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Abstract

Due to rapid growth of the Internet technology and new
scientific/technological advances, the number of applica-
tions that model data as graphs increases, because graphs
have high expressive power to model complicated struc-
tures. The dominance of graphs in real-world applications
asks for new graph data management so that users can ac-
cess graph data effectively and efficiently. In this paper, we
study a graph pattern matching problem over a large data
graph. The problem is to find all patterns in a large data
graph that match a user-given graph pattern. We propose a
new two-stepR-join (reachability join) algorithm with filter
step and fetch step based on a cluster-based join-index with
graph codes. We consider the filter step as anR-semijoin,
and propose a new optimization approach by interleaving
R-joins with R-semijoins. We conducted extensive perfor-
mance studies, and confirm the efficiency of our proposed
new approaches.

1 Introduction

A graph provides great expressive power to describe
and understand the complex relationships among data ob-
jects. With the rapid growth of World-Wide-Web, new data
archiving and analyzing techniques, there exists a huge vol-
ume of data available in public, which is graph structured
in nature including hypertext data, semi-structured data [1].
RDF also allows users to explicitly describe semantic re-
source in graphs [7]. In [27], Shasha et al. highlighted
algorithms and applications for tree and graph searching in-
cluding graph/subgraph matching in data graphs. The de-
mand increases to query graphs over a large data graph. In
this paper, we study a graph pattern matching problem that
is to retrieve all patterns in a large graph,GD, that match a
user-given graph pattern,Gq, based on reachability. As an
example, based on business relationships, a graph pattern
can be specified as to findSupplier, Retailer, Whole-
seller, and Bank such thatSupplier directly or indi-
rectly supplies products toRetailer andWhole-seller,
and all of them receive services from the sameBank di-
rectly or indirectly over a large data graph which can be
obtained from the Web. Similar needs also stem from find-
ing web-services connection patterns in WWW, finding re-

lationships in social networks [3], finding research collabo-
ration patterns, and finding research paper citation connec-
tion in archived bibliography datasets.

The graph pattern matching problem can be considered
as an extension of finding twig-patterns (tree patterns) over
XML tree. However, the existing techniques for processing
twig-patterns overXML tree [8, 14] cannot be effectively
applied to handle graph pattern matching over a large di-
rected graph. It is because a graph does not have the nice
property such that every two nodes are connected along a
unique path. In a large data graph, a node,vi, can reach an-
other nodevj , while the samevi is possibly reachable from
vj .

Contributions of this paper: We propose processing graph
pattern matching as a sequence ofR-join (reachability join)
upon a graph database which stores a data graph in tables.
We propose a new two-stepR-join algorithm with a filter
step and fetch step, based on a new cluster-based join-index
with graph codes for reachability checking. Furthermore,
we consider the first filter step as anR-semijoin, and pro-
pose a new optimization approach to optimize a sequence of
R-joins/R-semijoins. We conducted extensive performance
studies, and confirm the efficiency of our proposed new ap-
proaches.

Organization: We give the problem statement in Section 2.
In Section 3. we discuss ourR-join/R-semijoin approach.
We propose a new two-stepR-join algorithm (filter/fetch)
based on which anR-semijoin is introduced. We propose
a newR-join/R-semijoin order selection approach in Sec-
tion 4. In Section 5, two existing approaches are discussed.
We conducted extensive performance studies using large
datasets and report our findings in Section 6. Related work
is given in Section 7. Section 8 concludes the paper.

2 Problem Statement

In this section, we give our problem statement following
the discussions on data graph and graph pattern.

A data graph is a directed node-labeled graphGD =
(V, E, Σ, φ). Here,V is a set of nodes;E is a set of edges
(ordered pairs);Σ is a set of node labels, andφ is a mapping
function which assigns each node,vi ∈ V , a labellj ∈ Σ.
We uselabel(vi) to denote the label of nodevi. Given a
labelX ∈ Σ, the extent ofX , denoted asext(X), is the set
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Figure 1. Data Graph (a) & Graph Pattern (b)

of all nodes inGD whose labels are the sameX . A simple
data graph,GD, is shown in Figure 1 (a). There are 5 la-
bels,Σ = {A, B, C, D, E}. In Figure 1 (a), a node in an
extentext(X) is represented asxi wherex is a small letter
of X with a unique numberi to distinguish it from others in
ext(X). For example,ext(C) = {c0, c1, c2, c3}.

In the following, we useV (G) andE(G) to denote the
set of nodes and the set of edges in graphG.

A graph pattern is a connected directed node-labeled
graphGq = (Vq , Eq), whereVq is a subset of labels (Σ),
andEq is a set of edges (ordered pairs) between two nodes
in Vq. An edge(X, Y ) ∈ E(Gq) represents a reachability
condition, denotedX →֒Y , for X, Y ∈ Vq. A reachability
condition,X →֒Y , requests two nodesvi andvj in GD, for
label(vi) = X and label(vj) = Y , vj is reachable from
vi, denotedvi ; vj . A match inGD matches graph pattern
Gq if it satisfies all the reachability conditions conjunctively
specified inGq. Note:X →֒Y andY →֒Z impliesX →֒Z.

A result that matches an-node graph patternGq is an-
ary tuple,〈v1, v2, · · · , vn〉. A graph pattern,Gq, is shown
in Figure 1 (b). There are five labeled nodes:A, B, C, D,
andE, and there are four edges (reachability conditions),
A→֒C, B →֒C, C →֒D and D→֒E, which conjunctively
specify a graph pattern to be found. Consider the data graph
GD in Figure 1 (a). There is a match inGD that matches the
graph pattern,Gq, shown in Figure 1 (b),〈a0, b0, c1, d2, e1〉.
In detail,a0 ; c1 satisfiesA→֒C, b0 ; c1 satisfiesB →֒C,
c1 ; d2 satisfiesC →֒D, andd2 ; e1 satisfiesD→֒E.
Note:c1 is reachable from botha0 andb0 and can reachd2,
anda0 ; c1 andc1 ; d2 imply a0 ; d2.

Graph Matching Problem: A graph matching problem is
to find all matches in an arbitrary large directed data graph
GD that match all the reachability conditions conjunctively
specified in a graph pattern,Gq.

3 A New Join-Based Approach

In this paper, given a graph patternGq, we propose graph
matching as a sequence of joins, where each reachability
condition,X →֒Y ∈ E(Gq), is a join, calledR-join (for
reachability join).

Such anR-join is possible based on a graph labeling

called 2-hop reachability labeling [17]. A 2-hop reachabil-
ity labeling over graphGD assigns every nodev ∈ V a label
L(v) = (Lin(v), Lout(v)), whereLin(v), Lout(v) ⊆ V ,
andu ; v is true if and only ifLout(u) ∩ Lin(v) 6= ∅. A
2-hop reachability labeling forGD is derived from a 2-hop
cover ofGD. In brief, givenGD, the 2-hop cover mini-
mizes a set ofS(Uw, w, Vw), as a set cover problem. Here,
w ∈ V (GD) is called a center, andUw, Vw ⊆ V (GD).
S(Uw, w, Vw) implies that, for every node,u ∈ Uw and
v ∈ Vw, u ; w and w ; v, and thereforeu ;

v. Consider Figure 1, an example isS(Lin, w, Lout) =
S({b3, b4}, c2, {e0}). Here,c2 is the center. It indicates:
b3 ; c2, b4 ; c2, c2 ; e0, b3 ; e0, andb4 ; e0.
There are several implementations to find such 2-hop cover
for GD [23, 24, 15]. The 2-hop cover update problem is
addressed in [24]. We proposed a fast algorithm to compute
2-hop cover [15].

Let H = {Sw1
, Sw2

, · · · } be the set of 2-hop cover
computed, whereSwi

= S(Uwi
, wi, Vwi

) and all wi are
centers. The 2-hop reachability labeling for a nodev is
L(v) = (Lin(v), Lout(v)). Here,Lin(v) is a set of centers
wi wherev appears inVwi

, andLout(v) is a set of centers
wi wherev appears inUwi

.
Based on the 2-hop reachability labeling, we store graph

GD into a database,GDB, by taking a node-oriented repre-
sentation. There are|Σ| tables forGD. A tableTX , for a
labelX ∈ Σ, has three columns namedX , Xin andXout.
For each nodexi ∈ ext(X) (⊆ V (GD)), there is a tuple
in tableTX . TheX column keeps the node identifierxi.
TheXin andXout columns keep itsLin(xi) andLout(xi),
respectively. We assume that theX column is the primary
key of the table, because a node inGD is uniquely identi-
fied with a node identifier. We callTX a base table if it is
the table for a labelX ∈ Σ.

Example 3.1: A graph databaseGDB for GD (Fig-
ure 1) is shown in Figure 2 (a). There are five tables:
TA(A, Ain, Aout), TB(B, Bin, Bout), TC(C, Cin, Cout),
TD(D, Din, Dout), andTE(E, Ein, Eout). For a tuplexi

in tableTX , we make 2-hop reachability labeling compact
by removingxi from its Xin andXout columns. Hence,
Lin(xi) = Xin∪{xi} andLout(xi) = Xout∪{xi}. Below,
we callLin(xi) andLout(xi) graph codes forxi, denoted
in(xi) andout(xi). The reachability,xi ; yi, returns true,
if out(xi) ∩ in(yj) 6= ∅. 2

3.1 R-Join

Given two base tables inGDB, a reachability condition,
X →֒Y , in a graph patternGq, can be processed as anR-join
between two tables,TX andTY .

TR ← TX 1
X →֒Y

TY (1)
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Here, anR-join implies that, for everyxi ∈ ext(X) and
yj ∈ ext(Y ), xi ; yj holds, if the reachability condition,
X →֒Y , is evaluated to be true using the graph codes. A
pair, 〈xi, yj〉, appears in the temporal tableTR, if xi ; yj

is true (out(xi) ∩ in(yj) 6= ∅).
ConsiderTB 1

B →֒E
TE , 〈b0, e7〉 appears in the result, be-

causeout(b0) = {b0, c1}, in(e7) = {c1, e7}, andout(b0) ∩
in(e7) 6= ∅.

In general, anR-join over any two tables,TR andTS ,
with a reachability condition,X →֒Y , can be specified.
Note: X (Y ) is the column in the base tableTX (TY ), that
may appear in a temporal table because of a previousR-join.
Here,TR andTS can be either a base or temporal table.

TRS ← TR 1
X →֒Y

TS (2)

Therefore, a graph pattern,Gq, can be specified as a se-
quence ofR-joins followed by a projection to project the
columns for every labelX ∈ V (Gq).

In this paper, we concentrate ourselves on query process-
ing and optimization over multiR-joins, and focus on dis-
cussions of finding an optimal query plan that is represented
as a left-deep tree [29] in which anR-join is either between
two base tables or between a temporal table and a base ta-
ble. As shown in Eq. (3) and Eq. (4) below,TX andTY

represent base tables, andTR represents either a base or a
temporal table.

TR 1
X →֒Y

TY (3)

TX 1
X →֒Y

TR (4)

As a special case, a self-R-join is a join that can be pro-
cessed as a selection,

TR 1
X →֒Y

TR (5)

whereTR can be a base/temporal table. The following holds
for R-joins. TR 1

X →֒Y
TS ≡ TS 1

X →֒Y
TR (Commutative),

(TR 1
X →֒Y

TS) 1
W →֒Z

TT ≡ TR 1
X →֒Y

(TS 1
W →֒Z

TT ) (Asso-

ciative). Given a tableTR and supposeTR keeps tuples
that satisfy two reachability conditions,A→֒B andB →֒D.
Then the tuples inTR satisfyA→֒D (Transitive).

3.2 A Cluster-Based R-Join Index

Like a θ-join, anR-join needs to check the reachability
conditionX →֒Y at run time, which incurs high cost. We
propose a join-index approach, which is to index all tuples
xi and yj that can join between two tables,TX and TY .
With such a join-index, anR-join can be efficiently imple-
mented as to fetch the results.

We build a cluster-basedR-join index for a data
graph GD based on the 2-hop cover computed,H =
{Sw1

, Sw2
, · · · }, using our fast algorithm in [15], where
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Figure 2. A Graph Database for GD (Figure 1)

Swi
= S(Uwi

, wi, Vwi
) and allwi are centers. It is a B+-

tree in which its non-leaf blocks are used for finding a given
centerwi. In the leaf nodes, for each centerwi, its Uwi

andVwi
, denotedF-clusterand T-cluster, are maintained.

We further dividewi’s F-clusterandT-clusterinto labeled
F-subclusters/T-subclusterswhere every node,xi, in anX-
labeledF-subclustercan reach every nodeyj in aY -labeled
T-subcluster, via wi. It is important to note that, in our
cluster-basedR-join index, we keep node identifiers (tuple
identifiers) instead of pointers to tuples in base tables. With
this arrangement, we can answer someR-join without ac-
cessing base tables. If there is a need to access a base table,
we use the primary index built on the base table.

Together with the cluster-basedR-join index, we design
a W -table in which, an entryW (X, Y ) is a set of centers.
A centerwi will be included inW (X, Y ), if wi has a non-
emptyX-labeledF-subclusterand a non-emptyY -labeled
T-subcluster. It helps to find the centers,wi, in the cluster-
basedR-join index, that have anX-labeledF-subclusterand
aY -labeledT-subcluster.

Example 3.2:TheGDB for GD (Figure 1) is shown in Fig-
ure 2. Figure 2 (a) shows the five base tables, Figure 2 (c)
shows the clustered-basedR-join index, and Figure 2 (b)
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Algorithm 1 HPSJ(TX , TY , X →֒Y )
1: C ← W(X, Y ) using theW -table;
2: R ← ∅;
3: for eachwk ∈ C do
4: Xk ← getF(wk, X) using the cluster-basedR-join index;
5: Yk ← getT(wk, Y ) using the cluster-basedR-join index;
6: R← R∪ (Xk × Yk);
7: end for
8: return R;

Algorithm 2 HPSJ+ (TR, TY , X →֒Y )
1: TW ← Filter(TR, X →֒Y );
2: TRS ← Fetch(TW , X →֒Y );
3: return TRS ;

4: ProcedureFilter(TR, X →֒Y )
5: TW ← ∅;
6: for each tuple,ri, in TR do
7: Xi ← getCenters(xi, X, Y ) wherexi is in X column inri;
8: insert(ri, Xi) into TW if Xi 6= ∅;
9: end for
10: return TW ;

11: ProcedureFetch(TW , X →֒Y )
12: TRS ← ∅;
13: for each(ri, Xi) ∈ TW do
14: for eachwk ∈ Xi do
15: Yi ← getT(wk, Y ) using the cluster-basedR-join index;
16: TRS ← TRS ∪ ({ri} × Yi);
17: end for
18: end for

shows itsW -table. The cluster-basedR-join index (Figure
2 (c)) has six centers,a0, b6, c0, c1, c2, andc3. TheW -table
(Figure 2 (b)) tells whereR-join can find its centers in the
cluster-basedR-join index.

ConsiderTA 1
A→֒B

TB. The entryW (A, B) keeps{a0},

which suggests that the answers can only be found in the
clusters at the centera0. As shown in Figure 2 (c), the center
a0 has anA-labeledF-subcluster{a0}, and aB-labeledT-
subcluster{b2, b3, b4, b5, b6}. The answer is the Cartesian
product between these two labeled subclusters. 2

3.3 R-Join Algorithms

We first outline anR-join algorithm (Algorithm 1) be-
tween two tables discussed in [16], and then discuss a new
two-stepR-join algorithm (Algorithm 2) between a tempo-
ral table and a base table proposed in this paper.

TheHPSJalgorithm (Algorithm 1) processes anR-join
between two base tables,TX 1

X →֒Y
TY . First, it gets all cen-

ters,wk, that have a non-emptyX-labeledF-subclusterand
a non-emptyY -labeledT-subcluster, using theW -table,
and maintains it inC (line 1). Second, for each center
wk ∈ C, it conducts three things. (1) It obtains itsX-
labeledF-subcluster, usinggetF(wk, X), and stores them
in Xk (line 4). (2) It obtains itsY -labeledT-subcluster, us-
ing getT(wk, Y ), and stores them inYk (line 5). Both (1)
and (2) are done using the cluster-basedR-join index. (3) it
conducts Cartesian product betweenXk andYk, and saves

them into the answer setR (line 6). The output of anR-
join between two base tables is a set of pairs〈xi, yj〉 for
xi ; yj . It is important to note that there is no need to
access base tables because all the nodes are maintained in
the cluster-basedR-join index to answer theR-join.

In order to process multiR-joins, we need a way to pro-
cess anR-join between a temporal table and a base table. In
general, a temporal tableTR has columns which are all the
labels that are involved in the previousR-joins. Its tuples
satisfy all the previousR-joins. We propose a new two-step
R-join algorithm in Algorithm 2, calledHPSJ+. It processes
TR 1

X →֒Y
TY , whereTR is a temporal table that has anX col-

umn, andTY is a base table that has aY column. Below,
we discuss theHPSJ+ algorithm in detail. A join algorithm
can be implemented in a similar manner like Algorithm 2 to
process(TR 1

X →֒Y
TX), whereTR is a temporal table that has

aY column, andTX is a base table that has anX column.
TheHPSJ+ algorithm takes three inputs, a temporal ta-

ble TR, a base tableTY , and anR-join conditionX →֒Y .
In HPSJ+, first, it calls a procedureFilter(TR, X →֒Y ) to
filter TR tuples that cannot be possibly joined withTY us-
ing W -table, and stores them intoTW (line 1). Second, it
calls a procedureFetch(TW , X →֒Y ) to fetch theR-join re-
sults using the cluster-basedR-join index. We do not need
to access the base tableTY , because the needed nodes are
stored in the cluster-basedR-join index. The details of the
two procedures are given below.

In Filter(TR, X →֒Y ), first, it initializesTW to be empty
(line 5). Second, in a for-loop, it processes every tupleri in
TR iteratively (line 6-9). In every iteration, it obtains a set
of centers,Xi, for xi in the X column inri, where every
centerwk in Xi must have someyj ∈ TY in its T-cluster
(line 7). It is done usinggetCenters(xi, Y ) below.

getCenters(xi, X, Y ) = out(xi) ∩ W(X, Y ) (6)

As shown in Eq. (6),out(xi) is a set of centerswk thatxi

can reach. It needs to access the base tableTX using the
primary index. We use a working cache to cache those pairs
of (xi, out(xi)), in our implementation to reduce the access
cost for later reuse.W(X, Y ) is the set of all centers,wk,
such that someX-labeled nodes can reachwk and someY -
labeled nodes can be reached bywk. The intersection of the
two sets is the set of all centers such thatxi must be able to
reach someyj ∈ ext(Y ). If Xi 6= ∅, it implies thatxi must
be able to reach someyj (line 6), and therefore the pair of
(ri, Xi) is inserted intoTW (line 8). Otherwise, it can be
pruned.

In Fetch(TW , X →֒Y ), it initializes TRS as empty
(line 12). For each pair of(ri, Xi) ∈ TW , it obtains its
Y -labeledT-subcluster, usinggetT(wk, Y ), stores them in
Yi (line 15), conducts Cartesian product between{ri} and
Yi, and puts them intoTRS (line 16).

As an example, consider(TB 1
B →֒C

TC) 1
C →֒D

TD
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to access GDB (Figure 2). First, Algorithm 1,
processes TB 1

B →֒C
TC and results in a tem-

poral table, TBC = {(b0, c1), (b2, c1), (b3, c2),
(b4, c2), (b5, c3), (b6, c3)}. Note: only the clusters
maintained in the three centersW (B, C) = {c1, c2, c3}
need to be used (Refer to Figure 2 (b)). Next, Algo-
rithm 2 processesTBC 1

C →֒D
TD. In the Filter, the two

tuples (b3, c2) and (b4, c2), in TBC are pruned because
out(c2) = {c2} and W(C, D) = {c0, c1, c3}, and
the intersection is empty (Eq. (6)).Fetch returns the
final results, which are{(b0, c1, d2), (b0, c1, d3), (b2,

c1, d2), (b2, c1, d3), (b5, c3, d4), (b5, c3, d5), (b6, c3, d4),
(b6, c3, d5)}.

3.4 R-Semijoins

ReconsiderHPSJ+ (TR, TY , X →֒Y ) for an R-join be-
tween a temporal tableTR and a base tableTY . It can
be simply rewritten asFetch(Filter(TR, X →֒Y ), X →֒Y ) as
given in Algorithm 2. Recall: theFilter prunes thoseTR tu-
ples that cannot join anyTY using theW -table. The cost of
pruningTR tuples is small for the following reasons. First,
W -table can be stored on disk with a B+-tree, and accessed
by a pair of labels,(X, Y ), as a key. Second, the frequently
used labels are small in size and the centers maintained in
W (X, Y ) can be maintained in memory. Third, the number
of centers in aW (X, Y ) on average is small. Fourth, the
cost ofgetCenters (Eq. (6)) is small with caching and shar-
ing (Remark 3.1). We considerFilter () as anR-semijoin
Eq. (7).

TR ⋉

X →֒Y
TY = πTR

(TR 1
X →֒Y

TY ) (7)

Here, labelX appears in the temporal tableTR and labelY
appears in the base tableTY .

TR ⋉

X →֒Y
TX = πTR

(TR 1
X →֒Y

TX) (8)

Eq. (8) shows a similar case where labelY appears in the
temporal tableTR and labelX appears in the base tableTX .

TheR-semijoin discussed in this work is different from
the semijoin discussed in distributed database systems
which is used to reduce the dominate data transmission cost
over the network at the expense of the disk I/O access cost.
In our problem, there is no such network cost involved. A
unique feature of ourR-semijoin is that it is the first of
the two steps in anR-join algorithm. In other words, it
must processR-semijoin to completeR-join. Below, we use
⋉ denoteFilter() as anR-semijoin and⊲̃⊳ denoteFetch().
Then, we have

TR 1
X →֒Y

TS ≡ (TR ⋉

X →֒Y
TS) ⊲̃⊳

X →֒Y
TS (9)

It is worth noting that the cost for both sides of Eq. (9) are
almost the same.

Consider((TB 1
B →֒C

TC) 1
C →֒D

TD) 1
C →֒E

TE . Suppose we

processTB 1
B →֒C

TC first, and maintain the result inTBC . It

becomes(TBC 1
C →֒D

TD) 1
C →֒E

TE. Then,

(TBC 1
C →֒D

TD) 1
C →֒E

TE = ((TBC ⋉

C →֒D
TD) e⊲⊳

C →֒D
TD) 1

C →֒E
TE

= (((TBC ⋉

C →֒D
TD) e⊲⊳

C →֒D
TD) ⋉

C →֒E
TE) e⊲⊳

C →֒E
TE

= (((TBC ⋉

C →֒D
TD) ⋉

C →֒E
TE) e⊲⊳

C →֒D
TD) e⊲⊳

C →֒E
TE

The conditions used in the twoR-semijoins areC →֒D

andC →֒E. Both accessC in tableTBC . If we process
the twoR-semijoins one followed by another, we need to
scan the tableTBC , get another temporal tableT ′BC , and
then process the secondR-semijoin againstT ′BC . Instead,
we can process the twoR-semijoins together, which only re-
quests to scanTBC once. TheFilter cost can also be shared.
It can be done by simply modifyingFilter. Due to space
limit, we omit the details.

Remark 3.1: (R-Semijoins Processing) In general, a se-
quence ofR-semijoins,(((TR ⋉

C1

TX1
) · · · )⋉

Ck

TXk
) can be

processed together by one-scan of the temporal tableTR

under the following conditions. First, it is a sequence of
R-semijoins, and there is no anyR-join in the sequence.
Second, letCi be a reachability condition,Xi →֒Yi. Either
all Xi or all Yi are the same for a label appearing inTR. 2

4 Order Selection

In this section, we focus ourselves onR-join/R-semijoin
order selection. We maintain the join sizes and the process-
ing costs for allR-joins between two base tables in a graph
database. In order to find an optimized left-deep tree query
plan, we estimate the cost for a self-R-join (Eq. (5)), which
can be done as a selection, and a join between a tempo-
ral table and a base table. We adopt the similar techniques
to estimate joins/semijoins used in relational database sys-
tems. Note: our approaches is not independent on a cost
model. The cost parameters are listed in Table 1.

|TRS | = |TR| ·
|TX 1

X →֒Y
TY |

|TX | · |TY |
(10)

|TRS | = |TR| ·
|TX 1

X →֒Y
TY |

|TX |
(11)

|TRS | = |TR| ·
|TX 1

X →֒Y
TY |

|TY |
(12)

Eq. (10) estimates the size of a self-R-join (Eq. (5)), with
conditionX →֒Y , using the join selectivity for theR-join
TX 1

X →֒Y
TY between two base tablesTX andTY (the sec-

ond term on the right side). Eq. (11) and Eq. (12) estimate
the join size forR-joins (Eq. (3) and Eq. (4)), respectively.
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Symbol Meanings

IOH Search cost over the B+-tree (BH ).
IOF Disk access cost for one page scan in theFH file.
IOT

XY Average cost of usingR-join index to find an
X-labeled nodex, such thatx ∈ πX(TX ⋉

X →֒Y
TY ) .

IOF
XY Average cost of using theR-join index to find

aY -labeled nodey, such thaty ∈ πY (TY ⋉

X →֒Y
TX).

Table 1. I/O Cost Parameters

The second terms on the right in Eq. (11) and Eq. (12) esti-
mate a ratio if it joins with an additional base table.

The cost for self-R-join (Eq. (10)) is2 · (IOH + IOF ) ·
|TR|, because it needs to access the graph codes for check-
ing xi ; yj. The cost forR-join between a temporal table
and a base table (Eq. (11) and Eq. (12)) is(IOH + IOF ) ·
|TR| + IOT

XY · |TRS |. Here, the two terms are forFilter()
andFetch(), the first term is the cost to retrieve graph codes
usinggetCenters (Algorithm 2 line 7), and the second term
is multiplication of the number of total nodes retrieved on
R-join index by the average cost for finding out each node
onR-join index.

The size estimation ofR-semijoins can be done in a sim-
ilar way. We omit it due to space limit. In the following, we
concentrate ourselves onR-join/R-semijoin order selection.

4.1 R-Join Order Selection

Join processing has been widely studied [20, 22, 18, 19,
9, 21, 29]. We use dynamic programming, as one of the
main techniques, for join order selection. In this section,
we discussR-join order selection, and do not considerR-
semijoins. We will discussR-join/R-semijoin order selec-
tion in next subsection. The two basic components consid-
ered in dynamic programming arestatusesandmoves.

• A status,Si, specifies a subquery,Gsi
(⊆ Gq), as an

intermediate stage in generating a query plan. The in-
termediate result by evaluating the query graphGs is
represented asR(Gsi

).

• A move from one status (subqueryGsi
) to another sta-

tus (subqueryGsj
) considers an additional edge (R-

join) in Gsj
that does not appear inGsi

. The next
status is determined based on a cost function which
results in the minimal cost, in comparison with all pos-
sible moves. The process of moving from one status to
another results in a left-deep tree.

The goal is to find the sequence of moves from the initial
statusS0 toward the final statusSf with the minimum cost,
cost(Sf ), among all the possible sequences of moves. The
determination of moves is based on a cost function. Such a
cost function is associated with a statusS, denotedcost(S),
which is the minimal accumulated estimated cost needed
to move from the initial statusS0 to the current statusS.
Such accumulated cost of a sequence of moves fromS0 to S

is the estimated cost for evaluating the subqueryGS being
considered under the current statusS. Its search space is
bounded byO(2m), wherem is the number of edges inGq.

4.2 Interleave R-Joins with R-Semijoins

Recall: 1 is equivalent to⋉ (Filter()) followed by
⊲̃⊳ (Fetch()). In this section, we propose a new dy-
namic programming solution by interleavingR-joins with
R-semijoins, or in precise, by interleaving⋉ and⊲̃⊳.

Here, we define a status,S, as a four element tuple,
(E ,L, Bin, Bout). A minimum-cost planP is associated
with a status which is a sequence of⋉ and⊲̃⊳ being deter-
mined. We explain the four elements below. First,E is the
set of edges (R-joins) inE(Gq), that are already included in
P associated withS. Note: an edgeX →֒Y is said to be in-
cluded inE , if its corresponding⋉ and⊲̃⊳ are both included
in P. Second,L is the set of labels that appear in the left-
hand side of anR-semijoin or any side of anR-join. Third,
Bin (Bout) is a set of labels, where each labelX ∈ Bin

(∈ Bout) indicates that the graph codein (out) in the base
TX is cached and can be used to process any remaining⊲̃⊳,
that has not been considered in the planP yet. It is im-
portant to note thatE is only related to1 (both⋉ and⊲̃⊳),
and the other two elements,Bin andBout, are only related
to ⊲̃⊳. There are three possible moves: a move by an addi-
tional ⋉ (Filter), a move by an additional̃⊲⊳ (Fetch), and
a move by an additionalR-join (1), We call them,Filter-
move,Fetch-move, andR-join-move, respectively. Note:
theR-join-move is designed to useHPSJ(Algorithm 1) to
R-join the initial two base tables, and the other two moves
are design toHPSJ+ (Algorithm 2).

Filter-move: It corresponds to the addition of a new la-
bel, X , into Bin (or Bout) due to the inclusion of ⋉

X →֒Y

(or ⋉

Y →֒X
), whereX must be inL, if L 6= ∅, and ⊲̃⊳

X →֒Y

(or ⊲̃⊳
Y →֒X

) has not been included yet. When moving to

(E , Bin ∪{X}, Bout) (or to(E , Bin, Bout∪{X})), it does
not only appendTR ⋉

X →֒Y
TS (or TR ⋉

Y →֒X
TS), but also all

other⋉ on X to maximize the cost sharing (Remark 3.1).
All possibleR-semijoins can be considered.

Fetch-move: Consider the statusS = (E ,L, Bin, Bout), all
unfinishedFetch are inE(Gq) − E . Let ⊲̃⊳

X →֒Y
be a unfin-

ishedFetch, a move fromS to S′ = (E ∪ {(X →֒Y )}, Bin,

Bout) appendsP ⊲̃⊳
X →֒Y

, if its ⋉

X →֒Y
has been included.

Note: ⋉

X →֒Y
is included if eitherX is in Bout, or Y is in

Bin. As a special case, if bothX ∈ Bout andY ∈ Bin,
1

X →֒Y
is a selfR-join, which can be processed in this status

together.

R-join-move: Consider the statusS = (E ,L, Bin, Bout),
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Figure 3. Order Selection

all unfinishedFetch are inE(Gq)−E . Let 1
X →֒Y

be a unfin-

ishedR-join, a move fromS toS′ = (E ∪{(X →֒Y )}, Bin,

Bout) appends 1
X →֒Y

into P. Note: thisR-join-move is only

allowed to move from the initial statusS0 to another status.
Consider the query graph,Gq, in Figure 1. Figure 3

illustrates several moves for finding the minimum-costR-
join/R-semijoin plan fromS0. A status is shown in a block
in Figure 3 with the following attributes: (i) subgraph ofGq

being considered, (ii) a plan in the form of left-deep tree
for (i), and (iii) Bin andBout. Those subgraphs in a dot-
circled in (i) showsL. The edges appear in a dot-circled
is E . Initially, the start statusS0 = (∅, ∅, ∅, ∅). FromS0,
there are4 possibleR-join-moves, because there aren = 4
edges in Figure 1, plus possibleFilter-moves. In Figure 3,
it shows two moves fromS0: S1 (Filter-move) andS3 (R-
join-move). InS1, E = ∅, andL = {C}, its planP is shown
in the part (ii),TC ⋉

C →֒E
TE , and itsBin andBout are shown

in the part (iii). InS3, E = {A→֒C}, andL = {A, C},
its planP, TA ⋉

A→֒C
TC , is shown in the part (ii), and itsBin

andBout are shown in the part (iii). FromS1, there are
two possibleFilter-moves to eitherS2 or S4. Consider the
Filter-move fromS1 toS2. BecauseC ∈ L in S2, it addsC
into Bin (gettingC ’s graph codein) in S2. Let the resulting
temporal table ofS1 beTR. In S3, it adds two new⋉ into
the plan,(TR ⋉

A→֒C
TA) ⋉

B →֒C
TB to be processed together to

share the processing cost (make use ofC ’s graph codein).

Time/Space Complexity: Consider the number of sta-
tuses,(E ,L, Bin, Bout). BecauseL contains all labels
appeared in the previous statuses, provided the initialn

R-join-moves, wheren = |V (Gq)|, L fully determines
E . Furthermore, consider the number of combinations for

(L, Bin, Bout), which determine the number of statuses.
Note thatBin ∪ Bout ⊆ L. Thus regarding a nodevq ∈
V (Gq), there are 5 possible cases: 1)vq 6∈ L; 2) vq ∈ L,
vq 6∈ Bin, vq 6∈ Bout; 3) vq ∈ L, vq ∈ Bin, vq 6∈ Bout;
4) vq ∈ L, vq 6∈ Bin, vq ∈ Bout; 5) vq ∈ L, vq ∈ Bin,
vq ∈ Bout. There are in total5n combinations. Therefore,
the total number of statuses isn · 5n. The space complex-
ity is O(n · 5n). There arem possible moves from each
status, hence the total time complexity isO(mn · 5n). The
time complexity becomesO(mn · 3n), if Bin andBout is
replaced by a single set asBin ∪Bout, where our previous
discussions of moves fit as well with the implication that the
Xin andXout columns of a base tableTX are accessed with
the other each time.

As a closely related issue of this problem, Wu et al.
in [29] studied a tree-structured query graph for accessing
XML data which is tree structured. The time complexity
of their algorithm isO(n2 · 2n). In this paper, we study
graph pattern matching over a large data graph. The time
complexity of our solution is reasonable comparing the time
complexity ofO(n2 · 2n) for accessing a largeXML tree.

5 Two Existing Approaches

In this section, we discuss two existing approaches for
graph pattern matching. One is a holistic based approach
for a graph pattern against a subclass of directed graphs,
directed acyclic graphs (DAG) [11]. The other is sort-merge
based multi-join approach to process a graph pattern against
a directed graph [28].

5.1 A Holistic Based Approach

Chen et al. in [11] studied graph pattern matching over
a directed acyclic graph (DAG) instead of a directed graph
that we are studying in this paper. Both graph patterns and
data graphs areDAGs in [11]. As an approach along the line
of Twig-Join[8], Chen et al. used the interval-based encod-
ing scheme, which is widely used for processing queries
over anXML tree, where a nodev is encoded with a pair
[s, e] wheres ande together specifies an interval. Given
two nodes,vi andvj in an XML tree,vi is an ancestor of
vj , vi ; vj , if vi.s < vj .s andvi.e > vj .e or simplyvj ’s
interval containsvi’s.

The test of a reachability condition between two data
nodes used in [11] is broken into two phases. In the first
phase, like the existing interval-based techniques for pro-
cessing graph pattern matching over anXML tree, they first
check if the reachability condition can be identified over a
spanning tree generated by depth-first traversal ofDAG. In
the second phase, in order to find the reachability condi-
tions that can not be referred in the spanning tree, they keep
all non-tree edges (named remaining edges) in [11] and all
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nodes being incident with any such non-tree edges in a data
structure calledSSPI (Surrogate and Surplus Predecessor
Index). Thus, all predecessor/successor relationships that
can not be identified by the intervals alone can be found
with the help ofSSPI.

The algorithm proposed in [11] is a stack-based al-
gorithm, calledTwigStackD. For the first phase, it uses
Twig-Join algorithm in [8] to find all DAG graph pat-
terns found in the spanning tree. For the second phase,
for each node popped out from stacks used inTwig-Join
algorithm, TwigStackD buffers all nodes which at least
match a reachability condition in a bottom-up fashion, and
maintains all the corresponding links among those nodes.
When a top-most node that matches a reachability condi-
tion, TwigStackDenumerates the buffer pool and outputs
all fully matched patterns.TwigStackDperforms well for
very sparseDAGs. But, its performance degrades notice-
ably when theDAG becomes dense, due to the high over-
head of accessing edge transitive closures.

5.2 Sort-Merge Based Multi Join

Wang et al. studied processingTX 1
X →֒Y

TY over a

directed graph [28] and proposed a join algorithm, called
IGMJ. First, it constructs aDAG G′ by condensing a maxi-
mal strongly connected component inGD as a node inG′.
Second, it generates a multi-interval code for a node inG′

based on the approach given in [2]. As its name implies, the
multi-interval-based code for encodingDAG [2] is to as-
sign a set of intervals and a postorder number to each node
in DAG G′. Let Iv = {[s1, e1], [s2, e2], · · · , [sn, en]} be a
set of intervals assigned to a nodev, there is a path fromvi

to vj , vi ; vj , if the postorder number ofvj is contained
in an interval,[sk, ek] in Ivi

. Note: nodes in a strongly con-
nected component inG share the same code assigned to the
corresponding representative node condensed inDAG G′.

In the IGMJ algorithm, givenTX 1
X →֒Y

TY , two lists

Xlist andY list are formed respectively. Here, inXlist,
every nodexi hasn entries, if it hasn intervals inIxi

. In
Y list, every nodeyj is encoded by the postorder number
poyj

. Note:Xlist is sorted on the intervals[s, e] by the as-
cending order ofs and then the descending order ofe, and
Y list is sorted by the postorder number in ascending order.
Then, IGMJ evaluatesTX 1

X →֒Y
TY againstDAG G′ by a

single scan on theXlist andY list. If xi ; yj is satisfied,
then every node that is contracted tovi can reach every node
that is contracted tovj in the data graphGD.

It needs extra cost to use theIGMJ algorithm to process
multi R-joins, because it requests that bothTX (ext(X)) and
TY (ext(Y )) must be sorted. Otherwise, it needs to scan two
input tables multiple times to process anR-join. Consider
an example. For processingTA 1

A→֒D
TD, Dlist needs to be

sorted based on the postnumbers, becauseD-labeled nodes
are the nodes to be reached. Let the temporal tableTR keep
the result of(TA 1

A→֒D
TD). Then, for processing(TR 1

D →֒E

TE), it needs to sort allD-labeled nodes inTR, based on
their intervals,[s, e], becauseD-labeled nodes now become
the nodes to reach others. The main extra cost is the sorting
cost.

6 Performance Evaluation

We conducted extensive experimental studies to study
the performance of our twoR-join/R-semijoin approaches,
namelyDP andDPS. Both use theHPSJandHPSJ+ algo-
rithms to processR-joins. Here,DP performsR-join order
selection only (Section 4.1).DPS performs the optimal or-
der selection by interleavingR-joins withR-semijoins (Sec-
tion 4.2).

We compareDP and DPS with the holistic-based ap-
proach discussed in Section 5.1, denoted asTSD, and the
multi R-joins approach discussed in Section 5.2 using a
multi-interval code, denoted asINT-DP. TheTSD is based
on theTwigStackDalgorithm [11], and can be only used to
find graph matching over a special class of directed graphs,
namely, directed acyclic graph (DAG). TheINT-DP is based
on theIGMJ algorithm [28] to processR-joins. We use dy-
namic programming forR-join order selection withINT-
DP, as discussed in Section 4.1. We have implemented
all the algorithms usingC++ on top of theminibase
database system developed at Univ. of Wisconsin-Madison.

We generated five large graphs based onXMark bench-
mark [25]. First, we generate fiveXML datasets using
five factors, 0.2, 0.4, 0.6, 0.8, and 1.0, and name them
as 20M, 40M, 60M, 80M, and 100M, respectively. Here,
nM means the dataset isn megabyte in size. Second, for
each dataset, we generate a large graph by treating both
document-internal links (parent-child) and cross-document
links (ID/IDREF) as edges in the same manner. The details
of the five databases are given in Table 2. In Table 2, the first
column is the dataset name, the second and third columns
are the numbers of nodes and edges, in the corresponding
graphs, respectively. The forth column is the 2-hop cover
size, while the last column shows the average size of graph
codes using 2-hop cover.

We tested a large number of graph patterns as illustrated
in Figure 4. We conducted our testing on a PC with a
3.4GHz Pentium processor, and 120GB hard disk running
Windows XP. Note: the buffer size we used in our testing
is 1MB for I/O access where the PC has 2GB memory. In
the following, the reported elapse time includes both query
optimization time and query processing time.
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Dataset |V | |E| |H| |H|/|V |

20M 336,244 397,713 1,165,683 3.467
40M 667,242 789,538 2,324,539 3.483
60M 1,003,441 1,187,349 3,501,044 3.489
80M 1,337,383 1,581,682 4,672,991 3.494
100M 1,666,315 1,970,909 5,836,824 3.503

Table 2. Datasets Statistics

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Figure 4. Graph-Patterns

6.1 R-Join vs Holistic over DAG

We first compare the two basicR-join order selection ap-
proaches,INT-DP andDP, with the holistic-based approach
TSD. We used nine path-patterns and nine tree-patterns. A
path-pattern has a linear structure (Figure 4(a), 4(c), and
4(h)). For the nine path-patterns, the 3-node path-patterns
areP1, P2, andP3; the 4-node path-patterns areP4, P5,
P6; and the 5-node path-patterns areP7, P8, P9. For tree-
patterns, Figure 4(d) shows the shape ofT1 to T3. Fig-
ure 4(j) shows the shape ofT4 to T6. Figure 4(k) shows
the shape ofT7 to T8. Figure 4(l) shows the shape ofT9.

We tested these graph patterns using a smallXMark
dataset with a factor 0.01 (16K nodes), becauseTSD has
difficult to answer graph patterns over a large graph [11].
For comparing withTSD, we process the directed acyclic
graphs (DAGs) obtained from theXMark dataset, because
TwigStackDcan only supportDAG. Its XMark data has
15, 733 nodes,18, 102 edges. The 2-hop cover size is
55, 158.

As shown in Figure 5, bothR-join based approaches,
INT-DP and DP, significantly outperformTSD, in terms
of elapsed time. For example,TSD spends1, 668 and
9, 709 times of elapsed time as the amount thatINT-DP
andDP used to processP2, respectively. It is because that
TwigStackDneeds to buffer every node that can possibly be
in one final solution.DP outperformsINT-DP for all pat-
terns becauseDP needs less I/O cost.INT-DP needs to sort
for R-joins, and therefore needs extra I/O cost.

In the following, we focus on ourR-join approaches,DP
andDPS, over directed graphs.

6.2 R-Join/Semijoin over Directed Graphs

We testedDP and DPS using query structures listed
through Figure 4(a) to Figure 4(h) by enumerating all pos-
sible patterns with different labels. For most queries,DP
spends over five times of I/O cost than whatDPS spends.
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Figure 6. DP vs DPS

We report several results below.
We compareDP andDPS using the100M data set. Fig-

ure 6(a) and Figure 6(b) show the elapsed time with 4-node
graph patterns (Figure 4(e) and Figure 4(d)), respectively.
Figure 6(c) and Figure 6(d) show the elapsed time for 4-
node graph patterns (Figure 4(h) and Figure 4(i)), respec-
tively. DPS significantly outperformsDP.

We also tested the scalability forDP and DPS using
the five large graphs:20M, 40M, 60M, 80M, and100M (Ta-
ble 2). Figure 7(a), Figure 7(b), and Figure 7(c), show the
elapsed time for graph patterns given in Figure 4(a), Fig-
ure 4(d), and Figure 4(i), respectively.DPS significantly
outperformsDP by at least one order of magnitude. One of
the main reasons is that when the scale of the data sets in-
creases the I/O cost ofDP increases much faster thanDPS
does.
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Figure 7. Scalability Test

7 Related Work

Query optimization has been studied for decades, dy-
namic programming is still used as the major technique
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[26, 20, 22, 19, 10]. The optimization of a single select-
project-join query in a centralized relational DBMS is out-
lined in [19]. Optimization for join processing are surveyed
in [22]. [29] studied optimizing multiple structural join for
XML tree-structured data.

Semijoins has also been studied in distributed database
systems [6], which reduces the dominate data transmission
cost over the network at the expense of the disk I/O access
cost. Semijoin full reduction is discussed in [5]. A two-
step approach to optimize queries using join and semijoin is
discussed [12], by adding semijoins to a join sequence. An
approach that considers both semijoins and joins in query
optimization is reported in [13], however, the overall com-
plexity can be as high asO(3|E|)|V |−1) in [13]. In this
paper, we propose dynamic programming strategies to deal
with both R-joins/R-semijoins together with the overhead
manageable.

Surveys on recursive query processing strategies can be
found in [4]. In this paper, we show how to use graph cod-
ing and a join-index to process graph matching that avoids
recursive query processing.

8 Conclusion

We proposed newR-join/R-semijoin processing and op-
timization techniques for the graph pattern matching prob-
lem. Given a graph pattern,Gq, where an edge represents
a reachability condition that can be processed by anR-join,
we proposed a new filter/fetchR-join algorithm, based on
a new cluster-based join-index. By taking the first step as
anR-semijoin, we optimize such a query by optimizing the
R-joins/R-semijoins sequence. A unique feature of ourR-
semijoin/R-join approach is thatR-semijoin is the first step
of R-join so that there is a minimal overhead to processR-
semijoins. We proposed a new optimization approach by
interleavingR-joins with R-semijoins. We conducted ex-
tensive performance studies using large data graphs, and
confirmed the effectiveness and efficiency of our approach.
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