
Integrating POMDP and Reinforcement Learning for a Two
Layer Simulated Robot Architecture

Larry D. Pyeatt Adele E. Howe

Computer Science Department
Colorado State University

Fort Collins, CO 80523fpyeatt,howeg@cs.colostate.edu
http://www.cs.colostate.edu/˜fpyeatt,howeg

Abstract

Two layer control systems are common in robot architectures. The
lower level is designed to provide fast, fine grained control while the
higher level plans longer term sequences of actions to achieve some
goal. Our approach uses reinforcement learning (RL) for the low
level and Partially Observable Markov Decision Process (POMDP)
planning for the high level. Because both levels can adapt their be-
havior within the scope of their tasks, the combination is expected to
be robust to degradations in sensor and actuator failures and so to en-
hance overall system reliability. We implemented our architecture
for use in the Khepera robot simulator. In a set of experiments, we
show that good performance can be difficult to achieve with hand
coded low level control and that performance of our RL/POMDP
system degrades slowly with increasing sensor and actuator failure.

1 Introduction

Two layer control systems are common in robot architectures. Two
layer control is a pragmatic solution to different time and control
granularities of activity. The lower layer provides fast, short hori-
zon decision about quickly executed actions; the upper layer adopts
a more goal oriented view and plans over a longer scope. Thus, the
lower layer is designed to keep the robot out of trouble (e.g., run-
ning into obstacles) and make minor modifications to an otherwise
good course of action based on sensory feedback (e.g., course cor-
rections). The upper layer ensures that the robot continually works
toward its target task or goal (e.g., does not paint itself into a corner
or go in circles).

The two layer control architecture offers reliability. For example,
autonomous robots must be able to deal with failure of sensors and
actuators in a robust way when they may be operating out of direct
human control (e.g., space exploration, hazardous environments).
In these situations, hardware failure can result in failure of the mis-
sion unless the control system is sufficiently adaptive. In less critical
situations, robust operation is also necessary. Even an office robot
should be capable of dealing with some sensor failures or miscali-
brations and actuator failures.

We wish to develop a robust control system for an autonomous robot
that can operate in an office-like environment. By robust, we mean
that the robot should be able to deal with sensor and actuator mal-
function caused by hardware failure or low battery conditions. Our
current system has two levels of control. The lower level controls
the actuators that move the robot around and provides a set of be-
haviors that can be used by the higher level control and planning
system. The upper level plans a sequence of behaviors to run in or-
der to move the robot from its current location to the goal.

In our architecture, the bottom level is accomplished by reinforce-
ment learning (RL); the top level is a Partially Observable Markov
Decision Process (POMDP) planner. It is this combination of RL
Learning and POMDP that distinguishes our approach from previ-
ous work. We believe that RL is a good choice for implementing
low level control because it is able to learn online and can adapt
to changes in the environment. RL simultaneously learns the value
function and the policy, reducing the intervention of the program-
mer and accommodating further learning as environment conditions
change. POMDP planning is a good framework for the higher level
control because it operates quickly once a policy is generated and
can provide the reinforcement needed by the lower level behaviors.

We have been testing our architecture on the Khepera robot simu-
lator [14]. Khepera is a very small robot with limited sensors and a
well-defined environment. This makes simulation an attractive op-
tion for testing our ideas. The simulator can be run much faster than
real-time and does not require human intervention for low battery
conditions and sensor failures as a physical robot could.



The research presented in this paper shows that reinforcement learn-
ing at the low level and POMDP planning at the higher level can
result in a system that is more robust than one that uses only pre-
programmed behaviors.

1.1 Reinforcement Learning at the Bottom

Several methods are available for implementing low-level behav-
iors. The most direct is to program them as reactions [6]. Alter-
natively, they can be learned from examples. Sammut [17] uses an
approach referred to as behavioral cloning to create rules for an air-
plane control system. Behavioral cloning extracts situation-action
rules from logs of actions taken by a human subject. Homogeneous
multi-layer architectures such as subsumption [2] have supported in-
cremental development of behaviors and demonstrated robust per-
formance.

In general, neural systems tend to be robust to noise and perturba-
tions in the environment. For this reason, neural learning is a popu-
lar approach to low level robot control [19]. Neural control systems
have been developed to solve inverse kinematics for robot arms and
visual robot positioning in several domains. GeSAM is a neural net-
work based robot hand control system based on human prehensile
function [12]. It uses an adaptive neural network to learn the rela-
tionship between object primitives and a set of grasp modes for pick-
ing up cylindrical objects. However, neural networks often require
long training periods and large amounts of data.

Some researchers have examined RL techniques for mobile robot
navigation and fine manipulation for robot arms. RL modules can
deal with relatively high sensor data rates and do not require much
sensor pre-processing [18].

Reinforcement learning modules can learn continuously and provide
adaptation to sensor drift and changes in actuators caused by changes
in battery power. Also, in many extreme cases of sensor or actuator
failure, the reinforcement learning modules can adapt enough to al-
low the robot to accomplish its mission. Another desirable property
is that each behavior learns its own value function, independent of
the others, and is thus self contained.

1.2 POMDP Planning at the Top

As with the lower level, a variety of approaches have been explored
for higher level control. One common approach has been to inte-
grate a deliberative, symbolic planner with reactive control levels
(e.g., Cypress [20], GLAIR [8], RALPH-MEA [15]). In general,
these planners produce more complex plans of longer duration than
is appropriate for our application at present.

For our application, we assume limited sensor and actuator capabili-
ties in an environment with a mostly known terrain (offices). Khep-
era has only pulse encoders on the wheels and no vision, so deter-
mining the exact state of the robot would be very difficult. Also,
the effects of actuators may not be deterministic; worse still, the ef-
fects of behaviors as implemented in the RL modules are unlikely
to be predictable, especially during training. The POMDP frame-
work provides a way to deal with this uncertainty. The POMDP
frameworkalso allows for the learning of state transition and obser-

vation probabilities on-line. Thus, the higher level can also adapt to
changes in the environment or in the robot’s actuators and sensors.

Goals in the POMDP framework are expressed as reward functions.
Some rewards may be associated with the goal state, or with per-
forming some action in a certain state. Most POMDP solution al-
gorithms try to maximize the reward received. Thus, we can define
complex, compound goals within this framework.

The major drawback with using POMDP planning is that current
POMDP solution methods do not scale well with the size of the state
space. Exact solutions are only feasible for very small POMDP plan-
ning problems. POMDP planning also requires that the robot be
given a map of its environment, which is not always feasible. We
use a small domain and provide the map to the robot.

1.3 What is Gained by Integration

By combining POMDP planning with RL, we can construct a sys-
tem that is robust to changes in the environment and to failure of
sensors and actuators. RL provides the mechanism for adapting to
changes or malfunctions in actuators and sensors. The low level be-
haviors are continuously learning to maximize the reward provided
by the POMDP planner.

Continuous learning allows reinforcement learning to compensate
for gradual changes in sensors and actuators. Large changes in ac-
tuators or sensors can cause the reinforcement learning modules to
fail completely. However, when enough negative rewards have ac-
cumulated, the RL modules will begin searching for a better solution
and will learn how to use the damaged sensors and actuators, if pos-
sible. Since the only goal for the low level behaviors is to maximize
reward, they are free to search the possible solution space. In many
instances, the existing policy will require only slight modification
after sensor or actuator failure.

Continuous learning may have some drawbacks, especially when
using backpropagation neural networks that use activation functions
with global support to approximate the value function. These draw-
backs include over-training leading to cyclical performance and fail-
ure to find a stable solution while randomly exploring the state space.
Our current implementation uses a lookup table for storing the value
function, which does not suffer from these problems, but will not
scale well to include more sensors.

The POMDP planner at the high level is given a map of the envi-
ronment, but must learn the relationship between the behaviors and
the positions in the state space. This means that it can also adapt to
changes in the environment and to sensor and actuator failures by
adjusting the transition probabilities that it uses in planning which
behavior to use. Thus, reliability is increased in the overall system
through adaption at both levels.

1.4 Our Application Domain: Khepera

Our research uses the Khepera robot simulator [14]. Khepera is a
small (55mm diameter) desktop robot with limited sensors and ac-
tuators. The sensors consist of eight infrared transmitter/receiver
pairs arranged as shown in Figure 1. It also has pulse encoders on
the wheels, but we do not use them in this work. The robot has two



Figure 1: Arrangement of Khepera infrared sensors.

drive wheels, one on each side that can be controlled independently,
providing the ability to control speed and direction of the robot.

The Khepera robot is simple enough to be adequately modeled in a
simulator. Previous research has shown that simulation results can
be successfully transferred to a real robot if the simulator is reason-
ably accurate [13, 5]. The Khepera simulator is a discrete time sim-
ulator, and can run in real-time or much faster than real time. The
user-supplied robot controller is called by the simulator at each time
tick. The sensor model includes stochastic modeling of noise and
responds similarly to the real sensors. The simulation environment
includes some stochastic modeling of wheel slippage and accelera-
tion. Michel [14] reports good transfer from the Khepera simulator
to the real Khepera robot.

The user writes a set of subroutines that conform to a simple API.
The subroutines are used by the simulator to initialize, run and shut-
down the user control code. The simulator provides routines that al-
low the controller to query sensors and control effectors.

The user can create, save and restore a simulated environment with
obstacles. However, the simulator does not include any settings to
simulate failures. We added hooks into the simulator to allow us to
simulate sensor failures, and we simulated effector failures within
our own code.

2 Reinforcement Learning Behaviors

In our RL/POMDP implementation for Khepera, we implemented
three basic behaviors: move forward, turn right, turn left. The robot
is always moving and performing one of the behaviors. When turn-
ing, the number of time steps that the turn behavior is invoked de-
termines how far the robot turns. The low level behaviors are re-
sponsible for dealing with obstacles and dealing with other problems
that might arise, such as adjusting for sensor or actuator malfunc-
tion. Thus, the “move forward” behavior must adjust its activity if
its path is blocked.

The goal of the RL modules is to maximize the reward given them by
the POMDP planner. The reward is a function of how long it took to
make a desired state transition; thus, a state transition in the shortest
amount of time maximizes the reward. We did not reward the robot
for making efficient use of battery power although this is a possibil-
ity as well.

The low level behaviors are not trained to avoid obstacles, but learn
to do so because it is necessary for maximizing the reward given by
the POMDP planner. As an example of this, suppose the policy for
state s is to perform action a and the expected next state is s0. Upon
entering state s, the POMDP planner activates action a and waits for
a change in the robot’s state. If a drives the robot into a wall, then
it will not receive a reward. The only way it can receive the reward
is to cause the robot’s state to change to s0. Action a will receive
zero reward until the robot leaves state s. When that happens, it will
receive a positive reward only if the new state is s0.
Each of the behaviors is implemented in its own reinforcement learn-
ing module. All RL modules receive all data for the sensors and ac-
tuators, as well as a reinforcement signal from a POMDP planner at
the higher level. Only one of the RL modules can be active at any
given time. When it becomes active, an RL module gains complete
control of the actuators and has full access to sensor data. All of the
RL modules are implemented using the same underlying code. They
perform different behaviors due to the rewards they receive.

The RL modules may receive more complete information from the
sensors than the POMDP planner does. We pre-process the sensory
input given to the POMDP, reducing it to only a few bits, in order
to make the POMDP solvable. The RL modules do not need such
restrictions and can deal with more data.

We use Q-learning with table lookup for approximating the value
function. Although able to handle larger problems, neural network
reinforcement learning is not guaranteed to converge and often per-
forms poorly even on relatively simple problems [1]. Neural net-
works also have a tendency to over-train on the portion of the state
space that it visits often and forget the value function for portions
of the state space that it has not visited recently. This leads to a
cycle where it learns to perform well for a time and then begins to
perform poorly. Eventually it does re-learn the value function and
performance improves again for a period. As the number of sepa-
rate behaviors/networks is increased, the probability of one or more
of them being in the forget part of the learn/forget cycle increases,
which can cause severe problems as the system tries to recover from
multiple failures caused by malfunctioning behaviors. Table lookup
avoids these problems, and so we have adopted that representation.
Fortunately, the problem so far is small enough for table lookup to
be feasible.

3 POMDP planning

Markov Decision Processes have previously been examined as an
approach to planning in robotic systems [10, 9]. A Markov Deci-
sion Process Model consists of a finite set of states S, a finite set of
actionsA, a set of actionsA(s) � A for each state s 2 S that can be
executed in that state, and transition probabilities p(s0js; a)8s; s0 2S and a 2 A(s). The transition probabilities just specify the proba-
bility that the state is s0 given that the previous state was s and actiona was taken. Finally, the MDP includes a set of observation proba-
bilities Pi(ojs)8s 2 S and o 2 O(i) which specify the probability
that sensor i detects observation o in state s. In a completely ob-
servable MDP, it is assumed that the current state can be determined
solely from information immediately available from sensors.

Completely observable MDP methods do not work well in many
real-world robot planning tasks because robots can rarely determine
their state from immediate sensor observations. Such determination



is also usually computationally expensive. One way to deal with this
uncertainty is by using a generalization of MDP known as Partially
Observable Markov Decision Processes. Since the robot is unable
to determine the current state based solely on the current sensor ob-
servation, it is necessary to update the state probability distributionP (s) over states s 2 S using information about transition and ob-
servation probabilities. So, the state is expressed by a probability
density function over the possible states. The probability distribu-
tion at each time step is calculated usingP (s) = K Xs02Sja2A(s0) p(sjs0; a)� P (s0) (1)

where K is a normalization factor which ensures that the probabil-
ities sum to one. This is necessary since every action may not be
defined in some states. When a sensor report comes in from sensori, the probability distribution is further updated byP (s) = K � pi(ojs0)� p(s0) (2)

The Khepera robot has 8 sensors that report distance values between
0 and 1024. We must reduce the amount of data. To do so, we group
the sensors in pairs to make 4 pseudo sensors and then threshold the
output from the pseudo sensors. This results in only 16 possible ob-
servations and makes the POMDP planner relatively robust to single
sensor failures.

3.1 Solving a POMDP

Planning can be performed by selecting a state to be the goal and
finding a policy that can be used to reach that state. The policy is
simply a mapping that specifies what action to take in each state.
For completely observable MDPs the representation for the policy
is straightforward. Each state is mapped to exactly one action. For
a robot to follow its policy, it simply determines what state it is in,
looks up that state in the policy, and performs the specified action.
For POMDP, however, the robot can never tell exactly what state it
is in. The state is represented as a probability distribution, which
could also be interpreted as a unit length vector. The policy for a
POMDP is a set of vectors in the state space. Each vector is as-
sociated with an action. When using the policy to select an action,
the robot calculates the vector dot product between the current be-
lief state and every vector in the policy. Whichever vector has the
largest dot product wins, and the action associated with that vector
is used. The set of vectors that make up the policy form the upper
surface of a piecewise linear function. This surface is known as the
value function.

Several algorithms can compute the optimal policy for a POMDP,
but all of the current algorithms are very computationally expensive.
The Witness algorithm [11], is probably the best known, although
several other algorithms converge more quickly. Of them, we im-
plemented incremental pruning [4] as the algorithm underlying our
POMDP planner.

Incremental pruning, like the other exact POMDP solution methods,
does not scale well with the size of the state space. Therefore, it is
necessary to keep the state space representation as simple as pos-
sible. For this work, we used a small area divided into 16 discrete
positions and discretized the robot’s heading into the four compass
directions. This resulted in 64 possible states for the robot. Sensor

Figure 2: Environment and state space for our experiments.

information was reduced to 4 bits by combining the sensors in pairs
and setting a threshold on the combined sensor values. The environ-
ment and state space is shown in Figure 2. Even with this simple
state space, generating a policy required several days of computa-
tion on a Sun Ultra 2 workstation.

The major computational bottleneck is in the solution of a large num-
ber of linear programs. In order for incremental pruning to work, the
linear program solver must have a very high degree of numerical sta-
bility. A great deal of effort was put into creating a linear program
solver with sufficient numerical stability and speed. Our linear pro-
gram solver is a sparse vector implementation based on the revised
simplex method [3].

4 Interface between layers

When following a policy, the POMDP maintains a probability dis-
tribution over the possible states. This probability distribution is re-
ferred to as the belief state. The POMDP uses the current belief state
to select a low level behavior to activate. Our implementation also



tracks the state with the highest probability: the most likely current
state. When the most likely current state changes, then we generate
a non-zero reward for the behavior that is currently active. For all
time steps where the most likely current state does not change, we
generate a zero reward.

From the state transition probabilities, it is easy to find the expected
next state when performing the current action in the most likely cur-
rent state. If the most likely current state changes to the state that we
want, then a reward of 1 is generated; otherwise a reward of �1 is
generated. Note that there is a possibility for incorrect reward as-
signment. This is not a problem as reinforcement learning can still
converge with some incorrect reward assignment.

5 Evaluation

The primary advantage of the RL/POMDP combination is its adapt-
ability. Thus, we expect that our system should perform reliably
even when the robot’s hardware degrades. We hypothesize that the
overall performance should degrade gracefully (i.e., roughly linearly
with a shallow slope) as sensors and actuators gradually fail.

To test the hypothesis, we degraded sensor or actuator performance
and measured the performance of two systems: one with the RL
modules and the other with hand coded behaviors for low level con-
trol. The hand coded behaviors provide a control or baseline of per-
formance to demonstrate task difficulty. As with the RL modules,
we programmed three low level behaviors for the robot: turn left,
turn right, and move forward. When the hand coded behaviors hit an
obstacle, they turn to try to avoid it. We used the three hand coded
behaviors to obtain the estimates of the state transition and obser-
vation probabilities needed by the POMDP planner. We placed the
robot at a random position and orientation within each of the 64 pos-
sible states and recorded the effects of performing one of the actions
from that starting position. We repeated this for ten trials in each of
the 64 states. This data collection process provided an initial esti-
mate of all state transition and observation probabilities to be used
by the POMDP planner.

For simplicity and due to computational limitations, we chose state
13 (the robot’s location in Figure 2) to be the goal for all of our ex-
periments. We used the iterative pruning algorithm to find a policy
that would direct the robot to state 13 from any initial state. This is
a very large POMDP problem, so we used a high threshold on the
value returned by the linear program solver. This probably resulted
in a policy that was far from optimal, but was sufficient for our pur-
poses. This policy was used for all of the experiments.

With the policy in place, we were ready to train the RL modules.
We replaced the hand-coded behaviors with RL modules and trained
them by placing the robot at a random position and orientation within
each of the 64 states in turn, much as we did when generating the
transition and observation probabilities. As before, we repeated this
process ten times.

For each trial in an experiment, we degraded the simulated sensor
or actuator performance by a set amount. For each system configu-
ration (RL or hand coded), we started the simulated robot from ev-
ery position and orientation in environment and recorded its perfor-
mance. After a failure, the robot is re-started in the same position
and orientation to try again. Each position and orientation is tried

0

5

10

15

20

25

30

35

40

45

50

0 5 10 15 20 25 30 35 40 45 50

Fa
ilu

re
s 

du
ri

ng
 tr

ia
l

Sensor impairment (%)

Reinforcement Learning
Hand Coded

0

200

400

600

800

1000

1200

1400

1600

0 5 10 15 20 25 30 35 40 45 50

A
ve

ra
ge

 s
te

ps
 to

 g
oa

l

Sensor impairment (%)

Reinforcement Learning
Hand Coded

Figure 3: Response to gradual failure of all sensors.

until the robot successfully achieves the goal. Thus, for each simu-
lator setting, we collect data from 64 instances of the robot achieving
the goal.

Finally, in each case, we assessed performance on two metrics. Fail-
ures during trial counts the number of times that the robot was un-
able to reach the goal within 5000 time steps over all 64 configu-
rations in a trial; thus, this is our estimator of reliability. Average
steps to goal assesses efficiency: how long does it take to achieve
the goal. Obviously, repeated failures in a trial causes this number
to increase considerably.

5.1 Gradual Sensor Failure

Sensors can fail gradually as battery power is used up, when dust
accumulates on the sensors, or sensors drift over time. To assess
the effect of gradual sensor failure on system performance, we set a
scaling factor on all of the sensors to restrict their range. If the range
of the sensors was 90% of normal, then the sensors were said to be
impaired by 10%. We started with all sensors fully operational (0%
impairment). For each unit (1%) impairment from 0% to 50%, we
directed the robot to go to the goal state from every possible starting
location.



0

50

100

150

200

250

300

350

400

0 2 4 6 8 10 12 14 16 18 20

A
ve

ra
ge

 s
te

ps
 to

 g
oa

l

Trial

Hand Coded Mild Failure
Hand Coded Severe Failure

RL Mild Failure
RL Severe Failure

Figure 4: Response to intermittent failure of an actuator.

Figure 3 shows the results of this experiment. The curves have been
mean smoothed with window of nine, which results in losing the end
points. For the hand coded behaviors, as expected, the time steps to
reach the goal is strongly correlated with the number of failures. In
the hand coded behaviors, there is a bump reaction that is triggered
when a threshold on the IR distance sensors is exceeded. Examina-
tion of the data showed that the most common failure was caused
by the robot running into a corner and not triggering a bump reac-
tion because the sensors could not generate a signal that was above
threshold. Due to this threshold effect, the hand coded behaviors
begin to perform poorly with even small amounts of sensor impair-
ment.

The RL module shows excellent reliability; the number of failures
during a trial increases gradually, staying under five, even with sen-
sor impairment as high as 50%. The cost of the RL reliability is a
sharp increase in cost (decrease in efficiency) at first, but the degra-
dation rises more slowly after sensor impairment of 10%.

5.2 Intermittent Actuator Failure

Actuators may partially or intermittently fail due to loose contacts,
shorted motor windings, or other causes. To assess the effect of in-
termittent partial actuator failure, we simulated loss of power in the
right motor by adding a subroutine to reduce the value of the com-
mand signal by a fixed amount with a 50% probability. For example,
although the robot control system issued a command for the motor
to run at a speed of -5, the failure simulation routine may actually
send a -4 command to the right motor. If the command signal was
negative, then 1 was added; if the signal was positive, then �1 was
added. We simulated mild failures with�1 and severe failures with�2 added to the right motor command signal.

We tested the response of both hand-coded and learned behaviors
to mild and severe failures. For each test, we ran one trial with all
sensors and actuators operational to establish a baseline and then ran
19 more trials while simulating an intermittent failure in the right
motor.

Figure 4 shows the results of this experiment on the average steps
to goal performance metric. The reinforcement learning behaviors

did very well with mild failure; the performance initially degraded,
but adapted quickly. For the severe failure, it took longer to recover,
but after 20 trials, the performance was approaching the pre-failure
level. As expected, the hand coded behaviors did not recover at all.
Even with the severe failure, the robot was able to reach the goal on
almost every trial with both hand coded and reinforcement learning
behaviors; thus, the failures during trial data does not differentiate
performance.

6 Conclusions

As we expected, the RL/POMDP combination exhibits robust be-
havior in the presence of sensor and actuator degradation. For our
current test application, we were not inhibited by the known limi-
tations of these methods, specifically amount of training required or
problem size. However, our future work on this project is directed at
scaling up the size of the problem and giving the architecture further
autonomy.

The problem size is constrained in part by the limitations of the ta-
ble lookup representation. Reinforcement learning is only guaran-
teed to converge to the value function when using a table lookup
method. However, the table lookup method does not scale well with
the size of the input space (sensors). To overcome the scaling prob-
lem, neural networks or some other approximation technique may
be used to represent the value function. When used for value func-
tion approximation in reinforcement learning, the backpropagation
neural network has one serious flaw: it makes non-local changes to
the value function with each update. This property is very undesir-
able for reinforcement learning because over-training of the neural
network in one area of the value function can cause the network to
“forget” other areas that have already been learned. This can lead
to poor performance overall and a learn/forget cycle where perfor-
mance is good for some time and then degrades.

To increase the sensory input to the RL modules, we will be mod-
ifying the standard neural network based reinforcement learning to
use a decision tree representation for the value function instead [16].
Like table lookup, decision trees subdivide the input space into in-
tervals; unlike table lookup, the resolution of the intervals depends
on the problem. The tree can be used to map an input vector to one
of the leaf nodes, which corresponds to a region in the search space.
Q-learning associates a value with each region. Our new approach
avoids the cycling problem by providing stable and reliable conver-
gence to the estimated value function even with large problems. The
decision tree approach to function approximation is a state aggrega-
tion or averaging technique. This class of function approximation
has been proven to converge [7].

To increase the size of the space for the POMDP, we will be inves-
tigating non-optimal solution algorithms. These algorithms operate
much faster, but at the cost of approximate solutions.

To augment the autonomy, the architecture will be enhanced to add
new behaviors as dictated by the demands of the environment. The
combination of POMDP and reinforcement learning supports learn-
ing new low level behaviors as needed. The POMDP planner will
recognize situations where the existing behavior set is not reliable
for performing certain state transition and will instantiate a new RL
module for use in that state transition. After some training, this spe-
cific behavior could be added to the set of available behaviors for
use in other similar states.



7 Acknowledgments

This research was supported in part by National Science Foundation
Career Award IRI-9624058. The United States Government is au-
thorized to reproduce and distribute reprints for governmental pur-
poses notwithstanding any copyright notation herein.

References

[1] Justin A. Boyan and Andrew W. Moore. Generaliza-
tion in reinforcement learning: Safely approximating
the value function. In G. Tesauro, D.S. Touretsky,
and T. K. Leen, editors, Advances in Neural Informa-
tion Processing Systems 7, Cambridge, MA, 1995. MIT
Press.

[2] Rodney A. Brooks. How to build complete crea-
tures rather than isolated cognitive simulators. In Kurt
VanLehn, editor, Architectures for Intelligence: The
Twenty-second Carnegie Mellon Symposium on Cogni-
tion, chapter 8, pages 225–239. Lawrence Erlbaum As-
sociates, Hillsdale, New Jersey, 1991.

[3] James Calvert and William Voxman. Linear Program-
ming. Harcourt Brace Javanovich, 1989.

[4] Anthony Cassandra, Michael L. Littman, and Nevin L.
Zhang. Incremental pruning: A simple, fast, exact al-
gorithm for partially observable markov decision pro-
cesses. In Proceedings of the Thirteenth Annual Con-
ference on Uncertainty in Artificial Intelligence, 1997.

[5] Marco Dorigo and Marco Colombetti. Robot shaping:
developing autonomous agents through learning. Arti-
ficial Intelligence, 71(2):321–370, December 1994.

[6] R. James Firby, Roger E. Kahn, Peter N. Prokopowicz,
and Michael J. Swain. An architecture for vision and
action. In Proceedings of the 14th International Joint
Conference on Artificial Intelligence, volume 1, pages
72–79, 1995.

[7] Geoffrey J. Gordon. Stable function approximation in
dynamic programming. Technical Report CMU-CS-
95-103, Carnegie Mellon University, Computer Science
Department, Pittsburgh, January 1995.

[8] Henry Hexmoor, Johan Lammens, Guido Caicedo, and
Stuart C. Shapiro. Behavior based AI, cognitive pro-
cesses, and emergent behaviors in autonomous agents.
Technical Report 93-15, State University of New York
at Buffalo, Department of Computer Science, 226 Bell
Hall, Buffalo, New York 14260, April 1993.

[9] Sven Koenig, Richard Goodwin, and Reid G. Simmons.
Robot navigation with Markov models: A framework
for path planning and learning with limited computa-
tional resources. Lecture Notes in Computer Science,
1093:322, 1996.

[10] Sven Koenig and Reid G. Simmons. Risk-sensitive
planning with probabilistic decision graphs. In Pro-
ceedings of the Fourth International Conference on
Principles of Knowledge Representation and Reason-
ing, pages 363–373, 1994.

[11] Michael L. Littman. The witness algorithm: Solving
partially observable markov decision processes. Tech-
nical Report CS-94-40, Brown University, Department
of Computer Science, Providence, RI, December 1994.

[12] Huan Liu, Thea Iberall, and George A. Beckey. Neu-
ral network architecture for robot hand control. In Pro-
ceedings of IEEE International Conference on Neural
Networks. IEEE, July 1989.

[13] Sridhar Mahadevan and Jonathan Connell. Au-
tomatic programming of behaviour-based robots us-
ing reinforcement learning. Artificial Intelligence,
55(2/3):311–365, 1992.

[14] Olivier Michel. Khepera simulator. Available
for download from http://diwww.epfl.ch/-
lami/team/michel/khep-sim/, 1995.

[15] Gary H. Ogasawara. RALPH-MEA: A Real-Time,
Decision-Theoretic Agent Architecture. PhD thesis,
University of California, Berkeley, California 94720,
1993.

[16] Larry D. Pyeatt and Adele E. Howe. Decision tree
function approximation in reinforcement learning. Tech
Report TR CS-98-112, Colorado State University, Fort
Collins, Colorado, October 1998.

[17] Claude Sammut. Automatic construction of reactive
control systems using symbolic machine learning. The
Knowledge Engineering Review, 11(1):27–42, 1996.

[18] Satinder Pal Singh. The efficient learning of multiple
task sequences. In Advances in Neural Information Pro-
cessing Systems 3, San Mateo, CA, 1991. Morgan Kauf-
man.

[19] Carme Torras. Neural learning for robot control. In
A. G. Cohn, editor, Proceedings of the Eleventh Euro-
pean Conference on Artificial Intelligence, pages 814–
819, Chichester, August8–12 1994. ECAI, John Wiley
and Sons.

[20] David E. Wilkins, Karen L. Myers, John D. Lowrance,
and Leonard P. Wesley. Planning and reacting in uncer-
tain and dynamic environments. Journal of Experimen-
tal and Theoretical AI, 7(1):197–227, 1995.


