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Abstract

Multi-threshold CMOS is a popular technique for reducing
standby leakage power with low delay overhead. MTCMOS
designs typically use large sleep devices to reduce standby leakage
at the block level. We provide a formal examination of sneak leak-
age paths and a design methodology that enables gate-level inser-
tion of sleep devices for sequential and combinational circuits. A

fabricated 0.13 i m, dual V1 testchip employs this methodology to

implement a low-power FPGA core with gate-level sleep FETs and
over 8X measured standby current reduction. The methodology
allows local sleep regions that reduce leakage in active CLBs by
up to 2.2X (measured) for some CLB configurations.
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General Terms
Performance, Design, Reliability
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1. Introduction

Circuit designers have recognized MTCMOS as a valuable
design approach for limiting standby leakage. The majority of
MTCMOS designs gate the power to sizable blocks of logic
using large sleep transistors. The use of sleep devices at the
gate level has remained largely unexplored even though it
could potentially have several advantages that we will
describe. Locally placed sleep devices are only feasible if
sneak leakage currents are prevented. This paper presents two
contributions to leakage reduction. First, a formal definition of
sneak leakage paths provides designers with insight required
for gate-level insertion of sleep devices. A set of four design
rules offers a simplified approach to preventing sneak leakage
that covers most cases. Secondly, the use of local sleep regions
reduces leakage in unused circuit components at a local level
even while the surrounding circuit remains active. We describe
the implementation and benefits of local sleep regions in our
design, and we examine the interfacing issues necessary for
this technique to work.
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Process scaling to deep submicron levels catapulted the issue
of device leakage to the front tier of problems for circuit
designers. Since switching power is proportional to VDD2 new
processes are tailored for lower supply voltages, and the
corresponding drop in device threshold voltage, Vr, maintains
performance but causes exponential increase of subthreshold
leakage. Other components of leakage including gate leakage,
GIDL, and reverse biased diode leakage have also
increased[1]. At the 0.13pum node, however, subthreshold
leakage dominates the other components. If unaddressed,
leakage power will continue to increase in both active and
standby modes [2].

Some subthreshold leakage reduction techniques take
advantage of the stack effect caused by stacking transistors in
series. The stack effect causes Vg of the upper device to
become negative and V1 to increase due to the body effect.
Stacks of transistors occur naturally in many CMOS gates, and
algorithms also exist for introducing them artificially [3][4].
Other algorithms assign input vectors for standby mode that
use stack effect to reduce leakage current [S][6].

Another set of techniques uses body bias to tune device V- for
performance or reduced leakage[7][8]. This approach allows
active leakage reduction when timing slack exists[9]. Body
biasing techniques generally require a triple well process for
isolating body contacts.

Dual-threshold CMOS techniques use all low V1 FETs on the
critical path and high Vp FETs off of the critical path. The
placement of these devices can become complicated since the
high V1 devices can slow down parts of the circuit enough to
create new critical paths. Nevertheless, several algorithms
exist for that purpose (e.g. [10]). One advantage of dual-
threshold CMOS is that the leakage savings occur in both
active and standby modes. Disadvantages include more
complicated design time and the inability to stop critical path
leakage during standby mode.

Multi-Threshold CMOS (MTCMOS) refers to a circuit
technique that uses a high V1 footer and/or header FET to
sever a circuit from the power rails during standby[11].
Similar approaches have been applied to caches[12][13] and to
DRAMs[14]. The Boosted Gate MOS (BGMOS) approach [15]
and Super Cut-off CMOS (SCCMOS)[16] both enhance
performance by respectively overdriving the sleep device in
active mode and underdriving in standby mode.

Sequential MTCMOS circuits require more thought since they
must hold state in standby mode. For example, high Vgt
devices placed in parallel with low V1 devices can hold the
state of storage nodes during sleep[11]. A high V1 ‘‘balloon”’
circuit consisting of back to back inverters can hold state at a
given node[17]. Another approach uses the input of a flip-flop
to control the sleep state of the device conditionally[18]. This
paper uses the Leakage Feedback Flip-flop (LFBFF) proposed
in [19]. The LFBFF uses feedback from the output to cut-off
one power rail conditionally during standby.



2. Trade-offs of Local vs. Global Sleep Devices

Most MTCMOS designs insert high V sleep devices that cut-
off the leakage current to large blocks of logic. The use of
sleep devices at a local, gate level remains largely
unexamined. One reason for choosing large sleep FETs is the
design complexity associated with placing them locally.
Segmenting the sleep transistor into many devices at the gate
level creates a greater possibility for sneak leakage paths.
Generally, sneak leakage paths are high leakage paths between
power and ground that remain during sleep mode. Analysis of
sneak leakage paths at the local level can provide insight that
eliminates much of this complexity. Dispersing the sleep
devices among the gates of a design will also limit sharing
sleep devices. The total sleep device width for the distributed
approach probably will be higher than for the single large FET.
On the other hand, locally placed sleep devices offer several
advantages over the large sleep FET approach.

First, inserting local sleep devices makes it easier to guarantee
circuit functionality at high speed. This guarantee is possible
because determining the worst case speed for a sleep device
placed at the gate level is very feasible. Exhaustive gate-level
simulations can easily show that a gate will always meet a
given timing specification. The same guarantee becomes
virtually impossible to offer for large blocks with only one
sleep FET. For a large block, the worst case speed occurs when
the worst case current flows through the sleep device.
Identifying this worst case can be quite difficult without
comprehensive simulation [20]. Sizing the device based on
average current draw or even on the worst case current from a
subset of possible input vectors does not guarantee that the
absolute worst case is met.

Gate-level sleep devices also could enhance design speed and
even reduce design time by increasing the flexibility of the
design. For example, MTCMOS flip-flops that require local
sleep FETs outperform designs that can share a large, block-
level sleep device [19]. Including local sleep devices in
standard cells could eliminate the need for extensive, full-chip
simulations for every new design. Instead, a place-and-route
approach with these standard cells would provide short design
time with all the benefits of leakage reduction from a custom
design. Gate-level sleep devices also improve circuit noise
margins [21].

3. Sneak Leakage Prevention

In general, a sneak leakage path is any current path from Vpp
to ground that continues to draw high current relative to a cut-
off path during sleep mode. Formally, a sneak leakage path is a
current path that flows from Vpp to ground through a set of
“on” devices, A, and through a set of “off” devices, B. Set B
contains only low Vr devices, while Set A may contain either
low or high V1 devices. Since the off devices are low Vr, the
sneak leakage current is at least an order of magnitude higher
than other currents in the circuit. Even if Set B contains
devices in series (stacks of low Vg devices), the leakage
current remains higher than a current path through a high Vp
device for the 0.13 4 m technology node.

Ignoring even a small number of sneak leakage paths carries a
significant cost. Since sneak leakage currents tend to be about
an order of magnitude higher than other current paths, a few
sneak paths can dominate the savings achieved by cutting off
many other paths. It may seem unlikely that such paths would
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exist in a carefully designed circuit, but the term sneak leakage
implies that these current paths can be quite subtle. For
example, Figure 1 shows how sneak leakage paths can exist
through many circuit blocks and over several layers of
hierarchy. Such a distributed path is difficult to discover by
inspection. In the figure, MTCMOS logic on the critical path is
XORed with high V1 logic off of the critical path. Since the
circuits fall in three blocks, the designer might tie them
together at the top level without considering the circuit-level
problem. In this example, Path B is only gated by parallel low
V1 FETs, and Path A is gated by a stack of low V1 devices.
The example also shows that a sneak leakage path may exist in
a data dependent fashion. In other words, simulation may not
reveal the presence of the sneak path if the appropriate data
vectors are never used. If the high Vp CMOS inverter in
Figure 1 had a 0 at its input, neither leakage path would appear
in simulation. The subtle nature of sneak leakage paths makes
a careful analysis of their causes very important.

An MTCMOS circuit uses a high Vp sleep device between a
low Vr circuit and one rail, usually the ground rail. Whether
the sleep device is one large device or many small ones, the
basic structure of MTCMOS circuits suggests that sneak
leakage paths must occur only where the sleep device(s) can be
bypassed. Thus, the focal point for preventing sneak leakage
paths will be at the interface between MTCMOS and CMOS
circuits. Previous analysis of MTCMOS sequential circuits
makes this same observation [19]. Their treatment of leakage
paths in MTCMOS flip-flops highlights several specific
configurations that lead to sneak leakage paths, and they
propose flip-flop designs to eliminate those paths. This work
expands on the analysis of sneak leakage at MTCMOS
interfaces, and we propose general design guidelines that
prevent most instances of sneak leakage.

An ultra-conservative approach to sneak leakage prevention
could use both polarities of sleep device for each MTCMOS
gate without sharing any sleep devices. At the cost of area, this
type of design would prevent all sneak paths by ensuring that
Set B always contains a high Vg device. In practice, most
MTCMOS gates only require one polarity of sleep device.

MTCMOS logic |
/On Critical Path;

MTCMOS XOR in

0 different Hierarchical Block

CMOS logic
| Off Critical Path

Figure 1. Example of Sneak Leakage Paths at CMOS,
MTCMOS interface. Paths occur over several hierarchical
levels and through several blocks. Paths are also data-
dependent (In this example, both paths disappear for
A=B=1).



Even in a gate-level sleep device regime, local clusters of gates
can still share sleep devices for reduced area and improved
leakage reduction. Since low impedence paths can exist from
MTCMOS outputs to power rails in this type of design, sneak
leakage paths are possible whenever an MTCMOS output node
is connected electrically to another node with low impedence
to a power rail. This electrical connection most likely will not
occur directly, so it most often appears as a connection through
low V1 passgates or transmission gates.

An awareness of the sources of sneak leakage paths can allow
designers to prevent them at the gate level with the minimum
necessary area overhead. Table 1 provides four guidelines for
designing MTCMOS circuits that prevent sneak leakage paths.
While these rules may not cover every case, they prevent the
most common occurrences of sneak leakage paths. These
guidelines provide useful rules of thumb for designers, and
they are not intended to be comprehensive. A CAD tool for
identifying sneak leakage paths would include more rules to
account for all cases. In accordance with the sneak leakage
definition we described before, shared outputs between CMOS
and MTCMOS gates include outputs shared through low Vp
transmission gates.

Table 1. Design Rules

1. Any MTCMOS gate that shares an output with a CMOS
gate or power rail needs to use both polarity sleep
devices.

2. An MTCMOS gate that shares outputs with other
MTCMOS gates must use the same polarity sleep device
(or devices) as the other gates.

3. Any MTCMOS gate that shares a sleep device with a
gate that uses both polarity sleep devices must also have
(or share) both polarity sleep devices.

4. Do not share sleep devices if the shared line creates a
connection between outputs of multiple CMOS gates.

Figure 2 shows examples of the four design rules. The arrow in
each case shows the leakage path being prevented. The
examples indicate how most sneak leakage paths occur through
low Vg transmission gates since that is the most common
configuration where MTCMOS gates and CMOS gates share
output nodes. Collectively, the rules show that sneak leakage
paths occur at the interface of MTCMOS gates.

In practice, these rules simplified the design process for the
MTCMOS testchip by focusing the designers’ attention on
problematic interfaces. As the next section will show, the
testchip architecture uses transmission gates throughout the
design to improve speed on the critical path. The abundance of
transmission gates along with the dual V1 design made the
rules in Table 1 invaluable for eliminating potential leakage
paths from the design. Figure 3 shows two examples of sneak
leakage paths in the testchip circuit that were prevented by
applying the design rules. In the first case, a transmission gate
multiplexor connects the outputs of an MTCMOS gate and a
CMOS inverter to create a data dependent leakage path.
Applying RULE 1 fixes this problem. In the second case, a
shared sleep device allows leakage paths to flow into a flip-
flop. This leakage path occurred over several hierarchical
levels. The figure shows two options for removing this
problem according to the rules. We applied RULE 4 to
eliminate this potential leakage path.
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Figure 2. Illustration of Design Rules. Arrows
show the prevented leakage paths.

4. Sleep Regions

The analysis of sneak leakage presented above facilitated
design of a 0.13um, dual Vg testchip using sleep devices at
the gate level. The two threshold voltages are about 100mV
apart. The sleep devices are sized so that each gate sees less
than 10% delay penalty, and the entire circuit thus has less
than a 10% delay penalty for Vpp = 1.0V. The total area
penalty of the sleep devices on the testchip is less than 5%.
The testchip implements a low power FPGA architecture with
12 Configurable Logic Blocks (CLBs) in 3 slices. The FPGA
core houses circuits common to more generic architectures.

In accordance with good dual V1 design, the memories that
hold Look-Up Table (LUT) values and configuration bits use
high V1 devices, and the CLBs use MTCMOS circuits for the
critical path. Each CLB in the architecture has three primary
components: four 16-bit LUTs, a 4-bit adder, and a 4-bit
register. The register consists of LFBFFs that hold their state
during sleep mode.

Some of the configurations available for this CLB do not use
all of these components. Figure 4 shows with dashed boxes
that the CLB is divided into four sleep regions. Three of the
sleep regions each contain one of the main elements in the
CLB, and the fourth region holds the remaining control
circuits. The sleep regions allow any unused elements of the
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Figure 3. Leakage Paths Prevented on the Testchip.

CLB to enter sleep mode while the other components remain
active. The fine-grained placement of sleep devices makes this
approach possible.

Since the testchip implements programmable logic,
configuration bits tell each CLB how to organize its internal
parts at program time. These configuration bits can also act as
control signals for the sleep regions. For example, the
configuration bit that causes the adder to be bypassed (C3 in
Figure 4) also asserts the sleep signal to the adder sleep region.
All sleep regions respond in unison to the global sleep signal
along with the multiplexors and gates in the rest of the CLB.
Minimal control logic is required for deciding when to assert
the sleep signal for each local sleep region. The overhead
control circuits for incorporating sleep regions in our design
comprised only 1% area overhead for the CLB, while the total
area overhead including all of the sleep devices was less than
5%. Thus, distributing sleep devices at the gate level allows a
fine-grained partitioning of the CLB with negligible overhead.

As with sneak leakage analysis, the interfaces of the sleep
regions require special attention. Specifically, a block in cutoff
might drive CMOS gates with a floating node, thereby opening
a static current path from power to ground. Careful design of
the CLB prevents such a situation from occurring. Take the
LUT block as an example. The output of the 16-bit LUTs
drives one input of a 2:1 multiplexor that uses transmission
gates to select between its input signals. When the LUT region
is asleep, its outputs drive the “off” transmission gate in the
2:1 mux. Therefore, any floating nodes inside the sleep region
remain isolated from the gates of other devices. A large
subthreshold leakage current may flow through the
transmission gate because it is low V1. However, this current
is insignificant relative to the savings obtained by placing the
entire LUT region into sleep.

The outputs of the flip-flops also drive transmission gates, but
the situation is different than for the LUT sleep region. In the
previous case, the transmission gate driven by the floating
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Figure 4. CLB Architecture with Local Sleep
Regions (in hashed boxes).

inputs always was off whenever the LUT region was asleep. In
the case of the flip-flop sleep region, the interface requires
careful partitioning to prevent static current. Let us first
assume that the multiplexor at the output of the FF sleep region
is not included inside the FF sleep region. With this
partitioning decision, Figure 5 shows that one of the flip-flop
outputs, either Q or Q, will always drive the input to an
inverter because one of the transmission gates controlled by S
is on. If node Q or Q either floats or takes a long time to
charge up to Vpp, a large static current flows in the output
inverter of MUX A in Figure 5 because MS1 is still on. Careful
partitioning can eliminate this problem. Including MUX A4
from the 4:1 mux in the flip-flop sleep region eliminates the
static current problem. This better partitioning solution ensures
that the output of MUX A drives a transmission gate that is
always off whenever the flip-flop region is asleep, thus
preventing static current.

The FPGA architecture inherently avoids most interfacing
problems for sleep regions by using transmission gate
multiplexors. Thoughtful partitioning makes use of these
muxes for interfacing without static currents. Partitioning a
design with gate-level sleep transistors into sleep regions only
requires that the correct local sleep signals be routed to the
proper FETs. The properly interfaced sleep regions in out
design provide automatic power savings for any CLB that does
not use one or more of its major elements.

The FPGA architecture is especially amenable to local sleep
regions since the configuration bits only change during device
programming. Thus, the unused components in a CLB never
need to switch on during active operation. Local sleep regions
can find use in more generic architectures that require small
local blocks to transition into and out of sleep with some
rapidity. Simulations show that the voltages at every node
inside the CLB sleep regions settle to the correct, stable values
within 4ns during wake-up. This settling time is reasonable for
one or two cycles in a low-power system. Thus, the use of an
enable signal to turn sleep regions on and off at a local level
seems feasible in generic architectures. Additionally, fine-
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Figure 5. Sleep Region Interface: Partition to
Avoid Static Currents.

grained sleep regions can be used in cooperation with other
techniques for decreasing the wake-up time that are also based
on the MTCMOS approach [22].

5. Measured Results

The testchip confirms that gate-level sleep devices can provide
standby leakage savings. Placing the entire chip in sleep mode
provides a measured reduction in leakage current by from 7.0X
to 8.6X. These savings coincide with expected savings based
on the 100mV V difference between the threshold voltages in
the process we used. The range in savings comes from
different stored state during sleep. As previously mentioned,
the LUTs use high Vg storage elements to maintain their
values in sleep. Likewise, the CLB uses LFBFFs that preserve
their state while reducing leakage. The state consisting of these
stored values impacts the total leakage current during sleep
mode. Figure 6 presents an oscilloscope waveform that shows
the voltage drop over a current-sense resistor when the entire
chip enters sleep mode. Accounting for a 10mV offset in the
oscilloscope probes, the waveform shows an 8.2X reduction
corresponding to current savings. The measurement setup
(including the series current-sense resistor) introduces a long
time constant that dominates the chip response, but the initial
and final values match well with independent results from an
ammeter. The measurements show chip-wide leakage savings
during sleep mode that would not be possible should even a
handful of sneak leakage currents exist in the circuit. The
results imply that the testchip design successfully avoids sneak
leakage currents and gives standby leakage savings.

5.1 Sleep Region Leakage Savings

The CLBs use three power supplies to facilitate measurement:
flip-flop power supply, sleep power supply, and core supply.
The sleep power supplies the sleep signal network, the FF
supply powers the flip-flops, and the core supply takes care of
the rest. All HSPICE simulations and chip measurements are
for Vpp at 1.0V.

Table 2 shows the simulated and measured leakage current
reduction using sleep regions. The first column shows the
factor reduction in current for the power supply that should
change for the given sleep region (core supply for adder and
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Figure 6. Oscilloscope plot of voltage drop over current-
sense resistor when entering sleep. Initial and final
voltage values (adjusted for probe offset of 10mV) show
an 8.2X savings. The test setup introduces a long time
constant.

LUT; FF supply for FF). In all cases, the high V1 sleep signal
network consumed negligible power relative to the rest of the
circuits. Since the flip-flop sleep region has a separate power
supply, we can measure exactly how the FF region reduces
leakage during standby mode while retaining state. The
measured 6.0X reduction in leakage is less than the 8X
acheived by the whole chip largely because of the known
sneak leakage path through the mux at the sleep region
interface. As previously mentioned, the total savings for the

Table 2. Simulated and Measured Sleep Region Leakage
Savings for an active CLB.

Local Supply Total CLB
Sleep Region Savings Savings
in sleep (Simulated / (Simulated /
Measured) Measured)
Flip-Flop 6.67X/6.0X 1.15X/1.11X
Adder 1.08X/1.11X 1.07X/1.10X
LUT 2.26X/2.51X 1.97X/2.19X

sleep region are reduced by this path, but they are still
significant enough to justify placing the sleep region into
sleep. The second column shows the factor reduction in
steady-state current for the entire CLB when each sleep region
is asleep. The LUT region provides the greatest savings since
that circuitry comprises roughly 60% of the CLB area and uses
large drivers for speed. The flip-flop region and adder region
comprise 10% and 6% of the CLB area, respectively. As
previously mentioned, the total area penalty of the sleep
devices is under 5%, and the area penalty for sleep region
control logic is 1%. The results show that the sleep regions
give leakage savings of from 10% to 2.2X for an active CLB in
different configurations.



Figure 7. Annotated Die Photo.

6. Conclusions

We have proposed a design approach using gate-level sleep
devices and provided a thorough analysis of sneak leakage
paths to facilitate the approach. Insight that leakage paths
occur at MTCMOS interfaces provides a set of design
guidelines for preventing the most common sneak leakage
paths. These guidelines allow designers to insert sleep devices
locally without having leakage savings degraded by sneak
leakage. A 0.13pm testchip confirms that gate-level sleep
devices can provide standby leakage savings. Placing the
entire chip in sleep mode provides a measured reduction in
leakage current by from 7.0X to 8.6X for different stored
states. Figure 7 shows the annotated die photo of the testchip.
The three slices (containing 12 CLBs) cover 300pm by
740 4 m.

We also propose fine-grained sleep regions and implement
them on the testchip. The chip measurements match closely
with simulation, and they show the benefit of the sleep region
technique. The use of gate-level sleep devices allows inactive
circuit regions to enter sleep at a fine grain. The other circuit
components remain active and with unaffected performance.
The total steady-state power (clock-gated) for an active CLB
reduces by from 10% to 2.2X for different configurations as
shown in Table 2.
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