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Abstract lationships in social networks [3], finding research cadlab
ration patterns, and finding research paper citation ceannec
Due to rapid growth of the Internet technology and new tion in archived bibliography datasets.

scientific/technological advances, the number of applica- The graph pattern matching problem can be considered
tions that model data as graphs increases, because graphss an extension of finding twig-patterns (tree patternsj) ove
have high expressive power to model complicated struc-XML tree. However, the existing techniques for processing
tures. The dominance of graphs in real-world applications twig-patterns oveiXML tree [8, 14] cannot be effectively
asks for new graph data management so that users can acapplied to handle graph pattern matching over a large di-
cess graph data effectively and efficiently. In this paper, w rected graph. It is because a graph does not have the nice
study a graph pattern matching problem over a large data property such that every two nodes are connected along a
graph. The problem is to find all patterns in a large data unique path. In a large data graph, a nagecan reach an-
graph that match a user-given graph pattern. We propose aother nodey;, while the same; is possibly reachable from
new two-stegr-join (reachability join) algorithm with filter  v;.

step and fetch step basgd ona c_Iuster-based join-i_r.wd.ex WithContributions of this paper: We propose processing graph
graph codes. We consider the filter step asrasemijoin, 446 matching as a sequenceRejbin (reachability join)
an.d.propc_)se a new thlmlzat|on approach by |r_1terleavmg upon a graph database which stores a data graph in tables.
R-joins wnh_R—semuoms. _We condu_c_ted extensive perfor- propose a new two-steRjoin algorithm with a filter
mance studies, and confirm the efficiency of our proposedstep and fetch step, based on a new cluster-based join-index
new approaches. with graph codes for reachability checking. Furthermore,
we consider the first filter step as &3semijoin, and pro-

) pose a new optimization approach to optimize a sequence of

1 Introduction R-joins/R-semijoins. We conducted extensive performance

studies, and confirm the efficiency of our proposed new ap-
A graph provides great expressive power to describe proaches.
_and und_erstand the complex relatlonshlps among data Ob-Organization: We give the problem statement in Section 2.
jects. With the rapid growth of World-Wide-Web, new data . ) - o
- ; : i In Section 3. we discuss ouR-join/R-semijoin approach.
archiving and analyzing techniques, there exists a huge vol Wi wo-steRioin alaorithm (filter/fetch
ume of data available in public, which is graph structured e propose a new two-stdgjoin algorithm (filter/fetch)

in nature including hypertext data, semi-structured daja [ ga::\lc: ,g_r.lomlg fs]earﬁjiienmé]rodlgrI;Inet::ct)i?)Lrj]ng' r\c/)\fcr? ringzi-
RDF also allows users to explicitly describe semantic re- J ) pp

source in graphs [7]. In [27], Shasha et al. highlighted tion 4. In Section 5, two existing approaches are discussed.

: S .~ \We conducted extensive performance studies using large
algorithms and applications for tree and graph searching in e . .
cluding graph/subgraph matching in data graphs. The de_Fjatgsets_ and report our f”?d'”gs in Section 6. Related work
mand increases to query graphs over a large data graph. i givenin Section 7. Section 8 concludes the paper.
this paper, we study a graph pattern matching problem that
is to retrieve all patterns in a large gragghp, thatmatcha 2 Problem Statement
user-given graph pattergs,, based on reachability. As an

example, based on business relationships, a graph pattern In this section, we give our problem statement following

can be specified as to firghpplier, Retailer, Whole- the discussions on data graph and graph pattern.
seller, andBank such thatSupplier directly or indi- A data graph is a directed node-labeled graph =
rectly supplies products tRetailer andWhole-seller, (V,E, %, ¢). Here,V is a set of nodes is a set of edges
and all of them receive services from the sakaak di- (ordered pairs)¥. is a set of node labels, agds a mapping

rectly or indirectly over a large data graph which can be function which assigns each nodg,c V, a labell; € X.
obtained from the Web. Similar needs also stem from find- We uselabel(v;) to denote the label of node. Given a
ing web-services connection patterns in WWW, finding re- label X € %, the extent ofX, denoted asxt(X), is the set



called 2-hop reachability labeling [17]. A 2-hop reachabil

A C/. B ity labeling over grapld- p, assigns every nodec V" a label
L(v) = (Lin(v), Lout(v)), WhereL;, (v), Lout(v) C V,
andu ~ v is true if and only if Ly, (u) N L (v) # 0. A

D 2-hop reachability labeling fof=  is derived from a 2-hop

I cover of Gp. In brief, givenGp, the 2-hop cover mini-

¢ eres s s G & oF mizes a set ob (U, w, Vy,), as a set cover problem. Here,

@) () w € V(Gp) is called a center, an,,,V,, C V(Gp).
Figure 1. Data Graph (a) & Graph Pattern (b) S(Uw,w, V) implies that, for every node; € U, and

v € Vp, u ~ wandw ~» v, and thereforeu ~»

of all nodes inGG, whose labels are the samie A simple - Consider Figure 1, an example $§Lin, w, Lout) = _
data graphG p, is shown in Figure 1 (a). There are 5 la- © ({0s:ba}; c2, {eo}). Here,cy is the center. It indicates:
bels,S = {A, B,C,D,E}. In Figure 1 (a), anode inan 03 ™ €2 b1~ C3, €2~ o, by ~ e, andby ~ eo.
extentext(X ) is represented as, wherez is a small letter There are several implementations to find such 2-hop cover

of X with a unique numbeito distinguish it from others in for G'p [23, 24, 15]. The 2-hop cover update problem is
ext(X). For examplegat(C) = {co, c1, ca, 3} addressed in [24]. We proposed a fast algorithm to compute

In the following, we usd/(G) and E(G) to denote the 2-hop cover [15].
set of nodes and the set of edges in graph Let H = {Sw,,Su,,---} be the set of 2-hop cover

A graph pattern is a connected directed node-labeledc®MPuted, wheres,,, = S(Uuy,,wi, Vy,) and allw; are
graphG, = (V,, E,), whereV, is a subset of labels), centers. The 2-hop reachability Iabe_llng for a nades
andE, is a set of edges (ordered pairs) between two nodesl(v) = (Lin(v), Low(v)). Here, L, (v) is a set of centers
in V,. An edge(X,Y) € E(G,) represents a reachability i wherev appears_m/wi, andL,,.(v) is a set of centers
condition, denoted(—Y’, for X,Y € V,. A reachability i Wherev appearsii/,,. N _
condition, X —Y’, requests two nodas andv; in G, for B_ased on the 2-hop reachaplllty labeling, we store graph
label(v;) = X andlabel(v;) = Y, v; is reachable from  Gp into a databasespe, by taking a node-oriented repre-
v;, denotedy; ~ v;. A match inG, matches graph pattern ~ Sentation. There an&| tables forGp. A tableTx, for a
G, if it satisfies all the reachability conditions conjunctiye  1abel.X € %, has three columns named, X;, and Xou:.

specified inG;,. Note: X —Y andY —Z implies X —Z. For each node:; € ext(X) (€ V(Gp)), there is a tuple
A result that matches a-node graph patter@, is an- in tableTx. The X' column keeps the node identifiey.

ary tuple,(vy,va, -+ ,vy). A graph patternG,, is shown  TheXi, and X, columns keep itd.i, (i) andLou: (),

in Figure 1 (b). There are five labeled nodes: B, C, D, respectively. We assume that thecolumn is the primary

and E, and there are four edges (reachability conditions), key Of the table, because a noded is uniquely identi-
A—C, B—C, C—D and D—E, which conjunctively fied with a node identifier. We call’y a base table if it is

specify a graph pattern to be found. Consider the data grapHhe table for alabeX' € 3.

Gp in Figure 1 (a). There is a match@p that matches the Example 3.1: A graph databaseGps for Gp (Fig-
graph pattern(z,, shown in Figure 1 (b)ao, bo, ¢1, d2, €1). ure 1) is shown in Figure 2 (a). There are five tables:
In detail,ag ~ ¢; satisfiesd—C, by ~ ¢; satisfiesB—C, Ta(A, Ain, Aowt), T(B, Bin, Bout), Tc(C,Cin, Cout),

c1 ~ dy satisfiesC—D, andd,; ~ e; satisfiesD—E. T(D, Dip, Dout), andTg(E, Ein, Eout). For a tuplez;
Note: ¢, is reachable from boti, andb, and can reach, in table Ty, we make 2-hop reachability labeling compact
andag ~ c; ande; ~ dz imply ag ~» da. by removingz; from its X;, and X,,, columns. Hence,
Graph Matching Problem: A graph matching problemis ~ Lin (i) = Xin U{z:} andLoy (zi) = Xow U{z;}. Below,

to find all matches in an arbitrary large directed data graphWe call L, (z;) and Lot (;) graph codes fox;, denoted

G p that match all the reachability conditions conjunctively in(xi) andout(z;). The reachabilityy; ~ y;, returns true,
specified in a graph patteré,,. if out(z;) Nin(y;) # 0. O

3 A New Join-Based Approach 3.1 R-Join

In this paper, given a graph pattef), we propose graph Given two base tables iipg, a reachability condition,

matching as a sequence of joins, where each reachabilityX_)Y’ in a graph patterd,, can be processed as &join
condition, X—Y € E(G,), is a join, calledR-join (for between two tableg)x andTy .

reachability join).
Such anR-join is possible based on a graph labeling T —Tx MW Ty 1)



Here, anR-join implies that, for everyr, € ext(X) and [A T4 [ Aous
y; € ext(Y), z; ~ y; holds, if the reachability condition, (a0 |0 [ {evcs} | [ DT Din Dous
; H H B Bin Bout do {a(), CO} @
X <Y, is evaluated to be true using the graph codes. A o 10 oy di | {ao,co} | 0
pair, (z;,y;), appears in the temporal talile,, if z; ~ y; b0 | fesbo) jz Eiﬁ gﬁ
is true put(z;) Nin(y;) # 0). b %Zﬁ} 2 Eﬁ di | {es} 0
ConsiderTs X Tg, (b, e7) appears in the result, be- bs | {ao} {e2} ds | {cs} 0
B—E bs | {ao} {cs} E | Ein Eout
causeout(by) = {bg, c1}, in(e7) = {c1, e7}, andout(by) N bs | fao} fes} eo | {ao,ca} | @
in(er) # 0. C [ Cu_ [ Cour | | @ | fab |0
In general, anR-join over any two tables]z and T, - §or f S :
with a reachability condition XY, can be specified. ez | fao} ’ er | {e1} 0
Note: X (Y) _is the column in the base tabilé: (Ty),_that > (@) Five Base Tables
may appear in a temporal table because of a prevRgjom. (BB [{ao] [0 [ {anena] ]
Here, Tz andTs can be either a base or temporal table. LAB) [ {ao,ci} JL BO) [ {c1,¢2,c3} |
. BN 1o N Y B oW R -
RS < 1R X S | (B’D) | {01703} ” (A,D) | {a0,01703} |—
X=V | (B,B) | {bo,bg} || (C,C) | {Co,cl,CQ,Cg} |

(b) W-table

Therefore, a graph patterds,, can be specified as a se-
guence ofR-joins followed by a projection to project the
columns for every labek € V(G,). a7
In this paper, we concentrate ourselves on query process- w
ing and optimization over multk-joins, and focus on dis- ‘
cussions of finding an optimal query plan that is represented
as a left-deep tree [29] in which d@®join is either between :
two base tables or between a temporal table and a base ta- |
ble. As shown in Eq. (3) and Eq. (4) beloWx andTy |
represent base tables, ahg represents either a base or a

temporal table. R (c) A Cluster-Based R-Join-Index
TRXNYTY 3) Figure 2. A Graph Database for Gp (Figure 1)
Tx W Tg (4) .
X—=Y Sw;, = S(Uw,,w;, V,,) and allw; are centers. Itis a B

tree in which its non-leaf blocks are used for finding a given
centerw;. In the leaf nodes, for each centey, its U,
andV,,. , denotedF-clusterand T-cluster are maintained.
(5) Wi ; L ) .
e further dividew;’s F-clusterand T-clusterinto labeled
wherel’r can be a base/temporal table. The following holds F-subclustef3-subclustersvhere every node;;, in an X -
for R-joins. TRXﬁYTS = Tsxﬁy Tr (Commutative), labeledF-subclustecan reach every nodg in aY -labeled
(Tp M Ts) X Tpr=Tr X (Ts X Tr) (Asso- T-subclustervia w;. 1t is important to note that, in our
XY We—2 X—Y W2 cluster-based-join index, we keep node identifiers (tuple
identifiers) instead of pointers to tuples in base tableshWi
this arrangement, we can answer soRi@in without ac-
cessing base tables. If there is a need to access a base table,
we use the primary index built on the base table.

Together with the cluster-basédjoin index, we design
aW-table in which, an entry¥/ (X,Y) is a set of centers.
A centerw; will be included inW(X,Y), if w; has a non-
empty X -labeledF-subclusteand a non-empty -labeled
T-subclusterlt helps to find the centers;, in the cluster-
basedr-join index, that have aX -labeledF-subclusteand
aY -labeledT-subcluster

As a special case, a sdfjoin is a join that can be pro-
cessed as a selection,

Tr X Tg
X—=Y

ciative). Given a tablel'r, and supposd’r keeps tuples
that satisfy two reachability conditiondc— B and B— D.
Then the tuples iff'g satisfy A— D (Transitive).

3.2 A Cluster-Based R-Join Index

Like a #-join, an R-join needs to check the reachability
condition XY at run time, which incurs high cost. We
propose a join-index approach, which is to index all tuples
x; andy; that can join between two table$x and Ty .
With such a join-index, a-join can be efficiently imple-
mented as to fetch the results.

We build a cluster-based?-join index for a data  Example 3.2: TheGpg for Gp (Figure 1) is shown in Fig-
graph Gp based on the 2-hop cover computed, = ure 2. Figure 2 (a) shows the five base tables, Figure 2 (c)
{Swy,Swy, -}, Using our fast algorithm in [15], where shows the clustered-basé¥join index, and Figure 2 (b)



Algorithm 1 HPSJXTx, Ty, XY

C «— W(X,Y) using theWW-table;

R — 0;

for eachwy, € C do
X}, «— getF(wy, X) using the cluster-base®join index;
Y}, < getT (wy, Y) using the cluster-basd®join index;
R<—RU(Xk X Yk);

end for

return R;

oNgORWNE

Algorithm 2 HPS& (Tg, Ty, X—Y)

1: Tw « Filter(Tr, X—Y);

2: Trs «— FetCh(Tw, X%Y);

3: return Trs;

4: ProcedureFilter(Tr, X—Y)

5 Tw « 0;

6: for eachtuple,r;, in Tr do

7.  X; < getCenters(z;, X, Y) wherez; is in X columninr;;
8: insert(r;, X;) into Tw if X; # 0;

9: end for

10: return Ty ;

11: ProcedureFetch(Tw , X —Y)
12: Trs «— 0;

13: for each (r;, X;) € Tw do
14: foreachw; € X; do

15: Y; < getT(wg, Y') using the cluster-base@join index;
16: Trs < Trs U ({TT} X 1/7),

17:  end for

18: end for

shows itsiV-table. The cluster-baséd®tjoin index (Figure
2 (c)) has six centeray, bg, co, ¢1, c2, andes. ThelW-table
(Figure 2 (b)) tells wherd&-join can find its centers in the
cluster-basedr-join index.

ConsiderTAA(D_d}BTB. The entryW (A, B) keeps{ag},

them into the answer s& (line 6). The output of arR-

join between two base tables is a set of pairs y,) for

x; ~ y;. Itis important to note that there is no need to
access base tables because all the nodes are maintained in
the cluster-baseR-join index to answer th&-join.

In order to process mulfk-joins, we need a way to pro-
cess arR-join between a temporal table and a base table. In
general, a temporal tablE; has columns which are all the
labels that are involved in the previo&joins. Its tuples
satisfy all the previou&-joins. We propose a new two-step
R-join algorithmin Algorithm 2, calledHPS&. It processes
TRxﬁyTy, whereTr is atemporal table that has anhcol-

umn, andly is a base table that hasYacolumn. Below,
we discuss thé/PS4 algorithm in detail. A join algorithm
can be implemented in a similar manner like Algorithm 2 to
procesiTRxﬁyTX), whereT'g is atemporal table that has

aY column, andl'y is a base table that has ancolumn.

The HPS& algorithm takes three inputs, a temporal ta-
ble Tr, a base tabldy, and anR-join condition X —Y".
In HPS&, first, it calls a procedur€ilter(Tr, X—Y') to
filter Tz tuples that cannot be possibly joined with us-
ing W-table, and stores them inf§y (line 1). Second, it
calls a procedurBetch(Ty , X —Y) to fetch theR-join re-
sults using the cluster-basédjoin index. We do not need
to access the base tabilg, because the needed nodes are
stored in the cluster-basdédjoin index. The details of the
two procedures are given below.

In Filter(Tgr, X —Y), first, it initializesTy to be empty
(line 5). Second, in a for-loop, it processes every tupla

which suggests that the answers can only be found in theTy, iteratively (line 6-9). In every iteration, it obtains a set

clusters at the centeg. As shown in Figure 2 (c), the center
ap has anA-labeledF-subclustef ay}, and aB-labeledT-
subcluster by, bs, ba, bs, b }. The answer is the Cartesian
product between these two labeled subclusters. O

3.3 R-Join Algorithms

We first outline anR-join algorithm (Algorithm 1) be-

of centers,X;, for x; in the X column inr;, where every
centerwy, in X; must have somg; € Ty in its T-cluster
(line 7). Itis done usingetCenters(x;,Y") below.

getCenters(z;, X,Y) = out(z;) "W(X,Y) (6)

As shown in Eq. (6)put(x;) is a set of centersy, thatz;

can reach. It needs to access the base taglaising the
primary index. We use a working cache to cache those pairs
of (z;,out(x;)), in our implementation to reduce the access

tween two tables discussed in [16], and then discuss a newtost for later reuseW(X,Y) is the set of all centersyy,,

two-stepR-join algorithm (Algorithm 2) between a tempo-
ral table and a base table proposed in this paper.

The HPSJalgorithm (Algorithm 1) processes d®join
between two base tableBy NyTy First, it gets all cen-

ters,wy, that have a non-empty -labeledF-subclusteand

a non-emptyY -labeled T-subcluster using thelV -table,
and maintains it inC (line 1). Second, for each center
wy € C, it conducts three things. (1) It obtains 8-
labeled F-subclusterusing getF (wy, X), and stores them
in X (line 4). (2) It obtains ity -labeledT-subclusterus-
ing getT (wg, V'), and stores them i, (line 5). Both (1)
and (2) are done using the cluster-ba&gjdin index. (3) it
conducts Cartesian product betweEp andYy, and saves

such that somé& -labeled nodes can reaah, and somé&”-
labeled nodes can be reacheddyy The intersection of the
two sets is the set of all centers such thamust be able to
reach some, € ext(Y). If X; # 0, it implies thatz; must
be able to reach somg (line 6), and therefore the pair of
(r;, X;) is inserted intoly (line 8). Otherwise, it can be
pruned.

In Fetch(Tw, X<—Y), it initializes Trs as empty
(line 12). For each pair ofr;, X;) € Tw, it obtains its
Y-labeledT-subclusterusinggetT (wy, Y), stores them in
Y; (line 15), conducts Cartesian product betwéer} and
Y;, and puts them int@'zs (line 16).

As an example, considefTs BMC Te) MW Tp

C—D



to access Gpg (Figure 2). First, Algorithm 1,
processes Tz BMC Tc and results in a tem-
poral table, TBC = {(bo, Cl), (bg, Cl), (bg, 02),

(ba, c2), (b5, c3), (bs,c3)}- Note: only the clusters
maintained in the three centeV8(B,C) = {c1,¢2,c3}
need to be used (Refer to Figure 2 (b)). Next, Algo-
rithm 2 processed's¢ CED Tp. In the Filter, the two

tuples (bs, c2) and (by,cq), In Tpe are pruned because
out(cz) {e2} and W(C, D) {co,c1,c3}, and
the intersection is empty (Eq. (6)).Fetch returns the
final results, which are{(bo,c1,dz), (bo,c1,d3), (b2,
c1,dz), (b2, c1,ds3), (bs, c3,da), (bs, c3,ds), (be, c3, d4),

(be, c3,d5)}

3.4 R-Semijoins

ReconsidetHPS# (Tg, Ty, X—Y) for an R-join be-
tween a temporal tablé’z and a base tabl&y. It can
be simply rewritten aBetch(Filter(Tr, X —Y ), X—Y') as
given in Algorithm 2. Recall: thé&ilter prunes thos&y tu-
ples that cannot join ar§y- using thel’ -table. The cost of
pruningTy tuples is small for the following reasons. First,
W -table can be stored on disk with & Bree, and accessed
by a pair of labels(X,Y), as a key. Second, the frequently

Consider((TBBNCTC)CMDTD)CNETE. Suppose we
proceséFBBMCTc first, and maintain the result ifigc. It
becomegTsc X Tp) W Tg. Then,

c—D ~'C—E

X X = = X
(Tee M Tp) K T& ((TBcCﬁDTD)CﬁDTD)C;}ETE

(((TBCCgiDTD)CEDTD)C‘igE)CFj»ETE

= T, x T X T = T, = T
((( BC X D)C{HEE)C_.D D)CME o)

The conditions used in the tw@-semijoins areC'— D
and C—F. Both access” in tableTz¢. If we process
the two R-semijoins one followed by another, we need to
scan the tabld'sc, get another temporal tablg; ., and
then process the secofitdsemijoin againsf’; . Instead,
we can process the tw-semijoins together, which only re-
guests to scaiigc once. Therilter cost can also be shared.
It can be done by simply modifyingilter. Due to space
limit, we omit the details.

Remark 3.1: (R-Semijoins ProcessingIn general, a se-
quence ofR-semijoins, (((TrxTx,)---)xTx,) can be
c Ch

processed together by one-S(I:an of the temporal tdhle
under the following conditions. First, it is a sequence of
R-semijoins, and there is no aniy-join in the sequence.
Second, leC; be a reachability conditionX;—Y;. Either

all X; or all Y; are the same for a label appearingir. O

used labels are small in size and the centers maintained in

W(X,Y') can be maintained in memory. Third, the number
of centers in @V (X,Y’) on average is small. Fourth, the
cost ofgetCenters (Eg. (6)) is small with caching and shar-
ing (Remark 3.1). We considéilter () as anR-semijoin
Eq. (7).

(7)

Here, labelX appears in the temporal taliig; and labely”
appears in the base talilg .

p— N
TRXixTY TTw (TRX%YTY)

(8)

TRX iYTX = Tr (TRX ﬁYTX)
Eq. (8) shows a similar case where labehppears in the
temporal tablé'r and labelX appears in the base talilg .
The R-semijoin discussed in this work is different from

the semijoin discussed in distributed database systems
which is used to reduce the dominate data transmission cost
over the network at the expense of the disk 1/0 access cost.

In our problem, there is no such network cost involved. A
unigue feature of ouR-semijoin is that it is the first of
the two steps in amR-join algorithm. In other words, it
must proces&-semijoin to completé-join. Below, we use

x denoteFilter() as anR-semijoin and< denoteFetch().
Then, we have

(9)

Th X Tg¢ = (T T <1 T
r M Ts (Tr x S)X?jy s

X—=Y

It is worth noting that the cost for both sides of Eq. (9) are
almost the same.

4 Order Selection

In this section, we focus ourselves B¥join/R-semijoin
order selection. We maintain the join sizes and the process-
ing costs for allR-joins between two base tables in a graph
database. In order to find an optimized left-deep tree query
plan, we estimate the cost for a sé&fjoin (Eq. (5)), which
can be done as a selection, and a join between a tempo-
ral table and a base table. We adopt the similar techniques
to estimate joins/semijoins used in relational database sy
tems. Note: our approaches is not independent on a cost
model. The cost parameters are listed in Table 1.

|TXX[><lyTy|
T Tg| —2—22 10
|Trs| ITr| Tl 1T ] (10
ITx % Ty|
T Tp| ———X 11
[Trs| [Tr| Tx| (11)
|TXXEYTY|
[Trs| [Tr| — 75— (12)
[Ty |

Eq. (10) estimates the size of a sBHjoin (Eg. (5)), with
condition XY, using the join selectivity for thé&-join
TxxmyTy between two base tabl@s andTy (the sec-
ond term on the right side). Eq. (11) and Eq. (12) estimate
the join size forR-joins (Eq. (3) and Eq. (4)), respectively.



Symbol | Meanings is the estimated cost for evaluating the subquégybeing

10y Search cost over the Btree Bu)- . .
Too Disk access costfor one page scan e fle. considered untjner the curre_nt stattls Its search space is
T0%, | Average cost of usin@-join index to find an bounded byDO(2™), wherem is the number of edges M.
X-labeled noder, suchthatr € mx (T'x X Ty).
X—Y
10% Average cost of using the-join index to find _10i i _ ol
XY | o abelot node,. such that, € me (Ty x Tx). 4.2 Interleave R-Joins with R-Semijoins
X—Y

Table 1. I/O Cost Parameters Recall: X is equivalent tox (Filter()) followed by

The second terms on the rightin Eq. (11) and Eq. (12) esti-* (FetCh())‘ In_thls se<_:t|0n, We propose a new dy-
mate a ratio if it joins with an additional base table. namic programming SF)IUt'O” _by mterl_eavn@]gms with
The cost for selfR-oin (Eq. (10))is2 - (105 + IOx) - R-semijoins, or in precise, by interleavimgandr<.

|T'r|, because it needs to access the graph codes for checkg I-LerfegmwgogteflneA a status;, as ? fl()l:ir) element f[utpls,
ing z; ~ y;. The cost forR-join between a temporal table ( )- _minimum-cost pian” 1S associate
and a base table (Eq. (11) and Eq. (12))i€ + [Or) - with a status which is a sequencerofandi< being deter-
\Th| + IOT,, - |TRS|..Here the t\N6 terms a}:e f(Fﬂ'It(I:r() mined. We explgin t_he four elements below. Eiﬁsis the_
andFetch(), the first term is the cost to retrieve graph codes Is)et of qufsf'pggs) ll\ln ? (_Gq)’ tgagg\re ?/Ir_eady(;ntcll;)de_d n
usinggetCenters (Algorithm 2 line 7), and the second term lajsg(_:"}e.f '\tNI - Note- ?jn edg dt) IS Ea![h ‘0 |edm;j
is multiplication of the number of total nodes retrieved on puPesln ' IdI,CS F:otrrr]espcln flrllgg 6}” t? ?re 0 '.nctrl: (T ft
R-join index by the average cost for finding out each node n . >econdyz 1S the Set ot 1abels thal appearin the 1efl-
on R-join index. hand side of arR-semijoin or any side of aR-join. Third,

mn outy i mn
The size estimation dR-semijoins can be done in a sim- B B(‘ft .) ('f atsetﬂ?ftl?rt])els, wr;]eredfeachtla_b‘é:he lb3
ilar way. We omit it due to space limit. In the following, we ( ) indicates that the graph codie(out) in the base

concentrate ourselves éhjoin/R-semijoin order selection. Ty is cached and can b? used .to Process any remasjng
that has not been considered in the pRuyet. It is im-

portant to note thaf is only related tox (both x andr<),

and the other two elementB{” andB°“¢, are only related
tosd. There are three possible moves: a move by an addi-
‘tional x (Filter), a move by an additionak (Fetch), and

a move by an additiond®-join (), We call themFilter-
move, Fetch-move, andR-join-move, respectively. Note:
the R-join-move is designed to ugdPSJ(Algorithm 1) to
R-join the initial two base tables, and the other two moves
are design taHPSJ (Algorithm 2).

Filter-move It corresponds to the addition of a new la-
e A status,S;, specifies a subquers,, (C G4), asan  bel, X, into B™ (or B°“!) due to the inclusion of x
intermediate stage in generating a query plan. The in- . . X2V
termediate result by evaluating the query gr&phis (or yix)’ where X' must be inZ, if £ 7 0, andX?jY
represented éB (G, ). (or Y[>~4X) has not been included yet. When moving to

e A move from one status (subquefi,) to anothersta- (£, B» U{X}, B°“) (orto (&, B™, B°** U{X})), it does
tus (subquer)GS]) considers an additional edg&-( not only appencTR x TS (or TR x TS) but also all
join) in G, that does not appear i&¥;,. The next
status is determined based on a cost function which
results in the minimal cost, in comparison with all pos-

sible moves. The process of moving from one status to Fetch-move: Consider the statu$ = (£, £, B™, B**"), all
another results in a |eft-deep tree. unfinishedFetch are in E(Gq) —€&. Let XD?]Y be a unfin-

ishedFetch, a move fromSto &’ = (U {(X=Y)}, B™,
Bevt) appendsP <, if its x has been included.

4.1 R-Join Order Selection

Join processing has been widely studied [20, 22, 18, 19
9, 21, 29]. We use dynamic programming, as one of the
main techniques, for join order selection. In this section,
we discussR-join order selection, and do not consider
semijoins. We will discus&-join/R-semijoin order selec-
tion in next subsection. The two basic components consid-
ered in dynamic programming aséatusesandmoves

otherx on X to maX|m|ze the cost sharmg (Remark 3.1).
All possible R-semijoins can be considered.

The goalis to find the sequence of moves from the initial

statusS, toward the final statuS§; with the minimum cost, XY Xy o
cost(Sy), among all the possible sequences of moves. TheNote: .18 included if eitherX is in B°“*, or Y is in
determination of moves is based on a cost function. Such agin  aAq g special case, if both € B°“ andY € Bi",

cost function is associated with a stafiiglenotedost(S5), X is a selfR-join, which can be processed in this status
which is the minimal accumulated estimated cost neededX;»Yh

to move from the initial status$, to the current status. together.

Such accumulated cost of a sequence of moves figta S R-join-move: Consider the statu§ = (£, £, B™, B°ut),



Figure 3. Order Selection

all unfinishedretch are inE(G,) — €. LetXM y be a unfin-

ishedR-join, amove fromSto &’ = (EU{(X=Y)}, B™,
Beut) appendsXM y into P. Note: thisR-join-move is only

allowed to move from the initial status, to another status.

Consider the query graplty,, in Figure 1. Figure 3
illustrates several moves for finding the minimum-cBst
join/R-semijoin plan fromSy. A status is shown in a block
in Figure 3 with the following attributes: (i) subgraph@f,

being considered, (ii) a plan in the form of left-deep tree

for (i), and (i) B and B°“t. Those subgraphs in a dot-

circled in (i) showsL. The edges appear in a dot-circled

is £. Initially, the start statuss, = (0,0,0, ). FromSy,
there arel possibleR-join-moves, because there are= 4
edges in Figure 1, plus possilffdter-moves. In Figure 3,
it shows two moves fronsy: S; (Filter-move) andSs (R-
join-move). InSy, € = (), andL = {C}, its planP is shown
in the part (ii),TcC X ETE, and itsB" andB°“! are shown

in the part (iii). InSs, &€ = {A—C}, andL = {A,C},
its planP, TAA X CTC, is shown in the part (i), and it8*"

and B°“t are shown in the part (iii). Fron®;, there are
two possibleFilter-moves to eitheS; or S,. Consider the
Filter-move fromS; to S». Becaus& € L in Sy, it addsC
into B (gettingC’s graph codén) in S,. Let the resulting
temporal table of5; be Tr. In S, it adds two newx into

the plan,(Tr x T4) x Tpg to be processed together to
A—C ' B—C

share the processing cost (make usé€'sfgraph coden).

Time/Space Complexity Consider the number of sta-
tuses, (£, £, B™, B°“). Becausel contains all labels
appeared in the previous statuses, provided the initial
R-join-moves, wheren = |V(G,)|, £ fully determines

(£, B™, B°ut), which determine the number of statuses.
Note thatB‘™ U B°*t C L. Thus regarding a node, €
V(G,), there are 5 possible cases:ul)¢ £; 2) vy € L,

vy & B™, v, & B°; 3)v, € L, v, € B™, v, & B,
Mv, € L,vy & B™, vy € B, B)v, € L, v, € B™,

vy € B, There are in tota” combinations. Therefore,
the total number of statusesns 5". The space complex-
ity is O(n - 5™). There arem possible moves from each
status, hence the total time complexityQ¢mn - 5™). The
time complexity become®(mn - 37), if B™ and B°“! is
replaced by a single set & U B°%“, where our previous
discussions of moves fit as well with the implication that the
X, andX,,; columns of a base tabley are accessed with
the other each time.

As a closely related issue of this problem, Wu et al.
in [29] studied a tree-structured query graph for accessing
XML data which is tree structured. The time complexity
of their algorithm isO(n? - 2"). In this paper, we study
graph pattern matching over a large data graph. The time
complexity of our solution is reasonable comparing the time
complexity ofO(n? - 2") for accessing a larggML tree.

5 Two Existing Approaches

In this section, we discuss two existing approaches for
graph pattern matching. One is a holistic based approach
for a graph pattern against a subclass of directed graphs,
directed acyclic graph€XAG) [11]. The other is sort-merge
based multi-join approach to process a graph pattern &gains
a directed graph [28].

5.1 A Holistic Based Approach

Chen et al. in [11] studied graph pattern matching over
a directed acyclic graplDAG) instead of a directed graph
that we are studying in this paper. Both graph patterns and
data graphs arBAGs in [11]. As an approach along the line
of Twig-Join[8], Chen et al. used the interval-based encod-
ing scheme, which is widely used for processing queries
over anXML tree, where a node is encoded with a pair
[s,e] wheres ande together specifies an interval. Given
two nodesy; andv; in an XML tree,v; is an ancestor of
vj, v; ~ vj, if v,.s < v;j.s andv;.e > vj;.e or simplyv;’s
interval containg);’s.

The test of a reachability condition between two data
nodes used in [11] is broken into two phases. In the first
phase, like the existing interval-based techniques fof pro
cessing graph pattern matching ovep@vL tree, they first
check if the reachability condition can be identified over a
spanning tree generated by depth-first travers@a6. In
the second phase, in order to find the reachability condi-
tions that can not be referred in the spanning tree, they keep

£. Furthermore, consider the number of combinations for all non-tree edges (named remaining edges) in [11] and all



nodes being incident with any such non-tree edges in a datasorted based on the postnumbers, becdusabeled nodes
structure calledSSPI(Surrogate and Surplus Predecessor are the nodes to be reached. Let the temporal tEhlkeep
Index). Thus, all predecessor/successor relationshgds th the result of(TAAMDTD). Then, for processingTRDME

can not be identified by the intervals alone can be found Ts), it needs to sort alD-labeled nodes iz, based on

with the help ofSSPI their intervals]s, ¢], becauseD-labeled nodes now become

The algorithm proposed in [11] is a stack-based al- the nodes to reach others. The main extra cost is the sorting
gorithm, called TwigStackD For the first phase, it uses ggt.

Twig-Join algorithm in [8] to find all DAG graph pat-
terns found in the spanning tree. For the second phase,
for each node popped out from stacks usediwig-Join
algorithm, TwigStackD buffers all nodes which at least
match a reachability condition in a bottom-up fashion, and
maintains all the corresponding links among those nodes.
When a top-most node that matches a reachability condi-
tion, TwigStackDenumerates the buffer pool and outputs
all fully matched patterns.TwigStackDperforms well for
very sparséDAGs. But, its performance degrades notice-
ably when theDAG becomes dense, due to the high over-
head of accessing edge transitive closures.

6 Performance Evaluation

We conducted extensive experimental studies to study
the performance of our twB-join/R-semijoin approaches,
namelyDP andDPS. Both use theHPSJandHPSJ algo-
rithms to proces#-joins. Here,DP performsR-join order
selection only (Section 4.1PPS performs the optimal or-
der selection by interleaving-joins with R-semijoins (Sec-
tion 4.2).

5.2 Sort-Merge Based Multi Join We compareDP and DPS with the holistic-based ap-
proach discussed in Section 5.1, denoted @B, and the
multi R-joins approach discussed in Section 5.2 using a
multi-interval code, denoted a8 T-DP. TheTSD is based
directed graph [28] and proposed a join algorithm, called on the TwigStackDalgorithm [11], and can be only used to
IGMJ. First, it constructs &AG G by condensing a maxi-  find graph matching over a special class of directed graphs,
mal strongly connected component(i), as a node i’.  namely, directed acyclic grapPAG). ThelNT-DP is based
Second, it generates a multi-interval code for a nod@’in o thelGMJ algorithm [28] to proces&-joins. We use dy-
based on the approach given in [2]. As its name implies, theénamic programming foiR-join order selection witHNT-

Wang et al. studied processifigy XMY Ty over a

multi-interval-based code for encodifgAG [2] is to as-  pp, as discussed in Section 4.1. We have implemented
sign a set of intervals and a postorder number to each nodgy the algorithms usingc++ on top of them ni base
in DAG G'. LetI, = {[s1,e1],[s2,€2],- -+, [sn.en]} bE@  gatabase system developed at Univ. of Wisconsin-Madison.

set of intervals assigned to a nodehere is a path from;
to vj, v; ~ vy, if the postorder number af; is contained
in an interval /sy, ex] in I,,,. Note: nodes in a strongly con-
nected component i¥ share the same code assigned to the
corresponding representative node condens&h@ G'.

In the IGMJ algorithm, givenT'x Xﬁy Ty, two lists

We generated five large graphs basedxdark bench-
mark [25]. First, we generate fiv¥ML datasets using
five factors, 0.2, 0.4, 0.6, 0.8, and 1.0, and name them
as 20M, 40M, 60M, 80M, and 100M, respectively. Here,
nM means the dataset is megabyte in size. Second, for
each dataset, we generate a large graph by treating both
Xlist andYlist are formed respectively. Here, ilist, document-internal links (parent-child) and cross-docaime
every noder; hasn entries, if it hase intervals inZ,,,. In links (ID/IDREF) as edges in the same manner. The details
Ylist, every nodey; is encoded by the postorder number of the five databases are given in Table 2. In Table 2, the first
poy,. Note: Xlist is sorted on the intervals, e by the as-  column is the dataset name, the second and third columns
cending order o and then the descending ordereofand  are the numbers of nodes and edges, in the corresponding
Ylist is sorted by the postorder number in ascending order.graphsy respectively. The forth column is the 2-hop cover
Then,IGMJ evaluatesl’x | M Ty againstDAG G'bya  sjze, while the last column shows the average size of graph
single scan on th&'[ist andY list. If «; ~ y; is satisfied, codes using 2-hop cover.

then every node that is contracted{@an reach every node We tested a large number of graph patterns as illustrated
that is contracted to; in the data graplip. in Figure 4. We conducted our testing on a PC with a

It needs extra cost to use th&MJ algorithm to process 3 4GHz Pentium processor, and 120GB hard disk running
multi R-joins, because it requests that bt (ext(X))and  windows XP. Note: the buffer size we used in our testing
Ty (ext(Y')) must be sorted. Otherwise, it needs to scan two s 1MB for I/O access where the PC has 2GB memory. In
input tables multiple times to process Brjoin. Consider  the following, the reported elapse time includes both query
an example. For processifig, > Tp, Dlist needs tobe  optimization time and query processing time.



[ Dataset | VT ] [El [ THI T 1HI/IV]] ¢ 0
20M 336,244 397,713 | 1,165,683 3.467 P o1
200 667,242 | 789538 | 2,324,539 3.483 g1 &
60M | 1,003,441 1,187,349| 3,501,044 3.489 gn g0
goM | 1,337,383 | 1,581,682| 4,672,991 3.494 3! 3!
100M | 1,666,315 1,970,909 5,836,824 3.503 g g’
107 10°
Table 2' Datasets StatIStICS TSDP]£ F'I3NTED4’P F’5—% 7 Dlzgé] TSDﬂl T?NTTI;‘P Eé " DLB%
(a) 9 Path Patterns (b) 9 Tree Patterns
i / : .,/L\
i \S — ’ T I Figure 5. TSD vs INT-DP vs DP
a C e
@ (b) (©) (d) (e) ® o _ 25 —
- g DPS == 2 2 DPS ==
Ol 20 £ £
el . ER N
(9@ (h) 0] 0] (k) 0] & Bos
H 10" Q1 Q2 O3 Q4 Q5 ° Q1 Q2 Q3 Q4 Q5
Figure 4. Graph-Patterns @) |V,| =4 (b) |Vy| = 4
18 45
6.1 R-Join vs Holistic over DAG i —— g0 DPS  m—
215 232
. .. . S8 = 20
We first compare the two basijoin order selection ap- 2 s g1s
proachesINT-DP andDP, with the holistic-based approach =2 =os
. . Q1 Q2 QO3 Q4 Q5 Q1 Q2 Q3 Q4 Q5
TSD. We used nine path-patterns and nine tree-patterns. A © Vgl =5 (©d) Vol =5
ath-pattern has a linear structure (Figure 4(a), 4(c), and .
b P (Fig (@), 4(c) Figure 6. DP vs DPS

4(h)). For the nine path-patterns, the 3-node path-pattern
areP1, P2, andP3; the 4-node path-patterns apa, P5,

P6; and the 5-node path-patterns &g P8, P9. For tree-
patterns, Figure 4(d) shows the shapeTofto T3. Fig-

ure 4(j) shows the shape @f to T6. Figure 4(k) shows

We report several results below.
We compar®P andDPS using the1l00M data set. Fig-
ure 6(a) and Figure 6(b) show the elapsed time with 4-node

the shape of7 to T8. Figure 4(l) shows the shape 9. graph patterns (Figure 4(e) and Figure 4(d)), respectively
We tested these graph patterns using a siMiark Figure 6(c) and Figure _6(d) show the e!apsed time for 4-

dataset with a factor 0.01 (16K nodes), becalis® has ~ Node graph patterns (Figure 4(h) and Figure 4(i)), respec-

difficult to answer graph patterns over a large graph [11]. tively. DPS significantly outperform®p. _

For comparing withTSD, we process the directed acyclic e also tested the scalability f@P and DPS using

graphs DAGs) obtained from the&XMark dataset, because the five large graphs20M, 40M, 60M, 80M, and100M (Ta-

TwigStackDcan only supporDAG. Its XMark data has ~ Pl€ 2). Figure 7(a), Figure 7(b), and Figure 7(c), show the
15,733 nodes, 18,102 edges. The 2-hop cover size is elapsed time for graph patterns given in Figure 4(a), Fig-
55.158. ure 4(d), and Figure 4(i), respectivelDPS significantly

As shown in Figure 5, bottR-join based approaches outperform®P by at least one order of magnitude. One of
INT-DP and DP, significantly outperformirSD, in terms the main reasons is that when the scale of the data sets in-
of elapsed time. For exampld,SD spendsl, 668 and creases the /O cost @IP increases much faster thaiPS

9,709 times of elapsed time as the amount theT-DP does.
andDP used to procesB2, respectively. It is because that

TwigStackDneeds to buffer every node that can possiblybe 3 gg op A gz‘i Db A g;‘g o "

in one final solution.DP outperformsdNT-DP for all pat- @04 S 2. S 230 B

terns becausBP needs less 1/0 cosiNT-DP needs to sort Toal o« = S«

for R-joins, and therefore needs extra I/0 cost. Soap e Bosp L §12L/‘/AH
In the following, we focus on ouR-join approachef)P % 30 40 60 80 100 %20 40 60 80 100 920 40 60 80 100

andDPS, over directed graphs. @ (b) (©

. . . Figure 7. Scalability Test
6.2 R-Join/Semijoin over Directed Graphs

We testedDP and DPS using query structures listed ¢ Related Work
through Figure 4(a) to Figure 4(h) by enumerating all pos-
sible patterns with different labels. For most querie®, Query optimization has been studied for decades, dy-
spends over five times of I/O cost than wi®S spends.  namic programming is still used as the major technique



[26, 20, 22, 19, 10]. The optimization of a single select- [6] P. A. Bernstein, N. Goodman, E. Wong, et al. Query pro-
project-join query in a centralized relational DBMS is out- cessing in a system for distributed databases (SDIAMM
lined in [19]. Optimization for join processing are survdye Trans. Database Sys6(4), 1981.

. . . . . [7] D. Brickley and R.V. Guha. Resource Description Frame-
in [22]. [29] studied optimizing multiple structural joirof work (RDF) Schema Specification 1.0. W3C Candidate Rec-
XML tree-structured data.

L P ommendation, 2000.
Semijoins has also been studied in distributed database[8] N. Bruno, N. Koudas, and D. Srivastava. Holistic twigrjsi

systems [6], which reduces the dominate data transmission  optimal XML pattern matching. IProc. of SIGMOD'02
cost over the network at the expense of the disk I/O access __ 2002.

. L . _[9] S. Chaudhuri. An overview of query optimization in rela-
cost. Semijoin full reduction is discussed in [5]. A two tional systems. IfProc. of PODS'981998.

step approach to optimize queries using join and semijoinis[10] S. Chaudhuri. An overview of query optimization in rela
discussed [12], by adding semijoins to a join sequence. An tional systems. IfProc. of PODS’981998.

approach that considers both semijoins and joins in queryl11] L. Chen, A.Gupta, and M. E. Kurul. Stack-based algarith

optimization is reported in [13], however, the overall com- {\(A)r étgeﬁgnm;;ghgf%%ga r?tém%?}i%\g_jgiﬁgggggr?ée with

plexity can be as high a@_(3|E|)|V|*1) _in [13]. In this semijoins in distributed query processin§EE Trans. Par-
paper, we propose dynamic programming strategies to deal  ajlel Distrib. Syst, 3g5), 1992,

with both R-joins/R-semijoins together with the overhead [13] M. S. Chenand P. S."Yu. Combining joint and semi-join op-
manageable. erations for distributed query processifdDE, 5(3), 1993.

. . . é14] S. Chen, H.-G. Li, J. Tatemura, W.-P. Hsiung, D. Agrawal
Surveys on recursive query processing strategies can b

) : and K. S. Candan. Twig2stack: Bottom-up processing of
found in [4]. In this paper, we show how to use graph cod- generalized-tree-pattern queries over XML documents. In

ing and a join-index to process graph matching that avoids Proc. of VLDB'06 2006.
recursive query processing. [15] J. Cheng, J. X. Yu, X. Lin, H. Wang, and P. S. Yu. Fast com-
putation of reachability labeling for large graphs.Aroc. of

. EDBT’06, 2006.
8 Conclusion [16] J. Cheng, J. X. Yu, and N. Tang. Fast reachability query

Erocessing. IfProc. of DASFAA'062006.

We proposed nevR-join/R-semijoin processing and op- Cohen, E. Halperin, H. Kaplan, and U. Zwick. Reach-
ability and distance queries via 2-hop labels. RAroc. of

timization techniques for the graph pattern matching prob- ,
. SODA'02 2002.
lem. Given a graph patterds,, where an edge represents [18] G. Graefe. Query evaluation techniques for large detab.
a reachability condition that can be processed birgoin, ACM Computing Survey&5(2), 1993. _
we proposed a new filter/fetcR-join algorithm, based on  [19] Y. E. loannidis. Query optimizationACM Computing Sur-

- ioin-i i i veys 28(1), 1996.
a new cluster-based join-index. By taking the first step as [20] M. Jarke and J. Koch. Query optimization in database sys

[17]

an_R—semijoin,__vv_e optimize such a query by optimizing the tems.ACM Computing Survey&6(2), 1984.

R-joins/R-semijoins sequence. A unique feature of éur [21] D. Kossmann. The state of the art in distributed que: pr

semijoinR-join approach is thaR-semijoin is the first step CeSSi,ngACM Computing Survey82(4), 2000. ,
[22] P. Mishra and M. H. Eich. Join processing in relational

of R—_J_o!n so that there is a minimal oye_rhe:_:td to procBss databasesACM Computing Survey@4(1). 1992. _
semijoins. W? propqsed a new pptlmlzatlon approach by 23] R. Schenkel and A. T. et. al. Hopi: An efficient connentio
interleavingR-joins with R-semijoins. We conducted ex- index for complex XML document collections. Froc. of
tensive performance studies using large data graphs, and  EDBT'04 2004.

confirmed the effectiveness and efficiency of our approach.[24] R. Schenkel, A. Theobald, and G. Weikum. Efficient dat
and incremental maintenance of the HOPI index for complex

XML document collections. IfProc. of ICDE’05 2005.
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