by the human observer and by our algorithm: the bridge
of the nose in the top-most face-pair; the right jowl zone in the second one down; the
crease on the right cheek of the face in the third row; and the central spot between
the eyebrows in the fourth row. However, some traditional features are marked
by observers and not by the algorithm, and vice-versa. To make a quantitative
assessment it is important to account for the fact that observers were free to click
ACM Journal Name, Vol. V, No. N, Month 20YY.
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Pair Cov. Image Match Non Match Cov. Image Match Non Match

Very difficult 44.09% 75.00% 25.00% 20.10% 7.50% 92.50%

Quite difficult 58.10% 69.64% 30.36% 54.70% 62.50% 37.50%

Quite easy 64.63% 81.16% 18.84% 52.87% 57.97% 42.03%

Very easy 48.18% 71.79% 28.21% 26.47% 10.26% 89.74%

(a) (b)

Table I. Quantitative comparison: percentage of points of the perceptual map matched in the

algorithmic map: (a) our algorithm; (b) Ullman et al. 2002.

at any point within the image, while the algorithm is shown only to mark points near
edges—i.e only the centers of each spatially extended patch. Such patches can often
overlap the points marked by the observers, e.g. those marked by the algorithm as
the base and flanks of the nose often correspond to those marked by observers in
the central nose-zone. Thus we quantified the degree of correspondence as follows:
the percentage of points in the perceptual map that “matched” the algorithm map
was computed (cf. [Brelstaff et al. 1990]). A match was deemed to occur where a
click lay inside the analysis area, analogous to a receptive field, of one fixation, i.e.
within a circular zone of radius k · ρmax, where ρmax is the largest radius of the
log-polar patch (see Section 2.2.1), where 0 < k ≤ 1 is a parameter determining
what fraction of the image gets covered. We used k = 0.8.

In Table I(a) the results are presented. The table indicates a fair correspondence
between results obtained by our algorithm and those of the perceptual test. The
measures are slightly lower when the algorithm erroneously latches on to the face
border at the bottom left corner of the image, in face-pair 2 and 4.

We, furthermore, made a comparison with the patches produced by Ullman et
al. [Ullman et al. 2002] maximizing mutual information algorithm discussed earlier.
For that purpose, images were sub-sampled with rectangular patches of nine dif-
ferent sizes, equally distributed in the image. In all, more than 6000 patches were
collected for the client image. The corresponding quantitative comparison with our
perceptual results as given in table I(b): it is evident that the method fails—as was
to be expected since the key step (computation of mutual information) is based on
calculation of probabilities empirically estimated from client set and impostor set.
Yet here, the client set contains only one item (as does the impostor set), so the
probability estimation is unreliable. Indeed, in the paper [Ullman et al. 2002], the
best patches are estimated using a training set of 138 face images, which somewhat
limits the application of that approach in this kind of scenario.

4. QUANTITATIVE ANALYSIS: AN EXAMPLE OF FACE AUTHENTICATION

Here we aim to assess the usefulness of the information extracted by our algorithm
in a face authentication context, i.e. to answer the question: “Is the information
extracted instrumental in face authentication?” Below we describe an authenti-
cation test carried out towards that end. Note, for pragmatic reasons, we adopt
an assessment based on an impairment: by omitting those face parts marked by

ACM Journal Name, Vol. V, No. N, Month 20YY.
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our algorithm we find that the results are impaired more than when other parts of
equivalent area are omitted.

4.1 Subject-specific face authentication

Our algorithm, that extracts differences between face-pairs, might be naturally used
for the so-called subject-specific face authentication. In this case the challenge is
to develop a method able to reliably compute differences between a client and the
“rest of the world” population, employing in the recognition process only those
features really relevant for that individual (in principle different for each subject).
This involves computing differences between multiple faces, not just face-pairs. In
this case there are two sets of images, one related to client images (training data)
and one related to impostor images (the rest of the world). Here we compute
the differences between two distinct ensembles: the first consists of the patches
extracted from the client faces, and the second from those of the impostors. This
is achieved by projecting both ensembles into feature space. The advantage of this
approach is that differences can be computed in the feature space irrespectively
of the number of faces involved. The resultant “features” represent those parts of
the client faces that differ from all the impostor faces. Clearly, since the analysis
is image-based, the client images should be more or less registered, in order to
aggregate the results.

As in the two-face case, the analysis assigns a weight to each patch sampled from
the face. Here, the patches can also be ordered by the weights, so as to display the
K most weighted patches thus visualizing the most distinctive parts of the client
face.

4.2 Database description and authentication methodologies

Here we carry out face authentication experiments on the BANCA database [Bailly-
Baillire et al. 2003]—a multimodal database, containing face (and voice) data. The
part used for face authentication contains 52 subjects (26 female and 26 male). For
each subject, 12 different sessions recorded under different conditions are available
(4 controlled, 4 degraded, and 4 adverse). From each session we extracted five
images for uses as training, client and impostor testing.

The BANCA protocol defines seven different experimental configurations of in-
creasing difficulty. We adopt the Matched Controlled protocol, where the images
gathered from the first session are used for training, while the testing images are
taken from second, third, and fourth sessions. Here we selected landmarked im-
ages, that is images for which standard landmark features are pre-located: this
permits straight-forward registration of the images allowing us to concentrate on
authentication task. In particular, all the images were preprocessed using a simple
geometric normalization, followed by standard histogram equalization [Gonzalez
and Woods 2002]. Geometric normalization maps each face on to a 220 pixel high
by 200 pixel wide output image, via an affine transform that makes use of the man-
ually annotated eye positions so that the eyes always map to loci 50 pixels in from
vertical borders, and 77 pixels from the top, of the output image.

The BANCA protocol splits the dataset in two groups –G1 and G2. These are
alternatively used as validation (to set thresholds) and as test set (to estimate
ACM Journal Name, Vol. V, No. N, Month 20YY.
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errors). Different Weighted Error rates (WER) are computed, for different cost
ratios between false positives and false negatives. Since the goal is to demonstrate
the discriminative power of the information extracted by the algorithm, we adopt a
simple authentication technique based on the established Eigenfaces approach [Turk
and Pentland 1991], founded on PCA. In particular, a PCA space is built using
the world model of the BANCA database (separated from data used for training
and testing), retaining a number of components such that 99% of the variance is
preserved. Given a test-face and a claimed identity, that face is projected into
the PCA space, and the minimum distance to the projected training images of
the claimed subject is extracted. This distance is the matching score. Various
distance metrics might be employed, such as Euclidean, Manhattan, angle-based
or others. We adopted the Whitened Angle Distance since it has been shown to be
very effective in PCA-based face recognition problems [Perlibakas 2004].

In order to understand the significance of the methodology, we masked some
parts of the face, according to three impairment criteria, examining three different
approaches. Note that the authentication technique (and the PCA space) remained
unchanged throughout: the changes occurred in the images.

— Deleting K most important points: this approach masks out the K most im-
portant patches, as determined by our algorithm—as previously configured: i.e.
with log-polar patch resolution set to 15 eccentricity steps and 35 receptive fields
at each, with a 70% overlap along the two directions. Mask templates are obtained
by extracting differences between the five training images and another five images
randomly selected from the XM2VTS database [Messer et al. 1997]. The K most
important patches (K = 100 in all our runs) are replaced in all the relevant images
with random noise. Thus, here the template is represented by the set of train-
ing images plus a mask in which the most distinctive parts of the face have been
removed. This mask is then applied to the test image and to the training images.

— Deleting random points: this approach masks a number of random points
equivalent to the number of points marked by the algorithm.

— All points are retained and so no masking is performed;

Clearly we expect that removing points determined by our algorithm will be more
deleterious for authentication than when deleting the same quantity of random
points.

Two examples of the application of the three masking methods on faces of the
BANCA database are presented in Fig. 6. Note that in the upper example, we
compute the most distinguishing zones to be around the mouth and the nose—
which may be reasonable since the database largely contains European people, and
this is a African face with a very different mouth and nose. In the lower example,
the zones around the eyes are compactly marked as most distinct.

4.3 Results

Since random variations are inherent in our masking procedure we repeated the tests
30 times, averaging results in order to obtain a reasonable statistical significance,
as detailed below. Weighted Error Rates for the three different methodologies are
presented in Table II, for three different values of the standard parameter R.
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(a) (b) (c)

Fig. 6. Example of the masking process on two faces of the database BANCA: (a) original

images, (b) random mask and application on the image (b) mask obtained by deleting the K most

important patches (K = 100) and its application on the image.

Table II. Different WER for the three methodologies.

WER (R = 0.1) WER (R = 1) WER (R = 10)

Methodology G1 G2 G1 G2 G1 G2 Average

All points 10.76% 4.85% 10.58% 8.21% 5.10% 1.97% 6.91%

Del. random pnt 9.55% 6.37% 15.71% 8.71% 7.64% 3.00% 8.50%

Del. most imp. pnt 11.62% 7.46% 19.58% 13.37% 9.11% 4.46% 10.93%

From this table the important role played by the information extracted by our
algorithm is evident. When removed, the performance of the classifier deteriorates
substantially and significantly. Note that much greater impairment is obtained by
omitting those parts extracted by our algorithm than those omitted at random.
The significance of this interpretation is supported by the fact that these random
deletions have been repeated several times and results averaged.

In order to investigate if the significance of this impairment is statistically rele-
vant, we compute the statistical confidence of the results, using the method recently
proposed in [Bengio and Mariétoz 2004]. This method, given the number of client
tests NC and the number of the impostor tests NI, computes the confidence at a
level of 95% starting from the FAR and FRR rates—as follows:

σ95 = 1.96×
√

FAR(1− FAR)
4NI

+
FRR(1− FRR)

4NC

The value σ95 indicates that the confidence is computed for a probability of 95%.
We compute this confidence for all the results, for both groups G1 and G2, and the
average error rates confidence is 2.32%: this indicates the statistical significance of
the result.
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4.4 Comparison with other methods

In this section we compare our algorithm to other established approaches for the
extraction of salient parts of the face. In particular, we adapt four methods to our
analysis:

— Lowe [Lowe 2004]1: which represents the standard SIFT features, whereby the
image is processed with multiscale filters, returning a set of key points (position,
scale, orientation and key descriptor). Here, we mask the zones around the key
point locations, using the scale parameter to decide the extent of removal.

— Salah et al. 2002 [Salah et al. 2002]: this method simulates the attentive visual
selection mechanism of human beings. The starting point is a saliency map, which
determines where the “eye” should observe. This map is computed using a bank
of multi-frequency Gabor filters. Here we derive the masking map by considering
the N most salient points in the map—where N matches the number of points that
our algorithm used.

— Walther [Walther 2006]2: in his PhD thesis, Walther extends previous work
on saliency-based visual attention by Koch and Ullman [Koch and Ullman 1985]
and Itti et al. [Itti et al. 1998], producing a bottom-up salient region selection
scheme. As for Salah, we consider just the relevant saliency map—that is obtained
by extracting maps derived from (color) luminance and orientation contrasts across
different scales.

— Ullman et al [Ullman et al. 2002]: Here the parameters were set as in the
perceptual comparison in section 3. Again we used the five training images allowed
by the BANCA protocol together with five randomly selected images.

For all four methods we employed default parameter settings without attempting
further optimization. Since the first three methods represent unary operators and
deal only with client images we decided to apply each method to the training images
and then combine saliency maps derived by summing the output from the different
images.

Two examples of the application of each method are shown in Fig. 7—as mask and
resultant image. Note the wide-spread spatial distribution of the zones considered
of importance by the three unary methods. They tend to disperse attention between
standard “a priori” zones, such eyes, nose and mouth, with little adjustment for
the particular classification task. That contrasts markedly with the compacted
focused zones indicated by our pair-wise approach—see Fig. 6(c). These zones are
distinctive and salient with respect to other people in the population, e.g. the
“African mouth,” previously mentioned, from the first row of Fig. 6.

For completeness we computed the averaged WER, as described in previous sec-
tion, to each method employed here. As before, the most important areas were
masked with random noise, repeating the process 30 times and running the authen-
tication impairment test. We report the final averaged errors in Table III along
with the results obtained by the pair-wise algorithms.

1Code currently available at http://www.cs.ubc.ca/ lowe/keypoints
2Saliency Toolbox currently available at http://www.saliencytoolbox.net/
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(a) (b) (c) (d) (e)

Fig. 7. Example of the masking process on two faces of the database BANCA: (a) original images,

(b) Lowe 2004 (SIFT) (c) Salah et al. 2002; (d) Walther 2006; (e) Ullman et al. 2002

Method Averaged WER

Lowe [Lowe 2004] 10.15%

Salah et al. [Salah et al. 2002] 10.19%

Walther [Walther 2006] 10.74%

Ullman et al. [Ullman et al. 2002] 11.87%

Our algorithm 10.93%

Table III. Averaged WER on the impairment authentication test, for each method.

The table shows that, in this test scenario, the pair-wise discriminant methods
(lower two rows) perform marginally better than any of the unary methods (top
three rows)—though differences in WER are not statistically significant. Note,
how the Ullman et al. method improves when moving from one face-per-set to
five faces-per-set: the pdf estimates become more reliable. From this performance
base-line there is much scope to refining the way our algorithm in search of further
improvement. A thorough comparison on a direct face recognition problem might
then be better performed.

In order to deeply understand the differences between the methodologies, we
computed, for each pair of them, the percentage of overlap in the errors occurred in
the authentication test. Clearly, low percentages indicate low correlations between
the occurred errors. Obtained results are displayed in Table IV, with also the aver-
aged values: from this table it is evident that the different methodologies are quite
uncorrelated, with the proposed approach being the most uncorrelated one. This
confirms that the presented methodology is a valid and complementary alternative
to standard techniques.

4.5 Discussion on illumination invariance

Illumination represent a intrinsic problem relevant to all face recognition algorithms
[Adini et al. 1997]. As discussed in the Introduction, we here illustrate how our
algorithm may embody a degree of invariance to illumination variations. To this
end, we apply the algorithm—at first without any normalization stage—to four
ACM Journal Name, Vol. V, No. N, Month 20YY.
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Prop. Approach Lowe Salah et al. Walther Ullman et al.

Prop. Approach 100% 65.43% 71.90% 67.91% 71.54%

Lowe 65.43% 100% 71.38% 74.42% 68.19%

Salah et al. 71.90% 71.38% 100% 74.03% 74.16%

Walther 67.91% 74.42% 74.03% 100% 69.94%

Ullman et al. 71.54% 68.19% 74.16% 69.94% 100%

Average 69.20% 69.86% 72.87% 71.57% 70.96%

Table IV. Error correlation matrix.

images of the same face lit from different directions: (1) normal to the face, (2)
from on high, (3) from the left, and (4) from the right.

We extract the differences between each face-image and a corresponding im-
postor face, and then we visualize its 100 most distinctive points. Fig. 8 shows
the results: the first two columns being, respectively, (a) the client and (b) im-
poster faces. Column (c) shows the results of the algorithm omitting the nor-
malization/registration phase—they are not very robust to illumination changes.
Failures occur at points bordering on the most illuminated zones. This is mainly
due to the log-polar scheme using the average gray-level to assign a value to each
of its cells—which obviously varies with illumination change.

Column (d) shows the results of restoring the histogram equalization preprocess-
ing (the one used in the authentication test)—there is an immediate benefit. Col-
umn (e) are the results obtained using a more sophisticated illumination com-
pensation scheme3 [Gross and Brajovic 2003], where again increased invariance is
achieved. Again, similar results—column (f)—were obtained after internally mod-
ifying our log-polar scheme—whereby its previously failing average-cell value was
substituted by one computed by a LoG filter. Since the resultant values are now dif-
ferential they are largely unaffected by variations in local illumination levels [Marr
1982]. The filter was implemented as difference of two Gaussians, with widths that
were directly linked to the radius of the receptive field4, thus realizing multiscale
filtering.

For completeness, we quantify the degree of illumination invariance manifest by
each of the four marked columns in Fig. 8. This is done by computing the aver-
age similarity of the points mapped on each column’s four consituent images, in a
pair-wise manner. For this purpose we adapt a method established for matching
fingerprint minutiae [Maio et al. 2003]. Given two maps, pairs of spatially corre-
sponding points are identified as follows: for each point in map-1 take the closest
point in map-2 and measure the distance between them; if it is shorter than a
threshold then the points are deemed to correspond. The similarity measure be-
tween the two maps (known as matching score in the fingerprint context) is then
computed as the percentage of points in correspondence divided by the total number

3Currently available at http://torch3vision.idiap.ch/downloads.php.
4In particular, σi of the inhibitory Gaussian is the radius divided by 2.5, whereas for the other

Gaussian it holds σe = σi/1.6. [Marr 1982]
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(1)

(2)

(3)

(4)

(a) (b) (c) (d) (e) (f)

Fig. 8. Experiment on illumination changes: (a) client images; (b) impostor images; (c) Our

algorithm on unnormalized image; (d) Our algorithm on histogram equalized images; (e) Our

algorithm on images normalized using illumination compensation; (f) Our algorithm using LoG

log-polar features.

of points. Such similarities are computed for all pairs of maps relative to different
illumination conditions and then the averaged similarities are reported in Table V.
It is evident, here, that all methods but the first alleviate problems deriving from

Method Averaged similarity

between maps

Log-polar 68.63%

Histogram equalization 92.25%

Illumination compensation 96.44%

LoG log-polar 94.56%

Table V. Quantifying illumination invariance via averaged similarities between maps generated

with different illumination conditions, for the four different methods.
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illumination changes—including the relatively efficient histogram equalization that
we adopted in earlier sections.

5. CONCLUSIONS AND FUTURE WORK

In this article we developed and demonstrated the feasibility of an alternative ap-
proach to face analysis based on identifying distinctive areas of individual faces by
comparing them with others in the population. Scope exists to improve several
aspects of the method. Patches might be extracted using different techniques, e.g.
DCT, or Gabor filters. More sophisticated distance metrics might be explored.
Alternative generalizations from pair-wise to multiple-face scenarios might be use-
fully elaborated. Nevertheless, even before such investigations are attempted it
is encouraging to observe a base-line performance already on a par with existing
methods, and an apparent compatibility with how humans mark faces as distinct.

Although we illustrated that our method embodies some degree of invariance to
illumination variations, more work is necessary if invariance to 3-D pose is to be
provided. Furthermore, we should prefer to improve the authentication experiment,
superseding the impairment test with one that actively uses the ranking of the face
distinctive patches.
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